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Abstract   68 

Traditionally, multiple sclerosis (MS) has been categorized by distinct clinical descriptors — re-69 

lapsing-remitting, secondary-progressive, and primary-progressive — for patient care, research, 70 

and regulatory approval of medications. Accumulating evidence suggests the clinical course of 71 

MS is better considered as a continuum, with contributions from concurrent pathophysiologies 72 

that vary across individuals and over time. The apparent evolution to a progressive course re-73 

flects a partial shift from predominantly localized acute injury to widespread inflammation and 74 

neurodegeneration coupled with failure of compensatory mechanisms, such as neuroplasticity 75 

and remyelination. Aging increases neural susceptibility to injury and decreases resiliency. 76 

These observations encourage a new consideration of the course of MS as a spectrum defined 77 

by the relative contributions of overlapping pathological and reparative/compensatory process-78 

es. New understanding of key mechanisms underlying progression and measures to quantify 79 

progressive pathology will potentially have important and beneficial implications for clinical care, 80 

treatment targets, and regulatory decision-making. 81 

  82 
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Introduction  83 

Multiple sclerosis (MS) is an immune-mediated disease of the CNS. The heritability of 84 

MS risk is approximately 25%, with the remainder of susceptibility attributed to environmental, 85 

epigenetic, and gene-gene or gene-environment interactions.1 The International Advisory Com-86 

mittee on Clinical Trials in MS (Supplementary Materials) categorized clinical course descriptors 87 

(commonly referred to as the Lublin-Reingold classification) in 1996, with revision in 2013.2,3 88 

They defined three clinical courses: relapsing-remitting (RRMS) (acute attacks followed by re-89 

covery), primary progressive (PPMS) (gradual worsening from onset), and secondary progres-90 

sive (SPMS) (relapsing-remitting at onset but gradual worsening later in the disease course. 91 

The descriptors provided consistency in defining patient groups for natural history studies, en-92 

hanced homogeneity in clinical trials, and greatly improved communication between clinicians 93 

and patients.2 In the 2013 revision, clinico-radiological disease activity and progression were 94 

introduced as modifiers of the basic clinical courses to better reflect treatment-relevant aspects 95 

of the disease, such as relapses.3 These refinements were incorporated into trials that led to the 96 

first approvals of drugs for progressive MS (for example, the approval of siponimod for “active” 97 

SPMS).4,5 98 

It seems clear now that disability progression is neither dichotomous nor genetically de-99 

termined.6 Rather, accumulating data suggest that MS patients share qualitatively similar (but 100 

quantitatively different) pathology features independent of clinical course, including inflammation 101 

and neurodegeneration, both of which are already present at disease onset.7-10 In line with this 102 

observation, in relapsing-onset MS, a substantial proportion of disability progression is inde-103 

pendent from relapses.11,12 Phenotypic differences in disease expression may be driven by pa-104 

tient-specific factors, including sex, age, social and environmental exposures, genetic factors, 105 

and disease duration.13,14  106 

Since the introduction of the Lublin-Reingold descriptors, there have been calls for de-107 

velopment of a disease classification more rooted in the biological mechanisms of MS. As a first 108 
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step in this direction, the International Advisory Committee on Clinical Trials of MS focused on 109 

clarifying the 1996 and 2013 clinical course descriptors.15 The committee has since undertaken 110 

an effort to more comprehensively examine the current clinical course descriptors with the goal 111 

of determining an approach to development of a new paradigm for describing the disease.16-18 112 

Herein, we present concepts and results relevant to the pathophysiology of injury and compen-113 

satory mechanisms in MS and summarize the tools that can be used in clinical practice, trials, 114 

and research to identify the spectrum of MS pathology and clinical progression. We consider 115 

knowledge gaps in identifying injury and failure of compensatory mechanisms and indicate how 116 

these gaps should be addressed. We suggest that clinical characterization and treatment selec-117 

tion should be guided by identification of disease-driving pathophysiological mechanisms rather 118 

than the traditional clinical descriptors. This approach lays the groundwork for a future consen-119 

sus-based classification that would transform drug discovery and improve patient care. 120 

 121 

Mechanisms of Injury  122 

Nonresolving inflammation  123 

Focal inflammatory demyelination in the white matter is a relatively stereotyped process 124 

characterized by perivenular inflammation involving both adaptive and innate immune cells, 125 

parenchymal astrocytic and microglial reaction, blood-brain-barrier opening, a rapid wave of 126 

demyelination manifested over the course of days to weeks (sometimes corresponding to clini-127 

cal relapse), and a phase of tissue repair that typically lasts weeks to months.19 Focal inflamma-128 

tion can be observed as gadolinium enhancement on MRI, which allows identification of “active” 129 

disease (Fig. 1). The perivenular topography of focal inflammatory lesions can be detected us-130 

ing susceptibility-based MRI.20 In approximately one quarter of lesions, inflammation may “burn 131 

out” despite the absence of adequate repair, leaving behind an astroglial scar.21 Residua of 132 

these processes can be detected in vivo using T2-weighted hyperintensity on MRI; T1-weighted 133 

hypointensity ensues in the case of loss of neuropil (“black holes”) (Table 1). Abrogation of new 134 
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MRI lesions is a cornerstone for assessing response to treatments aiming to block MS relapses 135 

but has limited value in predicting the benefit of therapy on slowing of clinical progression, alt-136 

hough, as discussed below, the residua of focal inflammatory demyelination have emerged as 137 

key drivers of that progression.12,22,23 138 

The existence of an ongoing intrathecal immune response is usually demonstrated at the 139 

time of diagnosis by the presence of CNS-specific oligoclonal bands.24 In the acute phase, acti-140 

vation of microglia and infiltrates of macrophages and lymphocytes accompany demyelination 141 

and plaque formation.25,26 However, these inflammatory mechanisms fail to resolve in approxi-142 

mately 20% of lesions.19 Inflammation becomes more organized, with tissue-resident CD8+ 143 

memory cells and monocyte populations, fostering inflammatory changes in brain-resident cells 144 

(astrocytes and microglia), and ultimately resulting in chronic tissue remodelling and 145 

damage.25,27,28 These characteristics are especially prominent in “mixed active and inactive le-146 

sions”, a recent term that subsumes previous descriptions of “chronic active,” “smouldering,” 147 

and “slowly expanding” lesions, which in many (but not all) cases are identifiable on high-field 148 

MRI because of iron-laden phagocytes at the lesion’s white matter-bordering edge (the so-149 

called “paramagnetic rim sign”) (Fig. 1).19,29 In vivo MRI studies confirm speculations based on 150 

autopsy studies that inflammatory changes within paramagnetic rim lesions can enlarge slowly 151 

into previously healthy perilesional tissue, accompanied by low-grade demyelination and tran-152 

section of axons passing through or near lesions.29,30 Axon transection results in retro- and ante-153 

rograde axon degeneration, with potentially detrimental effects on separate but anatomically 154 

connected areas of the brain. Therefore, it is not surprising that a high burden of these lesions is 155 

associated with more rapid disability accumulation.30 Recent data demonstrate that the para-156 

magnetic rim sign may disappear over a period of years, raising the possibility that chronic focal 157 

white matter inflammation may be susceptible to therapeutic modulation.31,32 Changes in para-158 

magnetic rim lesions are currently included as outcome measures in ongoing and newly de-159 

signed MS clinical trials as potential correlates or predictors of MS progression. A separate MRI 160 
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approach combines data from the entire time course of a clinical trial to capture the slow en-161 

largement of MS lesions (so-called “slowly evolving lesions”), but whether and how these 162 

changes are related to chronic inflammation remains uncertain.33  163 

Another important site of chronic inflammation is the leptomeninges (Fig. 1), where in-164 

nate and adaptive immune cells may aggregate and occasionally organize into tertiary lymphoid 165 

structures.34 Many (but not all) autopsy studies have shown a spatial correspondence between 166 

leptomeningeal inflammatory aggregates, which are more prevalent in cases of clinically pro-167 

gressive MS, and demyelination of the underlying subpial cortex.35 Despite the advent of MRI-168 

based approaches that can identify some current or previous areas of leptomeningeal inflamma-169 

tion due to accompanying blood-meningeal barrier abnormalities, such techniques are not suffi-170 

ciently robust to quantify accumulation of leptomeningeal inflammation over time.  171 

Finally, diffuse microglial activation and multifocal microglial nodules in the extralesional 172 

white matter have been reported in MS autopsies, especially in cases of progressive MS (Fig. 173 

1).10,36 The causes and consequences of this diffuse (and occasionally profound) microglial acti-174 

vation are poorly understood. Similarly, whether microglial nodules represent areas of incipient 175 

but aborted focal demyelination, reaction to local tissue perturbation, or something else, remains 176 

unclear.37 Positron emission tomography (PET) studies using radioligands that bind to activated 177 

microglia and astrocytes have provided some in vivo evidence for widespread microglial in-178 

volvement, although data generated by these scans are often noisy, spatial localization is poor, 179 

and cellular specificity is imperfect (Table 1).38 These same PET radioligands may identify some 180 

mixed active and inactive white matter lesions and have been used for this purpose in clinical 181 

trials. 39-41 Given the new appreciation of massive glial and neuronal heterogeneity in the CNS, 182 

an important research goal is to improve the cellular specificity of molecular imaging techniques. 183 

Nonresolving inflammation not only drives injury but may also prevent repair. An open 184 

and critical question is whether inflammation needs to resolve before tissue repair can com-185 

mence. The development of sensitive and specific, noninvasive imaging markers that detect 186 
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such inflammation, such as the paramagnetic rim sign, along with future development of robust 187 

CSF and blood biomarkers of the same processes, might allow this question to be answered. 188 

Similar approaches could elucidate the importance of nonresolving inflammation, and any po-189 

tential group or individual effect on that inflammation of existing or future disease-modifying 190 

therapies for MS clinical progression.  191 

 192 

Neurodegeneration  193 

Inflammation is closely linked to axon and neuron injury in MS. Axon damage is already 194 

prominent at the earliest lesion stages, whereas neuronal loss may start early but becomes 195 

more obvious in tissue samples from patients with progressive disease (Fig. 1)42,43. As a conse-196 

quence of primarily axon damage, neurofilament light chain (NfL), a cytoskeletal protein, is re-197 

leased into the interstitial space and subsequently enters CSF and peripheral blood (Table 1).44 198 

NfL concentration has been directly associated with relapses and clinical progression, is now 199 

routinely included in clinical trials as an outcome measure, and is moving closer to clinical prac-200 

tice. NfL will likely be important as a prognostic biomarker to monitor MS patients for progres-201 

sion, disease activity, and treatment efficacy.45 At the molecular level, demyelination leads to 202 

dysfunction and anomalous distribution of ion channels along the axons. One consequence of 203 

aberrant function of ion channels is accumulation of intra-axonal calcium, which may stimulate 204 

catabolism and trigger intra-axonal proteolytic degradation.46-48 Altered ion channel distribution 205 

is difficult to detect in clinical practice, but a few MRI studies in MS patients have demonstrated 206 

that the tissue sodium concentrations is elevated in acute and chronic lesions compared to are-207 

as of extralesional white matter, suggesting widespread or focal ion imbalance.49,50 208 

At the metabolic level, myelin contributes to axon and neuron survival.51 In addition, as-209 

trocytes transfer metabolites to oligodendrocytes, which in turn support neuroaxonal metabo-210 
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lism.52 These metabolic changes can be studied using MR spectroscopy and PET, though their 211 

applications are currently limited to small samples in proof-of-concept studies; broader use 212 

would require standardization in acquisition and processing and substantial improvements in 213 

signal-to-noise ratio.53 214 

While cellular, molecular, and metabolic mechanisms of neuroaxonal damage are still 215 

difficult to measure, the resulting global and regional brain atrophy — detectable from early in 216 

the disease course — has been associated with a higher risk of progressive disability accumula-217 

tion. In particular, accelerated brain atrophy has been associated with long-term disability pro-218 

gression independent of relapse activity (so-called “silent progression”).54 Atrophy indices have 219 

been utilized as primary outcome measures in phase 2 clinical trials for progressive MS. Brain 220 

and spinal cord volume measurements are beginning to be available for clinical practice and will 221 

benefit from standardized acquisition protocols and analysis methods (Table 1).55 Axon loss, 222 

mostly from inflammatory demyelination in the optic nerve, is reflected in thinning of the retinal 223 

nerve fibre and ganglion cell layers on optical coherence tomography (OCT), which is in turn 224 

correlated with brain atrophy and disability accumulation (Fig. 1).56  225 

 226 

Molecular mechanisms of injury: Oxidative stress and mitochondrial dysfunction  227 

Oxidative stress and mitochondrial dysfunction contributing to glial and neuronal injury, 228 

axonal energy failure, and loss of neuronal network function may be key molecular mechanisms 229 

driving disease progression. High levels of oxidative stress in the CNS, as determined by lipid 230 

peroxides, their breakdown aldehydes, and oxidized DNA, can induce axon, neuron, dendrite, 231 

and oligodendroglia injury in MS lesions.57-59 Excessive iron deposition in CNS parenchyma has 232 

been hypothesized to be a source of oxidative stress in MS, and iron has been noted to accu-233 

mulate in deep grey matter nuclei by susceptibility-based MRI as well as in macrophages and 234 

microglia in the rim of mixed active and inactive lesions.60 The pro-oxidative environment is ag-235 
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gravated by relative deficiency of protective brain glutathione in progressive MS, as potentially 236 

detected in vivo by glutathione spectroscopy.61 237 

Mitochondria are also perturbed in MS. Following demyelination, mitochondria move 238 

from the cell soma to the demyelinated axon; however, the peak of this potentially beneficial 239 

mitochondrial response is only reached after axonal degeneration has been begun.62 Chronic 240 

demyelination, iron accumulation, and oxidative injury may further produce dysfunctional mito-241 

chondria, which accumulate over the disease course.63 Dysfunctional kinesins (motor proteins 242 

responsible for axonal transport of mitochondria) also impair export of mitochondria from the 243 

soma into the axon, further contributing to axonal energy failure and injury. In autopsies of pro-244 

gressive MS cases, the density of respiratory complex IV-deficient neurons is elevated through-245 

out the grey matter, and there are multiple deletions of mitochondrial DNA in individual neurons 246 

resembling those seen with aging. Dysfunctional mitochondria may not complete oxidative 247 

phosphorylation, leading to energy failure, a state of “virtual hypoxia,” and amplification of oxida-248 

tive injury through electron leakage in axons and neurons, which may contribute to neuronal 249 

network failure and disease progression.64  250 

Energy failure can in principle be assayed in vivo using MR spectroscopy, but a combi-251 

nation of laboratory and imaging techniques that can reliably assess ongoing oxidative injury 252 

and mitochondrial dysfunction in lesions is needed (Table 1). As such, evidence of associations 253 

between molecular mechanisms of injury and MS progression mostly comes from small proof-254 

of-concept studies, and standardization of methods will be necessary for implementation in clin-255 

ical trials and practice. 256 

 257 

Failure of Compensatory Mechanisms 258 

Remyelination   259 

Myelin is required for saltatory conduction of action potentials, supplying trophic factors 260 

for axons and protecting them against the inflammatory milieu. Remyelination is a spontaneous 261 
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repair process in which new myelin sheaths are formed after a demyelinating event (Fig. 1).21,65 262 

Repaired compared to native myelin is characterized by shorter and thinner myelin sheaths, 263 

resulting in slower action potential conduction.66,67 The extent of remyelination varies across and 264 

within individuals and may be influenced by lesion location, extent and composition of inflamma-265 

tion, age, genetic factors, disease duration, and potentially other factors to be identified.68,69 A 266 

high proportion of remyelinated lesions is associated with slower disease progression.37,70 MRI 267 

studies suggest that remyelination starts quickly after the onset of demyelination and continues 268 

over approximately six months.71 Whether remyelination continues beyond six months is uncer-269 

tain but of tremendous interest.  270 

In animal models of demyelination, proliferation and migration of oligodendrocyte pro-271 

genitor cells (OPC) and their differentiation into mature myelinating oligodendrocytes are re-272 

quired for successful remyelination. In inactive as well as mixed active and inactive lesions OPC 273 

remain present, albeit in reduced numbers and uneven distribution, whereas mature oligoden-274 

drocytes are almost completely lost.72,73 These findings suggest that impaired oligodendrocyte 275 

differentiation contributes to remyelination failure in progressive MS.66,67 Recent studies suggest 276 

that not only OPC, but also mature oligodendrocytes, may contribute to successful lesion re-277 

myelination and that the reasons for remyelination failure in MS may be diverse and dependent 278 

on disease duration, lesion stage, and lesion location.31,65,74,75  279 

Several methods can assess remyelination clinically though are not routinely used in 280 

clinical practice (Table 1). Longitudinal voxel-based magnetization transfer MRI has been used 281 

to quantify remyelination in several clinical trials; however, inflammation, oedema, and axon loss 282 

may also influence the measurement.76 T1 mapping at 7-tesla MRI allows partial differentiation 283 

of demyelinated and remyelinated white matter lesions (Fig. 1).77 Myelin water fraction imaging 284 

is another technique currently used to identify myelin changes in the human brain.78 Radiotrac-285 

ers that label amyloid (e.g., [11C]PIB) are sensitive to myelin, and longitudinal data raise the 286 

possibility that this method allows detection of both demyelination and remyelination in MS.70,79 287 
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Visual evoked potentials (VEP) have been extensively used to assess demyelination and re-288 

myelination, both in clinical practice and as a primary outcome in proof-of-concept clinical trials 289 

evaluating the potential of remyelination-promoting compounds.80  290 

 291 

Neuroplasticity  292 

Neuroplasticity and functional reorganization in response to damage are intrinsic proper-293 

ties of the CNS. Mechanisms include molecular changes, synaptogenesis, alteration of synaptic 294 

function, and dendrite and axon sprouting. Reorganization of neural networks can be demon-295 

strated in persons with MS by task-oriented and resting state functional MRI (fMRI) (Fig. 1, Ta-296 

ble 1). Motor, sensory, visual, and particularly cognitive functions (processing speed and effi-297 

ciency, attention, memory, and executive function) are associated with widespread and bilateral 298 

brain activation in MS, especially with longer disease duration and more severe disability, com-299 

pared to healthy controls.81 Acute and chronic inflammation not only cause CNS damage, which 300 

stimulates reorganization, but also probably interferes with the processes required for functional 301 

reorganization.42 Preservation of functional connectivity also depends on cognitive reserve, de-302 

spite accumulation of structural damage, suggesting that such reserve can directly affect neuro-303 

plasticity potential.82 The magnitude of functional reorganization correlates with extent of lesion-304 

al and extralesional damage. In patients with preserved motor function, greater lesion volume 305 

and microstructural damage are associated with widespread activation of brain areas, suggest-306 

ing that reorganization is compensatory. However, the degree of recovery relates to the specific 307 

pattern of functional changes, indicating that compensation might in some instances be mala-308 

daptive.42 309 

The severity of MS-related CNS damage as assessed clinically and by MRI is an im-310 

portant factor affecting quantitative and qualitative aspects of functional reorganization, interact-311 

ing with age at disease onset, disease duration, and disease-modifying therapy.83 Other im-312 
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portant factors, such as age, sex, comorbidities, and health behaviours (e.g., smoking and exer-313 

cise) influence the capacity for compensatory reorganization.84-86   314 

One explanation for the emergence of progressive disability worsening in MS is the ac-315 

cumulation of irreversible damage exceeding the capacity of the CNS to compensate. Future 316 

longitudinal studies should integrate fMRI findings with clinical and neuropsychological 317 

measures and other methods that assess neural networks structurally (e.g., diffusion tensor 318 

imaging and ultrahigh-field anatomic imaging) and functionally (e.g., magnetoencephalography). 319 

Aspects of fMRI acquisition parameters and analysis need to be refined and standardized. Addi-320 

tionally, a better understanding of the network characteristics that are most clinically relevant is 321 

required.42 Most importantly, among the changes associated with motor and cognitive disability 322 

worsening, it is critical to distinguish those that are clinically irrelevant, those that are appropri-323 

ate but inadequate to compensate for accumulating CNS damage, and those that are maladap-324 

tive. 325 

 326 

The Role of Aging in MS  327 

Older chronological age is robustly associated with non-relapse related progression. 328 

Progressive MS is very rare in children, and progression from onset occurs in <1% of children 329 

vs. ~10% of adults diagnosed with MS.87 In adults, older age at diagnosis is associated with 330 

faster accumulation of ambulatory disability, a defining feature of progressive MS as currently 331 

described, as well as greater cognitive impairment.88,89   332 

 The prototypical biological marker of aging is telomere attrition. Leukocyte telomere 333 

length is a reliable marker of telomere length from different cell types throughout the body.90 In a 334 

cohort of over 500 MS cases, leukocyte telomere length attrition was associated with higher 335 

disability in both cross-sectional and longitudinal analyses independent of disease duration and 336 

chronological age.91 While current linkage of telomere shortening to MS subtype is only associa-337 

tive, there is strong biological plausibility that processes downstream of telomere attrition includ-338 
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ing the DNA damage response and cellular senescence contribute to disability progression. 339 

Intriguingly, immunosenescence of lymphocyte subsets has been linked to MS pathology.92-94   340 

Senescence of different CNS cell subtypes, which might be accelerated due to the dis-341 

ease itself, may also impact progression. Senescent microglia may both promote chronic secre-342 

tion of inflammatory cytokines and contribute to an inhibitory environment for remyelination due 343 

to their decreased phagocytic activity. Senescent astrocytes are detrimental to synaptic plastici-344 

ty, blood-brain-barrier function, and the metabolic balance of neighbouring neurons.95,96 Overall, 345 

aging has been associated with declining neural plasticity and less capacity for functional re-346 

covery from inflammatory injury. By contrast, better physical outcome from MS attacks in chil-347 

dren has been attributed to high functional reserve and capacity for plasticity.97  348 

Systemic aging also leads to increased burden of comorbid illnesses, including vascular 349 

disease, which may further hasten development of MS ambulatory disability.98 While the mech-350 

anisms by which vascular disease worsens progression are not fully elucidated, injury to brain 351 

white matter is a likely contributor.99   352 

 353 

 Reproductive aging may also affect MS progression. Whereas women are at increased 354 

risk for developing MS, men with MS may have earlier and faster disability development.88,89 355 

Several studies suggest that progressive MS pathology and disability accelerate in the perimen-356 

opausal period.100 Potential mechanisms for an association of ovarian functional decline with 357 

progressive MS pathology include the loss of neuroprotective effects of oestrogens and immune 358 

changes in the perimenopausal period. Loss of sex-specific steroid production may explain the 359 

phenomenon of women appearing to catch up in disability to men in later decades of life.   360 

 361 

Conclusions and future directions  362 

Despite substantial gains in knowledge of MS pathophysiology and the proliferation of 363 

treatments to forestall MS relapses, halting and reversing disease progression remain unmet 364 
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needs. To address these needs, it is critical to move from clinically to biologically based defini-365 

tions of MS progression and to develop and validate tools that can reliably assess and track 366 

relevant disease biology in clinical settings. Data suggest that disability progression is not 367 

caused by one uniform disease mechanism but instead results from a combination of several 368 

mechanisms, which play out variably across patients and within individual patients over time 369 

(Fig. 2). Indeed, over time, mechanisms of injury such as those discussed in this paper (nonre-370 

solving inflammation, neurodegeneration, oxidative stress, and mitochondrial dysfunction) can 371 

occur separately or in various combinations in the same individual, and together with failure of 372 

compensatory mechanisms (e.g., remyelination and neuroplasticity), all interacting with aging, 373 

define the clinical picture across the disease course. The field must develop methods to identify 374 

and quantify these mechanisms, minimally invasively and on the patient level, and incorporate 375 

the relevant measures into both clinical trials and clinical practice. Achieving this goal will re-376 

quire correlative clinical-radiological-pathological studies of people with fast versus slow disease 377 

progression independent of relapses and active lesions on MRI, as well as longitudinal studies 378 

correlating imaging and other paraclinical tools with disease progression as measured using 379 

state-of-the-art techniques (e.g., clinical, cognitive, and digital tools, as well as blood and CSF 380 

biomarkers).101-104 381 

In keeping with current trends throughout medicine, we envision a future where clinical 382 

benefit accrues directly from biomarker-based, biologically informed treatment decisions. The 383 

concepts described in this paper are a first step towards a new framework that eliminates the 384 

current phenomenological classification of patients into RR, SP, and PP descriptors.3 However, 385 

until a deeper understanding of underlying mechanisms and how they interact to drive progres-386 

sion is achieved, we expect that any new framework will require additional modification over 387 

time. Adoption of biologically based definitions of MS progression will be operationally challeng-388 

ing, as the existing descriptors are deeply embedded in clinical research and healthcare ecosys-389 

tems. Patients rely on the current descriptors to understand their disease journey and inform 390 
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healthcare decisions. In addition, regulatory authorities have integrated the descriptors, albeit 391 

with complicated and differing interpretations, in approval documents for MS treatments. As 392 

such, ensuring a smooth transition from the current state to a future framework is nontrivial but 393 

critical given its importance for patients.  394 

The authors of this paper are cognizant that a new framework, albeit necessary for de-395 

veloping biologically based treatment approaches and algorithms, would require validation in 396 

clinical and research settings. Coordinated efforts of stakeholders (e.g., researchers, funders, 397 

health authorities, and patient organizations) will be key. Focused efforts will then be needed to 398 

integrate the new framework into clinical trials and practice and to transition away from the lega-399 

cy framework used by regulatory agencies and health authorities for drug approvals. Compre-400 

hensive patient education efforts will also be required. As such, development of any roadmap 401 

for implementation will be a key future focus of the International Advisory Committee on Clinical 402 

Trials in MS.  403 

 404 

Search strategy and selection criteria  405 

References for this Review were identified by searches of English articles in PubMed between 406 

01.01.2012 and 01.04.2022 and references from relevant articles. The search terms “multiple 407 

sclerosis”, “inflammation”, “neurodegeneration”, “mitochondrial dysfunction”, “oxidative stress”, 408 

and “remyelination”, “neuronal networks”, “neural plasticity”, “aging”, “imaging”, and “OCT” were 409 

used. The final reference list was generated on the basis of relevance to the topics covered in 410 

this Review. 411 
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Figure Legends 729 

Figure 1. Mechanisms of injury and compensation and associated measures in MS. Early 730 

in the disease (left half of the figure), injury caused by focal lesions and associated axon dam-731 

age can be compensated by mechanisms such as remyelination. Over time, lesions in grey and 732 

white matter, as well as axon damage, accumulate, and meningeal inflammation, diffuse micro-733 

glial activation in the extralesional white matter, and slow expansion of existing lesions become 734 

more prominent (right side). Progression is further driven by decreased remyelination capacity 735 

and damage to neuronal networks mediated by loss of neurons and synapses. Ongoing low-736 

level inflammation and loss of compensatory mechanisms result in segmental and global atro-737 

phy. In the figure, headings explain the content of each panel. The histological panel depicting 738 

the optic nerve shows axon neurofilaments, whereas the inset shows CD68-positive myeloid 739 

cells. The VEP trace depicts delayed latency, indicating slow conduction related to demye-740 

lination. Neuronal and synaptic pathology can be detected by NeuN, a marker for neurons (pan-741 

el), and synaptophysin, a marker for synapses (insert); the blue lines in the radiological correlate 742 

symbolize neuronal connectivity. White arrows indicate radiological correlates of histopathologi-743 

cal findings.  Abbreviations: Gd, gadolinium; NfL, neurofilament light chain; CSF, cerebrospinal 744 

fluid; fMRI, functional magnetic resonance imaging; PET, positron emission tomography; TSPO, 745 

translocator protein 18 kilodaltons; OCT, optical coherence tomography; VEP, visual evoked 746 

potentials.  747 

 748 

 749 

Figure 2. Assessments relevant to a mechanism-driven framework for MS progression. 750 

MS progression reflects a combination of mechanisms of injury and compensation (red box) that 751 

exist contemporaneously and contribute to clinical expression. The activation of these mecha-752 

nisms marks the biological onset of the disease and initiate the prodromal period. The balance 753 

of such mechanisms, together with tissue repair, jointly determine clinical expression during the 754 
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whole disease course. The age-associated decrease in reserve and repair capacity also influ-755 

ences clinical progression. Development of clinical and biological measures with high sensitivity 756 

and specificity is required to continuously monitor the clinical presentation of the disease and 757 

identify relevant injury and compensatory mechanisms in individuals. Potential mediators (light 758 

blue box on the left) exert positive and negative influences on injury and compensatory mecha-759 

nisms and thus impact clinical expression over the whole disease course. The list of mediators 760 

is illustrative rather than comprehensive. Abbreviations: CSF, cerebrospinal fluid; MRI, magnetic 761 

resonance imaging, fMRI, functional MRI; MRS, magnetic resonance spectroscopy; PET, posi-762 

tron emission tomography; OCT, optical coherence tomography; VEP, visual evoked potentials.  763 



Figure 1 

 

 

 

  



Figure 2 

 



 

Page 1 of 2 

Table. Pathological Mechanisms of MS Progression and Current Approaches How to 
Measure Them. 
Table shows pathological mechanisms of MS; tools that are implemented for their assessment 
in clinical practice (green), clinical trials (yellow), or clinical research (red); and relevant clinical 
correlates. 
 

Mechanism Tool Clinical Outcome Stage of 
Use 

Reference 

Inflammation    

White matter 
inflammation 
 

MRI for lesion 
volume/count (T2-
FLAIR, Gd+) 

Relapse (count, 
time to, 
annualized) 
 

Clinical 
Practice 

Filippi et al.80 
 
 

 MRI for central vein sign 
(T2*) 

Relapse Clinical 
Practice 

Al-Louzi et 
al.103 

 MRI for paramagnetic 
(iron) rim lesions (T2* 
phase, QSM) 

Clinical 
progression 

Clinical 
Practice 

Filippi et 
al.102 

Gray matter 
inflammation 
 

MRI for lesion 
count/volume (T2, STIR, 
PSIR, PD, MPRAGE) 

Relapse 
Clinical 
progression 

Clinical 
Practice 

Moccia et 
al.104 

Spinal cord 
inflammation 
 

MRI for lesion 
count/volume (T2, STIR, 
PSIR, PD, MPRAGE) 

Relapse 
Clinical 
progression 

Clinical 
Practice 

Moccia et 
al81 

Optic nerve 
inflammation 

MRI for lesion 
count/volume (STIR) 

Optic neuritis 
Changes in visual 
acuity 

Clinical 
Practice 

Kolappan et 
al.105 

 OCT (pRNFL) Changes in visual 
acuity 

Clinical 
Practice 

Sotirchos et 
al.50 

Leptomeningeal 
inflammation 

MRI (post-gadolinium 3D 
T2-FLAIR) 

Clinical 
progression 

Clinical 
Trials 

Choi et al.106 

Microglia and 
astrocytes 

PET (TSPO, acetate) Clinical 
progression 

Clinical 
Research 

Moccia et 
al.48 

Neurodegeneration    

Neuro-axonal 
damage 

Blood/CSF 
(neurofilament light 
chain levels) 

Relapse 
Clinical 
progression 

Clinical 
Trials 

Khalil et al.41 

 MRI (AD and FA DTI, 
ODI/NDI) 

Clinical 
progression 

Clinical 
Trials 

Bagnato et 
al.107 

 MRS (GABA, choline) Unknown Clinical 
Research 

Moccia et 
al.48 

 PET (GABA, choline) Unknown Clinical 
Research 

Moccia et 
al.48 

Neuro-axonal 
loss 

MRI for intralesional 
axonal loss (T1 black 
holes) 

Clinical 
progression 

Clinical 
Practice 

Filippi et 
al.102 

 MRI for global and 
regional brain atrophy 
(3DT1) 

Clinical 
progression 

Clinical 
Trials 

Eshaghi et 
al.108 

 MRI for spinal cord 
atrophy (3DT1) 

Clinical 
progression 

Clinical 
Trials 

Moccia et 
al.104 

 OCT for optic nerve Low contrast visual Clinical Sotirchos et 
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atrophy (GCL, pRNFL) acuity Trials al.50 

 PET for synapse loss Unknown Clinical 
Research 

Moccia et 
al.48 

Molecular mechanisms of injury: Oxidative stress and 
mitochondrial dysfunction 

  

Energy failure MRS (NAA, creatine, 
phosphocreatine) 

Clinical 
progression 

Clinical 
Research 

Moccia M, et 
al.48 

Metabolic 
imbalance 

Sodium imaging Clinical 
progression 

Clinical 
Research 

Eisele et 
al.45 

 MRS (glutamate, 
glutamine, glutathione) 

Clinical 
progression 

Clinical 
Research 

Choi et al.106 

 Blood/CSF (oxidation 
products) 

Clinical 
progression 

Clinical 
Research 

Pegoretti et 
al.109 

Failure of compensatory mechanisms    

Demyelination 
and remyelination 

Visual evoked potentials 
(VEP) 

Changes in visual 
acuity 

Clinical 
Practice 

Green et 
al.75 

 MRI (MT, MWF, RD DTI, 
MP2RAGE) 

Clinical 
progression 

Clinical 
Trials 

Bagnato et 
al.107 

 PET (amyloid) Clinical 
progression 

Clinical 
Research 

Moccia et 
al.48 

Neuroplasticity fMRI (BOLD) Clinical 
progression 

Clinical 
Trials 

Loitfelder et 
al.110 
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International Advisory Committee on Clinical Trials in MS 

The International Advisory Committee on Clinical Trials in MS is a global body sponsored by the 

European Committee for Treatments and Research in MS and the National Multiple Sclerosis 

Society (USA). The Committee has been in existence for over 30 years and is composed of 

experts in clinical trials and clinical research in MS. The current membership of the committee 

can be accessed in the supplementary material. The committee is charged by the sponsoring 

organizations with providing perspective and guidance to the scientific and clinical community 

related to planning and implementation of clinical trials of MS therapies and allied topics. The 

Lublin-Reingold clinical course descriptors were originally developed by the committee in 1996 

and subsequently revised in 2013.  
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