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Abstract: Mutations in LRRK2 and GBA1 are key contributors to genetic risk of developing Parkin-
son’s disease (PD). To investigate how LRRK2 kinase activity interacts with GBA and contributes to
lysosomal dysfunctions associated with the pathology of PD. The activity of the lysosomal enzyme
β-Glucocerebrosidase (GCase) was assessed in a human neuroglioma cell model treated with two se-
lective inhibitors of LRKK2 kinase activity (LRRK2-in-1 and MLi-2) and a GCase irreversible inhibitor,
condutirol-beta-epoxide (CBE), under 24 and 72 h experimental conditions. We observed levels of
GCase activity comparable to controls in response to 24 and 72 h treatments with LRRK2-in-1 and
MLi-2. However, GBA protein levels increased upon 72 h treatment with LRRK2-in-1. Moreover,
LC3-II protein levels were increased after both 24 and 72 h treatments with LRRK2-in-1, suggesting
an activation of the autophagic pathway. These results highlight a possible regulation of lysosomal
function through the LRRK2 kinase domain and suggest an interplay between LRRK2 kinase activity
and GBA. Although further investigations are needed, the enhancement of GCase activity might
restore the defective protein metabolism seen in PD.
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1. Introduction

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder of
old age [1]. While the majority of PD cases are idiopathic, research over the past two decades
has revealed that a substantial minority of people with Parkinson’s develop the disorder due
to the presence of genetic risk factors or causative mutations in their genomes [2]. Coding
variants in two genes, GBA1 on chromosome 1 and LRRK2 on chromosome 12, are the most
commonly identified genetic risk factors for PD [3,4]. Notably, both GBA1 and LRRK2 have
also been identified as risk loci for idiopathic Parkinson’s by genome-wide association studies,
suggesting a continuum of genetic risk between familial and idiopathic forms of disease [5].
The enzymatic activities of both GBA and LRRK2 are closely linked to their role in the etiology
of Parkinson’s, with loss of glucocerebrosidase (GCase) activity due to mutations in GBA1 and
a likely gain of kinase activity due to mutations in LRRK2 [6,7]. Intriguingly, recent research
has suggested that there may be a reciprocal relationship between the enzymatic activities
of LRRK2 and GBA, supporting a biological link between two of the most prominent risk
factors for PD. The precise nature of this relationship is unclear. Cellular studies suggest that
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inhibition or loss of LRRK2 function increases GCase activity, and that mutations in LRRK2—
thought to increase LRRK2 activity—result in decreased GCase activity [8], and that inhibiting
LRRK2 boosts GCase activity in GBA1 mutation cells [9]. Conversely, a study of dried blood
spots from LRRK2 mutation carriers suggested that carriers of the G2019S mutation harbored
increased GCase activity [10]. This, in turn, contrasts with a further post-mortem analysis
demonstrating decreased GBA protein levels in the brains of individuals with the G2019S
mutation [11].

To investigate the relationship between LRRK2 and GBA, in this study, specific in-
hibitors of LRRK2 kinase activity and GCase activity were applied to a human neuroglioma
cell line, assessing the consequence of inhibiting LRRK2 on GCase activity.

2. Results

To examine the impact of LRRK2 inhibition on GCase activity, H4 neuroglioma cells
were exposed to 24 h and 72 h treatments with LRRK2in1 and MLi-2, two inhibitors of
LRRK2 kinase activity [12,13]. Twenty-four-hour inhibition of LRRK2 kinase activity did
not result in any significant alteration in GCase activity (Figure 1A). Following extended
treatments with LRRK2in1 and MLi2 over 72 h, GCase activity was also comparable to
DMSO-treated cells (Figure 1B). As expected, condutirol-beta-epoxide (CBE) treated cells
showed reduced GCase activity in both experimental conditions. Moreover, GCase activity
between 24 h versus 72 h treatments was compared (Supplementary Figure S1). DMSO and
LRRK2in1 treated cells showed a significant increase in GCase activity at 72 h in comparison
to 24 h. To assess possible changes in protein expression levels after treatments with the
inhibitors, immunoblot analysis of GBA was performed alongside the lysosomal marker
LAMP1 and the marker for macroautophagy LC3 (Figure 1C,D). When 24 h treatment
with LRRK2in1 was applied, only LC3-II displayed significantly increased protein levels
compared to DMSO-treated cells (Figure 1I), while 72 h treatment resulted in significantly
increased protein levels for both GBA and LC3-II when compared to DMSO-treated cells
(Figure 1F,J) and LAMP1 when compared to CBE-treated cells (Figure 1H). However, the
treatment with MLi-2 did not show significant changes in any of the three proteins for both
experimental conditions (Figure 1E–J).

We also examined the phosphorylation status of Rab10 as a direct readout for LRRK2
kinase activity. As expected, treatments with LRRK2in1 and MLi2 decreased the phospho-
rylation of Rab10 (pRab10), confirming the efficacy of both inhibitors (Figure 2).

To recapitulate both results in enzymatic activity and in protein levels, we examined
the magnitude of change in specific GCase activity, dividing the average GCase activity by
the estimate of GBA protein quantification. Following 24 h treatment, control cells showed
a GCase activity/GBA estimate ratio of 4.694 while cells treated with LRRK2in1 and MLi-2
inhibitors showed a GCase activity/GBA estimate ratio of 1.200 and 2.902, respectively.
After 72 h treatment, control cells showed a GCase activity/GBA estimate ratio of 4.863,
while cells treated with LRRK2in1 and MLi-2 inhibitors showed a GCase activity/GBA
estimate ratio of 1.375 and 2.423, respectively (Figure 3).

To explore whether the observed decrease in specific GCase activity was due to an
accumulation of immature GBA caused by defective protein trafficking/sorting through
Golgi apparatus, cell lysates were subjected to Endo-H digestion. The results presented
in Figure 4 showed no relevant changes in the Endo-H cleavage pattern, suggesting
that most of the GBA protein is being correctly sorted to the mid Golgi and matured to
lysosomal GBA.
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Figure 1. (A) Twenty-four-hour inhibition with both LRRK2-in1 and MLi2 produced no significant
increase in GCase enzymatic activity compared to control cells. Quantifications were based on seven
independent experiments. (B) Inhibition of LRRK2 kinase activity did not show significant changes in
GCase activity in H4 neuroglioma cells after exposure to 72 h treatment when compared with control
cells. Quantifications were based on seven independent experiments. (C,D) Immunoblot analysis of
GBA, LAMP1 and LC3-II proteins from cell lysates 24 and 72 h treatments. Molecular weight markers
are indicated in kilodaltons. (E–J) Quantification of GBA, LAMP1 and LC3-II protein levels in cell
lysates after treatment normalized to loading control β-actin. Twenty-four-hour inhibition of the
kinase activity of LRRK2 significantly increased the LC3-II protein levels when LRRK2in1 was applied
(I). However, after 72 h inhibition, both LC3-II and GBA protein levels were significantly increased
(F,J). Data of each experimental condition were grouped and normalized to perform analysis of
variance followed by Tukey and Dunnett post hoc tests (values represent mean and SD, *** p < 0.001,
** p < 0.01, * p < 0.05).
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Figure 2. (A,B) Representative Western blot of pRab10 and total Rab10 in cell lysates treated with
LRRK2in1, MLi2 and CBE. (B) Images were quantified by normalization to total Rab10 protein
levels from six independent experiments. (C,D) Data demonstrated a significant reduction in the
pRab10/Rab10 ratio in cell lysates treated with both LRRK2 inhibitors respect to control cells after
24 h treatment (Values represent mean and SD, *** p < 0.001, * p < 0.05).

Figure 3. GCase activity/GBA estimate ratio of cell lysates treated with LRRK2in1, MLi2 and CBE
((A) 24 h treatment; (B) 72 h treatment). Specific GCase activity is significantly reduced in cell lysates
after 72 h treatment with LRRK2in1 compared to DMSO-treated cells (Values represent mean and SD,
** p < 0.01, * p < 0.05.
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Figure 4. Endo-H resistance of GBA protein in cell lysates. (A) Cell lysates containing the same
amount of protein were subjected to endo-H digestion and Western blot analysis with anti-GBA
antibody. (B) Blots were scanned, and the intensity of each band was measured. Bars (+) represent
Endo-H resistant fraction of GBA protein normalized to loading control β-actin from three indepen-
dent experiments. Data show no significant differences in GBA protein levels between any of the
treatments applied.

3. Discussion

In this study, the impact of inhibiting LRRK2 kinase activity on GCase levels in a
cell model for human neuroglioma was investigated. Twenty-four- and seventy-two-hour
inhibition of LRRK2 kinase activity resulted in no significant increase in overall GCase
activity when compared to DMSO-treated cells. However, a significant increase in GBA
protein levels was observed following 72 h treatment with LRRK2in1. These data were
combined by normalizing GCase activity levels to GBA protein levels, showing a striking
reduced specific GCase activity after LRRK2 kinase inhibition. Concomitant with these
changes, an increase in protein markers for macroautophagy activation (LC3-II) was ob-
served. These data complement, and expand upon, a growing literature examining the
link between LRRK2 and GBA1. At a genetic level, the population frequency of mutations
in both genes, especially in specific populations such as the Ashkenazim and Imazighen,
has resulted in a number of individuals harboring PD-associated mutations in LRRK2 and
GBA1, and there is evidence from the literature that supports an interaction at a clinical
level between the impact of mutations in the two genes [14,15]. At a biochemical level,
this has been examined in both human tissue and in a cellular context. Two studies re-
ported analyses of GBA and GCase activity in human samples from carriers of mutations
in LRRK2. Alcalay and co-workers examined GCase activity in dried blood spots from
36 carriers of the G2019S mutation, reporting that this was elevated compared to non-
mutation carriers (13.69 µmol/L/h versus 11.93 µmol/l/h, p value 0.002) [10]. Zhao and
colleagues investigated GBA protein levels in the brains of 17 individuals with the G2019S
and I2020T mutations (n = 12 and 5, respectively), revealing a significantly reduced level of
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Tris-buffered-saline-soluble GBA protein in frontal cortex samples from LRRK2 mutation
carriers versus control [11]. A study of the relationship between LRRK2 and GCase activity
in human neuronal cultures by Ysselstein and co-workers reported that cells carrying the
G2019S mutation in LRRK2 had reduced GCase activity, and that inhibition of LRRK2
kinase activity increased GCase activity [8]. A further study by Sanyal and colleagues
reported that inhibition of LRRK2 kinase activity in cells that harbor a mutation in GBA1
boosts GCase activity [9].

The results from this current study suggest that there is a complex and multifaceted
relationship between LRRK2 and GBA. First, there is a delay between inhibition of LRRK2
kinase activity and alterations in GBA, with changes only observed after 72 h of inhibition.
This suggests that any links between LRRK2 and GBA are not immediately proximal
to LRRK2 kinase activity, instead being a downstream event. Secondly, in the human
neuroglioma cell model under examination, there were two outcomes of LRRK2 kinase
inhibition upon GBA: an increase in GBA protein levels, and a decrease in the specific
GCase activity of GBA. Intriguingly, the decrease in specific activity may mirror data from
post-mortem studies of LRRK2 mutation carriers, where the G2019S mutation is associated
with decreased GBA protein levels [11] and increased GCase activity [10]. As the G2019S
mutation causes an increase in LRRK2 kinase activity, the prediction from these studies
would be that inhibition of LRRK2 kinase activity would result in an increase in GBA
protein levels and a decrease in specific activity. In a recent work, Kedariti et al. showed
that pharmacological inhibition of G2019S LRRK2 in HEK293T cells caused a significant
reduction in GCase activity when it was normalized by GBA levels, being consistent with
the results in our study [16].

The precise nature of the relationship between LRRK2 kinase activity and GBA GCase
activity is not known. The requirement for 72 h inhibition of LRRK2 kinase activity to
elicit a change in GBA biology suggests that there may be a number of steps separating
LRRK2 and GBA within the cell. Moreover, it is interesting to clear up whether the se-
lective inhibition of LRRK2-dependent phosphorylation on endo-lysosomal function can
be influenced by the chemical structure of the inhibitors used. This could explain why
treatment with MLi-2 does not exert the same effect as LRRK2in-1 on autophagy markers.
Yao et al. observed differences in the efficacy and pharmacodynamics of two LRRK2 in-
hibitors, TTT-3002 and LRRK2in-1, upon evaluation of dopaminergic neurodegeneration
caused by different LRRK2 mutations using transgenic C. elegans models. Although both
inhibitors were able to rescue the pathological phenotype manifested by the expression of
mutants LRRK2 G2019S and R1441C, results suggested that TTT-3002 showed higher affin-
ity for LRRK2 proteins and higher potency of inhibition over kinase activity of LRRK2 [17].
Furthermore, Mercatelli et al. found that LRRK2in-1 and GSK2578215A, two structurally
unrelated LRRK2 kinase activity inhibitors, differentially affected neurotransmitter release
as well as pSer935 levels in synaptosomes from a mouse striatum and cerebral cortex [18].
These results would indicate that every inhibitor might have a different mode to interact
with the LRRK2 kinase pocket. Furthermore, it remains unresolved whether the observed
changes following LRRK2 kinase inhibitor treatment are entirely due to kinase activity
inhibition or are also related to off-target effects. Due to the contribution of kinase proteins
in the regulation of many subcellular functions, the design of highly selective inhibitors
is essential to specifically block LRRK2 kinase activity. Recent works have identified hun-
dreds of proteins susceptible to being phosphorylated by LRRK2 kinase in order to detect
changes in their phosphorylation levels upon LRRK2 kinase activity inhibition [13,19,20].
Despite the widespread use of LRRK2in-1 and MLi-2 in exploring LRRK2 biology, their
pharmacological impact on other molecular pathways should be further studied. Finally,
given the reported role of LRRK2 in responding to lysosomal damage [21,22], one potential
mechanism whereby inhibition of LRRK2 would result in alterations in GBA could be
impairments in the basal turnover of damaged lysosomes, leading to accumulation of GBA
protein and a paradoxical decrease in activity. Further investigations are required to clarify
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the mechanisms connecting LRRK2 and GBA. As the status of both LRRK2 and GBA as
drug targets for PD is known, such investigations should be prioritized in the coming years.

4. Materials and Methods
4.1. Inhibitors

LRRK2in1 and MLi-2 were purchased from the Eurodiagnostico (HY-10875 100 mg and
HY-100411 5 mg, respectively, Madrid, Spain). Condutirol-beta-epoxide (CBE, sc-201356)
was purchased from Santa Cruz. All compounds used were dissolved in dimethyl sulfox-
ide (DMSO).

4.2. Antibodies

Antibodies used were as follows: rabbit anti-human LC3 antibody (NB100-2220,
Novus Biologicals, Madrid, Spain), mouse anti-human LAMP-1 antibody [H4A3] (ab 25630,
Abcam, Cambridge, United Kingdom), mouse anti-human β-Glucocerebrosidase antibody
(GBA) (B-6) (sc-166407, Santa Cruz, Heidelberg, Germany), rabbit recombinant anti-rab10
(phospho T73) antibody (ab230261, Abcam), rabbit monoclonal anti-Rab10 (8127S, Cell
Signaling, Danvers, MA, United States), mouse anti-human β-Actin antibody (A1978-
200UL, Sigma, Merck Life Science, Madrid, Spain), anti-rabbit antibody (A0545, Sigma,
Merck Life Science, Madrid, Spain) and anti-mouse antibody (A3682, Sigma).

4.3. Cell Culture and Pharmacological Treatments

H4 human neuroglioma cells were grown in DMEM containing 10% Fetal Bovine
Serum (FBS). H4 cells (ATCC number HTB-148) were seeded into six-well plates (2 mL for
each well) once they reached 90% confluence (2 × 105 cells/mL approximately). After 24 h
from plating, cells were treated with LRRK2in1, MLi-2 (both selective LRRK2 inhibitors
with unrelated structures), CBE (an irreversible β-GCase enzyme inhibitor) or vehicle
(DMSO as control) under 24 or 72 h treatments. For 72 h treatment, the medium was
replaced with LRRK2in1, MLi-2 and CBE, and cells were incubated for 72 h. For short-
term treatment, the medium was replaced as above, and cells were incubated for 3 days.
Information about concentrations of every inhibitor is reported in Table 1. LRRK2in1 and
CBE concentrations used for both experimental conditions were previously described and
tested in several studies, finding no signs of toxicity for cells [23–25]. MLi-2 was used at a
concentration of 600 nM based on previous works [13,26–28]. Cell viability was analyzed
by Trypan blue assay. Supplementary Figure S2 shows representative images of MLi-2 or
DMSO treated cells for 24 and 72 h. No changes in structural morphology and cell density
were observed.

Table 1. Inhibitor concentrations for the 24 h and 72 h treatments.

72 h Treatment

Inhibitor Concentration Pharmacological Effect

LRRK2in1 5 µM LRRK2 kinase domain inhibitor
MLi-2 600 nM LRRK2 kinase domain inhibitor
CBE 75 nM β-GCase enzyme inhibitor

DMSO 0.15% v/v Organic solvent

24 h treatment

Inhibitor Concentration Pharmacological effect

LRRK2in1 5 µM LRRK2 kinase domain inhibitor
MLi-2 600 nM LRRK2 kinase domain inhibitor
CBE 75 nM β-GCase enzyme inhibitor

DMSO 0.15% v/v Organic solvent

After treatment, cells were washed in Dulbecco’s phosphate buffered saline (DPBS),
collected in RIPA lysis buffer: 150 Mm NaCl, 1.0% Triton X-100, 0.5% sodium deoxycholate,
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0.1% SDS, 50 Mm Tris Ph 7.5, protease inhibitors (cOmplete, protease inhibitor cocktail,
Roche) and phosphatase inhibitors (Halt phosphatase inhibitor cocktail, Pierce) and incu-
bated on ice for 30 min. After centrifugation at 17,000× g, 4 ◦C for 20 min, the Triton-soluble
supernatant was stored at −20 ◦C until analysis. Both experimental conditions (24 and 72 h
treatments) were repeated to obtain independent replicates.

4.4. β-Glucocerebrosidase Enzymatic Assay

GCase activity was determined using the artificial substrate 4-Methylumbelliferyl
(4-MU) β-D-glucopyranoside (M3633, Sigma Merck Life Science, Madrid, Spain) as pre-
viously described by Dijk et al. [29]. Briefly, the collected samples were incubated with
the substrate in citrate phosphate buffer pH: 4.5 (0.1 M citric acid/0.2 M solution diba-
sic sodium phosphate) with 0.2% sodium taurodeoxycholate hydrate (W3026000, Sigma
Aldrich) in a 96-well plate at 37 ◦C for 90 min. After incubation, the reaction was stopped
with glycine-NaOH buffer 0.2 M pH: 10.4 (0.2 M solution Glycine/0.2 M NaOH). Flu-
orescence was measured using an Infinite M200Pro TECAN plate reader (Tecan Group
Ltd., Männedorf, Switzerland) with 360 nm excitation wavelength and 446 nm emission
wavelength. A standard curve of free 4-MU was used as reference to calculate the enzyme
activity. Results were normalized to protein content.

4.5. Endo-H Treatment

An amount of 10 µg of proteins from cell lysates was subjected to one hour of in-
cubation at 37 ◦C with Endoglycosidase-H (Endo-H) according to the manufacturer’s
instructions (Endo H, P0702S, New England BioLabs, Hitchin, UK).

4.6. SDS-PAGE and Western Blot Analysis

Protein concentration of cell lysates was measured by BCA protein assay (Pierce BCA
Protein Assay Kit, 23225 Thermo-Fisher Scientifics, Waltham, MA, USA). An amount of
10 µg of proteins was loaded in each lane of 4–12% Bis-Tris NuPAGE gels (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA) and separated according to the manufac-
turer’s instructions. After electrophoresis, proteins were transferred to PVDF membranes
(IPVH00010, Immobilon -P (PVDF), Merck Millipore, Merck Life Science, Madrid, Spain) for
2 h. Membranes were blocked in 5%milk for 1 h and then incubated in the appropriate pri-
mary antibodies (diluted in Superblock solution, Thermo-Fisher Scientifics, Waltham, MA,
USA) overnight. Bands were visualized after incubation with the respective horseradish
peroxidase-linked secondary antibodies using Enhanced Chemiluminescence (ECL) in the
digital imaging system Kodak Image Station 4000MM PRO. Then, bands were quantified
using the ImageJ software (v. 1.52, NIH, https://imagej.nih.gov/ij/index.html accessed on
21 May 2022).

4.7. Statistical Analyses

All statistical analyses were performed with GraphPad Prism (GraphPad Software,
San Diego, CA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23136935/s1.

Author Contributions: Conceptualization, P.A.L. and R.D.; methodology, C.M. and F.A.; formal
analysis, C.R. and R.D.; investigation, C.R. and J.L.A.; resources, P.A.L., J.H., F.A. and F.V.; writing—
original draft preparation, C.R. and R.D.; writing—review and editing, P.A.L., C.M., F.V. and R.D.;
supervision, P.A.L., C.M., F.A. and R.D.; project administration, P.A.L. and R.D.; funding acquisition,
P.A.L., J.H. and R.D. All authors have read and agreed to the published version of the manuscript.

https://imagej.nih.gov/ij/index.html
https://www.mdpi.com/article/10.3390/ijms23136935/s1
https://www.mdpi.com/article/10.3390/ijms23136935/s1


Int. J. Mol. Sci. 2022, 23, 6935 9 of 10

Funding: This research was funded by the Foundation “Progreso y Salud” of the Junta de Andalucía
(grant PI-0424-2014) and Programa Operativo FEDER de Andalucía (B-CTS-702-UGR20). C.R. held a
predoctoral fellowship (FPU14/03473, MECD, Spain) and a short-term travel grant (EST16/00809,
MECD, Spain) from the Spanish Ministry of Education and Science. P.A.L. and C.M. were supported
by the Medical Research Council (grant numbers MR/N026004/1 and MR/L010933/1). These results
are part of the Doctoral Thesis of C.R.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data from GCase activity presented in this study are available on
request from the corresponding author.

Acknowledgments: We thank members of the Lewis laboratory for technical assistance and construc-
tive discussion.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancet 2009, 373, 2055–2066. [CrossRef]
2. Blauwendraat, C.; Nalls, M.A.; Singleton, A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020, 19, 70–178.

[CrossRef]
3. Lewis, P.A. Leucine rich repeat kinase 2: A paradigm for pleiotropy. J. Physiol. 2019, 597, 3511–3521. [CrossRef] [PubMed]
4. Ryan, E.; Seehra, G.; Sharma, P.; Sidransky, E. GBA1-associated parkinsonism: New insights and therapeutic opportunities. Curr.

Opin. Neurol. 2019, 32, 589–596. [CrossRef] [PubMed]
5. Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.;

et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide
association studies. Lancet Neurol. 2019, 18, 1091–1102. [CrossRef]

6. Taylor, M.; Alessi, D.R. Advances in elucidating the function of leucine-rich repeat protein kinase-2 in normal cells and Parkinson’s
disease. Curr. Opin. Cell Biol. 2020, 63, 102–113. [CrossRef]

7. Gegg, M.E.; Schapira, A.H.V. The role of glucocerebrosidase in Parkinson disease pathogenesis. FEBS J. 2018, 285, 3591–3603.
[CrossRef]

8. Ysselstein, D.; Nguyen, M.; Young, T.J.; Severino, A.; Schwake, M.; Merchant, K.; Krainc, D. LRRK2 kinase activity regulates
lysosomal glucocerebrosidase in neurons derived from Parkinson’s disease patients. Nat. Commun. 2019, 10, 5570. [CrossRef]

9. Sanyal, A.; DeAndrade, M.P.; Novis, H.; Lin, S.; Chang, J.; Lengacher, N.; Tomlinson, J.J.; Tansey, M.G.; LaVoie, M.J. Lysosome
and Inflammatory Defects in GBA1-Mutant Astrocytes Are normalized by LRRK2 Inhibition. Mov. Disord. 2020, 35, 760–773.
[CrossRef]

10. Alcalay, R.N.; Levy, O.A.; Waters, C.C.; Fahn, S.; Ford, B.; Kuo, S.H.; Mazzoni, P.; Pauciulo, M.W.; Nichols, W.C.; Gan-Or, Z.; et al.
Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations. Brain 2015, 138, 2648–2658. [CrossRef]

11. Zhao, Y.; Perera, G.; Takahashi-Fujigasaki, J.; Mash, D.C.; Vonsattel, J.P.G.; Uchino, A.; Hasegawa, K.; Nichols, R.J.; Holton, J.L.;
Murayama, S.; et al. Reduced LRRK2 in association with retromer dysfunction in post-mortem brain tissue from LRRK2 mutation
carriers. Brain 2018, 141, 486–495. [CrossRef] [PubMed]

12. Deng, X.; Dzamko, N.; Prescott, A.; Davies, P.; Liu, Q.; Yang, Q.; Lee, J.-D.; Patricelli, M.P.; Nomanbhoy, T.K.; Alessi, D.R.; et al.
Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat. Chem. Biol. 2011, 7, 203–205. [CrossRef]
[PubMed]

13. Fell, M.J.; Mirescu, C.; Basu, K.; Cheewatrakoolpong, B.; DeMong, D.E.; Ellis, J.M.; Hyde, L.A.; Lin, Y.; Markgraf, C.G.; Mei, H.;
et al. MLi-2, a Potent, Selective, and Centrally Active Compound for Exploring the Therapeutic Potential and Safety of LRRK2
Kinase Inhibition. J. Pharmacol. Exp. Ther. 2015, 355, 397–409. [CrossRef] [PubMed]

14. Omer, N.; Giladi, N.; Gurevich, T.; Bar-Shira, A.; Gana-Weisz, M.; Goldstein, O.; Kestenbaum, M.; Cedarbaum, J.M.;
Orr-Urtreger, A.; Mirelman, A.; et al. A Possible Modifying Effect of the G2019S Mutation in the LRRK2 Gene on GBA Parkinson’s
Disease. Mov. Disord. 2020, 35, 1249–1253. [CrossRef] [PubMed]

15. Yahalom, G.; Greenbaum, L.; Israeli-Korn, S.; Fay-Karmon, T.; Livneh, V.; Ruskey, J.A.; Roncière, L.; Alam, A.; Gan-Or, Z.;
Hassin-Baer, S. Carriers of both GBA and LRRK2 mutations, compared to carriers of either, in Parkinson’s disease: Risk estimates
and genotype-phenotype correlations. Parkinsonism Relat. Disord. 2019, 62, 179–184. [CrossRef]

16. Kedariti, M.; Frattini, E.; Baden, P.; Cogo, S.; Civiero, L.; Ziviani, E.; Aureli, M.; Kaganovich, A.; Cookson, M.R.; Stefanis, L.; et al.
The activities of LRRK2 and GCase are positively correlated in clinical biospecimens and experimental models of Parkinson’s
disease. bioRxiv 2021. preprint. [CrossRef]

17. Yao, C.; Johnson, W.M.; Gao, Y.; Wang, W.; Zhang, J.; Deak, M.; Alessi, D.R.; Zhu, X.; Mieyal, J.; Roder, H.; et al. Kinase inhibitors
arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Hum. Mol. Genet. 2013, 22, 328–344. [CrossRef]

http://doi.org/10.1016/S0140-6736(09)60492-X
http://doi.org/10.1016/S1474-4422(19)30287-X
http://doi.org/10.1113/JP276163
http://www.ncbi.nlm.nih.gov/pubmed/31124140
http://doi.org/10.1097/WCO.0000000000000715
http://www.ncbi.nlm.nih.gov/pubmed/31188151
http://doi.org/10.1016/S1474-4422(19)30320-5
http://doi.org/10.1016/j.ceb.2020.01.001
http://doi.org/10.1111/febs.14393
http://doi.org/10.1038/s41467-019-13413-w
http://doi.org/10.1002/mds.27994
http://doi.org/10.1093/brain/awv179
http://doi.org/10.1093/brain/awx344
http://www.ncbi.nlm.nih.gov/pubmed/29253086
http://doi.org/10.1038/nchembio.538
http://www.ncbi.nlm.nih.gov/pubmed/21378983
http://doi.org/10.1124/jpet.115.227587
http://www.ncbi.nlm.nih.gov/pubmed/26407721
http://doi.org/10.1002/mds.28066
http://www.ncbi.nlm.nih.gov/pubmed/32353202
http://doi.org/10.1016/j.parkreldis.2018.12.014
http://doi.org/10.1101/2021.09.27.461935
http://doi.org/10.1093/hmg/dds431


Int. J. Mol. Sci. 2022, 23, 6935 10 of 10

18. Mercatelli, D.; Bolognesi, P.; Frassineti, M.; Pisanò, C.A.; Longo, F.; Shimshek, D.R.; Morari, M. Leucine-rich repeat kinase 2
(LRRK2) inhibitors differentially modulate glutamate release and Serine935 LRRK2 phosphorylation in striatal and cerebrocortical
synaptosomes. Pharm. Res. Perspect. 2019, 7, e00484. [CrossRef]

19. Luerman, G.C.; Nguyen, C.; Samaroo, H.; Loos, P.; Xi, H.; Hurtado-Lorenzo, A.; Needle, E.; Noell, G.S.; Galatsis, P.; Dunlop, J.;
et al. Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target
effects of LRRK-2-IN-1. J. Neurochem. 2014, 128, 561–576. [CrossRef]

20. Tasegian, A.; Singh, F.; Ganley, I.G.; Reith, A.D.; Alessi, D.R. Impact of Type II LRRK2 inhibitors on signaling and mitophagy.
Biochem. J. 2021, 478, 3555–3573. [CrossRef]

21. Herbst, S.; Campbell, P.; Harvey, J.; Bernard, E.M.; Papayannopoulos, V.; Wood, N.W.; Morris, H.R.; Gutierrez, M.G. LRRK2
activation controls the repair of damaged endomembranes in macrophages. EMBO J. 2020, 39, e104494. [CrossRef] [PubMed]

22. Eguchi, T.; Kuwahara, T.; Sakurai, M.; Komori, T.; Fujimoto, T.; Ito, G.; Yoshimura, S.-I.; Harada, A.; Fukuda, M.; Koike, M.;
et al. LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis.
Proc. Natl. Acad. Sci. USA 2018, 115, E9115–E9124. [CrossRef] [PubMed]

23. Manzoni, C.; Mamais, A.; Dihanich, S.; Abeti, T.; Soutar, M.P.M.; Plun-Favreau, H.; Bandopadhyay, R.; Hardy, J.; Tooze, S.;
Cookson, M.R.; et al. Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim. Biophys. Acta 2013, 1833, 2900–2910.
[CrossRef] [PubMed]

24. Manzoni, C.; Mamais, A.; Roosen, D.A.; Dihanich, S.; Soutar, M.P.M.; Plun-Favreau, H.; Bandopadhyay, R.; Hardy, J.; Tooze, S.;
Cookson, M.R.; et al. mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1. Sci. Rep.
2016, 6, 35106. [CrossRef]

25. Smith, G.A.; Jansson, J.; Rocha, E.M.; Osborn, T.; Hallett, P.J.; Isacson, O. Fibroblast Biomarkers of Sporadic Parkinson’s Disease
and LRRK2 Kinase Inhibition. Mol. Neurobiol. 2016, 53, 5161–5177. [CrossRef]

26. Bright, J.M.; Carlisle, H.J.; Toda, A.M.; Murphy, M.; Molitor, T.P.; Wren, P.; Andruska, K.M.; Liu, E.; Barlow, C. Differential
Inhibition of LRRK2 in Parkinson’s Disease Patient Blood by a G2019S Selective LRRK2 Inhibitor. Mov. Disord. 2021, 36, 1362–1371.
[CrossRef]

27. Kluss, J.H.; Conti, M.M.; Kaganovich, A.; Beilina, A.; Melrose, H.L.; Cookson, M.R.; Mamais, A. Detection of endogenous S1292
LRRK2 autophosphorylation in mouse tissue as a readout for kinase activity. NPJ Parkinson’s Dis. 2018, 4, 13. [CrossRef]

28. Volpicelli-Daley, L.A.; Abdelmotilib, H.; Liu, Z.; Stoyka, L.; Daher, J.P.L.; Milnerwood, A.J.; Unni, V.K.; Hirst, W.D.; Yue, Z.; Zhao,
H.T.; et al. G2019S-LRRK2 Expression Augments α-Synuclein Sequestration into Inclusions in Neurons. J. Neurosci. 2016, 36,
7415–7427. [CrossRef]

29. Van Dijk, K.D.; Persichetti, E.; Chiasserini, D.; Eusebi, P.; Beccari, T.; Calabresi, P.; Berendse, H.W.; Parnetti, L.; van de Berg, W.D.
Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson’s disease. Mov. Disord. 2013, 28,
747–754. [CrossRef]

http://doi.org/10.1002/prp2.484
http://doi.org/10.1111/jnc.12483
http://doi.org/10.1042/BCJ20210375
http://doi.org/10.15252/embj.2020104494
http://www.ncbi.nlm.nih.gov/pubmed/32643832
http://doi.org/10.1073/pnas.1812196115
http://www.ncbi.nlm.nih.gov/pubmed/30209220
http://doi.org/10.1016/j.bbamcr.2013.07.020
http://www.ncbi.nlm.nih.gov/pubmed/23916833
http://doi.org/10.1038/srep35106
http://doi.org/10.1007/s12035-015-9435-4
http://doi.org/10.1002/mds.28490
http://doi.org/10.1038/s41531-018-0049-1
http://doi.org/10.1523/JNEUROSCI.3642-15.2016
http://doi.org/10.1002/mds.25495

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Inhibitors 
	Antibodies 
	Cell Culture and Pharmacological Treatments 
	-Glucocerebrosidase Enzymatic Assay 
	Endo-H Treatment 
	SDS-PAGE and Western Blot Analysis 
	Statistical Analyses 

	References

