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Abstract 
      This study aimed to assess the stress values in an endodontically treated maxillary premolar 
restored with a direct placement of adhesive composite restoration. An ortho-grade root-treatment 
was performed on a single-rooted maxillary premolar. Three types of cavities were prepared as 
follow: (1) O: Occlusal access cavity (one surface), (2): MO: access cavity with mesial extension 
equal to one third of bucco-palatal cusp width and 1 mm above the cementoenamel junction (two 
surfaces), (3) MOD: access cavity with mesial and distal extensions equal to one third of bucco-
palatal cusp width and 1 mm above the cementoenamel junction (three surfaces). After each 
restorative procedure, the restored-tooth complex was scanned using a micro-computed 
tomography scanner. A three-dimensional (3D) structure for each individual layer, including the 
enamel, dentine, composite restoration, and the gutta-percha of the restored tooth complex, was 
generated with interactive medical image processing software, whereas the biomechanical behavior 
and stress pattern distribution were evaluated using a finite element analysis software programme. 
The results revealed that the MO-restored tooth complex showed lower stress values than the one-
surface (O) and three-surface (MOD) restored cavities. The generated stress values in the two-
surface (MO) restored cavity in the present study were less than that of the one-surface (O) or 
three-surface (MOD) restored cavities. It can be concluded that, by increasing the C-factor, higher 
stress values are more likely to occur in the restored tooth. Greater stress values were observed in 
endodontically treated tooth with MOD restoration, which might have negative consequences on the 
fracture strength of the whole structure. 
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 Introduction 
 

Biomechanical behavior of the 
endodontically treated tooth restored with a direct 
placement of adhesive composite restoration has 
not been clearly investigated. Due to the 
methodological differences of the previous 
studies, such as tooth selection, type of 
restoration and evaluation methods, 
interpretation and general application are limited. 

An endodontically treated tooth can be 

restored with a more conservative approach or 
an extensive restoration, depending on the 
amount of remaining coronal tooth structure. The 
best restoration should allow a restored tooth to 
react in a pattern similar to the sound intact tooth 
under occlusal loads1 without deformation. If the 
remaining coronal tooth structure is adequate for 
a composite restoration, the material has to store 
an excellent quantity of energy to limit the cuspal 
movements,1 and should be able to dissipate the 
stresses well within the structure.  

Composite resin has evolved over the 
decades. Apart from changes in filler loading, 
size and shape, the monomer structure and 
modification of the polymerisation reaction has 
also been introduced.2 This type of restorative 
material can be classified according to different 
characteristics, such as curing mechanism, 
viscosity and filler size. Despite having various 
choices of composite restorative materials, 
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factors like the location of tooth to be restored, 
the size of cavity and aesthetic demands dictate 
the choice of one material over another.2, 3 

Polymerisation shrinkage in the resin 
composite is a complex mechanism.4-6 The 
stress can develop at the interfaces during the 
polymerisation process and predominantly 
occurs due to the contraction of the resin matrix,5, 

7-9 which compromises the dimensional stability 
of the restorative materials.7 When the 
contraction of resin is obstructed, it is unable to 
resist sufficient polymerising flow to compensate 
for the original volume.7 This circumstance 
creates rapid build-up of stress at the tooth-
composite interface,5, 10 eventually interferes with 
the marginal seal and potentially propagates the 
existing cracks.11 

The configuration of tooth cavity, also 
known as the C-factor, is the ratio of the bonded 
to the unbonded surface.8, 12 It has been shown 
to influence the formation of polymerisation 
shrinkage stress in the previous study8 Other 
factors that may influence the formation of this 
stress include volumetric polymerisation 
shrinkage, elastic modulus, adaptation of 
composite resins to the internal aspect of the 
cavity,8 amount of restorative material, 
polymerisation reaction, material’s formulation6 
and cavity depth.13 

Biomechanical behavior of the tooth 
under load has been measured with various 
methods such as photoelastic model,14-16 strain 
gauge techniques,17 two dimensional (2D) Finite 
Element Analysis (FEA),18, 19 combination of 
strain gauges and 2D FEA,17, 20-23 sophisticated 
three dimensional (3D) FEA,24-31 and a 
combination of strain gauges and 3D FEA.32 3D 
FEA is now a more preferred method because it 
offers higher anatomic precision compared to 2D 
FEA,23 morphologically more accurate 
resemblance of tooth25 and more comprehensive 
method to evaluate the stresses developed in the 
entire tooth structure. 24 These advantages might 
explain the use of 3D FEA in other aspect in 
dentistry.33 

 
The aim of this study is to evaluate the 

stress values in an endodontically treated 
maxillary premolar restored with a direct 
placement of the adhesive composite restoration. 
   

 
 

Materials and methods 
 

Preparation for root canal procedure 
 

Ethical approval was obtained from the 
Ethical Research Committee of the School of 
Clinical Dentistry at the University of Sheffield, 
UK. An intact, single-rooted maxillary premolar 
tooth, with a fully formed root that was extracted 
for orthodontic treatment, was selected for the 
study. 

 A standard access cavity, coronal flaring 
with Gates Glidden drills were done on the tooth 
and the root canal terminus was established at 
0.5 mm short of radiographic apex. Apical 
instrumentation was done until size 40 K Flexo 
files followed by a step back preparation. Cold 
lateral compaction was done using the ISO gutta-
percha (GP) with zinc oxide eugenol-based root 
canal sealer. The GP was cut 2mm below the 
cementoenamel junction (CEJ) and vertically 
compacted. Glass ionomer cement (GC Fuji IX 
GP EXTRA GC Corporation Tokyo, Japan) (GIC) 
was placed 2 mm thick above the GP. 
 

Preparation for O, MO and MOD 
restorations, and direct placement of the 
adhesive composite restoration 
 
Occlusal restoration (one-surface restored cavity) 
 

The restored access cavity served as an 
occlusal (O) restoration. The cavity was etched 
with 37% phosphoric acid followed by water-
rinsing and air-drying. Bonding agent was applied 
and light cured for 10 seconds, and the cavity 
was restored with composite resin (FiltekTM 

Supreme XTE Universal Restorative 3M ESPE, 
USA). Scanning was carried out after the 
completion of the occlusal restoration (O), using 
micro-computed tomography (micro-CT). C-factor 
was 5:1. 
 

Mesio-occlusal restoration (two-surface 
restored cavity) 
 

For the mesio-occlusal (MO) restoration, 
a cavity was prepared on the same tooth. The 
mesial cavity was prepared without removing the 
existing O restoration with the aid of an operating 
microscope to distinguish the tooth structure and 
the occlusal composite restoration. Mesial cavity 
dimension was prepared as follows: 
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Cavity width: One third of bucco-palatal 
cusp width 

Cavity depth: 1 mm above CEJ 
The restorative procedure was similar to the O 
restoration, and the micro-CT scanning was 
carried out after the completion of MO restoration. 
C-factor was 4:2. 
 

Mesio-occluso-distal restoration (three-
surface restored cavity) 
 

For the mesio-occlusal-distal (MOD) 
restoration, a cavity was prepared on the same 
tooth. The distal cavity was prepared without 
removing the existing MO restoration with the aid 
of an operating microscope to distinguish the 
tooth structure and the O composite restoration. 
Distal cavity dimension was prepared as follows: 

Cavity width: One third of bucco-palatal 
cusp width 

Cavity depth: 1 mm above CEJ 
A similar technique for restoring the distal cavity 
was conducted, followed by micro-CT scanning. 
C-factor was 3:3. 
 

Micro CT scanning 
 

A high-resolution micro-CT scanner (Sky 
scan 1172 microCT; SkyScan, Aartselaar, 
Belgium) was used to scan the endodontically 
treated tooth with the O, MO and MOD 
restorations. A resolution of 11.65 µm (distance 
between slices) was selected to obtain a high-
accuracy image. Reconstruction of the dataset 
from micro-CT scanning was done using NRecon 
Reconstruction software (Sky scan 1172 micro-
CT; SkyScan, Aartselaar, Belgium). The 
reconstructed images were resized using Data 
Viewer software version 1.5.0.0. The output 
format of the acquired data was selected as a 
bitmap (bmp) file. 
 

3D-image generation 
 

Reconstruction of the 3D images was 
done using an interactive medical image 
processing software, Mimics Version 16.0 
(Materialize Co. Ltd.). Voxel dimension was set 
similar to the slice distance, and 11.65 µm 
resulted in slices as thin as one voxel thick. A 
total number of 600 slices in each sample was 
involved in this process. Smoothing was done in 
Mimics software by using automatic smoothing 

function to make the STL file suitable for meshing 
in Hypermesh. 
 

Finite Element Model (FEM) and load 
application 

 
The images were imported to the Finite 

Element (FE) software (Hypermesh version 11.0, 
Altair Engineering Inc). This software allowed 
high resolution of the geometrical structure by 
optimising geometric editing and mesh 
generation, including mesh convergence test, 
thereby provided a direct link between geometry 
and FE. All structures, the dentine, enamel, GP, 
GIC and composite resin were assumed to be 
perfectly bonded to each other to allow smooth 
stress distribution within the structure and no 
defects were present at all interfaces. The types 
of element and number of nodes and element in 
all models were shown in Table 1. 
 

 
Table 1. Number of nodes, elements and types 
of element in all samples. 
 

After the 3D volume meshes, a boundary 
condition (zero displacement) was applied at the 
external root surface where all nodes were fixed 
in all three axes, X, Y and Z. Material properties, 
as shown in Table 2, were assigned to the FEM. 
Static vertical loading of 150 N was applied on 
buccal incline of palatal cusp and palatal incline 
of buccal cusp with a total of 300 N for all 
samples. The types of element and number of 
nodes and element in all models were shown in 
Table 1. 
 

 
Table 2. Material properties of tooth structures, 
GP and restorative materials. 
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Results 
 

The cloud atlas of the von Mises stress 
was calculated for each sample to measure the 
stresses developed within each structure. The 
data was transformed into a color maps for a 
better understanding of the stresses. 

The generated stress in composite resin 
of O restoration was higher compare to the MO 
and MOD restorations, possibly due to the 
influence of C-factor (Fig. 1).  

 

 
Figure 1. Distribution of stresses in composite 
resin of all samples. (a) O restoration; (b) MO 
restoration; (c) MOD restoration. 

 
However, the generated stress in dentine 

of the MOD restoration was higher compared to 
the O and MOD restoration. This could be due to 
the compromised tooth structure in the MOD 
restoration (Fig. 2).  

 

 
Figure 2. Distribution of stresses in dentine of all 
samples. (a) O restoration; (b) MO restoration; 
(c) MOD restoration. 
 

With regard to the generated stress in the 
enamel of all types of restorations, lower stress 
could be seen except at the buccal and palatal 
regions, where the load was applied (Fig. 4). A 
lower generated stress pattern was also seen in 
the GP of all types of restorations, but the highest 
stress was seen at the interface of GP and GIC 
(Fig. 3 and 5). Based on the cloud atlas of the 
von Mises stress, the generated stress in GIC 
was higher than GP, which could be attributed to 
the higher elastic modulus of GIC. In addition, the 
generated stress at the interface of GP and GIC 
was higher, probably due to the huge different in 
the elastic modulus, interrupting the distribution 

of stress between these structures and resulting 
in the concentration of stress at the interface. 
Table 3 represents the peak value of von Mises 
stress in all structures (enamel, dentine, 
composite, GIC and GP) in the three types of 
restorations. 
 

 
Figure 3. Distribution of stresses in GIC of all 
samples. (a) O restoration; (b) MO restoration; 
(c) MOD restoration. 
 

 
Figure 4. Distribution of stresses in enamel of all 
samples. (a) O restoration; (b) MO restoration; 
(c) MOD restoration. 
 

 
Figure 5. Distribution of stresses in GP of all 
samples. (a) O restoration; (b) MO restoration; 
(c) MOD restoration. 
 

 
Table 3. Peak value of von Mises stress in all 
structures. 
 
 Discussion 
 

Posterior teeth are prone to multiple 
forces of varying natures.42 Therefore, the 
stiffness of  the dental restorative materials is 
particularly important at the tooth-composite 
interfaces.42 The software used in this study is 
similar to one used by,42 and it is important to 
note that it is not programmed to assess model 
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failure; it can only assess the intensity of stresses 
developed within the structures. The analysis of 
von Mises stress values revealed that lower 
stress values were observed in the MO 
restoration. This could be due to a slightly lower 
C-factor compared to O restoration, which made 
the distribution of stress in the structure appear 
more homogenous. Despite the MOD restoration 
having the lowest C-factor, the generated stress 
values were high, particularly in the enamel and 
dentine. This could be attributed to the significant 
loss of coronal tooth structure where the 
dissipation of stresses was compromised, and 
the generated stress was concentrated in the 
remaining tooth structure. Future research on 
mechanical testing is required to validate this 
data. This finding was corroborated with the other 
study, in which the author suggested significant 
stress concentration in an endodontically treated 
tooth with extensive restorative procedure.26 
Furthermore, greater cuspal movement was also 
observed in the MOD cavity preparation,1, 43 and 
this might increase risk of tooth fracture. Apart 
from higher generated stress values in MOD 
restoration, higher stress concentration at the 
loading points in the present study was also seen, 
and this was corroborated with the previous 
studies.1, 42 

It has been recommended to restore the 
tooth with the restorative materials that have an 
elastic modulus similar to tooth structure, so that 
the biomechanical behaviour of the original tooth 
can be to restored.22, 44 A more specific approach 
is to use the restorative materials with the elastic 
modulus at least equal to that of a dentine2, 45 to 
withstand deformation and cuspal fracture and 
the ability to dissipate stresses within the 
structure. Lower stress values and more 
homogenous distribution of stress were seen in 
the composite resins with a lower elastic 
modulus.1, 42 A greater stress-dissipating effect 
was seen in less rigid composite compared to the 
more rigid restorative materials. The composite 
resins with low elastic modulus demonstrated a 
more favourable biomechanical performance.46 
Composite resins with a high elastic modulus 
generate higher stress in the structure,1, 46 have 
less ability to absorb the stress and less able to 
buffer masticatory forces. Furthermore, materials 
with higher elastic modulus will develop higher 
stress values within the structure.1 This could be 
due to the inability of this type of material to 
dissipate stresses within the structure, resulting 

in lack of interface harmonisation and 
compromised marginal integrity. Therefore, the 
best restoration should allow the restored tooth to 
react in a pattern similar to the intact tooth when 
the external loads are applied.1 For this reason, 
the composite resin with a lower elastic modulus 
was used in the present study.    

Of all structures involved in this study, GP 
had the lowest elastic modulus, almost negligible. 
It could be stipulated that it could be indirectly 
involved in transferring stresses within the whole 
structure. Enamel, on the other hand, showed the 
highest elastic modulus, and rigid enamel does 
not deform under stress conditions; instead, it 
transfers the stress to the dentine and eventually, 
moves over it.24 The higher stress value 
observed in MOD restoration in the present study 
contradicted the other studies,1, 42 possibly 
because the absence of a root canal procedure 
and the structural integrity of their model was 
less compromised. This might explain the 
differences in pattern of stress distribution even 
though the elastic modulus of the composite 
resin used in this study is almost similar.1 

The location of the boundary condition 
varied greatly, including at the base of bone,47-51 
the lateral and posterior surface of bone,52 the 
base and proximal surface of bone,36 the 
periodontal ligament (PDL),53, 54 the root surface34, 

42, 55 and below the CEJ,40, 56 depending on the 
geometrical structures investigated. In a recent 
study evaluating the temporomandibular joint, the 
superior surface of the articular eminence was 
selected as a fixed boundary location.57 Some 
researchers have evaluated the biomechanical 
behaviours of the whole unit, involving supporting 
tooth structures such as PDL and alveolar bone. 
Some researchers, on the other hand, focused 
only on the tooth structure under ideal 
circumstances where the entire facial structures 
could be modelled to precisely; however, this is 
not a pragmatic approach58 because of the 
complexity of the model. Therefore, to simplify 
the calculations, the distance of boundary 
condition should be reasonable from the load 
application and shows no overlapping between 
stress and strain fields.58 Even though the 
involvement of the PDL was said to be important 
in modelling, the accuracy of the calculated 
stress and strain has made biomechanical 
behaviour of the PDL unclear.59 In this study, the 
boundary condition was set on the external root 
surface to address the conditions.  
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Static and dynamic loading are common 
forces used in several in vitro studies for the 
investigation of mechanical properties of various 
structures. Static loading is a constant application 
of load,14, 17, 20, 60, 61 whereas dynamic loading is a 
repeated application of load in aqueous condition, 
with62-64 or without65, 66 thermal involvement. 

Previous studies have used dynamic 
loading62-67 for the evaluation of fracture 
strength,62, 65 fracture mode,63, 65, 66 survival rate,65 
microleakage,66 the stability of implant 
bridgeworks 67 and also the marginal adaptation 
of bulk-fill composite resins.64 To simulate this 
loading, either a computer-controlled chewing 
simulator62, 67 or a cyclic loading machine65, 66 
was used to create a chewing condition for 
fatigue testing. This could theoretically represent 
the chewing mechanism in the mouth; the human 
masticatory system is a dynamic process 
involving forces generated by the active muscles 
for determination of jaw movement and joint 
loading,68 To date, there is still no investigation of 
the dynamic loading in FEA, because the 
simulation of dynamic modelling requires 
masticatory muscles and temporomandibular 
joint involvement, which is difficult to standardise. 
Such complexity could complicate the present 
study;68 therefore, a static loading was used in 
this study because it was more appropriate to 
evaluate biomechanical behaviour of the 
structure. 

The magnitude of the load in the previous 
studies ranged from 1 N18, 19 to 400 N15, 24 to 
simulate the mastication load. Higher load is 
rarely applied for biomechanical analysis 
because there is no resemblance to a clinical 
situation. It was predicted in a previous study 24 
that the load between 700 N and 800 N can 
cause tooth fractures. Static loading was used in 
several studies by applying load vertically,14, 18, 24, 

26, 27 oblique at 30 degrees,14 45 degree,15, 16, 26, 29 
135 degrees19 and perpendicular22 to the long 
axis of the tooth, depending on the sample or 
tooth type. Due to the wide range of load 
magnitude, the average masticatory load of a 
premolar tooth, 300 N31 was applied to the model 
due to its clinical relevance. 
 

Conclusions 
 
Within the limitation of the present study, 

the conclusions were: 
1. Lower stress values were seen in MO 

restoration. 
2. By increasing the C-factor, it is more likely to 
have higher stress values in the restored tooth. 
3. Greater stress values were observed in an 
endodontically treated tooth with MOD 
restoration, which might have negative 
consequences on the fracture strength of the 
whole structure. 
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