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The advent of hard X-ray free-electron lasers enables nanoscopic X-ray imaging

with sub-picosecond temporal resolution. X-ray grating interferometry offers a

phase-sensitive full-field imaging technique where the phase retrieval can be

carried out from a single exposure alone. Thus, the method is attractive for

imaging applications at X-ray free-electron lasers where intrinsic pulse-to-pulse

fluctuations pose a major challenge. In this work, the single-exposure phase

imaging capabilities of grating interferometry are characterized by an

implementation at the I13-1 beamline of Diamond Light Source (Oxfordshire,

UK). For comparison purposes, propagation-based phase contrast imaging

was also performed at the same instrument. The characterization is carried out

in terms of the quantitativeness and the contrast-to-noise ratio of the phase

reconstructions as well as via the achievable spatial resolution. By using a

statistical image reconstruction scheme, previous limitations of grating

interferometry regarding the spatial resolution can be mitigated as well as the

experimental applicability of the technique.

1. Introduction

Owing to its penetration power and its small wavelengths, hard

X-ray imaging is particularly suited for nondestructive and

quantitative probing of matter down to the nanometre scale,

where it can give access to projective or volumetric structural

information by two- or three-dimensional imaging, respec-

tively. Consequently, much effort has been and still is put into

improving the spatial resolution of X-ray imaging systems

(Sakdinawat & Attwood, 2010; Momose, 2017). A fully

quantitative understanding of samples, from the fields of

biology or material sciences for instance, however, does not

only require probing the structure of the respective specimens

but also the study of the relevant dynamics in their governing

processes. At synchrotron X-ray probes, time-resolved

measurements have been carried out by either stroboscopic

schemes or by high-frame-rate exposures with X-ray pulse

lengths on the order of 100 ns from bunch trains down to

around 100 ps from single pulses (Fezzaa & Wang, 2008; Rack

et al., 2014; Olbinado et al., 2017; Parab et al., 2018). The flux

provided by individual synchrotron bunches is, however, not

sufficient for certain applications, especially when the length
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scales of interest require nano-focusing of the X-ray beam

(Hagemann et al., 2021). Here, the advent of hard X-ray free-

electron laser (XFEL) sources (Emma et al., 2010; Ishikawa et

al., 2012; Tschentscher et al., 2017) presents further advances,

as imaging with sub-picosecond pulses prevents even the

smallest degradations due to sample movements and because

it allows to bypass existing limits imposed by radiation damage

(Neutze et al., 2000).

In the hard X-ray regime, the real part of the refractive

index, which governs the phase shift due to the sample, can be

orders of magnitude larger than the imaginary part, which sets

the absorption (Fitzgerald, 2000). This is of special relevance

for the study of materials with low atomic numbers Z as well

as for micro- and nanoscopic imaging where specimens show

little or no attenuation contrast (Withers, 2007). Many of the

realized phase-sensitive imaging techniques, e.g. ptychography

(Rodenburg et al., 2007) or analyzer-based imaging (Ingal &

Beliaevskaya, 1995; Davis et al., 1995), cannot be reconciled

with single-exposure acquisition schemes. The referenced

single-pulse experiments at synchrotron sources either

employed simple X-ray radiography or propagation-based

phase contrast imaging (PBPCI) (Snigirev et al., 1995;

Cloetens et al., 1996, 1999). The latter approach has also found

first applications at XFELs (Schropp et al., 2015; Vagovič et al.,

2019; Hagemann et al., 2021).

Grating or Talbot interferometry (David et al., 2002;

Momose et al., 2003) represents another phase-sensitive

imaging technique. While the predominantly used variant of

the grating-based method is based on the phase stepping or

fringe scanning technique (Weitkamp et al., 2005), and thus on

the acquisition of multiple frames, it is also possible to extract

phase contrast images from a single exposure through the

application of the Fourier transform method from Takeda et

al. (1982), either directly to the interference pattern (Bennett

et al., 2010) or to a moiré pattern created thereout (Momose et

al., 2009). A downside of this single-exposure approach is the

requirement of effectively band-limited signal components

in order to separate phase and amplitude information, which

limits the achievable spatial resolution to half-periods equal

to the demagnified fringe period (Takeda et al., 1982; Momose

et al., 2009). At XFELs, grating interferometry has therefore

found its main application in the field of wavefront sensing

(Rutishauser et al., 2012; Nagler et al., 2017; Seaberg et al.,

2019; Makita et al., 2020). Here, assuming sufficiently slow

spatial variations is more appropriate regarding the illumi-

nating wavefront than for microscopic samples. Furthermore,

grating interferometers can be incorporated into full-field

X-ray microscopes (Takeda et al., 2008; Yashiro et al., 2009;

Berujon et al., 2012). For interferometers sensitive to the

phase gradient, there is a trade-off between the achievable

angular sensitivity and the magnification of the microscope.

Yashiro et al. (2009) remedied this issue by designing the

interferometer around a single grating and a highly magnified

Talbot self-image. With such a layout, one can obtain phase

difference instead of differential phase images. The recon-

struction techniques proposed for phase imaging in this

regime (Yashiro et al., 2009, 2010) are however subject to some

restrictions, for instance the requirement of a quasi uniform

amplitude of the investigated wavefield.

In order to broaden the applicability of grating inter-

ferometry in the phase difference regime, we recently

proposed a statistical image reconstruction approach based on

a maximum-likelihood estimation and validated the method

on the basis of simulated data (Wolf et al., 2020). The scheme is

based on a full forward model of the image formation process

due to the interferometer and thus avoids the above-

mentioned constraints. Furthermore, our ansatz does not

rely on the extraction of single Fourier order terms from

an interferogram. Hence, the achievable spatial resolution is

not limited a priori. In this work, we demonstrate the single-

exposure imaging capabilities of grating interferometry with

our novel algorithmic approach on the basis of experimental

data obtained at a synchrotron radiation X-ray source. We

study the achievable image quality in different configurations

of the X-ray microscope as well as for several layouts of the

interferometer. Comparative measurements with propaga-

tion-based phase contrast imaging were realized at the same

instrument.

The paper is structured as follows. Section 2 describes the

experimental setup at beamline I13-1 of the Diamond Light

Source. Section 3 details the course of data evaluation from

the data acquisition to data pre-processing to the final

reconstruction of phase images for both grating inter-

ferometry and propagation-based imaging. In Section 4, we

present the results of the imaging experiments. We close the

manuscript with a summary and outlook in Section 5.

2. Experimental implementation at I13-1

The experiment was carried out at the coherence branch of

beamline I13 of the Diamond Light Source (Rau, 2017). The

X-ray beam, generated with an undulator placed more than

200 m away from the experimental hutch, was mono-

chromated to an X-ray energy of 10 keV using a Si-111

double-crystal monochromator. The experimental setup is

shown in Fig. 1. Following Yashiro et al. (2010), we differ

between an imaging and a projection microscope. In the

former case, the sample and the X-ray detector are placed in

conjugate planes of the focusing element. Thus, the distances

zSL between the sample and the focusing element and zLD

between the focusing element and the detector meet the

classical lens law 1/zSL + 1/zLD = 1/f from geometrical optics

(Goodman, 2005) with f the focal length. Such a configuration

leads to the formation of a real sample image in the detection

plane. For a projection microscope, on the other hand, the

sample is positioned in the divergent beam downstream of

the focusing element. In this case, Fresnel diffraction images of

the sample will be measured in the detection plane. Both

variants are indicated in Fig. 1.

During our experiment, the X-rays were focused by a

Fresnel zone plate (FZP) with a diameter of 70 mm and an

outer zone width of 150 nm, resulting in a focal length f =

8.5 cm at 10 keV. The choice of this rather small FZP was

necessary since the sample magnification of the imaging
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microscope scales inversely with f and hence inversely with the

FZP diameter for a fixed overall distance zLD. Note that for

the projection microscope, on the other hand, the achievable

sample magnification is mainly limited by the numerical

aperture of the FZP which only depends on the wavelength

and the outermost zone width. A knife edge was placed

upstream of the FZP as a beam stop covering slightly more

than half of its area and thus effectively blocking off the non-

diffracted beam. In order to further minimize the influence of

higher diffraction orders from the FZP, an order sorting

aperture (OSA) with a diameter of 10 mm was positioned in its

back focal plane.

The grating for the X-ray interferometer was manufactured

at the Institute of Microstructure Techology of the Karlsruhe

Institute of Technology. It was produced as a binary line

grating using the deep X-ray lithography process (Reznikova

et al., 2008; Meyer & Schulz, 2015). The resist (MRX-10, micro

resist technology GmbH) is an epoxy-based one similar to

SU-8, while the substrate is a 500 mm-thick polyimide wafer.

The grating has a nominal period p = 10 mm and a nominal

resist height of 25 mm approximately resulting in a �� phase

shift at the employed X-ray energy. The grating was mounted

on a moveable stage in the divergent beam generated by the

FZP. According to the fractional Talbot effect for spherical

wave illumination, self-images of the grating are formed upon

placing the grating at a distance

zFG ¼
zFD

2
1� 1�

8mTp2

�zFD

� �1=2
" #

ð1Þ

downstream of the focus (Yashiro et al., 2009). Here, � denotes

the X-ray wavelength, mT the fractional Talbot order, and zFD

the distance between the focal plane and the detector. For

the solution with the minus sign in equation (1), the available

range of the grating stage enabled the realization of Talbot

distances between mT = 5/16 and mT = 11/16. The resulting

grating magnifications MGD = zFD/zFG were large enough in

order to resolve the respective fringe pattern directly.

For the X-ray detection, an sCMOS camera (Hamamatsu

C12849-111U) with 2048 � 2048 pixels and a pixel size of

6.5 mm was positioned at a distance zLD ’ 14.5 m downstream

of the focusing optics. The camera uses a 10 mm-thick Gadox

scintillator that is coupled via fibre optics to the sCMOS chip.

In order to reduce scattering and absorption in air, a flight

tube filled with helium gas was set up between the grating and

the detector. The samples were either placed in the conjugate

plane, i.e. around 8.6 cm upstream of the FZP for the imaging

microscope, or in the divergent beam at a distance zFS = f

resulting in the same sample magnification for the projection

microscope. As for the comparative measurements with

propagation-based phase contrast, the samples were kept in

the downstream position from the projection microscope and

the grating was removed from the beam path. A detailed

characterization of similar PBPCI setups based on FZPs was

recently presented by Flenner et al. (2020). For a precise

alignment, the sample, the grating, and all the optical elements

were mounted on stick-slip piezo stages (SmarAct).

Regarding the alignment of the interferometer, the grating

was first placed at the distance zFG expected from equation (1)

for the respective Talbot order. Subsequently, the grating was

scanned in a region around this position and an image was

acquired for each step. This procedure does not only allow

optimizing the grating position to obtain both a high fringe

contrast and uniformity of the interference pattern across the

field of view but it also enables an accurate calibration of the

imaging geometry. The latter point is crucial, as accurate

propagation distances are required for the image reconstruc-

tion, cf. Section 3.

Following a similar calibration approach from Bartels

(2013), the two distances zFD and zFG are assumed to be

unknown, whereas the relative displacement �z of the grating

can be obtained from the motor positions of the moveable

stage. The inverse grating magnification can then be written as

a linear function

1

MGD

¼
zstart

FG

zFD

þ
1

zFD

�z ð2Þ

of the displacement �z with zstart
FG the position of the grating at

the beginning of the grating scan. Experimentally, the grating

magnification can be determined from the known grating

period p and the fringe frequency �f corresponding to the

dominant qth Fourier order of the measured interference

pattern, i.e.

MGD ¼
q

�f p
: ð3Þ

The spatial frequency �f is obtained from the highest peak of

the Fourier transformed intensity apart from the DC compo-

nent. An uncertainty corresponding to half the sampling

interval in Fourier space is assumed for �f and Gaussian error
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Figure 1
Schematic of the setup. The X-rays enter from the left and are focused by
a partially covered Fresnel zone plate (FZP). An order sorting aperture
(OSA) is positioned in the back focal plane of the FZP in order to
minimize the impact of higher diffraction orders from the FZP. The
grating with period p is placed in the divergent beam such that a
magnified self-image with fringe period pf occurs in the detection plane.
The sample can be either placed downstream of the focus, corresponding
to a projection microscope and suggested by the solid circle, or in a
conjugate plane upstream of the FZP as implied by the dashed circle,
resulting in an imaging microscope. Specific distances of the setup, as they
are introduced in the main text, are indicated.



propagation is applied to obtain the error of the inverse

magnification.

An exemplary linear fit to the inverse magnification values

is shown in Fig. 2 for the grating scan around the fractional

Talbot order mT = 5/16. Overall, the data are in good agree-

ment with the expected linear relationship. From equation (2),

the unknown distances zFD and zstart
FG can be calculated using

the slope and the y-intercept obtained from the fit. The results

are listed in Table 1. The respective uncertainties are obtained

by Gaussian error propagation starting from the covariance

matrix of the fit parameters. It is worth mentioning that the

grating positions chosen upon a visual inspection of the

grating scan data partly differ from the theoretically ideal

distances for a ��-shifting grating. Exemplarily, such a

deviation is indicated in Fig. 2 as well. They are suspected to

result from variations in the grating height.

3. Data acquisition and evaluation

During the imaging experiments, a series of Nf = 10 frames was

recorded for each sample and each reference measurement.

The idea behind this scheme was to acquire a sufficiently high

signal-to-noise ratio while also being able to detect beam

fluctuations or possible vibrations of optical elements over

short time scales. In practice, only small variations were

discernible over the duration of an exposure series. On the

other hand, long-term changes regarding the position of the

beam, the photon flux, and clipping of the beam by optical

elements were observed during the beam time. In part, these

effects could be compensated by progressively realigning the

optical elements, i.e. the FZP, the OSA and the beamstop.

Regarding the flux, the exposure time of the individual frames

was adjusted to warrant at least a rough comparability

between different measurements, e.g. imaging of the same

sample with the grating aligned in various Talbot orders. The

overall decline in flux was later found to be caused by a broken

chiller of the monochromator which led to overheating. For

the results presented hereinafter, the exposure time was

varied within 2 s and 3 s per frame.

The inconstancy of the illumination is illustrated in Fig. 3.

There, the correlation coefficient

Corr I; I0ð Þ ¼
cov I; I0ð Þ

�ðIÞ � I0ð Þ
ð4Þ

between two different reference frames is plotted over the

time difference between their respective acquisitions. Expo-

sure series falling in between realignments of the optical

elements or the grating are grouped together. In equation (4),

I0 then denotes the first reference frame of each such group,

cov the covariance of two exposures and � the standard

deviation over a single acquisition. As can be seen in Fig. 3,

there is typically a larger decrease in correlation in between

two exposure series as compared with a single series itself. In

comparison with propagation-based measurements, a faster

decrease in correlation was observed for the measurements

with the grating interferometer. On the one hand, this can be

attributed to the above-mentioned problems with the chiller

starting during the time span of the grating measurements. On

the other hand, the chronologically last group of exposure

series comprises measurements with a newly installed chiller

and still manifests a worse stability in relation to the exposures

without the grating in the beam. Whether this is due to a
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Figure 3
Similarity between different reference frames as assessed by temporal
changes in their correlation coefficient. A new starting frame was defined
whenever the setup was changed, leading to the depicted grouping. For
each group the time stamp of the first acquisition is specified in the
legend.

Table 1
Overview of the distances zFD and zstart

GD obtained from the fits to the
inverse grating magnification values.

mT zFD (m) zstart
FG (m)

5/16 14.454 � 0.010 0.4558 � 0.0005
7/16 14.432 � 0.018 0.5606 � 0.0009
9/16 14.44 � 0.06 1.030 � 0.004
11/16 14.43 � 0.06 1.240 � 0.005

Figure 2
Linear fit to the inverse grating magnification for the grating scan around
the fractional Talbot order mT = 5/16 plotted against the displacement �z
as introduced in equation (2). The focus-to-detector and the focus-to-
grating distance determined from the fit can be found in Table 1, together
with the results for the other three realized Talbot orders. The
theoretically expected position for a ��-shifting grating is indicated by
the vertical dashed line. The orange dot marks the grating position used in
the subsequent imaging experiments.



higher sensitivity of the grating-based setup to the remaining

changes in the X-ray beam or due to fluctuations regarding

the positioning of the grating itself cannot be definitively

answered here.

Exposure series including a sample in the beam temporally

fall in between the reference series shown in Fig. 3. Conse-

quently, larger changes in the illumination between sample

and reference measurements have to be expected here as well.

In view of this, the smaller changes within a single series can be

ignored and the Nf frames of each series were averaged prior

to further processing. The choice of this procedure is further

supported by the visual inspection of reconstructions from

maximally correlated single sample and reference frames not

revealing any improvements. During the subsequent proces-

sing, an appropriate dark frame, recorded with closed beam

shutter, was substracted from each averaged frame. As a last

point prior to the actual reconstruction, the resulting pixel

values were clipped to zero in order to avoid negative

numbers of counts.

The phase retrieval for measurements with the grating

interferometer was carried out using the statistical image

reconstruction (SIR) method introduced by Wolf et al. (2020).

There, the image formation process is modelled via a double

sum over the grating diffraction orders. The resulting intensity

is then given by

Iðx; yÞ ¼
X
n;m

ĝgn ĝg�mwn-m exp i2�
n�m

MGD p
x

� �
�D;n��D;m: ð5Þ

Here, ĝgn = gn expð�i2�mT n2Þ with gn the nth Fourier coeffi-

cient belonging to the complex transmission function of the

grating. �D, n = �D(x � nds, y) represents the wavefield that

would arrive at the detector in the absence of the grating, but

translated about n times the shear distance

ds ¼
�zGD

p
ð6Þ

between adjacent diffraction orders. In comparison with the

original validation study on idealized simulated data from

Wolf et al. (2020), a Gaussian weighting term

wn-m / exp �
ðn�mÞ

2
d 2

s

2l 2

� �
ð7Þ

was included in the forward model in order to reproduce

reductions to the fringe contrast due to partial spatial coher-

ence and the point spread function of the detector. Together

with the position of the grating, the width l required in that

term was fitted in advance for each reconstruction, when

possible to a subset of the intensity data containing no sample.

The remaining parameters of the forward model are either

assumed to be known, i.e. the X-ray wavelength and the

grating period, or they can be obtained with the aid of the

calibrated distances from Table 1. The actual image recon-

struction then involves the maximization of the likelihood

with respect to the wavefield �D given the respective

measured intensities Imeas. Thereby, �D is expressed through

its amplitude and phase values A and � over the pixel matrix

of the detector. Numerically, the optimization is handled

through the minimization of the corresponding negative log-

likelihood function. Due to the characteristics of scintillation-

based detectors, cf. the discussion by Stampanoni et al. (2002),

Gaussian statistics were assumed instead of the Poisson

likelihood from Wolf et al. (2020). In order to impose a

certain degree of smoothness on the final results, anisotropic

�-smoothed total variation norms (Acar & Vogel, 1994),

namely

RTVðXÞ ¼
X

pixels i; j

�y jXiþ1; j � Xi; jj
2
þ �

� �1=2

þ �x jXi; jþ1 � Xi; jj
2
þ �

� �1=2
; ð8Þ

for both the amplitude, i.e. X = A, and the phase, i.e. X = �,

were added to the negative log-likelihood function as regu-

larization terms. The total cost function then reads

C ¼
X
pixels

�
Imeas � IðA; �Þ

	2

I 2
meas

þ RTVðAÞ þ RTVð�Þ: ð9Þ

Here, I(A, �) is the forward model from equation (5) which is

now seen as a function of the amplitude A and the phase � of

the wavefield �D = A expði�Þ for each pixel rather than as a

function of the pixel coordinates. The parameters of the TV

regularization from equation (8) were set to �x = 0.5, �y = 0.05

and � = 10�4 for both A and �. The anisotropy resulting from

different values for �x and �y was opted for due to the

directionality introduced by the employed line grating (Wolf et

al., 2020). Grating diffraction orders up to |n| = 7 were used in

the forward model and the minimization of the cost function

was terminated after reaching the threshold 10�3 for the norm

of the gradient or the maximum of 1000 iterations of the

L-BFGS-B algorithm (Zhu et al., 1997).

An exemplary course of the data evaluation, from the

measured intensities to the reconstructed phase image of the

sample, is illustrated in Fig. 4 for a measurement with the

projection microscope. Panel (a) shows the averaged and dark

frame corrected data for a sample measurement of a DESY-

logo test pattern. The test pattern is made out of a 500 nm-

thick gold layer on a 200 nm silicon nitride membrane and has

a diameter of 20 mm. The inset in Fig. 4(a) zooms in on the

interference pattern over a region of 100 � 100 pixels. It

showcases how the fringe pattern of the grating is deformed

due to the presence of the sample. The amplitude and phase

maps resulting from the SIR method are combined to form a

complex-valued wavefield. Panel (b) shows this reconstructed

wavefield �D in the plane of the detector. There, the phase is

encoded in the hue and the amplitude in the brightness of the

image, as can be inferred from the adjacent colour wheel.

Noticeably, some stripe artefacts appear in the reconstructed

amplitude. They are presumed to originate from intensity

variations across the fringes of the interference pattern. A

uniform grating, as assumed in the forward model of the SIR

method, cannot reproduce these variations without propor-

tional differences in the amplitude of the underlying wave-

field. For measurements with a projection microscope, the
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wavefield from panel (b) needs to be propagated back into the

sample plane. The result of this operation is depicted in panel

(c). When employing an imaging microscope, �D corresponds

to a magnified and mirrored version of the exit surface wave of

the sample. Hence, the backpropagation step can be skipped

or it can be used to correct potential defocusing of the setup.

Modifications of the phase by the phase shift of the sample

are visible in (c), even though they are partly obstructed by

features of the illumination. Note that, in comparison with

panel (b), the phase encoding via the hue was adjusted in

order to accentuate the sample features. The complex trans-

mission function of the sample can be recovered by forming

the quotient of the wavefields from panel (c) and the corre-

sponding result obtained from a reference measurement. The

magnitude of the quotient yields the amplitude transmission

and the argument the phase shift of the sample. The latter is

displayed in panel (d).

In order to obtain valid results from the last step, the

temporal stability of the illumination between both measure-

ments is crucial. For the present case, as expected from the

earlier correlation analysis, the phase shift image features

multiple signal components that cannot be attributed to the

test pattern. Evidently, larger reconstruction errors have to be

expected for the regions at and beyond the boundary of the

X-ray beam. In these regions, the amplitude rapidly falls off

such that they are most susceptible to changes in the posi-

tioning of the beam. Additionally, points with low amplitude

cannot contribute significantly to the intensity images.

Conversely, the phase values at these points are mainly set by

the regularization rather than the measured data. Further-

more, one can observe a faint low-frequency modulation of

the phase values within the extent of the beam. Besides such

effects due to the instability of the illumination, hints of the

twin-image from in-line holography (Nugent, 1990) can also

be perceived in the area surrounding the test pattern. This

may indicate that the SIR algorithm did not recover the

phases of �D fully correctly, but instead stagnated in a local

minimum. Despite these aspects, the test pattern is still clearly

visible. Furthermore, the phase image reveals a grid-like

substructure of the test pattern wafer.

The phase retrieval for the comparative PBPCI measure-

ments is performed by employing the iterative algorithm

of relaxed averaged alternating reflections (RAAR) (Luke,

2005). As most iterative phase retrieval techniques, this

scheme is based upon two constraints: the measurement

constraint which forces the exit surface wave � of the sample

to be consistent with the measured intensity image and a

sample domain constraint which imposes a priori knowledge

about the imaged object. In RAAR, the current iterate is not

directly projected onto the solution sets of the two constraints.

Instead of projectors PM/S, the wavefield is mainly acted on by

the associated reflectors

RM=Sð�Þ ¼ 2PM=Sð�Þ ��: ð10Þ

Overall, the new iterate of the wavefield from RAAR follows

from the fixed point iteration

�ðnþ1Þ ¼
�n

2



RS RM �ðnÞ

� �� 	
þ�ðnÞ

�
þ 1� �nð ÞPM �ðnÞ

� �
: ð11Þ

Here, the relaxation behaviour of the algorithm can be tuned

by varying the parameter �n. Evidently, the new iterate will

follow the measurement more closely for smaller values of �n.

This is especially advantageous in the case of inconsistent

problems, i.e. when the intersection of the solution sets for the

two employed constraints is empty. The choice 0 < �n < 1 then
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Figure 4
Overview of the data evaluation for grating interferometry. (a) Dark
frame corrected raw data for a sample measurement in analog digital
units (adu) of the sCMOS camera. The inset highlights the interference
pattern over a region of 100 � 100 pixels. (b) Complex wavefield
reconstructed from this single-exposure data via the SIR method. The
amplitude is mapped to brightness and the phase to hue, as indicated by
the adjacent colour wheel. (c) Wavefield after backpropagation to the
sample plane. (d) Phase shift of the sample after reference correction.
The scale bar indicates 1 mm length in panels (a) and (b) and 10 mm in (c)
and (d).



leads to a damping of the iterations and ensures the existence

of fixed points. In this work, the dynamic strategy

�n ¼ exp �
n

n�

� �3
" #

�0 þ 1� exp �
n

n�

� �3
" #( )

�1 ð12Þ

from Hagemann & Salditt (2017) with the parameters �0 =

0.99, �1 = 0.75 and n� = 150 is employed. The standard

projector PM for the projection on the measurements is used.

It consists of Fresnel propagation into the detection plane,

substitution of the amplitude by the square root of the

measured intensity, and the backpropagation to the sample

plane. For the sample domain constraint enforced by PS,

we utilize a finite support generated by thresholding and

morphological operations. Furthermore, PS was chosen to

impose a non-positive phase on one side as well as a non-

negative amplitude absorption or alternatively a pure phase

object on the other side.

When applied to PBPCI, RAAR is reliant on the empty

beam division, where a hologram or a normalized intensity is

generated by dividing sample and reference measurements,

i.e. I = Iobj /Iref. This correction step is supposed to artifically

generate conditions that are equivalent to the ideal illumina-

tion by a point source. The exit surface wave can then be

identified with the complex transmission function of the

sample, which is a necessary requirement for most sample

domain constraints to be applicable. However, the empty

beam division thereby also assumes that the effects of free

space propagation can be separated for the sample and the

illumination. This assertion was investigated in detail by

Homann et al. (2015), with the result that the errors intro-

duced by the approximation increase for larger source sizes,

i.e. less smooth wavefronts, as well as for smaller relevant

length scales in the sample.

The data evaluation for PBPCI is illustrated in Fig. 5. Panel

(a) shows a dark frame corrected sample exposure for the

DESY-logo test pattern. The normalized intensity I, which

serves as an input for RAAR, is displayed in panel (b). In

order to mimic the illumination with an undisturbed plane

wave, the normalized intensity obtained from the quotient of

(a) and a suitable reference frame was smoothly transitioned

to a constant value of unity for the area outside the illumi-

nated semicircle. The resulting phase reconstruction of the test

pattern is visualized in Fig. 5(c). Similar to the grating-based

reconstruction, the phase shift of the test pattern is correctly

recovered. Within the support of the reconstruction, artefacts

in the form of low-frequency phase modulations appear. They

are again presumed to originate from beam fluctuations

between the sample and reference measurements. Outside the

support, these artefacts are suppressed. However, also sample

features beyond the support region, like the grid-like structure

of the wafer or the marginal area of a Siemens star in the lower

left corner, are not correctly recovered. These components

were not captured during the initial setup of the support.

Here, dynamic support adaptions (Marchesini et al., 2003;

Hagemann et al., 2021) starting from a less constrictive initial

guess might offer room for improvements.

4. Imaging results

4.1. Imaging microscope with OSA

Regarding the imaging microscope with grating inter-

ferometry, an inferior spatial resolution in comparison with

the projection microscope became apparent. This observation

is illustrated in Fig. 6 taking the example of two crossed carbon

fibres as sample. In panel (a) the reconstructed wavefield in

the sample plane of the imaging microscope is displayed.

While both fibres as well as their overlap area can be identi-

fied, the sample features appear blurred out. In contrast,

the reconstruction of the same sample from grating inter-

ferometry in the projection microscope, cf. Fig. 7(a), is

significantly sharper. A possible explanation for the degraded

resolution is provided by the OSA. The latter acts as a low-

pass filter in the focal plane of the FZP. In the paraxial

approximation, an aperture with diameter dOSA will cut off

spatial frequencies above �cutoff = dOSA /2�f (Goodman, 2005).

For the setup at hand, the cutoff amounts to �cutoff =

1/2.1 mm�1 which is far more restrictive than other limitations

by the detector or the numerical aperture of the FZP.
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Figure 5
Overview of the data evaluation for PBPCI. (a) Dark frame corrected
raw data for a sample measurement in analog digital units (adu) of the
sCMOS camera. (b) Normalized intensity, obtained by the empty beam
division. (c) Phase reconstruction obtained with the RAAR scheme from
(b). The scale bar indicates 1 mm length in the detection plane for panels
(a) and (b) and 10 mm in the sample plane for (c).



Regarding Talbot interferometry with an imaging microscope,

the only other work explicitly mentioning the use of an OSA

that is known to the authors is from Berujon et al. (2012).

There, the inverse cutoff frequency is only four to five times

larger than the demagnified pixel size, compared with a factor

of around 40 in this work. Assuming that the point spread

function of the detection system exceeds the pixel size by a

similar amount, as for instance in Desjardins et al. (2014),

detrimental effects due to the OSA might not be as apparent.

In order to further substantiate the assumption that the

limited resolution is caused by the OSA, a corresponding

reconstruction using the projection microscope was low-pass

filtered according to the calculated cutoff frequency. The

result is shown in Fig. 6(b). The degree of blurriness regarding

the sample features is comparable for both images. When

comparing them, note that both the alignment of the two

carbon fibres within the field of view as well as their magni-

fication differ between the two employed imaging geometries.

Regarding the sample magnification in the projection micro-

scope, the condition zFS = f for the distance between the focal

plane and the sample was not met, resulting in a smaller

magnification of the fibres.

4.2. Quantitative contrast

The carbon fibre sample presented above is suited to

characterize the quantitative accuracy of the imaging methods.

Reconstructions of the crossed fibres with the grating-based

projection microscope as well as from propagation-based

phase contrast measurements are displayed in Fig. 7. The

refractive index decrement for carbon fibres with a mass

density of 1.8 g cm�3 at 10 keV is 	 = 3.74� 10�6 (Henke et al.,

1993). For the employed carbon fibres with diameters between

6 mm and 8 mm, this results in a maximal expected phase shift

between �� = �1.14 and �� = �1.52. Taking offsets in the

baseline of the reconstructed phase into account, these

expectations fit closely to the reconstructed values.

The quantitative character of the phase reconstructions is

further illustrated by section profiles shown in Figs. 7(c) and

7(d). There, the reconstructed phase shift values are plotted

over the length of the line segments marked in panels (a) and

(b). The section profiles are approximately consistent with

fibre diameters of 7.2 mm and 6.4 mm, respectively, albeit the

reconstructed phase shift of the smaller fibre lies beneath the

expectation for both methods. Note that offsets as well as

gradients regarding the baseline of the reconstruction in the

vicinity of the fibres were incorporated in the expected line

profiles. For grating interferometry, the underestimation of the

phase shift can be due to the orientation of the fibres. The

smaller fibre is aligned more in the direction perpendicular to

the grating bars. Since the interferometer is only sensitive to

phase differences along that direction, phase information

obtained from the end points of the fibre becomes more

pivotal for the overall reconstruction. The end points,

however, lie outside the field of view. With respect to the

larger fibre, propagation-based imaging achieves a sharper

reconstruction of the fibre sidewalls. The central region of the

fibre, on the other hand, is reproduced more reliably by the

grating-based method.

4.3. Imaging at different Talbot orders

Hereinafter, the achievable image quality with the projec-

tion microscope is to be compared for the different realized
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Figure 6
Grating-based imaging microscope with OSA. Panel (a) shows the
retrieved wavefield in the sample plane of the imaging microscope with
mT = 11/16. The analogous result from the projection microscope is shown
in (b). There, the wavefield has been low-pass filtered in Fourier space
using the expected diameter of the OSA. The phase shift following from
the non-filtered reconstruction is depicted in Fig. 7(a). For both panels,
the scale bar indicates 10 mm length in the respective sample plane. Note
that the sample magnification as well as the positioning of the carbon
fibres within the field of view differ between both exposures.

Figure 7
Phase reconstructions of the crossed carbon fibre sample via grating
interferometry in a projection microscope (a) with mT = 11/16 and via
PBPCI (b). The scale bar indicates 10 mm length in both panels. Panels (c)
and (d) show section profiles along the line segments indicated in (a) and
(b), respectively (green curves). The expected profile for carbon fibres
with a diameter of 7.2 mm and 6.4 mm is shown for comparison (blue dash-
dotted curve). Note, that the expected profile plot was adjusted to the
baseline of the reconstructions.



Talbot orders mT of the grating interferometer. A change of

the Talbot order alters three important parameters of the

setup that can potentially impact the image quality of the

reconstructions: the shear distance ds, the fringe period pf of

the interference pattern, and its visibility V. For the present

setup, the grating was always mounted in a position corre-

sponding to a solution of equation (1) with the minus sign.

Thus, moving towards higher Talbot orders, i.e. longer effec-

tive propagation distances, implies larger focus to grating

distances zFG. Consequently, higher Talbot orders go along

with shorter shear distances and smaller fringe periods. The

dependency of the visibility cannot be predicted as generally,

as there are two effects working in opposite directions. In the

case that the spatial coherence limits the visibility, improve-

ments can be expected for higher Talbot orders. If, on the

other hand, the resolution of the detector is the limiting factor,

higher visibilities should be obtained for larger fringe periods

and hence for smaller values of mT. The interplay of both

factors is similar to that discussed for the propagation-based

phase contrast in Pogany et al. (1997). In the case of the

present setup, the general trend showed an overall decrease

in visibility for higher Talbot orders, thus indicating that

the detector represents the limiting factor. The values of the

mentioned parameters for all setup configurations can be

found in Table 2.

The accuracy of the reconstructions is quantified using the

contrast-to-noise ratio

CNR ¼
��S ���BG

�� ��
�2

S þ �
2
BG

� �1=2
: ð13Þ

Here, ��S and ��BG denote the average pixel values of the

reconstructed phase image in a sample and a background

region, respectively, �2
S and �2

BG the corresponding variances.

The test pattern with the DESY-logo, as shown in Figs. 4 and 5,

represents a suitable sample for the CNR evaluation. The

reconstructions from the different setup configurations are

displayed in Fig. 8. There, the selected square regions of

interest for the determination of the CNR values are marked

in green and blue in all panels. One of the larger disks of the

logo was chosen as sample region, since a constant phase shift

can be expected there. The resulting CNR values are listed in

Table 2. The highest values around CNR ’ 8 are obtained for

mT = 5/16 and mT = 11/16. For these two configurations, the

achieved noise level lies slightly below the one of the purely

propagation-based method. The CNR values for mT = 7/16

and mT = 9/16 are significantly worse. The phase reconstruc-

tion for mT = 7/16 is spoiled by cloud-like features causing a

severe increase of the variances �2
S and �2

BG. Similar artefacts

were observed for all acquisitions with this configuration.

Whether they represent actual parts of the wavefield or

whether they are artificially introduced by the reconstruction

method, for instance through a stagnation of the likelihood

maximization, could not be finally decided on. The case with

mT = 9/16, on the other hand, featured the smallest phase

variances overall. Here, the contrast of the reconstruction is

too small and responsible for the worse CNR.

From the experimental results, no clear correlation between

the CNR values with either the shear distance or the visibility

was found. In principle, as has been worked out previously by

Weber et al. (2011) for example, an increase in either of the

two quantities could improve the signal-to-noise ratio, at least

for differential phase or phase difference images obtained

with standard reconstruction approaches, where single Fourier

orders of the interference pattern have to be extracted. A

higher visibility should lead to smaller uncertainties in the
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Figure 8
Phase reconstructions of the DESY-logo for different Talbot orders and
for PBPCI. The regions used for the CNR evaluation are marked by the
green and blue squares, respectively. The scale bar indicates 5 mm length
in all panels.

Table 2
Summary of different setup and reconstruction quality parameters for
the realized Talbot orders mT: the shear distance ds of the grating
interferometer, the fringe period pf , the visibility V (2) corresponding to
terms with n � m = 2 from equation (5), the contrast-to-noise ratio
(CNR), the resolution estimates �rh and �rv in the horizontal and the
vertical direction, and the resolution limit �rFT of the Fourier transform
method in the vertical direction due to the fringe period.

mT

ds

(mm)
pf

(mm) V (2) CNR
�rh

(nm)
�rv

(nm)
�rFT

(mm)

5/16 172 134 0.41 7.92 280–330 400 1.10
7/16 170 98 0.39 3.00 280–330 390–460 0.78
9/16 166 70 0.28 5.74 280–330 330 0.57
11/16 164 59 0.31 8.06 280 330 0.48
PBPCI – – – 7.47 200–230 230 –



position of the interference fringes, whereas an increase of the

shear distance can lead to an exposure of the interferometer to

larger phase differences. Due to the nonlinear character of the

SIR method, it is difficult to predict a priori how and to what

extent the reconstructions can benefit from such changes. For

now, it can only be stated that the relative change in the shear

distance and the visibility was too small to show a perceivable

impact, especially in comparison with potential effects from

systematic uncertainties like beam fluctuations.

While grating interferometry could achieve a slightly better

CNR, the visually best reconstruction in Fig. 8 is obtained

from propagation-based phase contrast. Most notably, the

latter yields a higher spatial resolution, as can be inferred most

clearly from the smaller disks and the thin line segments of

the DESY-logo. A more quantitative assessment of the spatial

resolution between the different methods will be presented

now. It is based on the reconstructions of a Siemens star,

which is also composed of a 500 nm gold layer on the same

membrane as the DESY test pattern. It comprises 36 spokes

with line sizes from 2 mm in the outer region down to 50 nm

in the centre. Indicators mark line sizes of 500 nm, 200 nm and

100 nm. Fig. 9 illustrates central regions of the reconstructions

as well as section profiles along a circular path through each

reconstruction. Two aspects stand out in particular. First,

the superior spatial resolution of propagation-based phase

contrast imaging is confirmed, as the spokes of the Siemens

star can be resolved further towards the centre and up to the

indicator of 200 nm line width. The latter is hardly visible itself

in the grating-based reconstructions. Secondly, the achieved

resolution is direction-dependent. Finer spoke widths can be

resolved in the horizontal direction. This anisotropy is more

pronounced for grating interferometry. In comparison, there is

only a miniscule degradation for PBPCI.

In order to find more accurate resolution estimates �rh and

�rv for the horizontal and the vertical direction, multiple

circular section profiles with different radii were analyzed.

This procedure is exemplified in Fig. 10 for the case mT =

11/16. The circular segments cover an angle of 150� or 15

periods of the Siemens star. As the resolution estimate in the

vertical direction �rv, the half-period of the section with the

largest radius is chosen for which the expected number of

periods cannot be unambiguously determined. Note that the

proper identification of the periods always fails in the verti-

cally oriented part of the line segment. In the presented

example, this is the case for the yellow profile in Fig. 10(b) with

an expected half-period of 330 nm. The resolution estimate

�rh for the horizontal direction, on the other hand, is set to

the half-period over the segment with the smallest radius that

still exhibits a clearly periodic modulation. As in the light blue

profile of the example with a half-period of 280 nm, a clearer

modulation always occurs at the beginning of the section

profile corresponding to the horizontally oriented part of the

circular segment. The resolution estimates obtained for the

other configurations are listed in Table 2. If no single section

profile could be identified for a resolution estimate, the range

between the half-periods from two adjacent segments is given.
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Figure 10
Illustration for the determination of the resolution estimates �rh and �rv

at the example of grating interferometry in the Talbot order mT = 11/16.
The scale bar in the reconstruction (a) indicates 5 mm length. Panel (b)
shows multiple section profiles along the circular segments marked in (a).
The section profiles are offset with respect to each other and the length L
of the line segments, that the phase shift values are plotted over, is
measured anti-clockwise.

Figure 9
Phase reconstructions of a Siemens star for different Talbot orders and
for PBPCI. The scale bar indicates 5 mm length in all reconstructions. The
two visible indicators within the Siemens star mark spoke line widths of
500 nm and 200 nm, respectively. The panel on the bottom right shows
section profiles along the indicated circular line segments. The length L of
the line segments, that the phase shift values are plotted over, is measured
anti-clockwise. In support of a clearer depiction, the section profiles are
offset with respect to each other.



An alternative resolution estimate for propagation-based

imaging was obtained using the Fourier ring correlation

criterion (Van Heel & Schatz, 2005). Here, two independent

reconstructions have to be correlated. They were obtained by

splitting up the ten frames of each exposure series into two

parts. The crossover of the 1/2-bit threshold then indicates a

resolvable half-period of 210 nm. This is consistent with the

estimates obtained from the visual analysis of the Siemens

star. For the results with the SIR method, the same approach

was not applicable. Here, the correlation remained above the

threshold over the entire spatial frequency range, i.e. up to

half-periods corresponding to the effective pixel size of 53 nm.

It is assumed that the correlation at higher spatial frequencies

is induced by the regularization, even if they do not carry any

information about the sample.

A possible explanation of the anisotropy observed for the

propagation-based method is the effective numerical aperture

of the focusing element. Since approximately half of the FZP

is covered by the beamstop, the numerical aperture in the

vertical direction is also halved. A resolution limit follows

from the requirement that diffracted X-rays corresponding to

a spatial frequency � should still be able to interfere with the

non-diffracted beam, leading to �zSD� � 2zFD NA with NA

the effective numerical aperture. For the setup at hand, this

implies resolvable half-periods of 75 nm in the horizontal and

of 150 nm in the vertical direction. While neither of the two

limits is achieved in practice, they still can explain the

observed direction-dependence. Regarding the grating-based

setup, there are two further aspects that can account for the

larger anisotropy of the spatial resolution as well as for the

slight decrease of �rv with higher Talbot orders. First, an

anisotropic version of the TV norm, cf. equation (8), was

employed in the SIR method. It penalized differences in

the vertical direction ten times as much as those along the

horizontal. Secondly, as mentioned in the Introduction, the

extraction of Fourier orders from a single interferogram is

only well defined if they are band-limited such that higher

resolutions can be obtained for smaller fringe periods. While

the SIR method is not based on the extraction of Fourier

orders, it might still be able to recover higher spatial frequency

information regarding the sample when the fringe period is

smaller. Nevertheless, it should be emphasized that the reso-

lution obtained in the vertical direction still outperforms the

limitation of the Fourier transform method. The half-period

resolvable with the latter is limited to �rFT = pf /MSD, i.e. the

demagnified fringe period. Overall, the SIR method does not

completely resolve this stringent limitation to the resolution of

single-exposure grating-based interferometry, but it manages

to mitigate it considerably.

5. Summary and outlook

In summary, single-exposure X-ray phase imaging microscopy

with a grating interferometer was demonstrated in an

experiment using synchrotron radiation. Previous imple-

mentations of grating-based X-ray microscopy were based on

X-ray imaging microscopes, where the sample is placed in a

conjugate plane upstream of the X-ray optics, and relied on

the phase stepping approach and hence on the acquisition of

multiple frames (Yashiro et al., 2009, 2010). In comparison, we

could demonstrate a broader applicability of grating inter-

ferometry through a statistical image reconstruction method.

On the one hand, this allowed the adaption of the method in

X-ray projection microscopes, where the sample is placed in

the divergent X-ray beam and the phase retrieval is applied to

the Fresnel diffraction image of the sample. On the other

hand, our algorithmic approach also mitigated limitations to

the spatial resolution when applying grating interferometry in

a single-exposure scheme.

We have analyzed the image quality in terms of quantita-

tiveness and the contrast-to-noise ratio of the reconstructed

phase images as well as in view of the achieved spatial reso-

lution, each on the basis of test samples with known compo-

sitions, namely carbon fibres and nanostructured resolution

test patterns. This evaluation was carried out for different

parameters of the grating interferometer. With the exception

of a single exposure, namely the case mT = 9/16 in Fig. 8, a

quantitative phase contrast manifests in all reconstructions.

For the contrast-to-noise ratio, a clear dependence on neither

the shear distance of the interferometer nor the visibility of

the interference pattern could be revealed. We suspect that

this is largely due to systematic errors, for instance due to

variations of the X-ray wavefront between sample and refer-

ence measurements. Regarding this question, further experi-

ments, covering a larger domain of the parameter space and

ideally featuring fewer systematic variations, are necessary.

Finally, it can be also suspected here that the choice of the

regularization parameters within our reconstruction method

partly determines the achievable contrast-to-noise ratio, and

that adaptions of the regularization are required in order

to transfer improvements of the signal-to-noise ratio from

the data to the reconstructions. The spatial resolution as

inferred from reconstructions of a Siemens star still exhibits

deteriorations for larger fringe periods. In comparison with

reconstruction techniques based on the Fourier transform

method (Takeda et al., 1982), however, the observed depen-

dency is substantially less pronounced. The comparative

imaging experiments with propagation-based phase contrast

achieved a superior spatial resolution at a comparable

contrast-to-noise ratio.

Besides the inconsistency of the illumination, the predo-

minant errors in the reconstructions from grating inter-

ferometry were constituted by stripe artefacts caused by non-

uniformities of the interference fringe pattern. Hereof, it

can be expected that our method will benefit from future

improvements regarding the manufacturing of micro- and

nanometric X-ray gratings resulting in transmission functions

that fit the assumption of perfect periodicity more properly.

Regarding future applications of grating interferometry in

imaging microscopes, it was demonstrated that the usage of

an order sorting aperture can become the limiting factor

regarding the spatial resolution of the microscope. In such

cases, it seems favourable to dispose of the order sorting

aperture and to tolerate potentially intrusive contributions of
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higher diffraction orders of the Fresnel zone plate instead.

Alternatively, other focusing elements such as compound

refractive lenses (Schroer et al., 2005; Seiboth et al., 2018)

could be used. Another limiting factor for grating inter-

ferometry can be the orientation of sample features with

respect to the grating bars, cf. Fig. 7 and the discussion at the

end of Section 4.2. A potential solution to this issue is offered

by two-dimensionally structured X-ray gratings which then

offer a bidirectional sensitivity. In the field of X-ray micro-

scopy, for instance, this method was already employed by

Berujon et al. (2012). In general, the benefits of bidirectional

sensitivity should become most obvious for use cases where

the sample does not fully fit into the field of view. Then,

unidirectional methods might miss phase information that

bidirectional ones can recover. The price to pay for bidirec-

tional sensitivity, at least in single-exposure applications, is a

limitation of the spatial resolution by the period length of the

grating in both directions. As we could demonstrate a miti-

gation of such limitations for the unidirectional case with our

statistical image reconstruction method, its combination with

two-dimensionally structured gratings seems promising. A

straightforward extension, however, can be impeded by

increasing computational costs, as the number of terms to

compute in equation (5) grows quadratically with the number

of considered grating diffraction orders (Wolf et al., 2020).

Finally, further extensions of the technique might also benefit

from more suited regularization schemes. As the transfer

function in the phase difference regime exhibits zeroes for

integer multiples of the spatial frequency 1/ds (Takano et al.,

2019; Wolf et al., 2020), a first step can be the specific incor-

poration of these frequencies into the regularization term

rather than the general demand of smoothness used thus far.

Inconsistencies during the reference correction caused by

beam or pulse variations play an even more important role

for experiments at X-ray free-electron lasers. There, intrinsic

pulse-to-pulse fluctuations occur due to the stochastic nature

of the self-amplified spontaneous emission (SASE) process.

Associated changes of the intensity or the pointing of the

beam then impede the recording of proper data for the

reference correction. For propagation-based phase contrast

imaging, Hagemann et al. (2021) approached this problem

by generating synthetic reference frames from a principal

component analysis over a pre-recorded series of single-pulse

empty beam images. In this context, grating interferometry has

the advantage that the phase retrieval step solely operates on

a single exposure, whereas both sample and empty beam data

are required in the propagation-based method. While refer-

ence information is still required for the isolation of the

sample transmission function, grating interferometry offers

the possibility of extending the idea of synthesized reference

data to the space of complex wavefields. First tests and char-

acterizations regarding the application of synthesized refer-

ence frames to X-ray grating interferometry should be the

subject of future experiments. In case of a successful adaption,

X-ray grating interferometry can be a promising alternative

for full-field imaging within the challenging environment

posed by fluctuating SASE pulses.
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D., Mercere, P. & Medjoubi, K. (2014). J. Instrum. 9, C06001.

Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J.,
Brachmann, A., Bucksbaum, P., Coffee, R., Decker, F.-J., Ding, Y.,
Dowell, D., Edstrom, S., Fisher, A., Frisch, J., Gilevich, S., Hastings,
J., Hays, G., Hering, P., Huang, Z., Iverson, R., Loos, H.,
Messerschmidt, M., Miahnahri, A., Moeller, S., Nuhn, H.-D., Pile,
G., Ratner, D., Rzepiela, J., Schultz, D., Smith, T., Stefan, P.,
Tompkins, H., Turner, J., Welch, J., White, W., Wu, J., Yocky, G. &
Galayda, J. (2010). Nat. Photon. 4, 641–647.

Fezzaa, K. & Wang, Y. (2008). Phys. Rev. Lett. 100, 104501.
Fitzgerald, R. (2000). Phys. Today, 53, 23–26.
Flenner, S., Kubec, A., David, C., Storm, M., Schaber, C. F., Vollrath,

F., Müller, M., Greving, I. & Hagemann, J. (2020). Opt. Express, 28,
37514–37525.

Goodman, J. W. (2005). Introduction to Fourier Optics. Roberts and
Company Publishers.

Hagemann, J. & Salditt, T. (2017). J. Appl. Cryst. 50, 531–538.
Hagemann, J., Vassholz, M., Hoeppe, H., Osterhoff, M., Rosselló,

J. M., Mettin, R., Seiboth, F., Schropp, A., Möller, J., Hallmann, J.,
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