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Abstract
We investigate the equidistribution of Hecke eigenforms
for PSL2(ℤ) on sets that are shrinking toward the cusp.
We show that at scales finer than the Planck scale they
do not equidistribute while at scales more coarse than
the Planck scale they equidistribute on a full density
subsequence of eigenforms.On a suitable set of test func-
tions we compute the variance showing an interesting
transition behavior at half the Planck scale.
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1 INTRODUCTION

It is a fundamental consequence of Berry’s randomwave conjecture [1] that the eigenfunctions of
the Laplace operator on a hyperbolic manifold𝑀 = Γ∖ℍ ‘spread out’ in the large eigenvalue limit.
For a measure 𝑑𝜈′ on Γ∖ℍ and a sufficiently nice function 𝜓 on Γ∖ℍ we write

⟨
𝜓, 𝑑𝜈′

⟩
= ∫Γ∖ℍ 𝜓(𝑧)𝑑𝜈

′(𝑧).

Let 𝜑𝜆 be 𝐿2-normalized eigenfunctions of the Laplacian with eigenvalue 𝜆, and consider the
measures

𝑑𝜇𝜆 =
||𝜑𝜆||2𝑑𝜇, 𝑑𝜈 =

𝑑𝜇

vol(Γ∖ℍ)
,

where 𝑑𝜇(𝑧) = 𝑦−2𝑑𝑥𝑑𝑦 is the uniform measure on the surface.
© 2022 The Authors. Journal of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
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The question about whether the eigenfunctions indeed spread out is quantified by the question
of whether

⟨𝜓, 𝑑𝜇𝜆⟩→ ⟨𝜓, 𝑑𝜈⟩, as 𝜆 → ∞ (1)

for a suitable set of test functions 𝜓.
For the full modular group Γ = PSL2(ℤ) with 𝜑𝜆 being Hecke–Maass forms this (and much

more) was famously proved by Lindenstrauss [15] and Soundararajan [27]. Zelditch [30] had
previously studied the variance sum∑

𝜆⩽Λ

||⟨𝜓, 𝑑𝜇𝜆⟩ − ⟨𝜓, 𝑑𝜇⟩||2
providingweak but non-trivial upper bounds on this to conclude (1) for a full density subsequence
of 𝜆, see also [26, 29]. For the full modular group Sarnak and Zhao [25] were able to prove asymp-
totics for the variance sum on a suitable set of test functions, and Nelson [20–22] has recently
found a way to determine the asymptotics also for arithmetic compact hyperbolic surfaces arising
from maximal orders in quaternion algebras.
It is natural to ask if the equidistribution (1) still holds if we allow the support of the test func-

tion𝜓 to shrink as a function of 𝜆. An interesting special case is when𝜓 is the indicator function of
a hyperbolic ball of radius 𝑅with 𝑅 going to zero as a function of 𝜆. This is the question of equidis-
tribution in ‘shrinking sets’, which has been analyzed, for example, by Young [28, Proposition 1.5].
The physics literature seems to suggest that equidistribution holds all the way down to the scale of
the de Broglie wavelength, which is of the order of 1∕

√
𝜆, see also [5]. Humphries [8] has shown

that below this threshold, also called the Planck scale, there are cases where equidistribution does
not hold (he even shows that equidistribution fails slightly above the Planck scale).
Humphries andKhan [9] proved that individual equidistribution holds all theway to the Planck

scale, if we restrict to dihedral forms, which form a very thin set of Maass forms.
It should be noted that ergodic theory methods provide equidistribution in shrinking balls

for general negatively curved manifolds but typically only for a slow logarithmic rate, see, for
example, [4, 6].
On the other hand for the eigenfunctions on the Euclidean torus Granville and Wigman [3]

showed individual equidistribution close to the Planck scale and failure of equidistribution at
scales at a small power of log above the Planck scale. The equidistribution was previously proved
by Lester and Rudnick [14] along a full density subsequence.

1.1 Mass equidistribution for holomorphic Hecke cusp forms

We may ask questions analogous to the above if we replace the eigenfunction 𝜑𝜆 by 𝑦𝑘∕2𝑓(𝑧),
where 𝑓(𝑧) is an 𝐿2-normalized holomorphic cusp form of weight 𝑘 for Γ = PSL2(ℤ). In fact
𝑦𝑘∕2𝑓(𝑧) is an eigenfunction of the weight 𝑘 Laplacian Δ𝑘 for the full modular group with eigen-
value−𝑘∕2(1 − 𝑘∕2), which is the bottom of the spectrum forΔ𝑘. In analogy with (1) Holowinsky
and Soundararajan [7] proved that

𝜇𝑓(𝜓) ∶=
⟨
𝜓, 𝑑𝜇𝑓

⟩
→ ⟨𝜓, 𝑑𝜈⟩, as 𝑘 → ∞,
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where

𝑑𝜇𝑓 = 𝑦
𝑘||𝑓(𝑧)||2𝑑𝜇.

Luo and Sarnak [19] computed the quantumvariance of thesemeasures on themodular surface.
More precisely they proved that for a fixed compactly supported function 𝑢 on ℝ+ we have

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)
|||𝜇𝑓(𝜓)|||2 = 𝐵𝜔(𝜓, 𝜓)𝐾 + 𝑂𝜀,𝜓(𝐾1∕2+𝜀).

Here 𝐻𝑘 is an orthonormal basis of Hecke eigenforms, 𝐿(𝑠, sym2 𝑓) is the symmetric square
𝐿-function of 𝑓, and 𝜓 is a rapidly decaying smooth function of mean zero whose zero-th Fourier
coefficient vanishes sufficiently high in the cusp, and𝐵𝜔(𝜓1, 𝜓2) is a Hermitian form diagonalized
by Hecke–Maass cusp forms. The eigenvalues of 𝐵𝜔 are arithmetically significant: They are 𝜋∕2
times the central value of the corresponding 𝐿-function.

1.2 Equidistribution on shrinking sets

The question of equidistribution on shrinking sets in the holomorphic setting was considered by
Lester,Matomäki, andRadziwiłł [13]. They proved an effective version in terms of the test function
of the result of Holowinsky and Soundararajan, allowing to shrink the test function at the rate of
a small negative power of log 𝑘.
We consider the following variant of the problem about ‘shrinking sets’: Let𝐻 be positive with

𝐻 ⩾ 1 and define the set

𝐵𝐻 = {𝑧 ∈ Γ∖ℍ ∶ ℑ(𝑧) > 𝐻},

considered to be a shrinking ball around the cusp. We study the distribution of compactly
supported functions on 𝐵1 squeezed into 𝐵𝐻 using the operator𝑀𝐻 defined by

𝑀𝐻𝜓(𝑧) = 𝜓(𝑥 + 𝑖𝑦∕𝐻).

This may be formulated in a coordinate-independent way, see Section 3.1. Similar shrinking has
been considered previously byGhosh and Sarnak [2] aswell as by Lester,Matomäki, andRadziwiłł
[13].
We will consider mass equidistribition ‘high in the cusp’, by which we mean that

𝜇𝑓(𝑀𝐻(𝑘)𝜓) → 𝜈(𝑀𝐻(𝑘)𝜓),

as 𝐻(𝑘) tends to infinity with 𝑘. The length scale of 𝐵𝐻 is of the order 𝐻−1, so we might expect
equidistribution to hold all the way down to 𝐻−1 ≫ 𝑘−1, as this is the order of the de Broglie
wavelength of 𝑦𝑘∕2𝑓(𝑧).
Let 𝐵 ∶= 𝐵1. We will consider the following class of functions:

𝐶∞0 (𝑀, 𝐵) = {𝜓 ∈ 𝐶
∞
0 (𝑀) ∣ supp𝜓 ⊂ 𝐵},
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where𝐶∞
0
(𝑀) consists of all smooth functions on𝑀 = Γ∖ℍ decaying rapidly at the cusp, and such

that the zero-th Fourier coefficient vanishes sufficiently high in the cusp. Given 𝜓 ∈ 𝐶∞
0
(𝑀, 𝐵),

we investigate upper bounds and asymptotics for

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)
|||𝜇𝑓(𝑀𝐻(𝑘)𝜓) − 𝜈(𝑀𝐻(𝑘)𝜓)

|||2,
where 𝐻(𝑘) = (𝑘 − 1)𝜃 for some 0 ⩽ 𝜃 < 1, and 𝑢 ∶ ℝ+ → ℝ⩾0 is smooth with compact support.
It turns out that the asymptotics depends crucially on 𝜃.

1.3 Mass equidistribution below and above the Planck scale

We first prove thatmass equidistribution fails on shrinking sets around the cusp as above for scales
finer than the Planck scale. This is consistent with the above prediction and just reflects the fact
that 𝑓 decays rapidly for 𝑦 ≫ 𝑘, which comes simply from the Fourier expansion.

Proposition 1.1. Let 𝜃 ⩾ 1, that is, shrinking below the Planck scale. Then there exists 𝜓 ∈
𝐶∞
0
(𝑀, 𝐵) such that 𝜇𝑓(𝑀(𝑘−1)𝜃𝜓) = 𝑜(𝜈(𝑀(𝑘−1)𝜃𝜓)) and 𝜈(𝑀(𝑘−1)𝜃𝜓) ≠ 0 as 𝑘 → ∞.

Secondly we obtain a power-saving bound for the quantum variance sum for general observ-
ables all the way down to the Planck scale. This implies that mass equidistribution holds for a
density one subsequence of holomorphic cusp forms.

Theorem 1.2. Let 0 < 𝜃 < 1 and 𝜓 ∈ 𝐶∞
0
(𝑀, 𝐵). Then

∑
2∣𝑘

𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)
|||𝜇𝑓(𝑀(𝑘−1)𝜃𝜓) − 𝜈(𝑀(𝑘−1)𝜃𝜓)

|||2 = 𝑂𝜓,𝑢(𝐾2−2𝜃−min (1∕5,1−𝜃)+𝜀).
Since 𝜈(𝑀(𝑘−1)𝜃𝜓) is of size about 𝑘−𝜃 this supplements the results in [13, Theorem 1.3] as it

shows that equidistribution holds on average at a much finer scale than individually, as proved in
[13]. The precise polynomial saving of 1/5 when 𝜃 is sufficiently small can probably be improved;
its proof has as its input the convexity bound in the 𝑘-aspect of 𝐿(𝑠, sym2 𝑓).

1.4 Asymptotics of the quantum variance

For a set 𝐴 we let 1𝐴 denote the indicator function of that set. Let 𝐶∞0,0(𝑀, 𝐵) denote functions in
𝐶∞
0
(𝑀, 𝐵) that are orthogonal to the constant function. Let 𝐶∞cusp(𝑀, 𝐵) be the subset of functions

with zero-th Fourier coefficient vanishing completely, and 𝐶∞
Eis
(𝑀, 𝐵) its orthogonal complement

inside 𝐶∞
0
(𝑀, 𝐵). We note that for 𝜓 ∈ 𝐶∞

0,0
(𝑀, 𝐵) we have 𝜈(𝑀(𝑘−1)𝜃𝜓) = 0. If we restrict to test

functions in this space we can improve on Theorem 1.2 and obtain an asymptotic result.
Denote by 𝜏1(𝑛) the sum of divisors of 𝑛,𝐾𝑠(𝑦) the𝐾-Bessel function, and 𝜆𝜙(𝑛) the 𝑛-th Hecke

eigenvalue for the form 𝜙.

Theorem 1.3. Let 0 < 𝜃 < 1 and fix 𝑢 ∶ ℝ+ → ℝ⩾0 smooth with compact support.
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(i) There exists a Hermitian form 𝐵𝜃(⋅,⋅) on 𝐶∞0,0(𝑀, 𝐵) and 𝛿𝜃 > 0 such that

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)
|||𝜇𝑓(𝑀(𝑘−1)𝜃𝜓)

|||2
= 𝐵𝜃(𝜓, 𝜓)

(
∫ 𝑢(𝑦)𝑦−𝜃𝑑𝑦

)
𝐾1−𝜃 + 𝑂𝜓,𝜃(𝐾

1−𝜃−𝛿𝜃 ),

for 𝜓 ∈ 𝐶∞
0,0
(𝑀, 𝐵).

(ii) The Hermitian forms 𝐵𝜃(⋅,⋅) have three different regimes in the sense that 𝐵𝜃(⋅,⋅) is constant on
each of the three intervals 0 < 𝜃 < 1∕2, 𝜃 = 1∕2, and 1∕2 < 𝜃 < 1.
The decomposition

𝐶∞0,0(𝑀, 𝐵) = 𝐶
∞
cusp(𝑀, 𝐵) ⊕ 𝐶∞

Eis
(𝑀, 𝐵),

into the cuspidal and the Eisenstein part is orthogonal with respect to 𝐵𝜃(⋅,⋅) for all 0 < 𝜃 < 1.
Furthermore, 𝐵𝜃(⋅,⋅) restricted to 𝐶∞Eis(𝑀, 𝐵) is independent of 𝜃, and 𝐵𝜃(⋅,⋅) is identically zero
on 𝐶∞cusp(𝑀, 𝐵) for 𝜃 > 1∕2.

(iii) The Hermitian forms 𝐵𝜃(⋅,⋅) can be extended to the larger set 1𝐵𝐶∞0,0(𝑀) of functions in 𝐶
∞
0,0
(𝑀)

times the characteristic function 1𝐵 such that the following holds: On the subset 1𝐵𝐶∞cusp(𝑀)
of functions with the zero-th Fourier coefficient vanishing, the form 𝐵𝜃(⋅,⋅) is continuous with
respect to a certain Sobolev norm‖ ⋅ ‖2,1. The set𝐶∞cusp(𝑀, 𝐵) is dense in 1𝐵𝐶∞cusp(𝑀)with respect
to the same norm ‖ ⋅ ‖2,1.

(iv) If 𝜙𝑖 are Hecke–Maass forms with eigenvalue 𝑠𝑖(1 − 𝑠𝑖), then the Hermitian form satisfies
𝐵𝜃(1𝐵𝜙1, 1𝐵𝜙2) = 0, unless 𝜙1, 𝜙2 are both even. If 𝜙𝑖 are both even, then

𝐵𝜃(1𝐵𝜙1, 1𝐵𝜙2) = 4𝜋
∑
𝑚,𝑛⩾1

𝜏1((𝑚, 𝑛))𝜆𝜙1(𝑚)𝜆𝜙2(𝑛)

(𝑚𝑛)1∕2
𝐼
𝑠1,𝑠2
𝜃

(𝑚, 𝑛),

where

𝐼
𝑠1,𝑠2
𝜃

(𝑚, 𝑛) = ∫
∞

max(𝑚,𝑛)
𝐾𝑠1−1∕2(2𝜋𝑦)𝐾𝑠2−1∕2(2𝜋𝑦)𝑓𝜃,𝑚,𝑛(𝑦)

𝑑𝑦

𝑦

with

𝑓𝜃,𝑚,𝑛(𝑦) =

⎧⎪⎨⎪⎩
1, if 0 < 𝜃 < 1∕2,
𝑒−2𝜋

2𝑦2(𝑚2+𝑛2), if 𝜃 = 1∕2,
0, if 𝜃 > 1∕2.

For the precise form of 𝐵𝜃(⋅,⋅) and ‖ ⋅ ‖2,1 we refer to (24) and (35).
Luo and Sarnak [19, p. 773] proved that 𝐿(𝜙, 1∕2) is non-negative for 𝜙 a Hecke–Maass cusp

form by realizing it as an eigenvalue of the Hermitian form 𝐵0. One may speculate whether
𝐵𝜃(1𝐵𝜙, 1𝐵𝜙) for 0 < 𝜃 ⩽ 1∕2 is also related to central values of 𝐿-functions. Irrespectively, wemay
use Theorem 1.3 to prove that 𝐵𝜃(1𝐵𝜙, 1𝐵𝜙) ⩾ 0. Seeing this directly from the series representation
in Theorem 1.3 (iv) seems difficult, and is, therefore, surprising.
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In fact this was our original motivation for extending 𝐵𝜃 in Theorem 1.3 (iii) to a set containing
1𝐵𝜙. Notice that 1𝐵𝜙 together with incomplete Eisenstein series provide a basis for 1𝐵𝐶∞0,0(𝑀).

Corollary 1.4. If 𝜙 is an even Hecke–Maass cusp form with eigenvalue 𝑠𝜙(1 − 𝑠𝜙) and Hecke
eigenvalues 𝜆𝜙(𝑛), then

∑
𝑚,𝑛⩾1

𝜏1((𝑚, 𝑛))𝜆𝜙(𝑚)𝜆𝜙(𝑛)

(𝑚𝑛)1∕2 ∫
∞

max(𝑚,𝑛)

|||𝐾𝑠𝜙−1∕2(2𝜋𝑦)|||2 𝑑𝑦𝑦 ⩾ 0.

Remark 1. Let 𝑤 ∶ ℝ → ℝ be a smooth and bounded weight function with support contained in
[1,∞). Then one can similarly show by using the explicit expression for 𝐵𝜃(⋅,⋅) in (24) combined
with Theorem 1.3 (i) for 𝜓(𝑧) = 𝑤(𝑦)𝜙(𝑧) that

∑
𝑚,𝑛⩾1

𝜏1((𝑚, 𝑛))𝜆𝜙(𝑚)𝜆𝜙(𝑛)

(𝑚𝑛)1∕2 ∫
∞

0

|||𝐾𝑠𝜙−1∕2(2𝜋𝑦)|||2𝑤( 𝑦𝑚)
𝑤
(𝑦
𝑛

)𝑑𝑦
𝑦
⩾ 0.

Remark 2. We expect that the techniques and results in this paper will work with some mod-
ifications also for Maass cusp forms in the same way that the results in [17] are extended to
the Maass case by Sarnak and Zhao [25]. For simplicity and clarity we restrict ourselves to the
holomorphic case.

1.5 The behavior of holomorphic cusp forms high in the cusp

Ghosh and Sarnak [2] considered the distribution of the zeroes of holomorphic modular forms
high in the cusp as the weight grows. By the work of Rudnick [24] mass equidistribution for holo-
morphic forms implies equidistribution of their zeroes in the fundamental domain. Ghosh and
Sarnak observed that, although the proportion of zeroes in a shrinking ball around the cusp (more
precisely𝐻 ≫

√
𝑘 log 𝑘) was proportional to the area of the domain, the statistical behavior of the

zeroes was very different. They observed experimentally that the zeroes tend to localize on the two
‘real’ linesℜ𝑧 = −1∕2 andℜ𝑧 = 0, conjectured that 100% of the zeroes in these shrinking balls
around the cusp should lie on these two lines, and obtained some results in this direction. These
results were then strengthened by Lester, Matomäki, and Radziwiłł [13].
The reason for the qualitative change in the behavior of holomorphic cusp forms high in the

cusp has its roots in the fact that for all integers 1 ≪ 𝑙 ≪
√
𝑘∕ log 𝑘, we have

(
𝑒

𝑙

)𝑘−1
𝑓(𝑥 + 𝑖𝑦𝑙) = 𝜆𝑓(𝑙)𝑒(𝑥𝑙) + 𝑂(𝑘

−𝛿), (2)

where 𝑦𝑙 = (𝑘 − 1)∕4𝜋𝑙, and 𝛿 > 0 is some constant. This means that counting zeroes on the real
lines reduces to detecting sign-changes of the Hecke eigenvalues 𝜆𝑓(𝑙), which is exactly what was
achieved in [13].
We observe that our bilinear form 𝐵𝜃(⋅,⋅) exhibits a phase transition at 𝜃 = 1∕2, which coincides

exactly with the threshold in [2] and [13]. Combined, these results point toward the phenomenon
that, although the mass of holomorphic cusp forms equidistribute all the way down to the Planck
scale, that is, 𝑘−1, the qualitative behavior changes high in the cusp at half the Planck scale 𝑘−1∕2.
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F IGURE 1 Heat plots of 𝑦𝑘|𝑓(𝑧)|2 with 𝑓 ∈ 𝑘(Γ0(2)) and 𝑘 = 30, 40, 42, 48

This shows quite clearly in Figure 1, where the holomorphic forms look like randomwaves in the
bottom of the plots, whereas in an intermediate range (at height around 𝑘1∕2, that is, at half the
Planck scale) they are essentially constant on horizontal lines, before they start decaying rapidly
high in the cusp at height around 𝑘∕(4𝜋), that is, below the Planck scale. Note that in the region√
𝑘 ≪ 𝑦 ≪ 𝑘, where 𝑦𝑘|𝑓(𝑧)|2 is essentially constant on horizontal lines, we still expect fluctua-

tions in the 𝑦 direction (as we expect mass equidistribution to hold all the way down to the Planck
scale). In order to see this numerically one needs to consider larger 𝑘.
The asymptotic (2) implies that 𝑦𝑘|𝑓(𝑥 + 𝑖𝑦)|2 is essentially constant as 𝑥 varies, at least when

𝑦 = 𝑦𝑙 for some 𝑙 as above. This provides intuition for the phenomena observed in this paper:
𝑦𝑘|𝑓(𝑥 + 𝑖𝑦)|2 exhibits very strong cancellation with cuspidal test functions when we go to scales
finer than halfway to the Planck scale. On the other hand for incomplete Eisenstein series the
behavior is the same all the way down to the Planck scale, according to Theorem 1.3 (ii).
The structure of the paper is as follows. In Section 2 we study the shifted convolution problem

and its variance over a Hecke basis. In Section 3 we use the results of Section 2 to study the quan-
tum variance when we squeeze non-holomorphic Poincaré series toward the cusp . In Section 4
we extend the space of observables to the space 𝐶∞

0,0
(𝑀, 𝐵). In Section 5 we show that quantum

ergodicity holds for shrinking sets toward the cusp down to the Planck scale. In Section 6 we
complete the proof of Theorem 1.3 parts (iii) and (iv).

2 THE VARIANCE OF SHIFTED CONVOLUTION SUMS OVER A
HECKE BASIS

An essential tool in understanding questions of equidistribution of Hecke eigenforms is
understanding shifted convolution sums.
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Let 𝑓 be a weight 𝑘, level one holomorphic cuspidal Hecke eigenform, normalized such that its
Fourier expansion

𝑓(𝑧) =

∞∑
𝑛=1

𝜆𝑓(𝑛)𝑛
𝑘−1
2 𝑒(𝑛𝑧)

satisfies 𝜆𝑓(1) = 1. As usual, 𝑒(𝑧) = 𝑒2𝜋𝑖𝑧. The normalized Hecke eigenvalues satisfy the Hecke
relations

𝜆𝑓(𝑛)𝜆𝑓(𝑚) =
∑

𝑑|(𝑚,𝑛) 𝜆𝑓
(
𝑚𝑛

𝑑2

)
, (3)

see [10, (6.38)]. Consider the shifted convolution sum

𝐴𝑊
𝑓
(𝑋, ℎ) ∶=

∑
𝑛∈ℕ

𝜆𝑓(𝑛)𝜆𝑓(𝑛 + ℎ)𝑊((𝑛 + ℎ∕2)∕𝑋)

=
∑
𝑑∣ℎ

∑
𝑟∈ℕ

𝜆𝑓(𝑟(𝑟 + 𝑑))𝑊
⎛⎜⎜⎝
ℎ

𝑑
(𝑟 + 𝑑∕2)

𝑋

⎞⎟⎟⎠, (4)

where𝑊 ∶ ℝ+ → ℝ is smooth and supported in a compact interval, and where in the second line
we have used the Hecke relations (3).
Let 𝜏1(𝑛) =

∑
𝑑∣𝑛 𝑑, and let 𝐿(𝑠, sym2 𝑓) be the symmetric square 𝐿-function associated to 𝑓,

that is,

𝐿(𝑠, sym2 𝑓) = 𝜁(2𝑠)

∞∑
𝑛=1

𝜆𝑓(𝑛
2)

𝑛𝑠
, whenℜ(𝑠) > 1,

and is defined on ℂ by analytic continuation.
We investigate the variance of the smooth shifted convolution sums𝐴𝑊

𝑓
(𝑋, ℎ) over an orthonor-

mal basis of Hecke eigenforms 𝐻𝑘 and over 𝑘 of size 𝐾. Let 𝑢 ∶ ℝ+ → ℝ⩾0 be a compactly
supported function. We want to understand

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

)
2𝜋2

𝑘 − 1

∑
𝑓∈𝐻𝑘

𝐴
𝑊1

𝑓
(𝑋(𝑘), ℎ1)𝐴

𝑊2

𝑓
(𝑋(𝑘), ℎ2)

𝐿(1, sym2 𝑓)
, (5)

where

𝑋(𝑘) = (𝑘 − 1)1−𝜃

for some 0 < 𝜃 < 1.
In order to describe better the dependence on𝑊,ℎ we use Sobolev norms

‖𝑊‖𝑝
𝑙,𝑝
=

∑
0⩽𝑖⩽𝑙

‖‖‖‖ 𝑑𝑖𝑑𝑦𝑖𝑊‖‖‖‖
𝑝

𝑝

,

‖𝑊‖𝑙,∞ =
∑
0⩽𝑖⩽𝑙

‖‖‖‖ 𝑑𝑖𝑑𝑦𝑖𝑊‖‖‖‖∞.
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For all compactly supported functions 𝑊 we choose 𝑎𝑊 > 0,𝐴𝑊 > 1 such that supp𝑊 ⊆

[𝑎𝑊,𝐴𝑊]. For ℎ1, ℎ2 ⩾ 1 we denote ‖ℎ‖∞ = max(ℎ1, ℎ2).
The main tool in understanding (5) is the Petersson formula, which states that

2𝜋2

𝑘 − 1

∑
𝑓∈𝐻𝑘

𝜆𝑓(𝑛1)𝜆𝑓(𝑛2)

𝐿(1, sym2 𝑓)
= 𝛿𝑛1,𝑛2 + 2𝜋(−1)

𝑘∕2
∑
𝑐⩾1

𝑆(𝑛1, 𝑛2; 𝑐)

𝑐
𝐽𝑘−1

(
4𝜋

√
𝑛1𝑛2

𝑐

)
, (6)

see, for example, [19, p. 776]. We will use the following estimate for the 𝐽-Bessel function:

𝐽𝑘−1(𝑥) ≪
(
𝑒𝑥

2𝑘

)𝑘−1
, 𝑥 > 0, (7)

see, for example, [16, p. 233].
To state our theorem we define, for functions𝑊1,𝑊2 ∶ ℝ+ → ℝ and ℎ1, ℎ2 ∈ ℕ,

𝐵ℎ1,ℎ2(𝑊1,𝑊2) = 𝜏1((ℎ1, ℎ2))∫
∞

0
𝑊1(ℎ1𝑦)𝑊2(ℎ2𝑦)𝑑𝑦.

We now prove the following result.

Theorem 2.1. Let 0 ⩽ 𝜃 < 1. Let 𝑢 ∶ ℝ+ → ℝ⩾0 be a smooth compactly supported weight function,
and let𝑊1,𝑊2 ∶ ℝ+ → ℝ be smooth functions compactly supported below 𝐴𝑊𝑖

⩾ 1. Then

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

)
2𝜋2

𝑘 − 1

∑
𝑓∈𝐻𝑘

𝐴
𝑊1

𝑓
(𝑋(𝑘), ℎ1)𝐴

𝑊2

𝑓
(𝑋(𝑘), ℎ2)

𝐿(1, sym2 𝑓)

= 𝐵ℎ1,ℎ2(𝑊1,𝑊2)
𝐾2−𝜃

2 ∫
∞

0
𝑢(𝑦)𝑦1−𝜃𝑑𝑦 + 𝑂𝑊𝑖,ℎ𝑖 ,𝜃

(𝐾).

The implied constant in the error term may be bounded by a constant depending only on 𝜃 times

(1 + ‖ℎ‖∞)1+𝜀(𝐴𝑊1
𝐴𝑊2

)𝐶‖‖𝑊1
‖‖𝐶,∞‖‖𝑊2

‖‖𝐶,∞
for 𝐶 sufficiently large depending on 𝜃.

Proof. Using (4) and the Petersson formula (6) we find, for all 𝑋 ⩾ 1,

2𝜋2

𝑘 − 1

∑
𝑓∈𝐻𝑘

𝐴
𝑊1

𝑓
(𝑋, ℎ1)𝐴

𝑊2

𝑓
(𝑋, ℎ2)

𝐿(1, sym2 𝑓)

=
∑
𝑑1∣ℎ1
𝑑2∣ℎ2

∑
𝑟1,𝑟2∈ℕ

𝛿𝑟1(𝑟1+𝑑1)=𝑟2(𝑟2+𝑑2)𝑊1

(
ℎ1(𝑟1 + 𝑑1∕2)

𝑑1𝑋

)
𝑊2

(
ℎ2(𝑟2 + 𝑑2∕2)

𝑑2𝑋

)
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+2𝜋(−1)𝑘∕2
∑
𝑑1∣ℎ1
𝑑2∣ℎ2

∑
𝑟1,𝑟2∈ℕ

𝑊1

(
ℎ1(𝑟1 + 𝑑1∕2)

𝑑1𝑋

)
𝑊2

(
ℎ2(𝑟2 + 𝑑2∕2)

𝑑2𝑋

)

×
∑
𝑐⩾1

𝑆(𝑟1(𝑟1 + 𝑑1), 𝑟2(𝑟2 + 𝑑2); 𝑐)

𝑐
𝐽𝑘−1

(
4𝜋

√
𝑟1(𝑟1 + 𝑑1)𝑟2(𝑟2 + 𝑑2)

𝑐

)
.

We refer to the line with the Kronecker delta as the diagonal term, and the rest as the off-diagonal
term.
To handle the diagonal term, we observe that for fixed positive 𝑑1 ≠ 𝑑2 the equation

𝑟1(𝑟1 + 𝑑1) = 𝑟2(𝑟2 + 𝑑2) (8)

has only finitely many positive solutions. To see this we rewrite (8) as

(2𝑟1 + 𝑑1)
2 − (2𝑟2 + 𝑑2)

2 = 𝑑21 − 𝑑
2
2.

Factoring the left-hand side as (2𝑟1 + 𝑑1 + 2𝑟2 + 𝑑2)(2𝑟1 + 𝑑1 − 2𝑟2 − 𝑑2) we see that any solu-
tion gives a factorization of 𝑑2

1
− 𝑑2

2
, and that any factorization of 𝑑2

1
− 𝑑2

2
comes from at most

one solution. This shows that there are at most 𝑑(𝑑2
1
− 𝑑2

2
) solutions to with 𝑑1 ≠ 𝑑2, where 𝑑(𝑛)

denotes the number of divisors of 𝑛; indeed we see that the total contribution from these terms is
𝑂(‖ℎ‖𝜀∞‖𝑊1‖∞‖𝑊2‖∞).
For the remaining terms, that is, 𝑑1 = 𝑑2 = 𝑑, 𝑟1 = 𝑟2 = 𝑟 we apply first Poisson summation in

the 𝑟-variable and observe that the Fourier transform g ↦ ĝ(𝑡) = ∫
ℝ

g(𝑥)𝑒(𝑡𝑥)𝑑𝑥 of the function

𝑦 ↦ 𝑊1(
ℎ1(𝑦+𝑑1∕2)

𝑑1𝑋
)𝑊2(

ℎ2(𝑦+𝑑2∕2)

𝑑2𝑋
) at 𝑟 is bounded by an absolute constant times

|2𝜋𝑟|−𝑛(𝑑𝑋)−𝑛+1‖‖𝑊1(ℎ1⋅)𝑊2(ℎ2⋅)‖‖𝑛,1, (9)

which follows from repeated integration by parts. We now see that

∑
𝑑1∣ℎ1
𝑑2∣ℎ2
𝑑1=𝑑2

∑
𝑟∈ℕ

𝑊1

(
ℎ1(𝑟 + 𝑑1∕2)

𝑑1𝑋

)
𝑊2

(
ℎ2(𝑟 + 𝑑2∕2)

𝑑2𝑋

)

equals the same expression with the sum over 𝑟 ∈ ℕ replaced by the same sum over 𝑟 ∈ ℤ up to
an error term of 𝑂(‖ℎ‖1+𝜀∞ ‖𝑊1‖∞‖𝑊2‖∞). We then observe that

∑
𝑑|(ℎ1,ℎ2)

∑
𝑟∈ℤ

𝑊1

(
ℎ1(𝑟 + 𝑑∕2)

𝑑𝑋

)
𝑊2

(
ℎ2(𝑟 + 𝑑∕2)

𝑑𝑋

)

=
∑

𝑑∣(ℎ1,ℎ2)

∑
𝑟∈ℤ

∫
∞

−∞
𝑊1

(
ℎ1(𝑦 + 𝑑∕2)

𝑑𝑋

)
𝑊2

(
ℎ2(𝑦 + 𝑑∕2)

𝑑𝑋

)
𝑒(−𝑟𝑦)𝑑𝑦

= 𝜏1((ℎ1, ℎ2))∫
∞

−∞
𝑊1(ℎ1𝑦)𝑊2(ℎ2𝑦)𝑑𝑦𝑋 + 𝑂(‖ℎ‖𝜀∞‖‖𝑊1(ℎ1⋅)𝑊2(ℎ2⋅)‖‖2,1),
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where we have extended trivially the 𝑟-sum to all of 𝑟, then used Poisson summation and the
bound (9) with 𝑛 = 2. Now we average over 𝑘 and apply Poisson summation in the 𝑘-variable.
Using integration by parts on the dual side we find that for any 𝐴 > 0, we have

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

)
𝑋(𝑘) =

𝐾2−𝜃

2 ∫
∞

0
𝑢(𝑦)𝑦1−𝜃𝑑𝑦 + 𝑂𝑢,𝐴(𝐾

−𝐴),

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

)
=
𝐾

2 ∫
∞

0
𝑢(𝑦)𝑑𝑦 + 𝑂𝑢,𝐴(𝐾

−𝐴),

which yields the desired main term up to the stated error term.
For the off-diagonal terms we need to bound

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

)
2𝜋(−1)𝑘∕2

∑
𝑑1∣ℎ1
𝑑2∣ℎ2
𝑟1,𝑟2∈ℕ

𝑊1

(
ℎ1(𝑟1 + 𝑑1∕2)

𝑑1(𝑘 − 1)
1−𝜃

)
𝑊2

(
ℎ2(𝑟2 + 𝑑2∕2)

𝑑2(𝑘 − 1)
1−𝜃

)

×
∑
𝑐⩾1

𝑆(𝑟1(𝑟1 + 𝑑1), 𝑟2(𝑟2 + 𝑑2); 𝑐)

𝑐
𝐽𝑘−1

(
Δ

𝑐

)
,

where Δ = 4𝜋
√
𝑟1(𝑟1 + 𝑑1)𝑟2(𝑟2 + 𝑑2). We mimic the arguments of Luo and Sarnak [18, pp. 880–

881]. We start by noticing that

(i) the summation over 𝑘 is supported in 𝐾 ≪𝑢 𝑘 ≪𝑢 𝐾,
(ii) the summations over 𝑟𝑖 are supported in

𝑎𝑊𝑖

𝑑𝑖
ℎ𝑖
(𝑘 − 1)1−𝜃 ⩽ (𝑟𝑖 + 𝑑𝑖∕2) ⩽ 𝐴𝑊𝑖

𝑑𝑖
ℎ𝑖
(𝑘 − 1)1−𝜃

(
≪𝑢 𝐴𝑊𝑖

𝑑𝑖
ℎ𝑖
𝐾1−𝜃

)
.

Using again 𝑟𝑖(𝑟𝑖 + 𝑑𝑖) = (𝑟𝑖 + 𝑑𝑖∕2)2 − 𝑑2𝑖 ∕4 we see that
(iii) in the support of the above sums, we have

Δ ≪𝑢 ‖ℎ‖𝜀∞𝐴𝑊1
𝐴𝑊2

𝑑1𝑑2
ℎ1ℎ2

𝐾2(1−𝜃).

We want to truncate the sum over 𝑐 and notice that for 𝑟1, 𝑟2 in the support of the sums we
may use the bound (7) on the Bessel function and the trivial bound on the Kloosterman sum
to get

∑
𝑐⩾𝑀

𝑆(𝑟1(𝑟1 + 𝑑1), 𝑟2(𝑟2 + 𝑑2); 𝑐)

𝑐
𝐽𝑘−1

(
Δ

𝑐

)

≪
∑
𝑐⩾𝑀

(
𝐶𝑢𝐴𝑊1

𝐴𝑊2
𝑑1𝑑2𝐾

1−2𝜃

ℎ1ℎ2𝑐

)𝑘−1

≪𝑢

(
𝐶𝑢𝐴𝑊1

𝐴𝑊2
𝑑1𝑑2𝐾

1−2𝜃

ℎ1ℎ2𝑀

)𝑘−1

𝑀

𝐾
.
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We conclude that, if 𝑀 = 𝐶𝑢𝐴𝑊1
𝐴𝑊2

𝑑1𝑑2
ℎ1ℎ2

𝐾1−2𝜃+𝜀, this term decays exponentially in 𝐾.
Therefore

(iv) the sum in 𝑐 above may be truncated at

𝑐 ≪𝑢 𝐴𝑊1
𝐴𝑊2

𝑑1𝑑2
ℎ1ℎ2

𝐾1−2𝜃+𝜀

up to an additional error of≪𝑢 ‖𝑊1‖∞‖𝑊2‖∞𝐴𝑊1
𝐴𝑊2

𝐾−𝐴. We now quote lemmata 4.1 and
4.2 in [18] stating that for g a smooth function compactly supported on ℝ+ we have∑

2|𝑘 2𝜋(−1)
𝑘∕2𝐽𝑘−1(𝑥)g(𝑘 − 1) = −2𝜋 ∫

∞

−∞
ĝ(𝑡) sin(𝑥 cos(2𝜋𝑡))𝑑𝑡,

∫
∞

−∞
ĝ(𝑡) sin(𝑥(1 − 2𝜋2𝑡2))𝑑𝑡 = ∫

∞

0

g(
√
2𝑦𝑥)

(𝜋𝑦)1∕2
sin(𝑦 + 𝑥 − 𝜋∕4)𝑑𝑦, (10)

∫
∞

−∞
ĝ(𝑡) cos(𝑥(1 − 2𝜋2𝑡2))𝑑𝑡 = ∫

∞

0

g(
√
2𝑦𝑥)

(𝜋𝑦)1∕2
cos(𝑦 + 𝑥 − 𝜋∕4)𝑑𝑦. (11)

In our case we apply (10) to the function

g(𝑦) = 𝑢(𝑦∕𝐾)𝑊1

(
ℎ1(𝑟1 + 𝑑1∕2)

𝑑1𝑦
1−𝜃

)
𝑊2

(
ℎ2(𝑟2 + 𝑑2∕2)

𝑑2𝑦
1−𝜃

)
.

This shows that the remaining part of the non-diagonal contribution can be bounded by an
absolute constant times ∑

𝑑𝑖∣ℎ𝑖

∑
𝑟𝑖⩾1

∑
𝑐⩾1

||||∫ ∞

−∞
ĝ(𝑡) sin

(
Δ

𝑐
cos(2𝜋𝑡)

)
𝑑𝑡

||||, (12)

with restrictions on the sums as (ii)–(iv) above. Here we have used the trivial estimate on the
Kloosterman sums.
As in [18, eq. (4.4)] we now use a trigonometric identity and Taylor expansions to get for 𝑥, 𝑡 ∈

ℝ

sin(𝑥 cos(2𝜋𝑡)) = sin

(
𝑥(1 − 2𝜋2𝑡2) + 𝑥

∑
𝑛⩾2

(−1)𝑛
(2𝜋𝑡)𝑛

(2𝑛)!

)

= sin(𝑥(1 − 2𝜋2𝑡2))

( ∑
0⩽𝑛,𝑚⩽𝑁−1

𝑐𝑚,𝑛(𝑥𝑡
4)2𝑛𝑡2𝑚

)

+ cos(𝑥(1 − 2𝜋2𝑡2))

⎛⎜⎜⎜⎝
∑

1⩽𝑛⩽𝑁
0⩽𝑚⩽𝑁−1

𝑑𝑚,𝑛(𝑥𝑡
4)2𝑛−1𝑡2𝑚

⎞⎟⎟⎟⎠
+𝑂((𝑥𝑡4)2𝑁 + (𝑥𝑡4)4𝑁 + 𝑡2𝑁 + 𝑡4𝑁), (13)
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for any 𝑁, where 𝑐𝑚,𝑛 and 𝑑𝑚,𝑛 are real constants. In order to bound the term coming from the
error term above, we observe that all derivatives g (𝑚) are supported in 𝐾 ⋅ supp (𝑢) and we claim
that, when 𝑟1, 𝑟2 satisfy (i)–(iv), we have the bound

g (𝑚)(𝑦) ≪𝑢,𝑚 𝐶𝑊1,𝑊2,𝑚
𝐾−𝑚, (14)

where 𝐶𝑊1,𝑊2,𝑚
=

∏
𝑖=1,2 ‖𝑊𝑖‖𝑚,∞𝐴𝑚𝑊𝑖

.
To seewhy the claim is truewe observe fromLeibniz’ rule that g (𝑚)(𝑦) is bounded by an absolute

constant (depending on𝑚) times

max
𝑝1+𝑝2+𝑝3=𝑚

||||| 𝑑
𝑝1

𝑑𝑦𝑝1
𝑢(𝑦∕𝐾)

𝑑𝑝2

𝑑𝑦𝑝2
𝑊1

(
ℎ1(𝑟1 + 𝑑1∕2)

𝑑1𝑦
1−𝜃

)
𝑑𝑝3

𝑑𝑦𝑝3
𝑊2

(
ℎ2(𝑟2 + 𝑑2∕2)

𝑑2𝑦
1−𝜃

)|||||.
Now we observe that by the chain rule

𝑑𝑝

𝑑𝑦𝑝
𝑢(𝑦∕𝐾) = 𝑢(𝑝)(𝑦∕𝐾)𝐾−𝑝 ≪𝑢,𝑝 𝐾

−𝑝.

Using Faà di Bruno’s formula for the higher derivative we see that

𝑑𝑝

𝑑𝑦𝑝
𝑊𝑖

(
ℎ𝑖(𝑟𝑖 + 𝑑𝑖∕2)

𝑑𝑖𝑦
1−𝜃

)
≪𝑝

‖‖𝑊𝑖
‖‖𝑝,∞∑ 𝑝∏

𝑗=1

(
ℎ𝑖(𝑟𝑖 + 𝑑𝑖∕2)

𝑑𝑖𝑦
−𝜃+1+𝑗

)𝑚𝑗

= ‖‖𝑊𝑖
‖‖𝑝,∞∑(

ℎ𝑖(𝑟𝑖 + 𝑑𝑖∕2)

𝑑𝑖𝑦
−𝜃+1

)∑
𝑗 𝑚𝑗

𝑦−𝑝.

The sum is over 𝑝-tuples of integers satisfying 𝑚1 + 2𝑚2 +⋯𝑝𝑚𝑝 = 𝑝. Using that 𝑊𝑖 is sup-
ported in [𝑎𝑊𝑖

, 𝐴𝑊𝑖
] we see that we may bound the term inside the parentheses in the last

equation by 𝐴𝑊𝑖
. For 𝑦 in the support of g we have 𝑦 ∈ 𝐾 ⋅ supp 𝑢 so for such 𝑦 we get

𝑑𝑝

𝑑𝑦𝑝
𝑊𝑖

(
ℎ𝑖(𝑟𝑖 + 𝑑𝑖∕2)

𝑑𝑖𝑦
1−𝜃

)
≪𝑢,𝑝

‖‖𝑊𝑖
‖‖𝑝,∞𝐴𝑝𝑊𝑖

𝐾−𝑝.

Combining these bounds proves the claim (14).
From (14) it follows that ĝ (𝑚)(𝑦) ≪𝑢,𝑚 𝐶𝑊1,𝑊2,𝑚

𝐾−(𝑚−1). Additionally partial integration gives
ĝ (𝑚)(𝑡) ≪𝑢,𝑚 𝐶𝑊1,𝑊2,𝑚+𝑙

|𝑡|−𝑙𝐾−(𝑚+𝑙−1) so by using ĝ (𝑚)(𝑦) = (−2𝜋𝑖𝑦)𝑚ĝ(𝑦)wemay conclude, by
using the first bound for |𝑡| ⩽ 𝐾−1 and the second bound with 𝑙 = 2 when |𝑡| > 𝐾−1 that

∫
∞

−∞

||ĝ(𝑡)𝑡𝑚||𝑑𝑡 ≪𝑢,𝑚 𝐶𝑊1,𝑊2,𝑚+2
𝐾−𝑚. (15)

Using this bound we see that, when we use the Taylor expansion (13), the contribution from

(1) ((Δ∕𝑐)𝑡4)2𝑁 is≪𝑢 ‖ℎ‖𝜀∞𝐶𝑊1,𝑊2,8𝑁+2

∏
𝑖=1,2 𝐴

2𝑁+1
𝑊𝑖

𝐾(1−𝜃)2(2𝑁+1)−8𝑁 ,
(2) ((Δ∕𝑐)𝑡4)4𝑁 is≪𝑢 ‖ℎ‖𝜀∞𝐶𝑊1,𝑊2,16𝑁+2

∏
𝑖=1,2 𝐴

4𝑁+1
𝑊𝑖

𝐾(1−𝜃)2(4𝑁+1)−16𝑁 ,
(3) 𝑡2𝑁 is≪𝑢 ‖ℎ‖𝜀∞𝐶𝑊1,𝑊2,2𝑁+2

∏
𝑖=1,2 𝐴

2
𝑊𝑖
𝐾(3−4𝜃)−2𝑁 ,
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(4) 𝑡4𝑁 is≪𝑢 ‖ℎ‖𝜀∞𝐶𝑊1,𝑊2,4𝑁+2

∏
𝑖=1,2 𝐴

2
𝑊𝑖
𝐾(3−4𝜃)−4𝑁 .

We note that for 𝑁 = 1 all terms are≪𝑢 ‖ℎ‖𝜀∞𝐶𝑊1,𝑊2,18

∏
𝑖=1,2 𝐴

5
𝑊𝑖
𝐾.

To bound the remaining terms involving

𝑒(𝑥, 𝑡) ∶= sin(𝑥(1 − 2𝜋2𝑡2))𝑐00 + cos(𝑥(1 − 2𝜋
2𝑡2))𝑑01𝑥𝑡

4 (16)

coming from the Taylor expansion, we combine ĝ (𝑚)(𝑦) = (−2𝜋𝑖𝑦)𝑚ĝ(𝑦)with (11) which gives the
bound

∫
∞

−∞
ĝ(𝑡)𝑒(Δ∕𝑐, 𝑡)𝑑𝑡 ≪ max

(𝑚,𝑚′)=(4,1),(0,0)
±

||||||
(
Δ

𝑐

)𝑚′
∫

∞

0
g (𝑚)

(√
2Δ

𝑐
𝑦

)
𝑦−1∕2𝑒±𝑖𝑦𝑑𝑦

||||||, (17)

where we used Euler’s formulae for sine and cosine. Now we apply partial integration to the
integral with 𝑒𝑖𝑦 as one of the functions.
For 𝑟1, 𝑟2, Δ, 𝑐 as in (ii)–(iv), that is, where the terms in the sum (12) might be non-vanishing,

we claim that for any 𝑛,𝑚 ∈ ℤ⩾0

𝑑𝑛

𝑑𝑦𝑛

(
g (𝑚)

(√
2Δ

𝑐
𝑦

)
𝑦−1∕2

)
≪𝑢,𝑛,𝑚

𝐶𝑊1,𝑊2,𝑚+𝑛

𝐾𝑚𝑦1∕2+𝑛
. (18)

To see this we note that the left-hand side is non-zero only if Δ𝑦∕𝑐 ≍𝑢 𝐾2. By using the Leibniz
rule and Faà di Bruno’s formula we see that

𝑑𝑛

𝑑𝑦𝑛

(
g (𝑚)

(√
2Δ𝑦

𝑐

)
𝑦−1∕2

)
≪𝑛

𝑛∑
𝑖=0

|||||| 𝑑
𝑖

𝑑𝑦𝑖

(
g (𝑚)

(√
2Δ𝑦

𝑐

))
𝑦−1∕2−(𝑛−𝑖)

||||||
≪𝑢,𝑛

𝑛∑
𝑖=0

||||||
∑

𝑚1,…,𝑚𝑖

(
g (𝑚+𝑚1+⋯𝑚𝑖)

(√
2Δ𝑦

𝑐

))
𝑖∏
𝑗=1

(√
2Δ𝑦

𝑐
𝑦−𝑗

)𝑚𝑗 ||||||𝑦−1∕2−(𝑛−𝑖)
≪𝑢,𝑛 𝐶𝑊1,𝑊2,𝑚+𝑛

𝐾−𝑚𝑦−1∕2−𝑛.

Here the inner sum is over 𝑚1,… ,𝑚𝑖 satisfying 𝑚1 + 2𝑚2 +⋯ + 𝑖𝑚𝑖 = 𝑖 and in the last line we
have used (14) and that Δ𝑦∕𝑐 ≍𝑢 𝐾2.
For (𝑚,𝑚′) = (4, 1) in (17)we use the claimwith𝑛 = 0 and for (𝑚,𝑚′) = (0, 0)we take a general

𝑛 which will eventually depend on 𝜃, and we find, by using integration by parts as described
above,

∫
∞

−∞
ĝ(𝑡)𝑒(Δ∕𝑐, 𝑡)𝑑𝑡 ≪𝑢 𝐶𝑊1,𝑊2,4

𝐾−3Δ1∕2

𝑐1∕2
+ 𝐶𝑊1,𝑊2,𝑛

𝐾1−2𝑛Δ𝑛−1∕2

𝑐𝑛−1∕2
.

Plugging this bound back in the sum (12) and using the restrictions (ii)–(iv) gives the result by
choosing 𝑛 sufficiently large depending on 𝜃. □

Remark 3. Note the resemblance between Theorem 2.1 and [23, Theorem 1.3]. Whereas [23, Theo-
rem 1.3] is restricted to a rangewhere the contribution of the individual off-diagonals is essentially
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trivial due to the decay of the 𝐽-Bessel function (corresponding to 𝜃 > 1∕2), we note that for
𝜃 ⩽ 1∕2we need to exploit additional cancellation between the 𝐽𝑘−1-Bessel functions for different
𝑘.

3 COMPUTING THE QUANTUMVARIANCE

Wenow explain how the above resultsmay be used to understand quantum variance for shrinking
sets around the cusp.

3.1 Squeezing sets toward cusps

Let𝑀 = Γ∖ℍ be a finite volume hyperbolic surface. Then𝑀 admits a decomposition

𝑀 = 𝑀0 ∪ 𝑍1 ∪ … ∪ 𝑍𝑙,

where𝑀0 is compact and 𝑍𝑖 is isometric to

𝑍𝑖 ≃ 𝑆
1×]𝑎𝑖,∞[,

for some 𝑎𝑖 > 0 with the metric on 𝑆1×]𝑎𝑖,∞[ equal to

𝑑𝑠2 =
𝑑𝑥2 + 𝑑𝑦2

𝑦2

for (𝑥, 𝑦) ∈ 𝑆1×]𝑎𝑖,∞[. In the literature the regions 𝑍𝑖 are called horoball cusp neighborhoods,
horocusps, cuspidal zones, Siegel sets, horocyclic regions, or simply (by an abuse of notation)
cusps. These subregions 𝑍𝑖 are unbounded regions with boundary the horocycle (𝑆1 × {𝑎𝑖}) and a
point (the cusp).
We may assume that 𝑍 = 𝑍1 corresponds to a cusp at infinity. We now consider a measurable

set 𝐵 ⊆ 𝑍 of hyperbolic volume vol(𝐵) > 0 and define, for every𝐻 ⩾ vol(𝐵)−1 the injective map

pushing the region 𝐵 up toward the cusp at infinity. We note that this may be formulated as a
scaling along a geodesic going to the cusp thereby defining 𝑆𝐵

𝐻
in a coordinate-free way. We let

𝐵𝐻 = 𝑆
𝐵
𝐻
(𝐵) and notice that by a simple change of variables

vol(𝐵𝐻) = ∫
∞

𝑎1
∫

1

0
1𝐵((𝑆

𝐵
𝐻)
−1𝑧)

𝑑𝑥𝑑𝑦

𝑦2

=
1

vol(𝐵)𝐻 ∫
∞

0 ∫
1

0
1𝐵(𝑧)

𝑑𝑥𝑑𝑦

𝑦2
=
1

𝐻
.



16 NORDENTOFT et al.

For 𝐴 ⊆ 𝑀 we let

𝐿2(𝑀,𝐴) = {𝑓 ∈ 𝐿2(𝑀) ∶ supp𝑓 ⊆ 𝐴}

and define the squeezing operator

that is,𝑀𝐵
𝐻
𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦∕(vol(𝐵)𝐻)). We note that𝑀𝐵

𝐻
loosely speaking squeezes the function

𝑓 into the region 𝐵𝐻 , which moves toward the cusp at infinity.
A simple change of variable computation — similar to the volume computation of vol(𝐵𝐻)

above — shows that for 𝜑 ∈ 𝐿2(𝑀, 𝐵)

‖‖‖𝑀𝐵
𝐻𝜑

‖‖‖2 = 1

vol(𝐵)𝐻
‖𝜑‖2, ⟨

𝑀𝐵
𝐻𝜑, 1

⟩
=

1

vol(𝐵)𝐻
⟨𝜑, 1⟩.

We now specialize to Γ = PSL2(ℤ) and 𝑍 = 𝑆1×]1,∞[. For 𝑇 > 1 we let

𝐵𝑇(∞) = {𝑧 ∈ 𝑍 ∶ ℑ(𝑧) > 𝑇},

which we consider to be a ball around the cusp at infinity. A trivial computation shows that
vol(𝐵𝑇(∞)) = 1∕𝑇. Fix now 𝑇0 > 1 and let 𝐵 = 𝐵𝑇0(∞) ⊆ 𝑍. With this choice of 𝐵 the squeezed
set 𝐵𝐻 does not depend on 𝑇0, since we have 𝐵𝐻 = 𝑆𝐵𝐻(𝐵) = 𝐵𝐻(∞). Note, however, that the
squeezing operator𝑀𝐵

𝐻
still depends on the choice of 𝑇0.

3.2 Mass equidistribution in squeezed sets

We now consider the notion of mass equidistribution in the context of the squeezed sets as above:
Fix 𝐻, 𝜑 ∈ 𝐿2(𝑀, 𝐵). It follows from the mass equidistribution theorem of Soundararajan and
Holowinsky [7] that

∫𝐵𝐻 (𝑀
𝐵
𝐻𝜑)(𝑧)𝑦

𝑘||𝑓(𝑧)||2𝑑𝜇(𝑧) = 1

vol(𝑀) ∫𝐵𝐻 (𝑀
𝐵
𝐻𝜑)(𝑧)𝑑𝜇(𝑧) + 𝑜𝑀𝐵

𝐻
𝜑(1),

as 𝑘 → ∞.
We investigate what condition on 𝐻 as a function of 𝑘 implies that

∫𝐵𝐻 (𝑀
𝐵
𝐻𝜑)(𝑧)𝑦

𝑘||𝑓(𝑧)||2𝑑𝜇(𝑧) = 1

vol(𝑀) ∫𝐵𝐻 (𝑀
𝐵
𝐻𝜑)(𝑧)𝑑𝜇(𝑧) + 𝑜

(
∫𝐵𝐻

|||𝑀𝐵
𝐻𝜑

|||𝑑𝜇
)

as 𝑘,𝐻 → ∞.
Choosing 𝜑 = 1𝐵 this simplifies to the question of when

∫𝐵𝐻 𝑦
𝑘||𝑓(𝑧)||2𝑑𝜇(𝑧) = 1

𝐻vol(Γ∖ℍ)
+ 𝑜(𝐻−1),

as 𝑘,𝐻 → ∞. However, we investigate also more general test functions 𝜑.
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For the rest of the paper we fix 𝐵 = 𝐵1(∞), and consider the situation above for 𝐻 = (𝑘 − 1)𝜃

for some 𝜃 > 0, that is, we consider

𝑀(𝑘−1)𝜃 ∶= 𝑀
𝐵
(𝑘−1)𝜃

,

that is, 𝑀(𝑘−1)𝜃𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦∕(𝑘 − 1)
𝜃). We investigate the mass equidistribution when the

test function is squeezed via this operator by considering the squeezing of the non-holomorphic
Poincaré series

𝑃𝑉,ℎ(𝑧) =
∑

𝛾∈Γ∞∖Γ

𝑉(𝑦(𝛾𝑧))𝑒(ℎ𝑥(𝛾𝑧)),

where 𝑉 ∶ ℝ+ → ℂ is a smooth compactly supported function with support contained in (1,∞),
and 𝑥(𝑧), 𝑦(𝑧) are the real and imaginary parts of 𝑧. In other words, we want to understand the
asymptotic properties of

𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉,ℎ) ∶= ⟨𝑀(𝑘−1)𝜃𝑃𝑉,ℎ(𝑧), 𝑦
𝑘||𝑓(𝑧)||2⟩, 𝑘 → ∞.

We note that with our assumption on 𝑉 the function 𝑃𝑉,ℎ is supported on 𝐵, and that these series
actually span 𝐿2(𝑀, 𝐵). In fact

𝑃𝑉,ℎ(𝑧) = 𝑉(𝑦)𝑒(ℎ𝑥) for 𝑧 ∈ 𝐵.

For ℎ1ℎ2 ≠ 0 we define
𝐵𝜃(𝑃𝑉1,ℎ1 , 𝑃𝑉2,ℎ2) =

𝜋

4
𝜏1((

||ℎ1||, ||ℎ2||))∫ ∞

0
𝑉1(

𝑦||ℎ1|| )𝑉2( 𝑦||ℎ2|| )𝑓𝜃,ℎ1,ℎ2(𝑦)𝑑𝑦𝑦2 ,
where

𝑓𝜃,ℎ1,ℎ2(𝑦) =

⎧⎪⎨⎪⎩
1 if 0 < 𝜃 < 1∕2,
𝑒−2𝜋

2𝑦2(ℎ2
1
+ℎ2

2
) if 𝜃 = 1∕2,

0 if 𝜃 > 1∕2.

When 𝜃 = 0 we define 𝐵0 to be the form 𝐵𝜔 defined by Luo and Sarnak in [19, eq. (15)].

Theorem 3.1. Let 𝑢 ∶ ℝ+ → ℝ⩾0 be a smooth compactly supported weight function, and let 𝑉1, 𝑉2
be as above. For ℎ1ℎ2 ≠ 0 and 0 ⩽ 𝜃 < 1, we have∑

2∣𝑘

𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉1,ℎ1)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉2,ℎ2)

= 𝐵𝜃(𝑃𝑉1,ℎ1 , 𝑃𝑉2,ℎ2)∫
∞

0
𝑢(𝑦)𝑦−𝜃𝑑𝑦 𝐾1−𝜃 + 𝑂𝜃,𝜀,𝑉𝑖 ,ℎ𝑖 (𝐾

1−𝜃−𝛿𝜃+𝜀),

where

𝛿𝜃 =

⎧⎪⎪⎨⎪⎪⎩

(1 + 𝜃)∕2 𝜃 ∈ (0, 1∕5),

1 − 2𝜃 𝜃 ∈ [1∕5, 1∕2),

1∕2 𝜃 = 1∕2,

1 + 2𝜃 𝜃 ∈ (1∕2, 1).
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The implied constant in the error term may be bounded by a constant depending only on 𝜃, 𝜖 times

(1 + ‖ℎ‖∞)𝐶(𝐴𝑉1𝐴𝑉2)𝐶‖‖𝑉1‖‖𝐶,∞‖‖𝑉2‖‖𝐶,∞,
for 𝐶 sufficiently large depending on 𝜃.

Proof. By linearity we may assume 𝑉𝑖 to be real. For such a test function, say 𝑉, we observe that
𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉,ℎ) is a real number (as is seen by unfolding and using that |𝑓|2 is even). Therefore
we have 𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉,ℎ) = 𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉,−ℎ). So we may assume ℎ𝑖 > 0 below. We also notice
that if𝑉 is supported in (1, 𝐴𝑉] then, up to an absolute constant times a power of ℎ times a power
of𝐴𝑉 , the functions𝑊𝑖(𝑦) = 𝑉((4𝜋𝑦)

−1)𝑦𝑖 ,𝑊∗(𝑦) = 𝑉((4𝜋𝑦)−1) exp(−ℎ2𝑦−2∕8) all have Sobolev
norms less than or equal to the corresponding Sobolev norm of𝑉. This will be used belowwithout
further mention.
The case 𝜃 = 0 is [19, Theorem 2]. To handle the other cases we proceed as in the proof of [18,

Proposition 2.1]. Doing this, noticing in the proof that the Mellin transform satisfies

∫
∞

0
𝑉

(
𝑦−1

(𝑘 − 1)𝜃

)
𝑦𝑠
𝑑𝑦

𝑦
= (𝑘 − 1)−𝑠𝜃 ∫

∞

0
𝑉
(
𝑦−1

)
𝑦𝑠
𝑑𝑦

𝑦
,

we find that

𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉,ℎ) =
2𝜋2

(𝑘 − 1)𝐿(1, sym2 𝑓)

∑
𝑛∈ℕ

𝜆𝑓(𝑛)𝜆𝑓(𝑛 + ℎ)

× 𝑉

(
(𝑘 − 1)1−𝜃

4𝜋(𝑛 + ℎ∕2)

)(√
𝑛(𝑛 + ℎ)

𝑛 + ℎ∕2

)𝑘−1

+ 𝑂𝑉,ℎ(𝑘
−1−𝜃+𝜀), (19)

where the implied constant is

≪𝜃,𝜀 (1 + ℎ
𝐵)𝐴𝐵𝑉‖𝑉‖𝐵,∞ (20)

for 𝐵 sufficiently large. This holds also for ℎ = 0.
We now assume that 0 < 𝜃 < 1∕2, and observe that in the above sum we may restrict to 𝑛 such

that (𝑛 + ℎ∕2) ≍ 𝑘1−𝜃, which implies that (𝑘 − 1)∕(𝑛 + ℎ∕2)2 = 𝑜(1) as 𝑘 → ∞. Therefore, we can
employ the following Taylor expansion(√

𝑛(𝑛 + ℎ)

𝑛 + ℎ∕2

)𝑘−1

= exp

(
𝑘 − 1

2
log

(
1 −

ℎ2

(2𝑛 + ℎ)2

))

= exp

(
−
𝑘 − 1

2

ℎ2

(2𝑛 + ℎ)2
+ 𝑂

(
𝑘ℎ4

(2𝑛 + ℎ)4

))
= exp

(
−
𝑘 − 1

2

ℎ2

(2𝑛 + ℎ)2

)
+ 𝑂

(
𝑘ℎ4

(2𝑛 + ℎ)4

)
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=

𝑁−1∑
𝑖=0

(
−ℎ2

2

𝑘−1

(2𝑛+ℎ)2

)𝑖
𝑖!

+ 𝑂𝑁

(
(𝑘ℎ2)𝑁

(2𝑛 + ℎ)2𝑁
+

𝑘ℎ4

(2𝑛 + ℎ)4

)

=

𝑁−1∑
𝑖=0

(
−ℎ2

8

𝑘−1

(𝑛+ℎ∕2)2

)𝑖
𝑖!

+ 𝑂𝑁(ℎ
2𝑁𝑘2𝑁(𝜃−1∕2) + ℎ4𝑘4𝜃−3).

This gives us, using 𝐿(1, sym2 𝑓) ≫ 𝑘−𝜀, see [18, eq. (2.1)],

𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉,ℎ) =
2𝜋2

(𝑘 − 1)𝐿(1, sym2 𝑓)

𝑁−1∑
𝑖=0

(
−ℎ2

8
(𝑘 − 1)2𝜃−1

)𝑖
𝑖!

𝐴
𝑊𝑖

𝑓
((𝑘 − 1)1−𝜃, ℎ)

+ 𝑂𝑉,ℎ,𝑁((ℎ
2𝑁𝑘2𝑁(𝜃−1∕2)−𝜃+𝜀 + ℎ4𝑘3𝜃−3+𝜀) + 𝑘−1−𝜃+𝜀), (21)

where𝑊𝑖(𝑦) = 𝑉(
1

4𝜋𝑦
)𝑦−2𝑖 for 𝑦 ∈ ℝ+, and the implied constant is of the form (20). Since 𝜃 < 1∕2,

we can choose 𝑁 large enough such that the dominating error term in 𝑘 is 𝑘−1−𝜃+𝜀.
We now plug (21) into the expression we want to evaluate. The terms involving the products of

error terms is easily seen to be 𝑂𝑉,ℎ,𝑁(𝐾−2𝜃+𝜀).
To bound the mixed terms we note that (𝑘 − 1)(2𝜃−1)𝑖 is largest when 𝑖 = 0, so it suffices to

observe that

𝐾−1−𝜃+𝜀
∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

)
1

𝑘 − 1

∑
𝑓∈𝐻𝑘

|||𝐴𝑊𝑖

𝑓
((𝑘 − 1)1−𝜃, ℎ)

|||
≪𝑉,ℎ,𝑁 𝐾

−1−𝜃+𝜀𝐾1∕2+𝜀

⎛⎜⎜⎜⎝
∑

𝑘⩾1,2|𝑘 𝑢
(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

|||𝐴𝑊𝑖

𝑓
((𝑘 − 1)1−𝜃, ℎ)

|||2
𝐿(1, sym2 𝑓)

⎞⎟⎟⎟⎠
1∕2

≪𝑉,ℎ,𝑁 𝐾
1∕2−3𝜃∕2+𝜀,

where we have used the Cauchy–Schwarz inequality, the positivity of 𝐿(1, sym2 𝑓), and
Theorem 2.1. The implied constant is of the claimed form. This implies that

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉1,ℎ1)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉2,ℎ2)

=
∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

)
(2𝜋2)2

(𝑘 − 1)2

∑
0⩽𝑖,𝑗⩽𝑁−1

ℎ2𝑖
1
ℎ
2𝑗
2

𝑖!𝑗!

(
−
1

8
(𝑘 − 1)2𝜃−1

)𝑖+𝑗

×
∑
𝑓∈𝐻𝑘

𝐴
𝑊1,𝑖

𝑓
((𝑘 − 1)1−𝜃, ℎ1)𝐴

𝑊2,𝑗

𝑓
((𝑘 − 1)1−𝜃, ℎ2)

𝐿(1, sym2 𝑓)

+ 𝑂𝑉1,𝑉2,ℎ,𝑁(𝐾
1∕2−3𝜃∕2+𝜀),
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with an allowed implied constant. Now for each pair 𝑖, 𝑗 ∈ {0, … ,𝑁 − 1}, we apply Theorem 2.1
with smooth weights𝑊1,𝑖 𝑊2,𝑗 and weight function

𝑢𝑖𝑗(𝑦) = 𝑢(𝑦)𝑦
(2𝜃−1)(𝑖+𝑗)−1.

This gives

∑
𝑘⩾1,2|𝑘 𝑢

(
𝑘 − 1

𝐾

)
(2𝜋2)2

(𝑘 − 1)2

ℎ2𝑖
1
ℎ
2𝑗
2

𝑖!𝑗!

(
−
1

8
(𝑘 − 1)2𝜃−1

)𝑖+𝑗

×
∑
𝑓∈𝐻𝑘

𝐴
𝑊1,𝑖

𝑓
((𝑘 − 1)1−𝜃, ℎ1)𝐴

𝑊2,𝑗

𝑓
((𝑘 − 1)1−𝜃, ℎ2)

𝐿(1, sym2 𝑓)

= 2𝜋2ℎ2𝑖1 ℎ
2𝑗
2

(
−1

8

)𝑖+𝑗
𝐾2(𝑖+𝑗)(𝜃−1∕2)−1

∑
𝑘⩾1,2|𝑘 𝑢𝑖𝑗

(
𝑘 − 1

𝐾

)
2𝜋2

(𝑘 − 1)

×
∑
𝑓∈𝐻𝑘

𝐴
𝑊1,𝑖

𝑓
((𝑘 − 1)1−𝜃, ℎ1)𝐴

𝑊2,𝑗

𝑓
((𝑘 − 1)1−𝜃, ℎ2)

𝐿(1, sym2 𝑓)

= 2𝜋2ℎ2𝑖1 ℎ
2𝑗
2

(
−1

8

)𝑖+𝑗(
∫

∞

0
𝑢𝑖𝑗(𝑦)𝑦

1−𝜃𝑑𝑦

)
⋅ 𝐵ℎ1,ℎ2(𝑊1,𝑖,𝑊2,𝑗)𝐾

1−𝜃−(𝑖+𝑗)(1−2𝜃) + 𝑂ℎ𝑖,𝑉𝑖 ,𝜃,𝑁,𝜀

(
𝐾−(𝑖+𝑗)(1−2𝜃)+𝜀

)
,

with an implied constant of the desired form. For (𝑖, 𝑗) ≠ (0, 0) we see that the contribution is
bounded by 𝑂(𝐾𝜃), and for 𝑖 = 𝑗 = 0, we get the wanted main term. So in this case we have an
error of order 𝑂(𝐾max (𝜃,1∕2−3𝜃∕2)), which translates to the claimed 𝛿𝜃.
Now assume that 𝜃 = 1∕2, which implies that 𝑘−1

(𝑛+ℎ∕2)2
≍ 1 for non-zero terms in the sum (19).

Again by a Taylor expansion, we see that(√
𝑛(𝑛 + ℎ)

𝑛 + ℎ∕2

)𝑘−1

= exp

(
−
ℎ2

8

𝑘 − 1

(𝑛 + ℎ∕2)2

)
+ 𝑂

(
ℎ4

𝑘

)
,

which is the source of the different main term in this case. We proceed as above to write

∑
𝑘⩾1,2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉1,ℎ1)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉2,ℎ2)

=
∑

𝑘⩾1,2|𝑘 𝑢
(
𝑘 − 1

𝐾

)
(2𝜋2)2

(𝑘 − 1)2

∑
𝑓∈𝐻𝑘

𝐴
𝑊∗
1

𝑓
((𝑘 − 1)1−𝜃, ℎ1)𝐴

𝑊∗
2

𝑓
((𝑘 − 1)1−𝜃, ℎ2)

𝐿(1, sym2 𝑓)

+ 𝑂𝑉𝑖,ℎ𝑖 (𝐾
−1∕4+𝜀),
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where𝑊∗
𝑖
(𝑦) = 𝑉𝑖(

1

4𝜋𝑦
) exp(−

ℎ2
𝑖

8
∕𝑦2) for 𝑖 = 1, 2, andwhere the implied constant is of the desired

form. Again by an application of Theorem 2.1, we get the desired main term with error-term
𝑂𝑉𝑖,ℎ𝑖 (𝐾

𝜀) and an implied constant of the desired form.
Finally when 𝜃 > 1∕2, we see that for non-zero terms in the sum (19) we have 𝑘−1

(𝑛+ℎ∕2)2
≫ 𝑘2𝜃−1,

which implies (√
𝑛(𝑛 + ℎ)

𝑛 + ℎ∕2

)𝑘−1

≪ exp
(
−𝑐𝑘2𝜃−1

)
,

for some 𝑐 > 0 depending only on 𝑉, and hence we get exponential decay of the sum in (19).
Therefore we can even get the desired bound without any averaging. By summing up we arrive at
the error-term 𝑂(‖𝑉1‖∞‖𝑉2‖∞𝐾−2𝜃+𝜀). □

Remark 4. The above theorem also holds, with the same proof, when we allow𝑉𝑖 to have support
in ℝ+, if we interpret𝑀(𝑘−1)𝜃𝑃𝑉,𝑚 as the Poincaré series 𝑃𝑉𝑘,𝜃 related to 𝑉𝑘,𝜃 = 𝑉(𝑦∕(𝑘 − 1)

𝜃).

Remark 5. We now give a quick sketch of what happens in the case when ℎ1 = 0 and
∫ ∞0 𝑉1(𝑦)𝑦

−2𝑑𝑦 = 0 (that is, in the case where 𝑃𝑉1,0 is an incomplete Eisenstein series orthogonal
to 1) and ℎ2 ≠ 0. The translation to a shifted convolution sum as in (19) is still valid.
To analyze the resulting shifted convolution sum we imitate the proof of Theorem 2.1. In this

case we use the Hecke relations (3) to write

𝐴
𝑊1

𝑓
(𝑋, 0) =

∑
𝑑∈ℕ

∑
𝑟∈ℕ

𝜆𝑓(𝑟
2)𝑊1

(
𝑑𝑟

𝑋

)
.

Here𝑊1(𝑦) = 𝑉1(1∕(4𝜋𝑦)) and𝑋 = (𝑘 − 1)1−𝜃. We deal with the off-diagonal terms as above and
the diagonal term from the Petersson formula becomes

∑
𝑑1∈ℕ,𝑑2|ℎ2
𝑟1,𝑟2∈ℕ

𝛿𝑟2
1
=𝑟2(𝑟2+𝑑2)

𝑊1

(
𝑋

𝑑1𝑟1

)
𝑊2

⎛⎜⎜⎝ 𝑋
ℎ2
𝑑2
(𝑟2 + 𝑑2∕2)

⎞⎟⎟⎠.
Now we observe that for fixed 𝑑2 the equation 𝑟21 = 𝑟2(𝑟2 + 𝑑2) has only finitely many solutions
(𝑟1, 𝑟2) and for any such solution, we have by Poisson summation∑

𝑑1∈ℕ

𝑊1

(
𝑋

𝑑1𝑟1

)
= ∫

∞

0
𝑊1

(
𝑋

𝑟1𝑦

)
𝑑𝑦 + 𝑂ℎ2,𝐴(𝑋

−𝐴)

=
𝑋

4𝜋𝑟1 ∫
∞

0
𝑉1(𝑦)

𝑑𝑦

𝑦2
+ 𝑂ℎ2,𝐴(𝑋

−𝐴) = 𝑂ℎ2,𝐴(𝑋
−𝐴).

Therefore the conclusion of Theorem 3.1 holds in this case with 𝐵𝜃(𝑃𝑉1,0, 𝑃𝑉2,ℎ2) = 0.
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Now if ℎ𝑖 = 0 and ∫ ∞0 𝑉𝑖(𝑦)𝑦
−2𝑑𝑦 = 0, since the factor (

√
𝑛(𝑛+ℎ𝑖)

𝑛+ℎ𝑖∕2
)𝑘−1 = 1, we do not have to

distinguish between various regimes of 𝜃. Using a similar analysis we find that

∑
2∣𝑘

𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉1,0)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉2,0)

= 2𝜋2
∑
2|𝑘

𝑢
(
𝑘−1

𝐾

)
𝑘 − 1

∑
𝑟,𝑑1,𝑑2∈ℕ

𝑉1

(
(𝑘 − 1)1−𝜃

4𝜋𝑟𝑑1

)
𝑉2

(
(𝑘 − 1)1−𝜃

4𝜋𝑟𝑑2

)
+ 𝑂(max (𝐾1∕2−3𝜃∕2+𝜀, 1)). (22)

Analogous to [19, p. 781], by using successive Euler–Maclaurin summation on the 𝑑𝑖 sums, see
[11, eq. (4.20)], followed by Poisson summation on the 𝑟 sum and on the 𝑘 sum we have that in
this case Theorem 3.1 holds with

𝐵𝜃(𝑃𝑉1,0, 𝑃𝑉2,0) =
𝜋

4 ∫
∞

0 ∫
∞

0 ∫
∞

0
𝑏2(𝑦1)𝑏2(𝑦2)𝑉̃1

(
𝑡

𝑦1

)
𝑉̃2

(
𝑡

𝑦2

)
𝑑𝑦1

𝑦2
1

𝑑𝑦2

𝑦2
2

𝑑𝑡

𝑡2
,

with error term 𝑂(max 𝐾1∕2−3𝜃∕2+𝜀, 1), and the same type of implied constant. Here 𝑉̃𝑖(𝑦) =
(𝑉′
𝑖
(𝑦)𝑦2)′ and 2𝑏2(𝑦) = 𝐵2(𝑦 − ⌊𝑦⌋), where 𝐵2(𝑦) = 𝑦2 − 𝑦 + 1∕6 is the second-order Bernoulli

polynomial. Note that the 𝑦𝑖 integrals vanishes for 𝑡 sufficiently small so the 𝑡-integral converges
(although not absolutely).

4 EXTENSION OF 𝑩𝜽(⋅,⋅) AND QUANTUMVARIANCE FORMORE
GENERAL OBSERVABLES

Let

𝐶∞0 (𝑀, 𝐵) ∶=

⎧⎪⎨⎪⎩𝜓 ∶ 𝑀 → ℂ smooth
||||||
supp𝜓⊂𝐵

𝜓 decays rapidly at∞
∫ 10 𝜓(𝑧)𝑑𝑥=0 for 𝑦 large enough

⎫⎪⎬⎪⎭,
where 𝐵 = {𝑥 + 𝑖𝑦 ∈ 𝑀 ∣ 𝑦 > 1} ⊂ 𝑋 is the standard horocyclic region. In this section we will
extend the above variance results to the space

𝐶∞0,0(𝑀, 𝐵) = {𝜓 ∈ 𝐶
∞
0 (𝑀, 𝐵) ∶ ⟨𝜓, 1⟩ = 0}.

For 𝜓 ∈ 𝐶∞
0,0
(𝑀, 𝐵) we let 𝑉𝜓𝑚 be its 𝑚th Fourier coefficient. Note that, since 𝜓 is supported in

𝐵, the coefficient 𝑉𝜓𝑚(𝑦) is supported in 𝑦 > 1 and we have

𝜓(𝑧) =
∑
𝑚∈ℤ

𝑉
𝜓
𝑚(𝑦)𝑒(𝑚𝑥) =

∑
𝑚∈ℤ

𝑃
𝑉
𝜓
𝑚,𝑚

(𝑧), (23)
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where 𝑉𝜓
0
has compact support, and satisfies ∫ ∞0 𝑉

𝜓
0
(𝑦)𝑦−2 𝑑𝑦 = 0. Inspired by Theorem 3.1 and

Remark 5, we define, for 𝜓1, 𝜓2 ∈ 𝐶∞0,0(𝑀, 𝐵), the Hermitian form

𝐵𝜃(𝜓1, 𝜓2) =
𝜋

4

∑
𝑚,𝑛≠0

𝜏1((|𝑚|, |𝑛|))∫ ∞

0
𝑉
𝜓1
𝑚

(
𝑦|𝑚|

)
𝑉
𝜓2
𝑛

(
𝑦|𝑛|

)
𝑓𝜃,𝑚,𝑛(𝑦)

𝑑𝑦

𝑦2

+
𝜋

4 ∫
∞

0 ∫
∞

0 ∫
∞

0
𝑏2(𝑦1)𝑏2(𝑦2)

˜
𝑉
𝜓1
0

(
𝑡

𝑦1

)
˜
𝑉
𝜓2
0

(
𝑡

𝑦2

)
𝑑𝑦1

𝑦2
1

𝑑𝑦2

𝑦2
2

𝑑𝑡

𝑡2
. (24)

Note that if𝜓1, 𝜓2 consist of a single Fourier coefficient, and, if this coefficient is not just of rapid
decay but of compact support, then (24) agrees with the result of Theorem 3.1 and Remark 5. To
see that 𝐵𝜃(𝜓1, 𝜓2) is well defined we argue as follows. By smoothness and rapid decay of 𝜓 and
using integration by parts, we see that

𝑉
𝜓
𝑚(𝑦) ≪𝐴,𝐵,𝜓 𝑦

−𝐴𝑚−𝐵,

for any 𝐴, 𝐵 ⩾ 0. It follows that

∫
∞

0
𝑉
𝜓1
𝑚

(
𝑦|𝑚|

)
𝑉
𝜓2
𝑛

(
𝑦|𝑛|

)
𝑑𝑦

𝑦2
≪𝐴 (|𝑚𝑛|)−𝐴,

and so the first sum in (24) converges absolutely. The second term in (24) is well defined by the
discussion in Remark 5.
Weobserve that,when restricted to incompleteEisenstein series, the form𝐵𝜃(⋅,⋅) is independent

of 0 < 𝜃 < 1, while for cuspidal test functions 𝐵𝜃(⋅,⋅) exhibits a phase transition at 𝜃 = 1∕2 as
claimed in Theorem 1.3 (ii).
We can now show that the variance result of Theorem 3.1 can be extended to the space

𝐶∞
0,0
(𝑀, 𝐵).

Theorem 4.1. Let 𝑢 ∶ ℝ+ → ℝ⩾0 be a smooth compactly supported weight function, and let
𝜓 ∈ 𝐶∞

0,0
(𝑀, 𝐵) and 0 < 𝜃 < 1. Then we have

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)
|||𝜇𝑓(𝑀(𝑘−1)𝜃𝜓) − 𝜈(𝑀(𝑘−1)𝜃𝜓)

|||2
= 𝐵𝜃(𝜓, 𝜓)

(
∫

∞

0
𝑢(𝑦)𝑦−𝜃𝑑𝑦

)
𝐾1−𝜃 + 𝑂𝜓,𝜃(𝐾

1−𝜃−𝛿𝜃 ), (25)

for 𝛿𝜃 > 0 as in Theorem 3.1.

Proof. Consider a partition of unity

∑
𝑙⩾0

𝑢𝑙(𝑦) = 1⩾1(𝑦) =

{
1, 𝑦 > 1

0, 𝑦 < 1
,
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where 𝑢𝑙 ∶ ℝ+ → [0, 1] with supp 𝑢𝑙 ⊂ (3𝑙, 2 ⋅ 3𝑙+1), 𝑢𝑙 smooth for 𝑙 > 0 and 𝑢0 smooth on (1,∞)
and 𝑢(𝑛)

𝑙
(𝑦) ≪𝑛 𝑦

𝑎𝑛 for some 𝑎𝑛 > 0 independently of 𝑙. Multiplying this partition of unity on 𝜓
as in (23) we find

𝜓(𝑧) = 𝑉
𝜓
0
(𝑦) +

∑
𝑙⩾0,𝑚≠0

𝑉
𝜓

𝑙,𝑚
(𝑦)𝑒(𝑚𝑥),

where 𝑉𝜓
𝑙,𝑚
(𝑦) = 𝑢𝑙(𝑦)𝑉

𝜓
𝑚(𝑦) and 𝑉

𝜓
0
(𝑦) are smooth with compact support. We have

𝑉
𝜓

𝑙,𝑚

(𝑛)
(𝑦) ≪𝐶 𝑦

−𝐶|𝑚|−𝐶, (26)

for any 𝐶 > 0 and independent of 𝑙. To see this we note that by the definition and partial
integration

𝑉
𝜓

𝑙,𝑚

(𝑛)
(𝑦) =

1

(2𝜋𝑖𝑚)𝐶

𝑛∑
𝑗=0

(
𝑛

𝑗

)
𝑢
(𝑛−𝑗)

𝑙
(𝑦)∫

1

0

(
𝜕𝐶+𝑗

𝜕𝑥𝐶𝜕𝑦𝑗
𝜓

)
(𝑧)𝑒(−𝑚𝑥)𝑑𝑥.

Now by using the rapid decay of 𝜓 and the bound of the derivatives of 𝑢𝑙, we arrive at (26). This
implies, in particular, that for every 𝐶 ⩾ 0 we have ‖𝑉𝜓

𝑙,𝑚
‖𝐶,∞ ≪𝐶,𝜓 3

−𝐶𝑙 ⋅ |𝑚|−𝐶 .
This implies, using Theorem 3.1, that for𝑚1,𝑚2 and 𝑙1, 𝑙2 ⩾ 0∑

2|𝑘 𝑢
(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉𝑙1,𝑚1 ,𝑚1
)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉𝑙2,𝑚2 ,𝑚2

)

= 𝐵𝜃(𝑃𝑉𝑙1,𝑚1 ,𝑚1
, 𝑃𝑉𝑙2,𝑚2 ,𝑚2

)

(
∫

∞

0
𝑢(𝑦)𝑦−𝜃𝑑𝑦

)
𝐾1−𝜃

+ 𝑂𝜓,𝜃

(
𝐾1−𝜃−𝛿𝜃

3𝑙1+𝑙2 ((1 + ||𝑚1||)(1 + ||𝑚2||))2
)
.

Therefore by summing up all the contributions we get

∑
𝑘,2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)|𝜇𝑓(𝑀(𝑘−1)𝜃𝜓)|2
=

( ∑
𝑚1,𝑚2,𝑙1,𝑙2

𝐵𝜃(𝑃ℎ𝑙1,𝑚1 ,𝑚1
, 𝑃ℎ𝑙2,𝑚2 ,𝑚2

)

)(
∫

∞

0
𝑢(𝑦)𝑦−𝜃𝑑𝑦

)
𝐾1−𝜃

+ 𝑂𝜓,𝜃

⎛⎜⎜⎜⎝𝐾
1−𝜃−𝛿𝜃

⎛⎜⎜⎜⎝
∑
𝑙1,𝑙2>0
𝑚1,𝑚2

3−𝑙1−𝑙2

((1 + ||𝑚1||)(1 + ||𝑚2||))2
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

= 𝐵𝜃(𝜓, 𝜓)

(
∫

∞

0
𝑢(𝑦)𝑦−𝜃𝑑𝑦

)
𝐾1−𝜃 + 𝑂𝜓,𝜃(𝐾

1−𝜃−𝛿𝜃 ),

which finishes the proof. □
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5 SMALL-SCALE QUANTUM ERGODICITY AROUND INFINITY

In this section we show that if we average over 𝑓 ∈ 𝐻𝑘 and over the weight 𝑘 quantum ergodicity
holds for appropriately chosen sets shrinking toward the cusp all the way down to the Planck
scale.

Theorem 5.1. Let 0 < 𝜃 < 1 and 𝜓 ∈ 𝐶∞
0
(𝑀, 𝐵). Then

∑
2∣𝑘

𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)
|||𝜇𝑓(𝑀(𝑘−1)𝜃𝜓) − 𝜈(𝑀(𝑘−1)𝜃𝜓)

|||2
= 𝑂𝜓,𝑢(𝐾

max (2−2𝜃−1∕5,1−𝜃)).

Proof. Note that 𝜓 ∈ 𝐶∞
0
(𝑀, 𝐵) can be written as 𝜓 = 𝜓0 + 𝜓1, where 𝜓1 ∈ 𝐶∞0,0(𝑀, 𝐵) and

𝜓0 = 𝑃𝑉,0 is an incomplete Eisenstein series with 𝑉 supported in (1,∞). Since trivially

|||𝜇𝑓(𝑀(𝑘−1)𝜃𝜓) − 𝜈(𝑀(𝑘−1)𝜃𝜓)
|||2 ⩽ 2 ∑

𝑖=1,2

|||𝜇𝑓(𝑀(𝑘−1)𝜃𝜓𝑖) − 𝜈(𝑀(𝑘−1)𝜃𝜓𝑖)
|||2,

wemay use Theorem 4.1 to see that we only need to prove Theorem 5.1 in the case where𝜓 = 𝑃𝑉,0,
which we assume for the rest of the proof. In order to do so, we open up the square and compute
asymptotics with error terms for each of the averages over each of the terms |𝜇𝑓(𝑀(𝑘−1)𝜃𝜓)|2,|𝜈(𝑀(𝑘−1)𝜃𝜓)|2, 𝜇𝑓(𝑀(𝑘−1)𝜃𝜓)𝜈(𝑀(𝑘−1)𝜃𝜓), and its conjugate. Since 𝜈(𝑀(𝑘−1)𝜃𝜓) = (𝑘 − 1)

−𝜃𝜈(𝜓)

we see that this essentially corresponds to computing the second, zero-th, and first moment of
𝜇𝑓(𝑀(𝑘−1)𝜃𝜓).
We start by showing that

∑
2∣𝑘

𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)
|||𝜇𝑓(𝑀(𝑘−1)𝜃𝜓)

|||2 (27)

= ||𝜈(𝜓)||2 𝜁(2)212 ∫
∞

0
𝑢(𝑦)𝑦1−2𝜃𝑑𝑦

𝐾2−2𝜃

2
+ 𝑂𝜓,𝑢(𝐾

1−𝜃). (28)

To prove this we start as in Remark 5 and arrive at (22). We then evaluate the sum over 𝑑 = 𝑑𝑖
using the second-order Euler–Maclaurin formula and find that we have for any 𝑋 > 0

∑
𝑑

𝑉
(
𝑋

𝑟𝑑

)
= ∫

∞

0
𝑉

(
𝑋

𝑟𝑦

)
𝑑𝑦 − ∫

∞

0
𝑏2(𝑦)𝑉̃

(
𝑋

𝑟𝑦

)
𝑑𝑦

𝑦2

=
𝑋

𝑟 ∫
∞

0
𝑉(𝑦)

𝑑𝑦

𝑦2
− ∫

∞

0
𝑏2(𝑦)𝑉̃

(
𝑋

𝑟𝑦

)
𝑑𝑦

𝑦2
, (29)

where 2𝑏2(𝑦) = 𝐵2(𝑦 − ⌊𝑦⌋) and 𝐵2(𝑦) = 𝑦2 − 𝑦 + 1∕6 is the second Bernoulli polynomial and
𝑉̃(𝑦) = (𝑉′(𝑦)𝑦2)′. Here we have used that 𝜕2

𝜕𝑦2
𝑉( 𝑋

𝑟𝑦
) = 𝑉̃( 𝑋

𝑟𝑦
)𝑦−2. We know by the assumptions

on 𝑉 that the above defines a smooth function in 𝑟 and that
∑
𝑑 𝑉(

𝑋

𝑑𝑟
) vanishes for 𝑟 > 𝐴𝑋.
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We can now evaluate

∑
𝑟,𝑑1,𝑑2∈ℕ

𝑉

(
𝑋

𝑟𝑑1

)
𝑉

(
𝑋

𝑟𝑑2

)

by inserting (29) and evaluating the four terms coming from opening the square. The contribution
coming from the absolute square of the first term on the right of (29) equals

𝑋2
||||∫ ∞

0
𝑉(𝑦)

𝑑𝑦

𝑦2

||||
2 ∑
1⩽𝑟⩽𝐴𝑋

1

𝑟2
= 𝑋2

||||∫ ∞

0
𝑉(𝑦)

𝑑𝑦

𝑦2

||||
2

𝜁(2) + 𝑂(𝑋).

A change of variables combined with the fact that 𝑏2(𝑣) is uniformly bounded shows that
∫ ∞0 𝑏2(𝑦)𝑉̃(

𝑋

𝑟𝑦
)
𝑑𝑦

𝑦2
≪𝑉 𝑟∕𝑋. This implies that the remaining contributions are 𝑂(𝑋). Plugging

these estimates back in (22) with 𝑋 = (𝑘 − 1)1−𝜃∕4𝜋 and using Poisson summation in the 𝑘
variable, we complete the proof of (28).
We next show that

∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓) =
𝜁(2)2

12

𝐾2

2 ∫
∞

0
𝑢(𝑦)𝑦𝑑𝑦 + 𝑂(𝐾2−

1
5
+𝜀). (30)

To approximate 𝐿(1, sym2 𝑓) we use 𝑒−𝑥 = 1

2𝜋𝑖
∫(𝜎) Γ(𝑠)𝑥−𝑠𝑑𝑠 to see that

∞∑
𝑛=1

𝜆𝑓(𝑛
2)

𝑛
𝑒−𝑛∕𝑇 =

1

2𝜋𝑖 ∫(2) Γ(𝑠)
𝐿(𝑠 + 1, sym2 𝑓)

𝜁(2(𝑠 + 1))
𝑇𝑠𝑑𝑠.

Here 𝑇 ⩾ 1 is a parameter which will be chosen later. For now we assume that 𝑇 = 𝐾𝑎 with 1 <
𝑎 < 2. Moving the line of integration to 𝜎 = −1∕2 we pick up a pole of the Gamma function at
𝑠 = 0 and we find that

∞∑
𝑛=1

𝜆𝑓(𝑛
2)

𝑛
𝑒−𝑛∕𝑇 =

𝐿(1, sym2 𝑓)

𝜁(2)
+ 𝐼𝑓(𝑇), (31)

where 𝐼𝑓(𝑇) =
1

2𝜋𝑖
∫(−1∕2) Γ(𝑠) 𝐿(𝑠+1,sym2 𝑓)𝜁(2(𝑠+1))

𝑇𝑠𝑑𝑠. Using any bound of the form

𝐿(𝑠, sym2 𝑓) ≪𝐴 (1 + |𝑠|)𝐴(𝑘2)1∕4−𝜌
for ℜ(𝑠) = 1∕2 we see, that 𝐼𝑓(𝑇) ≪𝐴 𝑇

−1∕2𝑘1∕2−2𝜌+𝜀. In fact the convexity estimate 𝜌 = 0 will
suffice for what we need. We have

∞∑
𝑛=1

𝜆𝑓(𝑛
2)

𝑛
𝑒−𝑛∕𝑇 =

∑
𝑛⩽𝑇1+𝜖

𝜆𝑓(𝑛
2)

𝑛
𝑒−𝑛∕𝑇 + 𝑂𝐴(𝐾

−𝐴),
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for any 𝐴 > 0. We observe also that since 𝜆𝑓(𝑛2) ≪ 𝑛𝜀 we have
∑
𝑛∈ℕ

𝜆𝑓(𝑛
2)

𝑛
𝑒−𝑛∕𝑇 ≪ 𝑇𝜀. Using

these observations we see that∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)

= 𝜁(2)2
∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑛1,𝑛2⩽𝑇

1+𝜀

𝑒−(𝑛1+𝑛2)∕𝑇

𝑛1𝑛2

∑
𝑓∈𝐻𝑘

𝜆𝑓(𝑛
2
1
)𝜆𝑓(𝑛

2
2
)

𝐿(1, sym2 𝑓)

+ 𝑂

(∑
𝑘

𝑢

(
𝑘 − 1

𝐾

) ∑
𝑓∈𝐻𝑘

𝐾𝜖(
|||𝐼𝑓(𝑇)||| + |||𝐼𝑓(𝑇)|||2) + 𝐾−𝐴

)
.

Using the convexity bound (𝜌 = 0) for 𝐼𝑓(𝑇) we see that the error is 𝑂(𝐾2+𝜀((
𝐾

𝑇
)1∕2 + 𝐾

𝑇
)). Up to

this error term the sum we want to estimate therefore equals

𝜁(2)2𝐾

2𝜋2

∑
2|𝑘 𝑢̃

(
𝑘 − 1

𝐾

) ∑
𝑛1,𝑛2⩽𝑇

1+𝜀

𝑒−(𝑛1+𝑛2)∕𝑇

𝑛1𝑛2

2𝜋2

(𝑘 − 1)

∑
𝑓∈𝐻𝑘

𝜆𝑓(𝑛
2
1
)𝜆𝑓(𝑛

2
2
)

𝐿(1, sym2 𝑓)
,

where 𝑢̃(𝑦) = 𝑢(𝑦)𝑦. We now use the Petersson formula (6) on the last sum. The diagonal term
gives the claimed main term

𝜁(2)2𝐾

2𝜋2

∑
2|𝑘 𝑢̃

(
𝑘 − 1

𝐾

) ∑
𝑛1⩽𝑇

1+𝜀

𝑒−2𝑛1∕𝑇

𝑛2
1

=
𝜁(2)3

2𝜋2
𝐾2

2 ∫
∞

0
𝑢(𝑦)𝑦𝑑𝑦 + 𝑂(𝐾2∕𝑇).

Wealso need to bound the non-diagonal contributionwhich is done as in the proof of Theorem2.1.
This consists of a 𝑘 sum with 𝑘 supported around 𝐾, sums over 𝑛1, 𝑛2 ⩽ 𝑇1+𝜀, and a 𝑐-sum. The
𝑐-sum can be truncated at 𝑐 ⩽ 𝑀 at the expense of an error which is big 𝑂 of

𝐾
∑
𝑘≍𝐾

∑
𝑛1,𝑛2⩽𝑇

1+𝜀

1

𝑛1𝑛2

∑
𝑐>𝑀

(
𝑒Δ

2𝑘𝑐

)𝑘−1
≪ 𝐾

∑
𝑘≍𝐾

𝑇𝜖
(
𝑒4𝜋𝑇2+2𝜀

2𝑘𝑀

)𝑘−1
𝑀

𝐾
,

where Δ = 4𝜋𝑛1𝑛2 ⩽ 4𝜋𝑇2+2𝜀 and we have used (7) on the Bessel function. If we choose
𝑀 = 𝐶𝑇2+2𝜀𝐾−1+𝜖 for a suitably big constant 𝐶 the parenthesis is ≪ 𝐾−𝜀(𝑘−1), which decays
exponentially so this contribution is 𝑂𝐴(𝐾−𝐴) for every positive 𝐴.
By using (10), as in the proof of Theorem 2.1, we see that it suffices to bound

𝐾
∑

𝑛1,𝑛2⩽𝑇
1+𝜀

1

𝑛1𝑛2

∑
𝑐⩽𝑀

||||∫ ∞

−∞
ĝ(𝑡) sin

(
Δ

𝑐
cos(2𝜋𝑡)

)
𝑑𝑡

||||
with g(𝑦) = 𝑢̃(𝑦∕𝐾). Here it is clear that g is supported in 𝑦 ≍ 𝐾 and g (𝑚)(𝑦) ≪ 𝐾−𝑚 and we
conclude as in (15) that

∫
∞

−∞

||ĝ(𝑡)𝑡𝑚||𝑑𝑡 ≪ 𝐾−𝑚.
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We use (13) with 𝑁 = 1 and we estimate the contribution from the error terms by

𝐾
∑

𝑛1,𝑛2⩽𝑇
1+𝜀

1

𝑛1𝑛2

∑
𝑐⩽𝑀

∫
∞

−∞

||ĝ(𝑡)||(Δ𝑐 )𝛼|𝑡|𝛽𝑑𝑡 ≪ 𝐾1−𝛽
⎛⎜⎜⎝

∑
𝑛1⩽𝑇

1+𝜀

𝑛𝛼−1
⎞⎟⎟⎠
2 ∑
𝑐⩽𝑀

𝑐−𝛼.

For the four contributions (𝛼, 𝛽) = (2, 8), (4, 16), (0, 2), (0, 4) this gives an error term of
(𝐾((𝑇∕𝐾2)4 + (𝑇∕𝐾2)8) + 𝑇2∕𝐾2 + 𝑇2∕𝐾4)𝐾𝜀, which are all less that (𝐾 + 𝑇2∕𝐾2)𝐾𝜀. To bound
the contribution involving 𝑒(Δ

𝑐
, 𝑡) (recall definition (16)) we see as in (18) that

𝑑𝑛

𝑑𝑦𝑛

(
g (𝑚)

(√
2Δ

𝑐
𝑦

)
𝑦−1∕2

)
≪𝑢,𝑛,𝑚 𝐾

−𝑚𝑦−1∕2−𝑛, (32)

so again we find

∫
∞

−∞
ĝ(𝑡)𝑒(Δ

𝑐
, 𝑡)𝑑𝑡 ≪𝑢

𝐾−3Δ1∕2

𝑐1∕2
+
𝐾1−2𝑛Δ𝑛−1∕2

𝑐𝑛−1∕2
. (33)

It turns out to be convenient to interpolate the estimates for 𝑛 = 1 and 𝑛 = 2 (using that
min(𝑎, 𝑏) ⩽ 𝑎𝜆𝑏1−𝜆 for 𝑎, 𝑏 ⩾ 0, 0 ⩽ 𝜆 ⩽ 1) and use 𝑛 = 3∕2 such that the last contribution is

𝐾
∑

𝑛1,𝑛2⩽𝑇
1+𝜀

1

𝑛1𝑛2

∑
𝑐⩽𝑀

∫
∞

−∞
ĝ(𝑡)𝑒(Δ

𝑐
, 𝑡)𝑑𝑡 ≪ 𝑇2𝐾−5∕2+𝜀 + 𝐾−1+𝜀𝑇2.

The total error therefore becomes≪ 𝐾2+𝜀(𝐾
𝑇
)1∕2 + 𝐾1+𝜀 + 𝑇2𝐾−1+𝜀, as all other contributions are

smaller. Choosing 𝑇 = 𝐾7∕5 we complete the proof of (30).
Lastly we use a similar strategy to prove that

∑
2|𝑘 𝑢(

𝑘 − 1

𝐾
)
∑
𝑓∈𝐻𝑘

𝐿(1, sym2 𝑓)𝜇𝑓(𝑀(𝑘−1)𝜃𝑃𝑉,0)

= 𝜈(𝑃𝑉,0)∫
∞

0
𝑢(𝑦)𝑦1−𝜃𝑑𝑦

𝜁(2)2

12

𝐾2−𝜃

2
+ 𝑂(𝐾2−𝜃−(1∕4+3𝜃∕8)+𝜀 + 𝐾1+𝜀). (34)

We use (166) to approximate 𝐿(1, sym2 𝑓) by 𝜁(2)
∑
𝑛⩽𝑇1+𝜀

𝜆𝑓(𝑛
2)

𝑛
𝑒−𝑛∕𝑇 at the cost of an error

satisfying≪ 𝐾2−𝜃+𝜀 𝐾
1∕2−2𝜌

𝑇1∕2
. We then use (19) and the Hecke relations (3) to arrive at

𝜁(2)
∑
2|𝑘𝑢

(
𝑘 − 1

𝐾

) ∑
𝑛1⩽𝑇

1+𝜀

𝑛2∈ℕ
𝑑|𝑛2

𝑒−𝑛1∕𝑇

𝑛1
𝑉

(
(𝑘 − 1)1−𝜃

4𝜋𝑛2

)
2𝜋2

(𝑘 − 1)

∑
𝑓∈𝐻𝑘

𝜆𝑓(𝑛
2
1
)𝜆𝑓(𝑑

2)

𝐿(1, sym2 𝑓)
,

at the expense of an additional error which is≪ 𝐾1−𝜃+𝜀. We then use the Petersson formula (6).
The diagonal gives

𝜁(2)
∑
2|𝑘 𝑢

(
𝑘 − 1

𝐾

) ∑
𝑛1⩽𝑇

1+𝜀

𝑒−𝑛1∕𝑇

𝑛1

∞∑
𝑟=1

𝑉

(
(𝑘 − 1)1−𝜃

4𝜋𝑟𝑛1

)
,
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which, after using Poisson summation in the 𝑟 variable, a change of variables, and then Poisson
summation again in the 𝑘 variable, gives the claimedmain termup to an error which is≪ 𝐾2∕𝑇 +

𝐾1+𝜀.
The off-diagonal is handled as before: We truncate the 𝑐-sum at 𝑀 = 𝐶𝐾−𝜃+𝜀𝑇1+𝜀 with 𝐶

sufficiently large at the expense≪ 𝐾−𝐴. We then use (10) with

g(𝑦) = 𝑢(𝑦∕𝐾)𝑣
(
𝑦1−𝜃

4𝜋𝑛2

)
and find that in the support of the sums g (𝑚)(𝑦) ≪ 𝐾−𝑚, which allows us to bound the error
coming from the approximation of sin(Δ

𝑐
cos(2𝜋𝑡)) with 𝑁 = 1, Δ = 4𝜋𝑛1𝑛2 as

≪ 𝑇2𝐾(1−𝜃)3−8+𝜀 + 𝑇4𝐾(1−𝜃)5−16+𝜀 + 𝑇𝐾−1−2𝜃+𝜀 + 𝑇𝐾−3−2𝜃+𝜀.

We also find, using Faà di Bruno’s formula as before, that analogues of (32) and (33) hold for
this g . Using (33) with 𝑛 = 2 we get the final error contribution to be bounded by 𝑇𝐾−3∕2−2𝜃+𝜀 +
𝑇3∕2𝐾−1∕2−5𝜃∕2. Balancing 𝑇3∕2𝐾−1∕2−5𝜃∕2 = 𝐾2−𝜃 𝐾

1∕2

𝑇1∕2
gives 𝑇 = 𝐾3∕2−3𝜃∕4. This proves (34) as

with this choice of 𝑇 all error contributions are less than the claimed one.
We can now finish the proof: We open up the square of the expression on the right-hand side

of the theorem and use the expressions in (27), (30), and (34). The main terms cancel and we are
left with the claimed error term. □

Remark 6. It is obvious from the above proof that a subconvexity result in the 𝑘-aspect for
𝐿(𝑠, sym2 𝑓) would give an improvement of the exponent. In fact a non-trivial bound on the sec-
ond moment of 𝐿(𝑠, sym2 𝑓) in the weight aspect would suffice. For 𝑠 = 1∕2 such estimates has
been proved in [12].

Theorem 5.1 shows that if 0 < 𝜃 < 1 then mostly (that is, in a full-density set of 𝑓 ∈ 𝐻𝑘 ) we
have

𝜇𝑓(𝑀(𝑘−1)𝜃𝜓) = 𝜈(𝑀(𝑘−1)𝜃𝜓) + 𝑜(𝑘
−𝜃).

If we go below the Planck scale, that is, if we let 𝜃 ⩾ 1, then this is not the case, that is, mass
equidistribution fails.

Proposition 5.2. Let 𝜃 ⩾ 1 and let 𝑉 ∶ ℝ+ → ℝ be a smooth function with compact support in
(1,∞), which satisfies ∫ ∞0 𝑉(𝑦)𝑑𝑦∕𝑦2 ≠ 0 and let 𝜓𝑉 be the associated incomplete Eisenstein series.
Then

𝜇𝑓(𝑀(𝑘−1)𝜃𝜓𝑉) = 𝑜(𝜈(𝑀(𝑘−1)𝜃𝜓𝑉)),

as 𝑘 → ∞. This means in particular that mass equidistribution fails for shrinking annuli around
infinity below the Planck scale, that is, when 𝜃 ⩾ 1.
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Proof. We use (19) and observe that the sum is identically zero, since (𝑘 − 1)1−𝜃∕(4𝜋𝑛) is less than
one which is outside the support of 𝑉. Therefore

𝜇𝑓(𝑀(𝑘−1)𝜃𝜓𝑉) = 𝑂𝜀(𝑘
−1−𝜃+𝜀),

and, since 𝜈(𝑀𝑘𝜃𝜓𝑉) ≍ 𝑘
−𝜃, the proposition follows. Alternatively, one can directly estimate the

Fourier expansion of 𝑓. □

6 FURTHER EXTENSIONS OF 𝑩𝜽(⋅,⋅) AND COMPUTATIONS AT
TRUNCATED EIGENFUNCTIONS

Before we extend 𝐵𝜃(⋅,⋅) we notice that on the set 𝐶∞0,0(𝑀, 𝐵), 𝐵𝜃(⋅,⋅) is symmetric with respect to
the Laplacian.

Lemma 6.1. The map 𝐵∞ ∶ 𝐶∞
0,0
(𝑀, 𝐵) × 𝐶∞

0,0
(𝑀, 𝐵) → ℂ satisfies 𝐵∞(Δ𝜓, 𝜑) = 𝐵∞(𝜓, Δ𝜑).

Proof. Writing 𝜓 as in (23) we note that Δ𝑃
𝑉
𝜓
𝑚,𝑚

(𝑧) = 𝑃
𝐿𝑚𝑉

𝜓
𝑚,𝑚

(𝑧), where 𝐿𝑚 = 𝑦2
𝑑2

𝑑𝑦2
− 4𝜋2𝑚2𝑦2

and that the support of 𝐿𝑚𝑉
𝜓
𝑚 is contained in (1,∞] if this is the case for 𝑉𝜓𝑚. The argument is

now a straightforward modification of [19, p. 782]. □

We now extend 𝐵𝜃(𝜓1, 𝜓2) defined in (24) on 𝐶∞0,0(𝑀, 𝐵) to the slightly larger space 1𝐵𝐶
∞
0,0
(𝑀).

This space includes for instance 1𝐵 ⋅ 𝜙 where 𝜙 is a Hecke–Maass form, which together with the
incomplete Eisenstein series of mean 0 actually span this entire space. We may define 𝐵𝜃(𝜓1, 𝜓2)
on this slightly larger space by the same formula (24). The same arguments as after (24) show that
the infinite sum converges.
Unfortunately we do not know how to extend Lemma 6.1 to this larger space. When trying to

do the obvious generalization we are faced with certain boundary terms that we cannot dismiss.
This means also that, contrary to the situation when 𝜃 = 0 studied by Luo and Sarnak [19], we do
not know if truncated Hecke–Maass forms diagonalize 𝐵𝜃(⋅,⋅) for 𝜃 > 0.
Consider the subspace 𝐶∞cusp(𝑀, 𝐵) ⊂ 𝐶

∞
0,0
(𝑀, 𝐵) consisting of functions where the zero-th

Fourier coefficient vanishes completely. Note also that functions in 1𝐵𝐶∞cusp(𝑀, 𝐵) ⊂ 1𝐵𝐶
∞
0,0
(𝑀)

also have zero-th Fourier coefficients vanishing completely. We make the following analysis. It is
straightforward to check that the Sobolev norm on 1𝐵𝐶∞cusp(𝑀) defined by

‖‖1𝐵𝜓‖‖22,𝑁 = ∑
𝑗⩽𝑁

‖‖‖‖‖1𝐵 𝑑
𝑗𝜓

𝑑𝑥𝑗

‖‖‖‖‖
2

𝐿2(𝑀)

(35)

is indeed a norm. Note that for 1𝐵𝜓 ∈ 𝐶∞cusp(𝑀) we may write

𝜓 =
∑
𝑛≠0

𝑉
(𝜓)
𝑛 (𝑦)𝑒(𝑛𝑥),

and we have

‖‖‖‖‖1𝐵 𝑑
𝑗𝜓

𝑑𝑥𝑗

‖‖‖‖‖
2

𝐿2(𝑀)

=
∑
𝑛≠0

|2𝜋𝑛|2𝑗 ∫ ∞

0

|||1𝑦⩾1𝑉(𝜓)𝑚
|||2 𝑑𝑦𝑦2 .
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Proposition 6.2.

(1) For each𝑁 = 0, 1, … the set 𝐶∞cusp(𝑀, 𝐵) is dense in 1𝐵𝐶
∞
cusp(𝑀) with respect to ‖ ⋅ ‖2,𝑁 .

(2) There exists an absolute constant 𝑐 > 0 such that for 1𝐵𝜓𝑖 ∈ 1𝐵𝐶∞cusp(𝑀)||𝐵𝜃(1𝐵𝜓1, 1𝐵𝜓2)|| ⩽ 𝑐‖‖1𝐵𝜓1‖‖2,1‖‖1𝐵𝜓2‖‖2,1.
(3) The form 𝐵𝜃(⋅,⋅) is continuous on 1𝐵𝐶∞cusp(𝑀) × 1𝐵𝐶

∞
cusp(𝑀) with respect to ‖ ⋅ ‖2,1.

Proof. To see that 𝐶∞cusp(𝑀, 𝐵) is dense in 1𝐵𝐶
∞
cusp(𝑀) we approximate 1𝐵 by a smooth cut-off as

follows: Fix 𝑤 ∶ ℝ → ℝ⩾0 smooth and supported in [1∕2, 1] with ∫ 10 𝑤(𝑡)𝑑𝑡 = 1. For 0 < 𝛿 < 1∕2
we define𝑤𝛿(𝑡) ∶= 𝛿−1𝑤(𝑡∕𝛿). This is supported in [𝛿∕2, 𝛿] and satisfies ∫ 10 𝑤𝛿(𝑡)𝑑𝑡 = 1. We then
define the function 1𝛿

𝐵
∶ ℝ+ → ℝ as the convolution of 1𝑦>1 and 𝑤𝛿, that is,

1𝛿𝐵(𝑦) ∶= ∫
∞

0
1𝑡>1(𝑡)𝑤𝛿(𝑦 − 𝑡)𝑑𝑡.

We observe that 1𝛿
𝐵
is smooth and supported in [1 + 𝛿∕2,∞]. It satisfies 0 ⩽ 1𝛿

𝐵
(𝑦) ⩽ 1 and 1𝛿

𝐵
(𝑦) =

1 for 𝑦 ⩾ 1 + 𝛿.
Let now 1𝐵𝜓 ∈ 1𝐵𝐶

∞
cusp(𝑀), and observe that 1𝛿

𝐵
𝜓 ∈ 𝐶∞cusp(𝑀, 𝐵), where we use the same

notation for 𝑦 ↦ 1𝛿
𝐵
(𝑦) and 𝑥 + 𝑖𝑦 ↦ 1𝛿

𝐵
(𝑦). Furthermore

‖‖‖1𝐵𝜓 − 1𝛿𝐵𝜓‖‖‖2,𝑁 = ‖‖‖1𝐵(𝜓 − 1𝛿𝐵𝜓)‖‖‖2,𝑁
⩽ max
1⩽ℑ(𝑧)⩽2
𝑗⩽𝑁

|||||𝑑
𝑗𝜓

𝑑𝑥𝑗
(𝑧)

|||||
√
𝑁 + 1∫

2

1

|||1 − 1𝛿𝐵(𝑦)|||𝑑𝑦𝑦2 , (36)

which tends to zero as 𝛿 → 0. Since 1𝛿
𝐵
𝜓 ∈ 𝐶∞cusp(𝑀, 𝐵) this proves that 𝐶

∞
cusp(𝑀, 𝐵) is dense in

1𝐵𝐶
∞
cusp(𝑀) with respect to ‖ ⋅ ‖2,𝑁 .

To prove the inequality for 𝐵𝜃(⋅,⋅) we see from (24), the bound 𝜏1((|𝑚|, |𝑛|)) ≪𝜀 |𝑚𝑛|1+𝜖,
and Cauchy–Schwarz on the involved integral that for 1𝐵𝜓𝑖 ∈ 1𝐵𝐶∞cusp(𝑀) we have that|𝐵𝜃(1𝐵𝜓1, 1𝐵𝜓2)| is bounded by a constant times

∑
𝑚,𝑛≠0

|𝑚𝑛|1+𝜀(∫
∞

0

|||||1𝑦∕|𝑚|⩾1𝑉(𝜓1)𝑚

(
𝑦|𝑚|

)|||||
2
𝑑𝑦

𝑦2 ∫
∞

0

|||||1𝑦∕|𝑛|⩾1𝑉(𝜓2)𝑛

(
𝑦|𝑛|

)|||||
2
𝑑𝑦

𝑦2

)1∕2

.

Doing a change of variables this splits as a product of

∑
𝑚≠0

|𝑚|𝜀(∫
∞

0

|||1𝑦⩾1𝑉(𝜓1)𝑚 (𝑦)
|||2 𝑑𝑦𝑦2

)1∕2
times the same expression for 𝜓2. Dividing and multiplying the terms by |𝑚|1∕2+𝜀 we can use the
Cauchy–Schwarz inequality to see that this is bounded by(∑

𝑚≠0
1|𝑚|1+2𝜀

)1∕2(∑
𝑚≠0

|𝑚|1+4𝜀 ∫ ∞

0

|||1𝑦⩾1𝑉(𝜓1)𝑚 (𝑦)
|||2 𝑑𝑦𝑦2

)1∕2

.
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Comparing with (36) and (35) we see that this is bounded by a constant times ‖1𝐵𝜙1‖2,1, which
proves the inequality for 𝐵𝜃(⋅,⋅).
To see that 𝐵𝜃(⋅, ⋅) is continuous on 1𝐵𝐶∞cusp(𝑀) we observe that, if we consider the sequence

(1𝐵𝜓1,𝑛, 1𝐵𝜓2,𝑛) → (1𝐵𝜓1, 1𝐵𝜓2) with respect to ‖ ⋅ ‖2,1 as 𝑛 → ∞, then we can use that

𝐵𝜃(1𝐵𝜓1,𝑛, 1𝐵𝜓2,𝑛) − 𝐵𝜃(1𝐵𝜓1, 1𝐵𝜓2)

= 𝐵𝜃(1𝐵𝜓1,𝑛 − 1𝐵𝜓1, 1𝐵𝜓2,𝑛) + 𝐵𝜃(1𝐵𝜓1, 1𝐵𝜓2,𝑛 − 1𝐵𝜓2),

and the claim now follows easily from the inequality satisfied by 𝐵𝜃(⋅,⋅). □

If 𝜙 is a Hecke–Maass form then 1𝐵𝜙 ∈ 1𝐵𝐶∞cusp(𝑀) and we consider the expansion

1𝐵𝜙(𝑧) =
∑
𝑚≠0

𝑃
1𝑦>1𝑎

(𝜙)
𝑚 ,𝑚

(𝑧).

with 𝑎(𝜙)𝑚 (𝑦) = 𝜖𝜙,𝑚2𝜆𝜙(|𝑚|)𝑦1∕2𝐾𝑠−1∕2(2𝜋|𝑚|𝑦) and where 𝜖𝜙,𝑚 = 1, if 𝜙 is an even and 𝜖𝜙,𝑚 =
sgn (𝑚), if 𝜙 is odd. It follows from this and (24) that 𝐵𝜃(1𝐵𝜙1, 1𝐵𝜙2) = 0, if either 𝜙1 or 𝜙2 is odd.
This is also the case when 𝜃 = 0 as proved in [19] as follows from 𝐿(𝜙, 1∕2) = 0 for 𝜙 odd. If 𝜙1, 𝜙2
are both evenHecke–Maass formswith Laplace eigenvalues 𝑠1(1 − 𝑠1) and 𝑠2(1 − 𝑠2), respectively,
we see that 𝐵𝜃(1𝐵𝜙1, 1𝐵𝜙2) equals

4𝜋
∑
𝑚,𝑛⩾1

𝜏1((𝑚, 𝑛))𝜆𝜙1(𝑚)𝜆𝜙2(𝑛)

(𝑚𝑛)1∕2 ∫
∞

max(𝑚,𝑛)
𝐾𝑠1−1∕2(2𝜋𝑦)𝐾𝑠2−1∕2(2𝜋𝑦)

𝑑𝑦

𝑦
,

for 0 < 𝜃 < 1∕2 and for 𝜃 = 1∕2, the number 𝐵1∕2(1𝐵𝜙1, 1𝐵𝜙2) equals

4𝜋
∑
𝑚,𝑛⩾1

𝜏1((𝑚, 𝑛))𝜆𝜙1(𝑚)𝜆𝜙2(𝑛)

(𝑚𝑛)1∕2 ∫
∞

max(𝑚,𝑛)
𝐾𝑠1−1∕2(2𝜋𝑦)𝐾𝑠2−1∕2(2𝜋𝑦)𝑒

−2𝜋2𝑦2(𝑚2+𝑛2) 𝑑𝑦

𝑦
,

as claimed in Theorem 1.3 (iv).
It is a deep number-theoretic fact that the central value of 𝐿(𝜙𝑗, 𝑠) is non-negative. Luo and

Sarnak [19] observed that this follows from noticing that these numbers are essentially the eigen-
values of the non-negative Hermitian form 𝐵0. We are now ready to draw a similar conclusion
for 𝐵𝜃(1𝐵𝜙, 1𝐵𝜙) as computed above from the fact that 𝐵𝜃(⋅,⋅) is non-negative on 𝐶∞0,0(𝑀, 𝐵) for
any 0 ⩽ 𝜃 < 1 . Since we only know beforehand that 𝐵𝜃(⋅,⋅) is non-negative on the smaller space
𝐶∞
0,0
(𝑀, 𝐵), we use the continuity properties of 𝐵𝜃(⋅, ⋅).

Proof of Corollary 1.4. We have seen above that the expression on the right of Corollary 1.4 equals,
up to a positive constant, the value 𝐵𝜃(1𝐵𝜙, 1𝐵𝜙). It follows from Proposition 6.2 there exist {𝜓𝑛} ⊂
𝐶cusp(𝑀, 𝐵) such that 𝜓𝑛 → 1𝐵𝜙 with respect to ‖ ⋅ ‖2,1. By Theorem 4.1 we may conclude, since
the left-hand side of (25) is non-negative, that𝐵𝜃(𝜓𝑛, 𝜓𝑛) ⩾ 0. By the continuity properties of𝐵𝜃(⋅,⋅)
in Proposition 6.2 we conclude that 𝐵𝜃(1𝐵𝜙, 1𝐵𝜙) ⩾ 0, which proves the result. □

Of course one may make a conclusion analogous to that of Corollary 1.4 for the case 𝜃 = 1∕2,
where the integrand gets multiplied by 𝑒−2𝜋2𝑦2(𝑚2+𝑛2).
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