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1 | INTRODUCTION

It is a fundamental consequence of Berry’s random wave conjecture [1] that the eigenfunctions of
the Laplace operator on a hyperbolic manifold M = T'\H ‘spread out’ in the large eigenvalue limit.
For a measure dv' on I'\H and a sufficiently nice function i on I'\H we write

(,dv") = /r\[H] D(z2)dV'(2).

Let ¢, be L?-normalized eigenfunctions of the Laplacian with eigenvalue A, and consider the
measures
du

2
duy = |@a|"dp,  dv = vol(T\H)'

where du(z) = y~2dxdy is the uniform measure on the surface.
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The question about whether the eigenfunctions indeed spread out is quantified by the question
of whether

(b, dp;) = (P, dv), asd — o0 @

for a suitable set of test functions .

For the full modular group I' = PSL,(Z) with ¢, being Hecke-Maass forms this (and much
more) was famously proved by Lindenstrauss [15] and Soundararajan [27]. Zelditch [30] had
previously studied the variance sum

D [, duy) — (@, dp)?

ASA

providing weak but non-trivial upper bounds on this to conclude (1) for a full density subsequence
of 4, see also [26, 29]. For the full modular group Sarnak and Zhao [25] were able to prove asymp-
totics for the variance sum on a suitable set of test functions, and Nelson [20-22] has recently
found a way to determine the asymptotics also for arithmetic compact hyperbolic surfaces arising
from maximal orders in quaternion algebras.

It is natural to ask if the equidistribution (1) still holds if we allow the support of the test func-
tion 9 to shrink as a function of 1. An interesting special case is when ¥ is the indicator function of
a hyperbolic ball of radius R with R going to zero as a function of 4. This is the question of equidis-
tribution in ‘shrinking sets’, which has been analyzed, for example, by Young [28, Proposition 1.5].
The physics literature seems to suggest that equidistribution holds all the way down to the scale of
the de Broglie wavelength, which is of the order of 1/ \//_1, see also [5]. Humphries [8] has shown
that below this threshold, also called the Planck scale, there are cases where equidistribution does
not hold (he even shows that equidistribution fails slightly above the Planck scale).

Humphries and Khan [9] proved that individual equidistribution holds all the way to the Planck
scale, if we restrict to dihedral forms, which form a very thin set of Maass forms.

It should be noted that ergodic theory methods provide equidistribution in shrinking balls
for general negatively curved manifolds but typically only for a slow logarithmic rate, see, for
example, [4, 6].

On the other hand for the eigenfunctions on the Euclidean torus Granville and Wigman [3]
showed individual equidistribution close to the Planck scale and failure of equidistribution at
scales at a small power of log above the Planck scale. The equidistribution was previously proved
by Lester and Rudnick [14] along a full density subsequence.

1.1 | Mass equidistribution for holomorphic Hecke cusp forms

We may ask questions analogous to the above if we replace the eigenfunction ¢, by y*/2f(z),
where f(z) is an L?-normalized holomorphic cusp form of weight k for T' = PSL,(Z). In fact
yk/2 f(z) is an eigenfunction of the weight k Laplacian A, for the full modular group with eigen-
value —k/2(1 — k/2), which is the bottom of the spectrum for A; . In analogy with (1) Holowinsky
and Soundararajan [7] proved that

pr@) 1= (P, dus) = (P, dv), ask — oo,
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where

duy = y*|f(@)| du.

Luo and Sarnak [19] computed the quantum variance of these measures on the modular surface.
More precisely they proved that for a fixed compactly supported function u on R, we have

Z u(%) Z L(1,sym? f)|,uf(z,b)|2 = B,($, K + O, ,(K'/>*).
2lk fEH,

Here H,, is an orthonormal basis of Hecke eigenforms, L(s,sym? f) is the symmetric square
L-function of f, and % is a rapidly decaying smooth function of mean zero whose zero-th Fourier
coefficient vanishes sufficiently high in the cusp, and B,,(3;, ,) is a Hermitian form diagonalized
by Hecke-Maass cusp forms. The eigenvalues of B,, are arithmetically significant: They are 7 /2
times the central value of the corresponding L-function.

1.2 | Equidistribution on shrinking sets

The question of equidistribution on shrinking sets in the holomorphic setting was considered by
Lester, Matoméki, and Radziwilt [13]. They proved an effective version in terms of the test function
of the result of Holowinsky and Soundararajan, allowing to shrink the test function at the rate of
a small negative power of log k.

We consider the following variant of the problem about ‘shrinking sets’: Let H be positive with
H > 1 and define the set

By ={zeT\H: 3(z) > H},

considered to be a shrinking ball around the cusp. We study the distribution of compactly
supported functions on B, squeezed into By; using the operator M;; defined by

Mpy(z) = P(x + iy/H).

This may be formulated in a coordinate-independent way, see Section 3.1. Similar shrinking has
been considered previously by Ghosh and Sarnak [2] as well as by Lester, Matomaiki, and Radziwitt
[13].

We will consider mass equidistribition ‘high in the cusp’, by which we mean that

M (Mpgo) = viMyop),

as H(k) tends to infinity with k. The length scale of By, is of the order H~!, so we might expect
equidistribution to hold all the way down to H~! > k™!, as this is the order of the de Broglie
wavelength of y*/2 f(z).

Let B := B,. We will consider the following class of functions:

Cy(M,B) ={y € C°(M) | supp3 C B},
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where C;°(M) consists of all smooth functions on M = I'\H decaying rapidly at the cusp, and such
that the zero-th Fourier coefficient vanishes sufficiently high in the cusp. Given 3 € C;°(M, B),
we investigate upper bounds and asymptotics for

) u(%) 2 L sym? )|uy My o) = v(Mipgo$) g

20k fEH,

where H(k) = (k —1)° forsome 0 < 6 < 1,and u : R + = Ry is smooth with compact support.
It turns out that the asymptotics depends crucially on 6.

1.3 | Mass equidistribution below and above the Planck scale

We first prove that mass equidistribution fails on shrinking sets around the cusp as above for scales
finer than the Planck scale. This is consistent with the above prediction and just reflects the fact
that f decays rapidly for y > k, which comes simply from the Fourier expansion.

Proposition 1.1. Let 0 > 1, that is, shrinking below the Planck scale. Then there exists 1 €
Cg°(M, B) such that uy (M _1)0%) = 0(v(M_109)) and v(M,_109P) # 0 as k — oo.

Secondly we obtain a power-saving bound for the quantum variance sum for general observ-
ables all the way down to the Planck scale. This implies that mass equidistribution holds for a
density one subsequence of holomorphic cusp forms.

Theorem 1.2. Let0 < 6 < 1land® € C°(M,B). Then

k-1 2 —26—mi _
)y ”<T> D, LA, sym?® flup(Mge_yye$) = v(Mge_yp )| = Oy, (K207 min(1/31-00%e)
2|k feH,

Since v(Mj_;)e%) is of size about k=9 this supplements the results in [13, Theorem 1.3] as it
shows that equidistribution holds on average at a much finer scale than individually, as proved in
[13]. The precise polynomial saving of 1/5 when 6 is sufficiently small can probably be improved;
its proof has as its input the convexity bound in the k-aspect of L(s, sym? f).

1.4 | Asymptotics of the quantum variance

For a set A we let 1, denote the indicator function of that set. Let C; (M, B) denote functions in

Cy (M, B) that are orthogonal to the constant function. Let ngsp(M , B) be the subset of functions
with zero-th Fourier coefficient vanishing completely, and C> (M, B) its orthogonal complement
inside C°(M, B). We note that for ¢ € Cgf’O(M ,B) we have V(M _1ye 1) = 0. If we restrict to test
functions in this space we can improve on Theorem 1.2 and obtain an asymptotic result.

Denote by 7;(n) the sum of divisors of n, K(y) the K-Bessel function, and 14(n) the n-th Hecke

eigenvalue for the form ¢.

Theorem 1.3. Let0 <0 < 1and fixu : R, — Ry, smooth with compact support.
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(i) There exists a Hermitian form By(-,-) on Cg?O(M ,B) and 64 > 0 such that

Zu<%> 2, L0 sym? )]y (M) 2

2|k feH,
= Be(ll”l/))(/ u(y)y_edy>K1‘9 + 0y (K1 ~0%),

fory € C5,(M, B).
(ii) The Hermman forms By(-,-) have three different regimes in the sense that By(-,-) is constant on
each of the three intervals 0 < 6 < 1/2,6 =1/2,and1/2 <0 < 1.
The decomposition

(M, B) = C2 (M,B) & C

cusp Eis

(M, B),

into the cuspidal and the Eisenstein part is orthogonal with respect to By(-,-) forall 0 < 8 < 1.
Furthermore, By(-,-) restricted to CE‘;S(M ,B) is independent of 6, and Bg(-,-) is identically zero
on Cé’asp(M,B)for 6>1/2

(iii) The Hermitian forms Bg(-,-) can be extended to the larger set 1 BC(‘J”C’O(M ) of functions in C Cot (M )
times the characteristic function 15 such that the following holds: On the subset lBCéﬁsp(M )
of functions with the zero-th Fourier coefficient vanishing, the form By(-,-) is continuous with
respect to a certain Sobolev norm || - ||, ;. Theset C3 (M, B) isdensein1p CuSID(M ) with respect
to the same norm || - ||,

(iv) If ¢; are Hecke—-Maass forms with eigenvalue s;(1 — s;), then the Hermitian form satisfies

Bs(15¢1,15¢,) = 0, unless ¢, ¢, are both even. If ¢; are both even, then

cusp

20 O DA s

By(1py, 154,) = 4w )

m,n>1 (mn)1/2
where
51,8, _ ® — dy
LV (m,n) = Ky 1 2Qay)Ks 1 ,QRry) fomn(¥)—
0 max(m,n) ! 2 y
with
1, if0<6<1/2,
f@,m,n(y) = e—2772y2(m2+n2)’ lf@ = 1/2,
0, ife>1/2.

For the precise form of By(-,-) and || - ||, ; we refer to (24) and (35).

Luo and Sarnak [19, p. 773] proved that L(¢, 1/2) is non-negative for ¢ a Hecke-Maass cusp
form by realizing it as an eigenvalue of the Hermitian form B,. One may speculate whether
By(1p¢,15¢) for 0 < 6 < 1/2isalso related to central values of L-functions. Irrespectively, we may
use Theorem 1.3 to prove that B4(15¢, 15¢) > 0. Seeing this directly from the series representation
in Theorem 1.3 (iv) seems difficult, and is, therefore, surprising.



6 | NORDENTOFT ET AL.

In fact this was our original motivation for extending B, in Theorem 1.3 (iii) to a set containing
13¢. Notice that 15¢ together with incomplete Eisenstein series provide a basis for 1;C% (M).

Corollary 1.4. If ¢ is an even Hecke-Maass cusp form with eigenvalue sy(1 —s4) and Hecke
eigenvalues /1¢(n), then

71((m, M)Ag(m)dg(n) d
Z - : - / Ks¢—1/2(27TY) 27y = 0.

m,n>1 (mn)1/2 max(m,n)

Remark 1. Let w : R — R be a smooth and bounded weight function with support contained in
[1, o). Then one can similarly show by using the explicit expression for By(-,-) in (24) combined
with Theorem 1.3 (i) for (z) = w(y)¢(z) that

T ((m, M)Ag(Mm)dy(n)
z /

y ) dy
(mn)1/2

2 (Y
KS¢_1/2(27ry)‘ w<E>w(E > > 0.

mn>1

Remark 2. We expect that the techniques and results in this paper will work with some mod-
ifications also for Maass cusp forms in the same way that the results in [17] are extended to
the Maass case by Sarnak and Zhao [25]. For simplicity and clarity we restrict ourselves to the
holomorphic case.

1.5 | The behavior of holomorphic cusp forms high in the cusp

Ghosh and Sarnak [2] considered the distribution of the zeroes of holomorphic modular forms
high in the cusp as the weight grows. By the work of Rudnick [24] mass equidistribution for holo-
morphic forms implies equidistribution of their zeroes in the fundamental domain. Ghosh and
Sarnak observed that, although the proportion of zeroes in a shrinking ball around the cusp (more
precisely H > +/k log k) was proportional to the area of the domain, the statistical behavior of the
zeroes was very different. They observed experimentally that the zeroes tend to localize on the two
‘real’ lines Rz = —1/2 and Rz = 0, conjectured that 100% of the zeroes in these shrinking balls
around the cusp should lie on these two lines, and obtained some results in this direction. These
results were then strengthened by Lester, Matoméki, and Radziwitt [13].

The reason for the qualitative change in the behavior of holomorphic cusp forms high in the
cusp has its roots in the fact that for all integers 1 « | < 1/k/ logk, we have

k-1
(3) FGc+in = 2pWexd) + 00), @
where y; = (k — 1)/4xl, and § > 0 is some constant. This means that counting zeroes on the real
lines reduces to detecting sign-changes of the Hecke eigenvalues 1 ¢(1), which is exactly what was
achieved in [13].

We observe that our bilinear form By(:,-) exhibits a phase transition at 6 = 1/2, which coincides
exactly with the threshold in [2] and [13]. Combined, these results point toward the phenomenon
that, although the mass of holomorphic cusp forms equidistribute all the way down to the Planck
scale, that is, k1, the qualitative behavior changes high in the cusp at half the Planck scale k~1/2,
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FIGURE 1 Heat plots of y*| f(2)|> with f € S, (T,(2)) and k = 30, 40,42, 48

This shows quite clearly in Figure 1, where the holomorphic forms look like random waves in the
bottom of the plots, whereas in an intermediate range (at height around k'/2, that is, at half the
Planck scale) they are essentially constant on horizontal lines, before they start decaying rapidly
high in the cusp at height around k/(47), that is, below the Planck scale. Note that in the region
\/E < y < k, where y¥| f(z)|? is essentially constant on horizontal lines, we still expect fluctua-
tions in the y direction (as we expect mass equidistribution to hold all the way down to the Planck
scale). In order to see this numerically one needs to consider larger k.

The asymptotic (2) implies that y¥|f(x + iy)|? is essentially constant as x varies, at least when
y =y, for some I as above. This provides intuition for the phenomena observed in this paper:
y¥|f(x + iy)|? exhibits very strong cancellation with cuspidal test functions when we go to scales
finer than halfway to the Planck scale. On the other hand for incomplete Eisenstein series the
behavior is the same all the way down to the Planck scale, according to Theorem 1.3 (ii).

The structure of the paper is as follows. In Section 2 we study the shifted convolution problem
and its variance over a Hecke basis. In Section 3 we use the results of Section 2 to study the quan-
tum variance when we squeeze non-holomorphic Poincaré series toward the cusp . In Section 4
we extend the space of observables to the space CS?O(M , B). In Section 5 we show that quantum
ergodicity holds for shrinking sets toward the cusp down to the Planck scale. In Section 6 we
complete the proof of Theorem 1.3 parts (iii) and (iv).

2 | THE VARIANCE OF SHIFTED CONVOLUTION SUMS OVER A
HECKE BASIS

An essential tool in understanding questions of equidistribution of Hecke eigenforms is
understanding shifted convolution sums.
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Let f be a weight k, level one holomorphic cuspidal Hecke eigenform, normalized such that its
Fourier expansion

f@ =Y 40T e(nz)
n=1

satisfies 4 f(l) = 1. As usual, e(z) = >, The normalized Hecke eigenvalues satisfy the Hecke
relations

apmagmy = Y (%), 3

d|(m,n)

see [10, (6.38)]. Consider the shifted convolution sum

AV R 1= ) (W2 + W ((n + h/2)/X)

neN
h
her+d/2)
= A:0r(r + d)YW| —n |, 4)
dlzhrezN frr X

where W : R, — R issmooth and supported in a compact interval, and where in the second line
we have used the Hecke relations (3).

Let 7y(n) = ¥, d, and let L(s, sym? f) be the symmetric square L-function associated to f,
that is,

A¢(n?)
! — when R(s) > 1,

n

L(s,sym” f) = {(25) )
n=1

and is defined on C by analytic continuation.

We investigate the variance of the smooth shifted convolution sums A?’ (X, h) over an orthonor-
mal basis of Hecke eigenforms H; and over k of size K. Let u : R, — R, be a compactly
supported function. We want to understand

o < k_1> g AL X, h)A (X (), hy)
K Jk-1 4 L(1,sym? f)

2lk

) ©)

where
X(k) = (k—1)°

for some 0 < 6 < 1.
In order to describe better the dependence on W, h we use Sobolev norms

wiy, = 2

(USN/

Wil = Y,

o<i<l

di p

dy!

k]

p

d_'WH .
dyt e
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For all compactly supported functions W we choose ay, > 0, Ay, > 1 such that suppW C
[ay, Ay ]. For hy, h, > 1 we denote |||, = max(h;, h,).
The main tool in understanding (5) is the Petersson formula, which states that

Ap(n)A : 4
k2f21 Z (n)As(ny) _s +2ﬂ(_1)k/22 S(nl,nz,C)qu( T n1n2>’ )

feH L@, sym? f) e c>1 ¢ ¢

see, for example, [19, p. 776]. We will use the following estimate for the J-Bessel function:

k—1
ey (%) <<(%) , x>0, )

see, for example, [16, p. 233].
To state our theorem we define, for functions W, W, : R, - Rand hy,h, €N,

B ———
By V1. W2) = (i) [ W)Wy
0
We now prove the following result.

Theorem 2.1. Let0 <6 < 1. Letu : R, — R, be a smooth compactly supported weight function,
andlet Wy, W, : R, — R be smooth functions compactly supported below Ay, > 1. Then

<k—1> 2 o Af XU DAY, y)

K Jk-1 = L(1,sym? f)

du

21k

KZ—Q
2

(o]
= By (W1, W) /0 u)y'Cdy + Oy oK.

The implied constant in the error term may be bounded by a constant depending only on 6 times
1+ ||h||oo)1+E(AW1AW2)C||W1||c,oo||W2||c,oo

for C sufficiently large depending on 6.

Proof. Using (4) and the Petersson formula (6) we find, for all X > 1,

271.2 A;Vl (Xa h'l )A;Vz (X’ h2)

k-1 = L(1,sym?2 f)

hy(ry +d,/2) hy(r, +d,/2)
= Z Z 5r1 (r +d1):r2(r2+d2)W1 <dl—X Wz dz—X

dq|hy 1. €N
dy|hy
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+2m(—1)/ Z Z (hl(”1 +)? /2)> (hz("zd"';z/z))
d; 2

dylhy r1EN
dylh,
S(ry(ry + dy), ry(r, + dy); ) dAfri(ry + dry(r, + dy)
X 2 c Ji—1 . }
1

We refer to the line with the Kronecker delta as the diagonal term, and the rest as the off-diagonal
term.
To handle the diagonal term, we observe that for fixed positive d; # d, the equation

has only finitely many positive solutions. To see this we rewrite (8) as

Factoring the left-hand side as (2r; + d; + 2r, + d,)(2r; + d; — 2r, — d,) we see that any solu-
tion gives a factorization of d? — d?, and that any factorization of d? — d> comes from at most
one solution. This shows that there are at most d(d% - d%) solutions to with d; # d,, where d(n)
denotes the number of divisors of n; indeed we see that the total contribution from these terms is
ORI W oo Wl )-

For the remaining terms, that is, d; = d, = d, r; = r, = r we apply first Poisson summation in
the r-variable and observe that the Fourier transform g — §(t) = /R g(x)e(tx)dx of the function

yeo W (h 10 +d] / 2))W (hZ(y tdy/ 2)) at r is bounded by an absolute constant times
2

|27 |7 dX) T [ W o (B W (B )1 ©

which follows from repeated integration by parts. We now see that

T Sw, <h (r;—)c{i /z>> (hZ(cm;Z/Z)>

dy|hy TEN
dhy
dy=d,

equals the same expression with the sum over r € N replaced by the same sum over r € Z up to
an error term of O(|| || L¥¥||W || |W, | ). We then observe that

hy(r + d/2)>W <h2(r + d/2)>
2

(
d|(hy,hy) TEZ dax X

© (h(y+d nQ+d
> 2/ W1< 1(de;( /2)>W2( z(yd+X /2)>e(_ry)dy
d|(hy,hy) T€Z =

= Tl((hl’hz))/ W1 (h )W, (hyy)dyX + O(”h”io||W1(h1')W2(h2‘)||2’1),
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where we have extended trivially the r-sum to all of r, then used Poisson summation and the
bound (9) with n = 2. Now we average over k and apply Poisson summation in the k-variable.
Using integration by parts on the dual side we find that for any A > 0, we have

k-1 KZ—@ co _ _
Z u<—>X(k) == u()y'fdy + 0, J(K™),
2k K 2 Jo

Zu(%> =2 [ woiy 0k,

2lk

which yields the desired main term up to the stated error term.
For the off-diagonal terms we need to bound

k=1\. . s <h1(r1 +d, /2)> <h2(r2 +d, /z))
2|Zk u( z )271( 1) dlzl;:l Wi d(k— 1) W, a,(k — 1)
dylhy

r1,r2€N

y Z S(ri(ry +dy), ry(ry + dy); C)Jk—l (é>’

o1 C c

where A = 47+/r,(r; + dy)ry(r, + d,). We mimic the arguments of Luo and Sarnak [18, pp. 880-
881]. We start by noticing that

(i) the summation over k is supported in K <, k <, K,
(ii) the summations over r; are supported in

d; d; d.
ay, #(k D)< (r+4d;/2) < Ay, #(k —1)-° <<<u Ay, E‘Kl‘@).
i i i

Using again r;(r; + d;) = (r; + d;/2)* — d’ /4 we see that
(iii) in the support of the above sums, we have

didy 00
A < RIS Ay Ay, WKZO ).
17%2

We want to truncate the sum over ¢ and notice that for r,, r, in the support of the sums we
may use the bound (7) on the Bessel function and the trivial bound on the Kloosterman sum
to get

Z S(ry(ry +dy), ry(ry + dz);C)Jk_1<é)

cM ¢ ¢

<)

cM

_ k-1 _ k-1
C, Ay Ay, d d,K1=% - C, Ay, Ay, did,K1=%

SE
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did,

We conclude that, if M = C, Ay, Ay, =7
172

Therefore
(iv) the sum in ¢ above may be truncated at

K'~29+¢_ this term decays exponentially in K.

d,d,

¢ <, Ay, Ay, v L2120

up to an additional error of <, [|[W|| . [|W, ||00AW1AW2K ~4, We now quote lemmata 4.1 and
4.2 in [18] stating that for g a smooth function compactly supported on R, we have

2D n_ (x)g(k — 1) = =27 / B §(t) sin(x cos(27t))dt,

2|k o0

/oo §(t) sin(x(1 — 27%¢2))dt = /00 % sin(y + x — 7 /4)dy, (10)
—o0 0 nwy

/ " 400 cos(x(1 — 272t = / 9ty Pt /2) cos(y + x — 72/&)dy. 1)
—o 0

In our case we apply (10) to the function

hy(ry + d1/2)>v<h2(”2 + d2/2)>
A e 7 R Tl

9(») = u(y/K)W1< R FRER:
1 2

This shows that the remaining part of the non-diagonal contribution can be bounded by an
absolute constant times

)IDID)

d;|h; ri>1 c21

/ 4(t) sin (- cos(zm))dt‘ (12)

with restrictions on the sums as (ii)—(iv) above. Here we have used the trivial estimate on the
Kloosterman sums.

Asin [18, eq. (4.4)] we now use a trigonometric identity and Taylor expansions to get for x,t €
R

sin(x cos(27t)) = sin <x(1 — 272 + x 2( 1y 2T Qrt)" >

= (2n)!

= sin(x(1 — 2712t2))< z cm’n(xt“)z”tzm)

osn,m<N-1

+ cos(x(1 — 27%t%)) Z (et 12

1<n<N
osm<N-1

+O((etHN + et 4 2N 4 14N, (13)
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for any N, where ¢, , and d,, ,, are real constants. In order to bound the term coming from the
error term above, we observe that all derivatives ¢ are supported in K - supp (1) and we claim
that, when r;, r, satisfy (i)-(iv), we have the bound

9™(y) <y Cw o, mK ™ (14)
where Cy w, m = [lici2 Wil ATy

To see why the claim is true we observe from Leibniz’ rule that (™) (y) is bounded by an absolute
constant (depending on m) times

h(ry +di/2)\ dPs —( hy(ry +d,/2)
max |4 u(y/0-2 1<“1_;/ ) pW2<“1_§/ :
pi+py+p3=m |dyP1 dyP2 d,y dyPs dyy

Now we observe that by the chain rule

j—pu(y/K) = uP (/KK P <, , KP.

Using Faa di Bruno’s formula for the higher derivative we see that

dp [ (i +d;/2) h(r +d./2) "
(M) < i, T (M

h(r, +d;/2)\ 2™
= Wl (M)
iy

The sum is over p-tuples of integers satisfying m; + 2m, + --- pm, = p. Using that W; is sup-
ported in [aWi’AWi] we see that we may bound the term inside the parentheses in the last
equation by Ay, . For y in the support of g we have y € K - supp u so for such y we get

dp - <hi(ri +d;/2)

V diy'-?

dyp Vi > <u,p il Ay K7P.

D" "W
Combining these bounds proves the claim (14).
From (14) it follows that ¢""(y) <, ,» Cw, w, »K~"~V. Additionally partial integration gives

B\m)(t) <um CW1,W2,m+l |t|‘lK‘(’”+l‘1) so by using g@(y) = (—2miy)™ §(y) we may conclude, by
using the first bound for |¢| < K~! and the second bound with [ = 2 when || > K~! that

(o]
/ g™ |dt <ym Cyry wyme2K s)

o)

Using this bound we see that, when we use the Taylor expansion (13), the contribution from
D) (AN is <, RIS, Cw, w,svvz Timi A T ROTOENHDEN,
@) A/ is <, IR1IECw, wyaon-2 Tlizr 2 Ag‘ll\j+1K(l—9)2(4N+l)—16N,
3) tNis <, RIS Cw, w,on2 [liz1 2 A%ViKG_w)_ZN’
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@) "N is <, 1E,Coy w, anv2 Timy o A7y KOO,

We note that for N = 1 all terms are <, ||h||fx,CW1,W2,18 Hi=1,2 AiViK.

To bound the remaining terms involving
e(x,t) :=sin(x(1 — 271'2t2))000 + cos(x(1 — 27'L'2t2))d01xt4 (16)

coming from the Taylor expansion, we combine @(y) = (—27iy)™ §(y) with (11) which gives the

bound
m o )
(é) / g(m>< %y> y 1262 gy
C 0 C

where we used Euler’s formulae for sine and cosine. Now we apply partial integration to the
integral with e¢?? as one of the functions.

For ry,r,, A, c as in (ii)—(iv), that is, where the terms in the sum (12) might be non-vanishing,
we claim that for any n,m € Zs

d" (m) 2A ~1/2 Cw, wym+n
D <9 =V <ynm Kmyl/zn (18)

To see this we note that the left-hand side is non-zero only if Ay/c <, K?. By using the Leibniz

rule and Faa di Bruno’s formula we see that
n .

ar [ mf /28y \ -1/ d [ ()28 )\, -1/2-(-i)

— — < — —

dyn<g <\/ — )y n; il Y Vo))

2A " ( A "
Z <g<m+m1+---mi>< _y>>H< _yy—j>

- c L c

L
my,..., i J

/-00 gte(A/c, t)dt < max , (17)

o (m,m")=(4,1),(0,0)
+

n

<un D,

i=0

y1/2=(n=)

<<u,n CWI,Wz,m+nK_my_1/2_n-
Here the inner sum is over my, ..., m; satisfying m; + 2m, + --- + im; = i and in the last line we
have used (14) and that Ay /c =, K.

For (m,m’) = (4,1) in (17) we use the claim with n = 0 and for (m, m’) = (0, 0) we take a general
n which will eventually depend on 6, and we find, by using integration by parts as described
above,

o ) K-3A1/2 Kl-2npn—1/2

[0 /e0dt <, Cu o, K0+ Cop i S

Plugging this bound back in the sum (12) and using the restrictions (ii)-(iv) gives the result by
choosing n sufficiently large depending on 6. O

Remark 3. Note the resemblance between Theorem 2.1 and [23, Theorem 1.3]. Whereas [23, Theo-
rem 1.3] is restricted to a range where the contribution of the individual off-diagonals is essentially
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trivial due to the decay of the J-Bessel function (corresponding to 6 > 1/2), we note that for
0 < 1/2we need to exploit additional cancellation between the J,_;-Bessel functions for different
k.

3 | COMPUTING THE QUANTUM VARIANCE

We now explain how the above results may be used to understand quantum variance for shrinking
sets around the cusp.

3.1 | Squeezing sets toward cusps
Let M = T'\H be a finite volume hyperbolic surface. Then M admits a decomposition
M=M,UZ,U..UZ,
where M, is compact and Z; is isometric to
Z; ~ Slx]ai, ool,
for some a; > 0 with the metric on S'X]a;, co[ equal to

P dx? -|-2 dy?
y

for (x,y) € S'X]a;, |. In the literature the regions Z; are called horoball cusp neighborhoods,
horocusps, cuspidal zones, Siegel sets, horocyclic regions, or simply (by an abuse of notation)
cusps. These subregions Z; are unbounded regions with boundary the horocycle (S! x {a;}) and a
point (the cusp).

We may assume that Z = Z; corresponds to a cusp at infinity. We now consider a measurable
set B C Z of hyperbolic volume vol(B) > 0 and define, for every H > vol(B)~! the injective map

SE:B— 3 Z
X +iy — x+ivol(B)Hy,
pushing the region B up toward the cusp at infinity. We note that this may be formulated as a

scaling along a geodesic going to the cusp thereby defining Sg in a coordinate-free way. We let
By = Sg(B) and notice that by a simple change of variables

[ 1
vol(Byy) = / /0 13((52)—1z)d)ycfy

1 o rl dxdy 1
= 15(2) ==
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For A € M we let
L*(M,A)={f € L*(M) : supp f C A}
and define the squeezing operator
M} : L*(M,B) — L*(M,By)
f > folsp,
that is, M g f(z) = f(x +iy/(vol(B)H)). We note that M f[ loosely speaking squeezes the function
f into the region B;;, which moves toward the cusp at infinity.

A simple change of variable computation — similar to the volume computation of vol(By;)
above — shows that for ¢ € L>(M, B)

1
vol(B)H

1
vol(B)H

[MEe| = Aol (MBp1) = —E—ip1)

We now specialize to ' = PSL,(Z) and Z = S'x]1, oo[. For T > 1 we let
Br(w)={zeZ: 3(z) > T}

which we consider to be a ball around the cusp at infinity. A trivial computation shows that
vol(By(e0)) = 1/T. Fix now T, > 1 and let B = By (c0) € Z. With this choice of B the squeezed
set By does not depend on T, since we have By = SfI(B) = Bj;(o0). Note, however, that the
squeezing operator Mg still depends on the choice of T,.

3.2 | Mass equidistribution in squeezed sets

We now consider the notion of mass equidistribution in the context of the squeezed sets as above:
FixH, p € L*(M, B). 1t follows from the mass equidistribution theorem of Soundararajan and
Holowinsky [7] that

1
vol(M)

[ ey 1@ due = s | 0the)@du + oy, )

ask — oo.
We investigate what condition on H as a function of k implies that

1
/ AR @FE) = / P +o (/ H MEefdu

ask,H — 0.
Choosing ¢ = 15 this simplifies to the question of when

/B V@) Pdu(z) = +o(H™),

1
Hvol(T\H)

as k,H — co. However, we investigate also more general test functions ¢.
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For the rest of the paper we fix B = B; (o), and consider the situation above for H = (k — 1)°
for some 6 > 0, that is, we consider

. B
M(k_l)e .= M(k—l)e,

that is, My 16 f(2) = f(x +iy/(k — 1)°). We investigate the mass equidistribution when the
test function is squeezed via this operator by considering the squeezing of the non-holomorphic
Poincar¢ series

Py@= Y VF2)ehxyz),

YEL\T

where V : R, — C is a smooth compactly supported function with support contained in (1, o),
and x(z), y(z) are the real and imaginary parts of z. In other words, we want to understand the
asymptotic properties of

pr(Me_1yoPy ) 1= <M(k—1)9PV,h(Z),yk|f(Z)|2>’ k — oo.

We note that with our assumption on V' the function Py, , is supported on B, and that these series
actually span L?(M, B). In fact

Py y(2) =V(y)e(hx) forz € B.

For h,h, # 0 we define

dy
By(Py, > Py, i) T1((|h1| |h2|))/ Vi( i, |)V2(| |)fe,h1,h2(y)y—2,
where
1 if0<6<1/2,
Fonn,(¥) = e VI ifg = 1/2,
0 ifo > 1/2.

When 6 = 0 we define B, to be the form B, defined by Luo and Sarnak in [19, eq. (15)].

Theorem 3.1. Letu : R, — R, be a smooth compactly supported weight function, and let V,,V,
be as above. For hih, # 0 and 0 < 6 < 1, we have

k-1
Z u<T> Z L(1,sym? PmsMe_yyo Py p Iy (M_10 Py, 1))

2|k feH,
o0
= BQ(PVl,hI’PVZ,hZ)/ u()y Pdy K8 + 0q,y j, (K1 707%F9),
0

where

(1+6)/2 6€(0,1/5),
1-20 6el1/51/2),
1/2 6=1/2,
1420 6€(1/2,1).

(7]
D
Il
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The implied constant in the error term may be bounded by a constant depending only on 6, € times

(1 + 117l ) Ay, A Vil oIV 2llc oo
for C sufficiently large depending on 6.

Proof. By linearity we may assume V; to be real. For such a test function, say V, we observe that
u f(M(k—l)GPV,h) is a real number (as is seen by unfolding and using that | f|? is even). Therefore
we have u;(Mg_1yePy ) = us(M_1)ePy _p,)- So we may assume h; > 0 below. We also notice
that if V' is supported in (1, A;,] then, up to an absolute constant times a power of h times a power
of Ay, the functions W,(y) = V((4rry)~ )y, W*(y) = V((4ry)~) exp(—h?y~2/8) all have Sobolev
norms less than or equal to the corresponding Sobolev norm of V. This will be used below without
further mention.

The case 0 = 0 is [19, Theorem 2]. To handle the other cases we proceed as in the proof of [18,
Proposition 2.1]. Doing this, noticing in the proof that the Mellin transform satisfies

® y_l sdy —s6 ® -1 sdy
= = (k- =
/ V<(k—1)6>y i T

we find that

2772
(k - 1)L(71r, sym? f) %Af(n)ﬂf(n +h)

V( (k — 1)1 ) < nln + h)>k_1

pr(Mge_1yePy ) =

4n(n+ h/2) n+h/2
+ 0y ,(k7170F9), (19)
where the implied constant is
<o A+ MDALV 0 (20)

for B sufficiently large. This holds also for & = 0.

We now assume that 0 < 6 < 1/2, and observe that in the above sum we may restrict to n such
that (n + h/2) < k'~9, which implies that (k — 1)/(n + h/2)? = o(1)ask — co. Therefore, we can
employ the following Taylor expansion

(DY e (50 (1 o)

n+h/2 "~ (@n+hy?

~ k=1 R kh*
‘eXp< 2 (2n+h)2+o<(2n+h)4>)

_ k-1 ® kh*
_eXp< (2n+h)2>+o<(2n+h)4)
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N-1 <_h_2&>l

B 2enth?) o (kh*)N N kh* >

= il M\ @n+mN T @2+ hy?
N-1 (JﬁL)i

_ 8 (”;h/z)z + Op(R2NINE-1/) 4 paga=3y,
i=0 :

This gives us, using L(1,sym? f) > k¢, see [18, eq. (2.1)],

h? o1’
N-1 (—=(k — 1)? )
27 ( 8 W; 1-6
M, P = A (k-1 ,h
Hf( (k—1)8 . (k — DL(1, sym? f) &~ il f ( ) )
+ OV’h’N((hZNkZN(e_1/2)_6+5 + h4k39—3+£) + k_1_9+5), (21)

where W;(y) = V(%)y‘zz’ fory € R, and the implied constant is of the form (20). Since 6 < 1/2,

we can choose N large enough such that the dominating error term in k is k—1~9+¢,

We now plug (21) into the expression we want to evaluate. The terms involving the products of
error terms is easily seen to be Oy, , y(K —20+¢),

To bound the mixed terms we note that (k — 1)@°~Di is largest when i = 0, so it suffices to
observe that

K14 <ﬂ>; AL (k=1 )
%u K k-1 fGZHk | ! '

5\1/2
|4} (=12, )

—1-6+eg-1/2+¢ k-1
<y un KT17OFK > u(—) D
woe \ K /& Lsym*f)

1/2—-36/2+¢
<y oy K330/

where we have used the Cauchy-Schwarz inequality, the positivity of L(1,sym? f), and
Theorem 2.1. The implied constant is of the claimed form. This implies that

k-1
Z”( K > 2 L(Lsym® (Mg Py, p Dty (Mg Py, )
2/k feH,

_ 2N\2 hzihzj i+i
S L e Gl

2|k 0<i,j<N-1

Wy _ Wy i _
Af b ((k_l)l e’hl)Af 21((k_1)1 6sh2)

x 2

=3 L(1,sym? f)

+ OVl’VZ’h,N(K1/2—39/2+E)’
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with an allowed implied constant. Now for each pair i, j € {0,..., N — 1}, we apply Theorem 2.1
with smooth weights W ; W, ; and weight function

U (y) = u(y)y@o DL

This gives

i 2 "
2 u<k_1> (2m?)? l’l%lh2 (_l(k_l)ze_l)zﬂ
k>1.21k K J(k-1)2 i 3

AL = D178, A (e = 11, hy)
X
fesz L(1,sym? f)
i =INH e a /ey k—1\ 2x°
— o2n2in2i (21 gac+ine-1/2)-1 N i
ik (5 kglk”” K )k-1)

W, W,
A (U= 110 )AL (k= 12, hy)

x 2

I3 L(1,sym? f)

. i =1 i+j 0 _
= anh%‘h?<?) (/ u;; (! 6dy)
0

. Bh n (W1 l_’sz)Kl—@—(i+j)(l—29) + Oh v 6N€<K—(i+j)(1—2@)+5>
1-1%2 > > iV YN ’

with an implied constant of the desired form. For (i, j) # (0,0) we see that the contribution is
bounded by O(K?), and for i = j = 0, we get the wanted main term. So in this case we have an
error of order O(K™2x (6:1/2-39/2)) ‘which translates to the claimed &,.

Now assume that 6 = 1/2, which implies that (nfhﬁ < 1 for non-zero terms in the sum (19).
Again by a Taylor expansion, we see that

(D)( 2=l Y o).

n+h/2 "8 (n+h/2)2 k

which is the source of the different main term in this case. We proceed as above to write

k-1
)y ”<T> 2, LOLsym? P (Moo Py iy (MeryoPr, p,)
k>1.2lk feH,

w* W
) <k < 1) or) A (e =118 h)A 2 (e = 1170, hy)
k>1,2[k K J(k-1) = L(1,sym? f)

+ OVi’hi (K_1/4+€),



SMALL-SCALE EQUIDISTRIBUTION | 21

h?
where Wi (y) = Vi(ﬁ) exp(—;l /y?) fori = 1,2, and where the implied constant is of the desired
form. Again by an application of Theorem 2.1, we get the desired main term with error-term
Oy, »,(K®) and an implied constant of the desired form.

Finally when 6 > 1/2, we see that for non-zero terms in the sum (19) we have (nfhﬁ > k21,

which implies

k—1

vn(n+h

# < exp <—ck29_1),
n+h/2

for some ¢ > 0 depending only on V, and hence we get exponential decay of the sum in (19).

Therefore we can even get the desired bound without any averaging. By summing up we arrive at

the error-term O(||V || ., |1V |l o K ~20%€). O

Remark 4. The above theorem also holds, with the same proof, when we allow V; to have support
in R, if we interpret M_;)o Py ,, as the Poincaré series Py, _ related to Vy g = V(y/(k — 1)9).

Remark 5. We now give a quick sketch of what happens in the case when h; =0 and
f0°° V,(»)y~2dy = 0 (that s, in the case where Py o isanincomplete Eisenstein series orthogonal
to 1) and h, # 0. The translation to a shifted convolution sum as in (19) is still valid.

To analyze the resulting shifted convolution sum we imitate the proof of Theorem 2.1. In this
case we use the Hecke relations (3) to write

A?ll(X,O) => Zaf(rZ)uq(%).
deNreN

Here W,(y) = V,(1/(4rry)) and X = (k — 1)'~°. We deal with the off-diagonal terms as above and
the diagonal term from the Petersson formula becomes

X X
2 82 (r,4d )W1<—>W2 — |
= h
dendyh, o diry d—j(r2+d2/2)

ry,r€N

Now we observe that for fixed d, the equation rf = r,(r, + d,) has only finitely many solutions
(r1,7,) and for any such solution, we have by Poisson summation

X ® X -
z Wl(_> / W1<—>dJ’+Oh2,A(X )
dyen dyry 0 ny

1

X © dy A 4
arr, J, Vl(J’)F"'OhZ,A(X ) =0p, 4(X77).

Therefore the conclusion of Theorem 3.1 holds in this case with Bo(Py, o, Py, ) = 0.
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Now if h; = 0 and /;° V;(y)y~2dy = 0, since the factor ( V”(T/Z )¥=1 = 1, we do not have to

distinguish between various regimes of 8. Using a similar analysis we find that

k—1 SV EEEE——
2 M<T> Z L(1,sym? f)up(M._1y0Py, o )its(Me_10Py, )

2k fEH,

k— 1> -
( (k —1)-° (k—=1)-¢
= 27" Z k-1 2 V1< 4rrd, >V2< 4rrd, >

2lk r.dydyeN

+ O(max (K1/273¢/2+¢ 1Y), (22)

Analogous to [19, p. 781], by using successive Euler-Maclaurin summation on the d; sums, see
[11, eq. (4.20)], followed by Poisson summation on the r sum and on the k sum we have that in
this case Theorem 3.1 holds with

dy, d
BQ(PVI’O’PVZ’O) / / / b,(y1)b,(¥,)V4 < > < >ﬂ%%
N yn

with error term O(max K'/2736/2+¢ 1), and the same type of implied constant. Here V,(y) =
(V](y)y*) and 2b,(y) = B,(y — |¥]), where B,(y) = y* —y + 1/6 is the second-order Bernoulli
polynomial. Note that the y; integrals vanishes for ¢ sufficiently small so the ¢-integral converges
(although not absolutely).

4 | EXTENSION OF B,(:,-) AND QUANTUM VARIANCE FOR MORE
GENERAL OBSERVABLES

Let

supp YCB
CSO(M, B) :=4% : M — C smooth | ¢ decays rapidly at co X
/01 ¥(z)dx=0 for y large enough

where B ={x +iy € M |y > 1} C X is the standard horocyclic region. In this section we will
extend the above variance results to the space

C(M,B) = { € CP(M,B) : (,1) = O},

For 3 € CJ% (M, B) we let V¢ be its mth Fourier coefficient. Note that, since ¥ is supported in
B, the coefflclent V:fq(y) is supported in y > 1 and we have

Y@ = Y, Vhemx) = Y Py (2), (23)

mez mez
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where V:f has compact support, and satisfies f0°° Vi’b(y)y*2 dy = 0. Inspired by Theorem 3.1 and
Remark 5, we define, for ¥,,%, € C°° (M B), the Hermitian form

ot =5, rlmlind) [T Vi (2 )02 (2 ) fomah

m,n#0

e (G E e e
yl y t

Note thatif ¢, 9, consist of a single Fourier coefficient, and, if this coefficient is not just of rapid
decay but of compact support, then (24) agrees with the result of Theorem 3.1 and Remark 5. To
see that By(;,¥,) is well defined we argue as follows. By smoothness and rapid decay of ¢ and
using integration by parts, we see that

Vrzpn(y) <aBy Y “AmB,

for any A, B > 0. It follows that

© d
/0 V’ﬁ1<|y|>v¢2<|y|> 3 < (),

and so the first sum in (24) converges absolutely. The second term in (24) is well defined by the
discussion in Remark 5.

We observe that, when restricted to incomplete Eisenstein series, the form By(+,-) is independent
of 0 < 8 < 1, while for cuspidal test functions By(:,-) exhibits a phase transition at 6 = 1/2 as
claimed in Theorem 1.3 (ii).

We can now show that the variance result of Theorem 3.1 can be extended to the space
Cgf’o(M ,B).

Theorem 4.1. Let u : R, — Ry, be a smooth compactly supported weight function, and let
Y eCH (M B)and 0 < 6 < 1. Then we have

S () T 10t Dy M) = W :
=By, %) ( /0 u(y)y—edy>1<l—@ + 0y o(K'797%), (25)

for 85 > 0 as in Theorem 3.1.

Proof. Consider a partition of unity

D w®) =1,0) = {(1) y>1

130 y<l1
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where u; : R, — [0,1] with suppuy; C (3!,2- 3D, u; smooth for I > 0 and u,, smooth on (1, o)
and ul(")(y) <, y% for some a,, > 0 independently of I. Multiplying this partition of unity on %
as in (23) we find

P =Vi+ Y,V (3e(mx),

1>0,m#0

where V;pm(y) = u,(y)V;fl(y) and V:)p (y) are smooth with compact support. We have

(n) _ _
) <c ¥y~ Im|™C, (26)

for any C > 0 and independent of I. To see this we note that by the definition and partial
integration

(n) e
me ) (27nm)C Z( ) U 1)( )/ < xCayl )(z)e(—mx)dx.

Now by using the rapid decay of i and the bound of the derivatives of u;, we arrive at (26). This
implies, in particular, that for every C > 0 we have ”V;pm“C,oo ey 37 m| €.
This implies, using Theorem 3.1, that for m;, m, and I}, 1, > 0

k-1 2
(52 ) 3 sy PPy g Vs Py )
2k feH,

oo
= BG(PVll«m1 ’ml’PVlzvmz’mz) </0 u(y)y_edy>K1_6

Kl 9 5@
+0y0 < 1+l 2 )
3h+L((1 4 |my DA + |my))
Therefore by summing up all the contributions we get

Z u<%> Z L(1,sym? f)|l~lf(M(k_1)6§b)|2

k.2lk feH,

= < 2 Bs(Phler My ’Phlz,mZ’m2)> (/0 u(y)y_edy>Kl_e

my,my,lq,l,

3—11—12
1,.5>0 (A + |my DA+ |my|))?

my,m,

+0yq| K1 0%

= Bo(¥, ¢)</0 u(y)y‘edy>K1—9 10, o(K170%),

which finishes the proof. ]
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5 | SMALL-SCALE QUANTUM ERGODICITY AROUND INFINITY

In this section we show that if we average over f € H; and over the weight k quantum ergodicity
holds for appropriately chosen sets shrinking toward the cusp all the way down to the Planck
scale.

Theorem 5.1. Let0 <6 < 1andy € C°(M, B). Then

Z u(k]; 1) Z LQ, Sym2 D) ,uf(M(k_l)elp) - V(M(k—l)ed’) :

2|k feH,

- Olp,u (Kmax (2—29—1/5,1—9))‘

Proof. Note that 3 € C;°(M,B) can be written as ¢ =¥, +3,, where 3, € C;%,(M,B) and
Yo = Py, is an incomplete Eisenstein series with V' supported in (1, o). Since tr1v1a11y

2 2
by M) =M <2 3 fity Mot = M|
i=1,2

we may use Theorem 4.1 to see that we only need to prove Theorem 5.1 in the case where = Py, ,
which we assume for the rest of the proof. In order to do so, we open up the square and compute
asymptotics with error terms for each of the averages over each of the terms |u f(M(k—D@ IR
V(Mo )12 1 (Mg_1y0)v(M;_1y0%), and its conjugate. Since (M ,_1e%) = (k — 1)"°v(®)
we see that this essentially corresponds to computing the second, zero-th, and first moment of
(Mg 1o ).

We start by showing that
Z u< K > 2 L(1,sym f)|/lf(M(k l)el,b) (27)
2|k feHy

2§( )2 1-26 1-6
= )| =~ ; (y) dyX +O¢u(K ). (28)

To prove this we start as in Remark 5 and arrive at (22). We then evaluate the sum over d = d;
using the second-order Euler-Maclaurin formula and find that we have for any X > 0

= d
Zd“v(%):/o V<i(—y>dy—/0 bz(y)V<);>y—y
Ao o

where 2b,(y) = B,(y — |y]) and B,(y) = y> —y + 1/6 is the second Bernoulli polynomial and
V() = (V'(y)y?). Here we have used that —V( ) = V( )y‘2 We know by the assumptions

on V that the above defines a smooth functlon inr and that Z 4 V( dr) vanishes for r > AX.
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‘We can now evaluate

> v(m)GE)
rdiden N rd;

by inserting (29) and evaluating the four terms coming from opening the square. The contribution
coming from the absolute square of the first term on the right of (29) equals

0 dy 1 ) /00 dy
Viy)— — =X Viy)—
/0 W= Z 5 ; ) 32

Yo ig<ax
A change of variables combined with the fact that b,(v) is uniformly bounded shows that
f0°° bz(y)V(f—y)i—f <y r/X. This implies that the remaining contributions are O(X). Plugging

2 2

x? ¢(2) + 0(X).

these estimates back in (22) with X = (k — 1)!~¢/47 and using Poisson summation in the k
variable, we complete the proof of (28).
‘We next show that

— 22 K2 [® 1
2 ”(k 1) Y LLsym? )= 2K / u(y)ydy + O(K*"3%9). (30)
K 12 2 J,
2k f€H,
To approximate L(1,sym? f) we use e = ﬁ Jio) T($)x~*ds to see that

co 2 2
Z Ap(n )e_”/T _ 1 I(s L(s + 1,sym f)Tst.
n

Pt 27 Jp) Z2(s + 1)

Here T > 1 is a parameter which will be chosen later. For now we assume that T = K¢ with 1 <
a < 2. Moving the line of integration to o = —1/2 we pick up a pole of the Gamma function at
s = 0 and we find that

© 1 ( 2) 2
5 A o % FILT), 3D

L(s+1,sym? f .
where I f(T) = % /(_1 /2 F(s)%ﬂ ds. Using any bound of the form

L(s,sym? f) <, (1 + [sDA(k?)1/4=P

for R(s) = 1/2 we see, that I;(T) <4 T—1/21/2=2p+¢ In fact the convexity estimate p = 0 will
suffice for what we need. We have

=, Ap(n%)

S 3

n=1 nSTH'E

A+(n?)
I 2 e=n/T 4 0, (K1),
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A 2
for any A > 0. We observe also that since /1f(n2) < n® we have ), L (nn )e‘”/ T « T¢. Using

these observations we see that

Zu(%) Z L(1,sym? f)

2|k fE€H)

neN

e_(nl +n2)/T

» Ap(n)A;(n3)
mn, & LA, sym? f)

—;(z)zz( ) ¥

2|k nl’n2<T1+£

k-1 .

+O(Zu< = > > KY(
k fEHk

Using the convexity bound (o = 0) for I,(T) we see that the error is O(K“E((%{)l/ 24 %)). Up to
this error term the sum we want to estimate therefore equals

If(T)| + ’If(T)|2) +K—A>.

$@rK Zﬂ<k—1> y e~(mtn)/T 972 ¥ Ap(nP)A;(n2)

272 mn,  (k=1) G L(1,sym2 f)’

2lk ny,ny<THHE

where @(y) = u(y)y. We now use the Petersson formula (6) on the last sum. The diagonal term
gives the claimed main term

;—(z)zK Za(%) Z e—2n21/T _ §(2)3 K_2 /000 uG)ydy + O(KZ/T)-

2 2
s 57 n<Ti+e M 2 2

We also need to bound the non-diagonal contribution which is done as in the proof of Theorem 2.1.
This consists of a k sum with k supported around K, sums over n, n, < T1*¢ and a c-sum. The
c-sum can be truncated at ¢ < M at the expense of an error which is big O of

2+42¢ \ k=1
kY ¥ Ly <<Kzfe<e4”kT ) M,
k=K ny,n,<T1+e mhy Sm 2kM K

where A =47n;n, < 47T?** and we have used (7) on the Bessel function. If we choose
M = CT?**%K~1#¢ for a suitably big constant C the parenthesis is << K~*k=1, which decays
exponentially so this contribution is O ,(K~4) for every positive A.

By using (10), as in the proof of Theorem 2.1, we see that it suffices to bound

K Z 1"2 <M‘/ aq(t) sm(—cos(zm))dt'

n ,n2<T1+E

with g(y) = ii(y/K). Here it is clear that g is supported in y < K and ¢"™(y) < K~ and we
conclude as in (15) that

/ |[g(Ot™|dt < K™,
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We use (13) with N = 1 and we estimate the contribution from the error terms by

K ) —Z (t)| |t|ﬁdt<<K1‘5 > ont T Y e

nl’nnglJrs 1 2 C<M I’IISTIJFE CSM

For the four contributions (a,f) = (2,8),(4,16),(0,2),(0,4) this gives an error term of
(K((T/K>* + (T/K?)3) + T? /K? + T? /K*)K?, which are all less that (K + T?/K?)K¢. To bound
the contribution involving e(%, t) (recall definition (16)) we see as in (18) that

d" [2A - —m. —1/2—
dyn <g(m)< ?y)y 1/2) <<u’n’mK my 1/2 I’l, (32)

©0 ) A K—3A1/2 K1—2nAn—1/2
/_ g(t)e(z,t)dt <, VG pry

so again we find

(33)

o0

It turns out to be convenient to interpolate the estimates for n =1 and n =2 (using that
min(a, b) < a’b~* fora,b > 0,0 < 1 < 1) and use n = 3/2 such that the last contribution is

K Z L / g(t)e(— )dt < T?K~%/2+ 4 k=142,

ny,ny<T1+e M2 cm

The total error therefore becomes <« K?*¢ (%{)1/ 2 4 K*¢ 4 T2K~1%¢ as all other contributions are

smaller. Choosing T = K7/> we complete the proof of (30).
Lastly we use a similar strategy to prove that

D) ¥ L sym? fup My yePy o)

2|k fEHk
o 2)2 gr2—6
— V(PV,O)/ u(y)yl_edyggz) K2 +O(K2—6—(1/4+36/8)+E +K1+€). (34)
0
A 2
We use (166) to approximate L(1,sym? f) by ¢(2) Don<Ti+e s )e‘”/ T at the cost of an error

1/2-2,
satisfying < K 2-0+e % We then use (19) and the Hecke relations (3) to arrive at

> 5 eIt <(k— 1)1—9> 272 y Ap(n)as(d?)
) S n 4rn, (k=1) = L(,sym2 f)’

nyEN
d|n,

$(2) Zu(

21k

at the expense of an additional error which is < K'~9*¢, We then use the Petersson formula (6).
The diagonal gives

e/ v ((k—1)1°
o) Lo ee)

2|k ny<T1+e L G—
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which, after using Poisson summation in the r variable, a change of variables, and then Poisson
summation again in the k variable, gives the claimed main term up to an error which is < K?/T +
K1+€ .

The off-diagonal is handled as before: We truncate the c-sum at M = CK—9+T1*¢ with C
sufficiently large at the expense << K~“. We then use (10) with

y1—6
9(») = u(y/K)v < premy >

and find that in the support of the sums ¢")(y) <« K~™, which allows us to bound the error
coming from the approximation of sin(% cos(2rt)) with N = 1, A = 4zrnyn, as

< TZK(1—9)3—8+5 + T4K(1—6)5—16+E + TK—1—29+€ + TK_3_26+E.

We also find, using Faa di Bruno’s formula as before, that analogues of (32) and (33) hold for
this g. Using (33) with n = 2 we get the final error contribution to be bounded by TK—3/2-26+¢ 4
T3/2K~1/2-50/2 Balancing T3/2K~1/2-%6/2 = Kz—@ﬁ_ﬁ gives T = K3/2739/4_ This proves (34) as
with this choice of T all error contributions are less than the claimed one.

‘We can now finish the proof: We open up the square of the expression on the right-hand side
of the theorem and use the expressions in (27), (30), and (34). The main terms cancel and we are

left with the claimed error term. [l

Remark 6. 1t is obvious from the above proof that a subconvexity result in the k-aspect for
L(s,sym? f) would give an improvement of the exponent. In fact a non-trivial bound on the sec-
ond moment of L(s,sym? f) in the weight aspect would suffice. For s = 1/2 such estimates has
been proved in [12].

Theorem 5.1 shows that if 0 < 8 < 1 then mostly (that is, in a full-density set of f € H), ) we
have

luf(M(k—l)ed)) = V(M(k_l)elp) + O(k_e).

If we go below the Planck scale, that is, if we let 8 > 1, then this is not the case, that is, mass
equidistribution fails.

Proposition 5.2. Let 0 > 1 and let V : R, — R be a smooth function with compact support in

(1, o), which satisfies f0°° V(y)dy/y? # 0 and let 1y, be the associated incomplete Eisenstein series.
Then

sy (M_1yePy) = 0 (M _1yePy)),

as k — oo. This means in particular that mass equidistribution fails for shrinking annuli around
infinity below the Planck scale, that is, when 6 > 1.
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Proof. We use (19) and observe that the sum is identically zero, since (k — 1)1~¢ /(47n) is less than
one which is outside the support of V. Therefore

(M _pyetby) = O, (k~175%9),

and, since v(Mety,) < k=9, the proposition follows. Alternatively, one can directly estimate the
Fourier expansion of f. O

6 | FURTHER EXTENSIONS OF B,(:,-) AND COMPUTATIONS AT
TRUNCATED EIGENFUNCTIONS

Before we extend By(-,-) we notice that on the set C5%,(M, B), By(-,) is symmetric with respect to
the Laplacian.

Lemma 6.1. The map B, : (M B) X C% (M B) — C satisfies B, (AY, ¢) = B, (¥, Ap).

. . d?
Proof. Writing  as in (23) we note that APV,*’; ’m(z) =P (z), where L, = yzﬁ — 4m’m?y?

LVem
and that the support of LmV,z’fl is contained in (1, oo] if this is the case for V,zf;. The argument is
now a straightforward modification of [19, p. 782]. O

We now extend By(¥;,%,) defined in (24) on Cj5 (M, B) to the slightly larger space 1;C% (M).
This space includes for instance 15 - ¢ where ¢ is a Hecke Maass form, which together Wlth the
incomplete Eisenstein series of mean 0 actually span this entire space. We may define By(3);,%,)
on this slightly larger space by the same formula (24). The same arguments as after (24) show that
the infinite sum converges.

Unfortunately we do not know how to extend Lemma 6.1 to this larger space. When trying to
do the obvious generalization we are faced with certain boundary terms that we cannot dismiss.
This means also that, contrary to the situation when 6 = 0 studied by Luo and Sarnak [19], we do
not know if truncated Hecke-Maass forms diagonalize Bg(-,-) for 6 > 0.

Consider the subspace Cgﬁsp(M B) c C5,(M, B) consisting of functions where the zero-th
Fourier coefficient vanishes completely. Note also that functions in 15 CuSp(M B) C 15C, 0.0 o o)
also have zero-th Fourier coefficients vanishing completely. We make the following analysis. It is
straightforward to check that the Sobolev norm on 15 Cusp(M ) defined by

dd)

Bdxi

elon = 2 ||1e

J<N

(35)

L2(M)

is indeed a norm. Note that for 13 € Cé’flsp(M ) we may write

P =Y VP e(nx),

n#0

and we have

d’y

1
Baxi

_ W [2dy
LZ(M)_112¢0|27TH|2]/ ’1y>1v’ '
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Proposition 6.2.

(1) Foreach N =0,1,... theset C®°_(M,B)isdensein 13C° cusp (M) with respect to || - ||, n-

cusp

(2) There exists an absolute constant ¢ > 0 such that for 159, € 15 ngsp(M )

|Bs(15%1. 1%2)| < e[| 15 ||, (|19 ]l1-

(3) The form Bg(-,-) is continuous on 1BCcusp

(M) x 15C (M) with respect to || - ||,

cusp

Proof. To see that Ccusp(M B)isdensein 1 BCCHSP(M ) we approximate 1 by a smooth cut-off as

follows: Fixw : R — R, smooth and supported in [1/2, 1] with /01 w(t)dt =1.For0<d <1/2
we define ws(t) := 6 'w(t/8). This is supported in [§/2, §] and satisfies /01 ws(t)dt = 1. We then
define the function lg : R, — Ras the convolution of 1., and ws, that is,

18(y) 1= /0 1o (Ows(y — D).

We observe that 12 is smooth and supported in [1 + §/2, oo]. It satisfies 0 < 12 (y) < land 1g(y) =
lfory>1+36.
Let now 1z € 1;C®_ (M), and observe that 151,0 € C®_ (M, B), where we use the same

cusp cusp
notation for y -~ 19(y) and x + iy ~ 15(»). Furthermore

[ ~159], = 100 - 1‘5¢>H

< N+1

d
B0l (36)

max
1<S(2)<2 de

JSN

which tends to zero as § — 0. Since 151,0 € Cgﬁsp(M , B) this proves that ngsp(M B) is dense in
1BCCUSP(M) with respect to || - ||, -

To prove the inequality for By(-,-) we see from (24), the bound 7,((|m|, |n|)) <, |mn|*¢,
and Cauchy-Schwarz on the involved integral that for 1y, € 1;C° (M) we have that

cusp
|Bg(15%,,15%,)| is bounded by a constant times
1/2
“dy / “dy
y* Jo )

(¥1) %)
|mn|tte / Vi < > v, ( )
mzn;:() y/|m|>1 |m| y/|n|>1 |

Doing a change of variables this splits as a product of

o0 1/2
Y |m|€</0 |1y>1V§2”1’(y)|2‘yi—§>

m#0

times the same expression for 3,. Dividing and multiplying the terms by |n|'/>*¢ we can use the
Cauchy-Schwarz inequality to see that this is bounded by

- 2d 1/2
1+4e (1) Y
<Z|m|1+25> (Zlml / |11V )| ;) :
m#0 m#0
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Comparing with (36) and (35) we see that this is bounded by a constant times || 15¢, ||, ;, which
proves the inequality for Bg(-,-).

To see that By(-, -) is continuous on 1BC§35p(M ) we observe that, if we consider the sequence
(g1 s 15%,,) — (1pYy, 153,) with respect to || - ||, ; as n — oo, then we can use that

Bo(1g1 0> 1p¥2,0) — Be(1p¥hy, 15%5)

= Bo(1¥1,, — 1591, 192 ) + Bo(1p¥1, 1595, — 155),
and the claim now follows easily from the inequality satisfied by Bg(:,-). [

If ¢ is a Hecke-Maass form then 1;¢ € 15 Cé’f’lsp(M ) and we consider the expansion

6@ = X P, (2.
m#0

with afff)(y) = e¢’m2/1¢(|m|)y1/2KS_1/2(27r|m|y) and where ¢, ,, = 1, if ¢ is an even and €4 ,, =
sgn (m), if ¢ is odd. It follows from this and (24) that B4(15¢;, 15¢,) = 0, if either ¢, or ¢, is odd.
This is also the case when 6 = 0 as proved in [19] as follows from L(¢,1/2) = 0 for ¢ odd. If ¢;, ¢,
are both even Hecke-Maass forms with Laplace eigenvalues s, (1 — s;) and s,(1 — s,), respectively,
we see that Bg(15¢,, 13¢,) equals

7, ((m, )y, (M)A (1) /oo S
4m Ky 12,Qry)K 4 p2my)—,
m%l (mn)1/2 max(m,n) 112 27172 y

for 0 <6 <1/2and for 6 = 1/2, the number B, ,,(15¢;, 15¢,) equals

71((m,n))A, (M)A, (n) e - d
an Z 1 d ic / Ky _1/,Q2my)K; —1/2(27TJ’)9_27T2y2(m2+”2)—y,
mnz1 (mn)l/z max(ml,n) 2 y

as claimed in Theorem 1.3 (iv).

It is a deep number-theoretic fact that the central value of L(¢;, s) is non-negative. Luo and
Sarnak [19] observed that this follows from noticing that these numbers are essentially the eigen-
values of the non-negative Hermitian form B,. We are now ready to draw a similar conclusion
for Bg(15¢, 15¢) as computed above from the fact that By(-,-) is non-negative on Cgf’o(M ,B) for
any 0 < 6 < 1. Since we only know beforehand that By(:,-) is non-negative on the smaller space
C(‘)’j’o(M , B), we use the continuity properties of By(-, -).

Proof of Corollary 1.4. We have seen above that the expression on the right of Corollary 1.4 equals,
up to a positive constant, the value By(15¢, 15¢). It follows from Proposition 6.2 there exist {1,,} C
Ceusp(M, B) such that 3, — 15¢ with respect to || - || ;. By Theorem 4.1 we may conclude, since
the left-hand side of (25) is non-negative, that B4(,,, ¥,,) > 0. By the continuity properties of B4(-,-)
in Proposition 6.2 we conclude that Bg(15¢, 13¢) > 0, which proves the result. O

Of course one may make a conclusion analogous to that of Corollary 1.4 for the case 6 = 1/2,
where the integrand gets multiplied by e=* 2y*(m*+n?)
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