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Smartphone‑based 
photogrammetry provides 
improved localization 
and registration of scalp‑mounted 
neuroimaging sensors
Ilaria Mazzonetto1,2, Marco Castellaro2,3, Robert J. Cooper4 & Sabrina Brigadoi1,2*

Functional near infrared spectroscopy and electroencephalography are non-invasive techniques that 
rely on sensors placed over the scalp. The spatial localization of the measured brain activity requires 
the precise individuation of sensor positions and, when individual anatomical information is not 
available, the accurate registration of these sensor positions to a head atlas. Both these issues could 
be successfully addressed using a photogrammetry-based method. In this study we demonstrate 
that sensor positions can be accurately detected from a video recorded with a smartphone, with a 
median localization error of 0.7 mm, comparable if not lower, to that of conventional approaches. 
Furthermore, we demonstrate that the additional information of the shape of the participant’s head 
can be further exploited to improve the registration of the sensor’s positions to a head atlas, reducing 
the median sensor localization error of 31% compared to the standard registration approach.

Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are two non-invasive tech-
niques that can measure the neural/hemodynamic activity of the brain. EEG and fNIRS data are measured from 
the head surface by placing several sensors (from a few to hundreds) over the scalp of the subject.

fNIRS measures changes in the intensity of light emitted by a source on the scalp and backscattered to a detec-
tor placed nearby to recover concentration changes of oxy (HbO) and deoxy-hemoglobin (HbR) occurring in the 
superficial cortex1. Each source and detector placed close enough to one another such that a measurement can 
be made is considered a “channel” To localize the measured activity within the cortex, one of the most common 
and straightforward approach consists in projecting the central point of the channel onto the cortical surface and 
identifying either the coordinates in the atlas space or the brain region2. This approach assumes that the centre of 
an fNIRS channel corresponds to the cortical location to which that channel is most sensitive, which is not neces-
sarily the case in a complex geometry like the human head. A more advanced approach consists in computing the 
cortical sensitivity of the channels based on models of photon propagation through the human head3,4. Whatever 
approach is employed, an accurate knowledge of the location of sensors on the individual’s scalp is fundamental 
to determine the cortical location of the measured activity and to evaluate the variability in probe placement 
across subjects and acquisitions5. While the spatial resolution of sparsely distributed single-distance fNIRS arrays 
is approximately 30 mm6, the spatial resolution of high-density arrays can reach approximately 13 mm6,7. This 
further highlights the importance of accurately detecting sensor locations on individual participants.

EEG measures the electrical activity produced by the postsynaptic potentials of neuronal populations. Since 
this activity is generated several centimetres below the scalp, it travels through different resistive layers before 
being measured at the surface8. These layers, especially the skull9, cause a blurring effect at the outer layer. There-
fore, the recorded activities are weighted sums of the underlying brain sources. For this reason, in contrast to 
fNIRS, the cortical activity cannot be localized by simply projecting the sensor positions from the scalp to the 
cortex. To identify the brain sources, a head model, describing the geometrical and electrical properties of the 
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tissues through which the currents flow and a model describing how the scalp potentials result from the current 
dipoles inside the head are required. The accuracy of the source estimation strongly depends on the degree of 
approximation adopted to describe the head model10. Furthermore, the precision of sensor positions has been 
shown to be very important. Computational studies using a realistic head model reported that an error of 5 mm 
(or a rotation of 5° backwards or to the left) in sensor positions resulted in a displacement of 2–12 mm in the 
estimated source locations11.

To obtain reproducible results, sensor positions, with both fNIRS and EEG, are usually specified according 
to the 10-20 system12 or its extensions, the 10-10 and 10-5 systems13,14. These systems define a set of scalp posi-
tions based on the distances between cranial landmarks (i.e., nasion, inion, left and right preauricular points), 
so that positions are consistent across different head sizes. The assumption is that there exists a correspondence 
between a point on the head surface and the underlying cortical region15. In most studies, EEG/fNIRS sensors 
are mounted on elastic caps that can be stretched to fit the head of the participant. The inter-sensor distance can 
therefore vary from subject to subject. The caps are usually available in different sizes and are usually positioned 
on the participant’s head by centring the cap over the apex position Cz. Even if a fixed relative placement is used, 
scalp and cortical shapes vary across subjects and will not perfectly scale with head circumference, implying that 
the same channel might be in slightly different locations across subjects. Furthermore, the process of landmarks 
identification, required to correctly fit the cap, can be ambiguous and prone to subjective errors16.

Conventional approaches for the localization of EEG/fNIRS sensors include electromagnetic17,18 and ultra-
sound digitizers19,20. Both techniques require the sensor to be touched with a stylus to detect its position. Since 
positions are registered one at a time, these methods are time consuming for both the operator and the par-
ticipant, especially with high-density configurations. As a further drawback, the digitization process is user-
dependent, error-prone, very sensitive to environmental conditions and very expensive21.

Alternative approaches use photogrammetry22–28 or 3D scanning29–33 methods. Photogrammetry consists of 
the acquisition of multiple pictures of the subject’s head from different angles while the subject is wearing the cap. 
Sensors are then manually or automatically identified in each picture and their positions are computed22–25,34. 
Alternatively, pictures can be converted in a 3D point cloud from which the sensor positions as well as the head 
surface can be derived26–28. The 3D scanning technique is similar. In this case, the 3D point cloud is directly 
generated from acquisitions with either structured light, infrared structured light, or lasers. Overall, sensors 
localization from a 3D point cloud has been shown to be more accurate, easy to operate, reliable and less sensi-
tive to human error compared to the electromagnetic digitization technique. Furthermore, photogrammetry/3D 
scanning-based approaches considerably reduce the acquisition time and require minimal manual intervention 
during the analysis if combined with automated methods for sensor identifications26,27,32,33. Compared to elec-
tromagnetic and ultrasound digitizers, the time required to post-process the data is, however, longer. Recently, 
it has been demonstrated that these techniques can improve the EEG source model accuracy29.

Whatever approach is employed to localize sensor positions, the outcome is a set of sensor positions and 
cranial landmarks in an arbitrary space. These positions have therefore to be realigned to the participant’s head 
or to a generic head model based on an MRI atlas. When a structural MR image of the participant is available, 
a combination of a transformation mapping the cranial landmarks defined in the sensors space to the cranial 
landmarks in the MR space, and the iterative closest point (ICP) algorithm35, are commonly used. The former 
is usually performed by estimating an affine transformation: a linear registration with 12 degrees of freedom 
(translation, rotation, skew and scaling). In most fNIRS and EEG studies, however, the MRI of the participant 
is not available. In those cases, sensor positions can be mapped to an atlas which can be used in place of the 
individual MRI36–38. There are several ways this mapping procedure can be performed. One straightforward 
approach is to apply an affine transformation between landmark positions of the individual subject in the sen-
sor space and those of the atlas27,28,39–41. An alternative approach consists of defining a set of points based on the 
extended 10-20 system in both spaces and use a non-linear transformation for the mapping36. Since the head 
has an ellipsoidal shape, there are several possible alignments of the convex hull, defined by the sensor positions, 
with the atlas head shape. Thus, a registration technique based only on landmarks and/or a few sensor positions 
may not always lead to accurate results.

An incorrect or inaccurate registration of the individual sensor positions to the atlas may frustrate the 
improved accuracy in sensor localization achieved with the photogrammetry/3D scanning -based methods. 
Moreover, with the advent of photogrammetry/3D scanning -based methods, additional information relative 
to head shape and size are recorded compared to electromagnetic digitization approaches. This opens up the 
possibility to exploit this supplementary information to accurately register sensor positions to an atlas or to 
register the atlas to the subject’s head shape. The 3D head model reconstruction from smartphone-based pho-
togrammetry approaches has been already successfully implemented in fields requiring very high level of preci-
sion and accuracy, i.e., the analysis of cranial deformation and the definition of a digital facial impressions for 
maxillofacial prosthesis42,43.

In this study, we introduce a photogrammetry-based method for sensor localization that does not require 
any specific instrumentation, but a smartphone. First, we validate the proposed approach against a typical elec-
tromagnetic digitization technique. Second, we investigate which is the best approach to register the obtained 
sensor positions to an atlas, by testing three different methods: (1) an affine transformation between landmarks 
(the standard approach); (2) the point-set registration method44 between the nodes of the individual 3D model 
and the nodes of the atlas mesh (applying either linear or non linear transformation), and (3) a volume-based 
registration method45,46 from a 3D image of the individual scalp obtained from the 3D model, to a 3D image of 
the atlas scalp (applying either linear or non linear transformation).
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Materials and methods
Validation study.  Phantom creation.  To evaluate the performance of photogrammetry as compared to 
electromagnetic digitization, and therefore to validate the method, we 3D printed at full scale with an Ulti-
maker 2+ (Ultimaker B.V., Netherlands) a head phantom on which the positions of the 10-5 EEG system14 and 
of nasion, inion, and left/right preauricular points were marked as 3 mm diameter hollows. The scalp surface 
mesh, based on the MNI 152 template47 and available via www.​ucl.​ac.​uk/​DOT-​HUB, was created as described 
in Brigadoi et al. 48.

Detection of sensor positions.  Sensor positions were detected from the 3D phantom with both a photogramme-
try-based method and an electromagnetic digitizer (Patriot Polhemus, Colchester, VT).

Photogrammetry.  Since photogrammetry relies on colour identification, sensor positions were highlighted 
from the scalp by filling the hollows with modelling clay of different colours based on their positions. The acqui-
sition consisted of a video capture of the entire head phantom.

During the video acquisition, the phantom was placed in a normally lit room on a turning support that was 
slowly turned around three times by an experimenter. Another experimenter stood in front of the phantom and 
kept the smartphone approximately 40 cm away so that the phantom occupied most of the field of view. The 
smartphone was kept at the phantom’s eye-level and perpendicular to the horizontal plane during the first lap 
and then lifted and tilted forward of around 10 cm and 20 degrees each lap. This procedure assured that the video 
wholly captured the phantom, from the neck to the top. To evaluate the sensitivity of the photogrammetry-based 
method to camera features, videos were acquired with four different cameras, with camera resolutions and frame 
rates as follows: Apple iPhone Xs (3840 × 2160 pixels, 60 fps), Asus Zenfone Max Pro M1 (1920 × 1080 pixels, 30 
fps), Samsung Galaxy A7 2018 (1920 × 1080, 30 fps with optical image stabilization) and OnePlus 2 (3840 × 2160 
pixels, 30 fps). To create a subset of images to be used for 3D model generation, from each video, one frame every 
1.3 s was selected. Figure 1a shows an exemplary frame.

Figure 1.   (a) Exemplary frame extracted from the recorded video of the phantom marked with the positions of 
the 10–5 EEG system. (b) Reconstructed 3D model of the head phantom obtained with the photogrammetry-
based method. (c) Locations of the markers identified on the mesh of the phantom. (d) Exemplary frame 
extracted from the recorded video of one of the participants marked with the positions of the 10-10 EEG 
system and of the main landmarks, (e) Reconstructed 3D model of the participant’s head obtained with the 
photogrammetry-based method. (f) Locations of the markers identified on the mesh.

http://www.ucl.ac.uk/DOT-HUB
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The 3D model was built using Agisoft Metashape Standard Edition, version 1.5 (2019). This software repre-
sents a cheap solution (educational license costs around 60 US dollars) to obtain the mesh of an object starting 
from a sample of its images. An exemplary mesh from which the sensors were identified is showed in Fig. 1b. 
Each mesh was imported into Matlab R2018b (Mathworks, MA, USA) and colour information linked to each 
node was converted from RGB (Red, Green, Blue) to HSV (Hue, Saturation, Value) scale32,49. To easily isolate the 
nodes representing the sensor positions from the background, a specific range of values was manually defined 
for the HSV scale for each colour to be identified. All the identified points were then clustered based on their 
Cartesian coordinates. Nodes distanced less than 3 mm (the diameter of the marker) were assumed to belong to 
the same cluster. Lastly, the Cartesian coordinates of the sensor positions were estimated as the centre of mass 
of the different clusters (Fig. 1c).

The quality of each reconstructed mesh was assessed following the procedure described in Clausner et al.26. 
The reconstructed mesh was roughly aligned to the original mesh of the phantom using an affine transforma-
tion based on landmarks. Then, the registration to the original mesh was refined by applying the iterative closest 
point (ICP) algorithm35. The accuracy of each node of the reconstructed mesh was computed as the Euclidean 
distance between that node and the closest node in the original mesh.

Electromagnetic digitization.  We used the Patriot Polhemus with one transmitter, fixed to the plane where 
the phantom was placed, a receiver (a stylus pen) and a system attached to a semi-circular plastic support that 
was fixed on the phantom. This electromagnetic acquisition was performed before inserting the modelling clay 
in the phantom’s holes. To evaluate the sensitivity of the electromagnetic digitizer to inter-subject variability 
in the detection of sensor/landmark positions, four different researchers performed the digitization task of all 
positions. The output of the electromagnetic digitization consists in 3D coordinates (x, y and z) of the digitized 
points. The static accuracy position of the device, as reported by the manufacturer, is 1.52 mm.

Localization performance evaluation.  Using some of the functions of the AtlasViewer package (github.com/
BUNPC/AtlasViewer) the sensor positions, acquired with each technique, were mapped to the reference system 
of the head template by computing an affine transformation from the acquired landmark positions to their true 
position on the phantom and applying this transformation to all acquired sensor positions.

For each sensor, localization error was defined as the Euclidean distance between its estimated position and 
the true position on the head template.

Registration study.  Dataset.  In-vivo data were acquired in six participants (four women and two men, 
age range: 25–35 years) who already had available their own 3D T1 weighted (TIw) MRI. Before taking part to 
the experiment, participants gave their written informed consent to provide their anatomical MRI to the ex-
perimenters and to be recorded with a camera. MRIs of each participant were acquired at 3T with an isotropic 
resolution of 1 × 1 × 1mm and used in other studies. The study was approved by the Ethics Committee of the 
Psychological Research Areas of the University of Padova, Italy (protocol number 4362). The in-vivo data were 
acquired in accordance with the Declaration of Helsinki.

Videos were collected while participants wore a black elastic cap (EASYCAP, Brain Products GmbH) on which 
the manufacturer had marked the sensor layout based on the 10–10 system. To make those positions identifi-
able with photogrammetry, a 5 mm diameter, 1 mm thick modelling clay disk was placed over each labelled 
position (Fig. 1d). During a real EEG/fNIRS experiment, this situation could be reproduced adding coloured 
circular stickers on top of the sensors. Video recording and head mesh generation were performed following 
the procedure described in the validation study. Regions of no interest (e.g., the neck) were cut using Meshlab50. 
An example of a participant’s head mesh from which the sensor positions were identified is shown in Fig. 1e.

Landmark and sensor positions were identified automatically as described in the validation study and the 
detected positions were then projected to the nearest node of the scalp mesh (Fig. 1f).

Benchmarks definition.  In order to evaluate the performance of each registration method to a generic atlas, two 
different benchmarks were evaluated.

The definition of the benchmarks requires some pre-processing steps of the individual MR images. Briefly, 
MR images were segmented by computing the probability maps of grey matter, white matter, cerebrospinal 
fluid, skull, skin and air using the “unified segmentation” algorithm51 implemented within SPM12 (http://​www.​
fil.​ion.​ucl.​ac.​uk/​spm/​softw​are/​spm12/). A multi-layered tissue mask was obtained assigning each voxel to the 
tissue class with the highest probability. Using this mask, a multi-layered volumetric mesh was created using the 
iso2mesh toolbox52, with the CGAL mesher option (http://​www.​cgal.​org). The outward layer of the volumetric 
mesh was isolated and used as scalp surface.

The first benchmark was defined as the positions of the sensors on the scalp of the head template as mapped 
with a brain-to-brain registration between individual and the atlas model MRIs. First, sensor positions derived 
from photogrammetry were mapped to the individual MR space. This step was carried out by aligning the 
individual mesh obtained from the photogrammetry approach to the individual scalp surface derived from the 
subject’s structural MRI image. Before the realignment, to ease the computational burden, the scalp meshes 
were downsampled using a 3D box grid filter in order to obtain a number of nodes around 3000. Alignment was 
performed in two steps, the first to orient the two meshes in the same direction and the second performing the 
actual alignment. For the first step, three points were manually chosen in locations around the two ears and the 
nose in both surfaces and used to estimate a rigid transformation that roughly aligned the two meshes in the 
same space and direction. For the second step, an affine registration was computed using the Coherent Point Drift 
algorithm (CPD)44 implemented in the Matlab package CPD (http://​www.​bme.​ogi.​edu/​~myron/​matlab/​cpd/). 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.cgal.org
http://www.bme.ogi.edu/~myron/matlab/cpd/
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Sensor positions in the individual MR space were obtained by applying the rigid and affine transformations to the 
sensor positions derived from the photogrammetry model. Sensor positions in the individual MR space were then 
mapped to the template by applying a brain-to-brain transformation that warped the individual structural brain 
image to the brain template. Individual brain image was extracted from the structural image using Multi Atlas 
Skull Stripping (MASS) software (https://​www.​nitrc.​org/​proje​cts/​cbica_​mass/) after a preliminary step aiming 
to correct for the low frequency intensity inhomogeneity (bias field) with N4 algorithm53. The transformation 
was computed with the software Advanced Normalization Tools (ANTs)45 and consisted of a combination of a 
linear registration using mutual information as similarity metric and a non-linear registration using the Sym-
metric Normalization algorithm in combination with cross correlation54. Each sensor position, defined at the 
voxel level in the atlas space, was then projected to the nearest node of the atlas scalp surface.

The second benchmark consisted in determining the cortical location with the highest fluence distribution 
for each sensor in the head template. The photon fluence associated with each sensor was simulated in the 
individual multi-layered volumetric mesh with a Monte Carlo approach using the MCX package3. Each sensor 
was considered as a source, which was modelled as a pencil beam, and the number of simulated photons was 
set to 109. Optical properties were assigned based on literature55–57. The fluence distribution of each sensor was 
then mapped to the atlas model by applying the same brain-to-brain transformation described above. For each 
sensor, fluence distribution was mapped to the grey matter surface of the head model template as described in 
Brigadoi et al.48. For each sensor, the cortical location with the highest fluence was identified by selecting all 
nodes exceeding 80% of the maximum value of the fluence distribution and averaging their spatial coordinates 
weighted by their fluence values.

The process of defining these benchmarks yielded, for each sensor position, a ‘true’ coordinate on the atlas 
scalp surface and a ‘true’ cortical location associated with peak optical fluence.

Registration approaches.  Sensor positions measured with the photogrammetry approach were mapped to the 
head template using five different transformations estimated with the following approaches.

Affine registration with landmarks.  The affine transformation was estimated using the least square method 
from nasion, inion, Cz, left and right preauricular points defined in the individual and template scalp surface.

CPD with an affine registration.  The individual and template scalp surfaces were downsampled using a 3D box 
grid filter in order to obtain a number of nodes around 3000. To obtain a surface smoothness comparable to the 
one of the template, the photogrammetry-derived mesh was smoothed with a low pass filter, which was shown 
by Bade et al.58 to be the best volume preserving smoothing algorithms. Surfaces were first aligned by applying 
a simple rigid transformation, estimated using four easily detectable points on a mesh, i.e., nasion, Cz, left and 
right preauricular points. Then, both individual and template scalp surfaces were cut with an axial plane under 
the nasion. This pre-processing step was required to avoid the registration to be biased by differences in the slope 
of the nose between the two surfaces. Finally, individual and atlas scalp surfaces were aligned using the Coherent 
Point Drift algorithm (CPD)44.

CPD with a non‑linear registration.  The same procedure previously described for the affine registration was 
applied here, using a non-linear registration instead of the affine one. The only different pre-processing step was 
the downsampling one, which retained approximately 9000 nodes, providing a trade-off between computational 
burden and preservation of an acceptable resolution for sensor positions. The non-linear registration problem is 
defined as an initial position plus a displacement function. To force close points to move coherently, the displace-
ment function has to be smooth and this can be achieved by regularizing its norm44. Three parameters have to 
be set for the regularization: ω, the amount of noise in the point set, λ, the model of the smoothness regularizer, 
and β, the trade-off between the goodness of fit and regularization. Based on several tests performed to optimize 
the function to our data, parameters were set equal to 0.4, 5, and 4.

ANTs with an affine registration.  As in the CPD-based registrations, the individual surface was downsampled, 
smoothed, rigidly aligned with the template and cut under the nose. Individual surfaces were then converted to 
3D NIfTI images59, with a grid step for the resulting volume equal to 1.5 mm. Another 3D NIfTI image of the 
same size was created, containing four 3 mm radius spheres located in correspondence of the positions of four 
of the cranial landmarks (nasion, Cz, left and right preauricular points). The same procedure was applied to the 
template scalp surface and landmarks. Affine mapping between individual and template was computed with 
ANTs as the sum of a rigid and an affine transformation. Rigid and affine transformations were estimated from 
the landmark images and surface images, respectively. In both steps, the Point-Set Expectation was employed 
as metric60. The standard deviation of the Parzen window, used to estimate the expectation, and the number of 
neighbours, used to compute the deformation, were set equal to 600 and 5, respectively.

ANTs with a non‑linear registration.  The same procedure previously described for the affine transformation 
was applied here, but replacing the affine transformation with a non-linear transformation, using the Symmetric 
Normalization algorithm, with the Point-Set Expectation as metric60.

The CPD algorithms were run using a regular personal computer equipped with a 3.00 GHz quad core 64-bit 
Intel(R) Core™ i5-7400 processor with 16 GB of RAM. Linear and non-linear registrations with ANTs were instead 
computed on a node of a high performance computing cluster server equipped with 8 processors 12-Core Intel 
Xeon Gold 5118 at 2.30 GHz and 1.5 TB RAM.

https://www.nitrc.org/projects/cbica_mass/
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For each registration method, photon fluence was re-computed for each registered sensor in the atlas space 
using the same procedure described for the benchmark definition.

A schematic overview of the registration study is reported in Fig. 2.

Registration performance evaluation.  To determine the registration approach yielding the lowest error, for each 
sensor and registration method, the Euclidean distance between the benchmarks and the registered sensor posi-
tions/fluence distributions were computed. In order to assess the spatial overlap between the benchmark and the 
photogrammetry-based fluence distributions, the Dice similarity was also evaluated. This metric was computed 
considering the regions composed of all nodes with a value greater than 80% of the maximum value of the flu-
ence distributions. The higher the dice coefficient, the higher the overlap between the two regions.

For each metric, the errors from all participants and sensors were compared across the five registration 
approaches by means of paired two-sided Wilcoxon rank tests corrected for multiple comparisons (p < 0.05) 
with the FDR approach61.

Results
Validation study.  The time required to digitize the 254 marker positions on the head phantom using Polhe-
mus was on average 9.8 min (range 7.3–12.8 min). By contrast, the videos were recorded, on average, in 2.9 min 
(range 2.5–3.5 min).

The photogrammetry-based method required, however, some post-processing steps. This additional compu-
tational time was mainly due to the mesh generation process and depended on the number of frames employed 
in the reconstruction and the desired accuracy. On average, the total time required to create the mesh was 
119.5 min (range 65.1–170.8 min).

The number of nodes of the meshes was strongly related to the smartphone resolution: meshes derived 
from smartphones with higher resolution (3840 × 2160 pixels) had, on average (SD), 1,610,780 (412,136) nodes, 
whereas the meshes derived from the smartphones with lower resolution (1920 × 1080 pixels) had, on average 
(SD), 468,461 (22,780) nodes.

Figure 3 displays the accuracy of the reconstructed model. While both Asus, iPhone and OnePlus displayed 
some localized regions with decreased accuracy, Samsung showed a more homogeneous distribution of errors 
across the head. On average, the most accurate model was the iPhone-derived mesh, the smartphone with highest 
resolution and fps (median deviation: 0.2 mm, median absolute deviation (MAD): 0.1 mm), whereas the biggest 
difference was obtained with the Asus-derived mesh (median deviation: 0.5 mm, MAD: 0.1 mm).

Figure 2.   Schematic of the workflow of the registration study. Dashed boxes highlight the data required to 
perform the analyses, whereas the thicker boxes identify the final outputs, which were then compared to assess 
the best approach to map the sensor positions from the individual surface to the atlas template surface.
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The median (MAD) localization errors for Polhemus and photogrammetry-based method across all sensors, 
cameras and acquisitions were, respectively, 0.9 (0.3) mm and 0.7 (0.2) mm. Figure 4 shows the distribution 
of errors across the sensors for the two techniques. The most accurate sensor positions were obtained with the 
combined use of the photogrammetry-based method and the smartphone with highest resolution and fps, the 
iPhone Xs (median: 0.5 mm, MAD: 0.2 mm).

Registration study.  Figure 5 summarizes the distribution of the Euclidean distance between the bench-
marks of the sensor positions and the registered sensor positions in all participants. The same metric relative to 
fluence distribution is shown in Fig. 6.

The highest errors were obtained with the affine transformation based on landmarks (median Euclidean 
distance of 6.7 mm for sensor positions and of 6.3 mm for the fluence) whereas the lowest errors were achieved 
with CPD affine transformation (median Euclidean distance of 4.5 mm for sensors positions and of 4.2 mm for 
the fluence).

Figure 7 reports the distribution of the Dice coefficient between the benchmarks of the fluence distribution 
and the transformed fluence distribution in all participants. The smallest overlap was obtained with the affine 
transformation based on landmarks (median Dice coefficient of 0.2), whereas the highest overlap was achieved 
with CPD affine transformation (median Dice coefficient of 0.4).

Figure 3.   Deviation of the smartphone-derived meshes from the original phantom. Deviation values are 
represented with a colour code on the phantom model. Each value indicates the Euclidean distance between a 
node on the original phantom and the closest node on the reconstructed model.

Figure 4.   Localization errors for the sensor positions obtained with photogrammetry and Polhemus for the 
head phantom. Boxplots represent the distribution of the errors across sensor positions, separately for each 
employed smartphone for the photogrammetry-based method (on the left) and for each operator for the 
Polhemus (on the right). Bottom and top edges of the box indicate the 25th and 75th percentile, whereas the 
central mark indicates the median. Outliers are depicted as dots.
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With all metrics, the errors/distortions obtained with the affine transformation based on landmarks were 
significantly higher (max p = 0.02, min z = 2.24) than the errors/distortions obtained with the CPD/ANTs -based 
approaches. The errors/distortions obtained with the CPD affine approach were significantly lower (max p = 0.04, 
min z = 2.02) than the errors/distortions obtained with the other registration methods, but for the CPD non lin-
ear one when considering Euclidean distance relative to sensor positions. In this case, no statistically significant 
difference was found.

If we compute the average performance improvement across subjects for each registration method com-
pared to the affine transformation based on landmarks, regardless the metric, the approach yielding the best 
improvement is CPD affine, both considering the sensor position and the fluence distribution (mean Euclidean 
distance decrease: 31% for sensor position, 25% for fluence distribution, mean Dice coefficient increase: 118%). 
The approach yielding the least improvement relative to sensor positions and fluence distribution was ANTs 
affine (mean Euclidean distance decrease: 12% for sensor position and 8% for fluence distribution, mean Dice 
coefficient increase: 36%).

The computational time of the different registration approaches are listed in Table 1.

Figure 5.   Euclidean distance between the benchmarks of the sensor positions and the registered positions. The 
probability density function of the localization errors obtained with CPD affine (top left panel), CPD non linear 
(top right panel), ANTs affine (bottom left panel) and ANTs non linear (bottom right panel) are superimposed 
to the probability density function of the localization errors obtained with the affine transformation based on 
landmarks. In the lower part of each panel, the same data are presented as a box plot. Left and right edges of 
the box indicate the 25th and 75th percentile, whereas the central mark indicates the median. The whiskers 
extend to the most extreme data value not considered an outlier. Each dot represents a sensor of a participant. 
Probability density functions were estimated with the kernel density estimation method and graphs were 
generated as described in Allen et al.65.
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Discussion
The first aim of the study was to validate the photogrammetry-based method and to compare its performance 
with the gold standard technique based on the electromagnetic digitizer. To carry out this step, we detected the 
positions of the 10-5 system in a head phantom with both the electromagnetic digitizer by four operators and 
the photogrammetry-based method with four different smartphones. Performances were evaluated based on the 
Euclidean distance between the estimated position and the ground truth position. We also evaluated the accuracy 
of the reconstructed models when different smartphones were used. The most accurate models were obtained 
with the smartphones with the highest resolution, which provided the lowest localization error of the sensor 
positions, whereas the lowest accurate ones, associated to the highest errors in sensor localization, were obtained 
with the smartphones with lower resolution (Figs. 3 and 4). It should be noted, however, that all smartphone 
models provided accurate results, with errors lower than usual sensor size (~ 1 cm).

Note that the accuracy of electromagnetic digitization and photogrammetry also relies on the registration 
step required to map the detected positions to the same reference system of the head phantom. Therefore, the 
error can be considered the sum of the registration error and the method-dependent localization error. Since 
the registration step was carried out in the same way for both techniques, we assumed that the registration error 
equally affected the results.

Figure 6.   Euclidean distance between the benchmarks of the location of the peak of the fluence distribution 
and the location of the peak of the registered fluence distributions. The probability density function of the 
localization errors obtained with CPD affine (top left panel), CPD non linear (top right panel), ANTs affine 
(bottom left panel) and ANTs non linear (bottom right panel) are superimposed to probability density function 
of the localization errors obtained with the affine transformation based on landmarks. In the lower part of 
each panel, the same data are presented as a box plot. Left and right edges of the box indicate the 25th and 75th 
percentile, whereas the central mark indicates the median. The whiskers extend to the most extreme data value 
not considered an outlier. Each dot represents a sensor of a participant. Probability density functions were 
estimated with the kernel density estimation method and graphs were generated as described in Allen et al.65.
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Figure 7.   Dice coefficient between the benchmarks of the fluence distribution and registered fluence 
distributions. The probability density function of the Dice coefficients obtained with CPD affine (top left panel), 
CPD non linear (top right panel), ANTs affine (bottom left panel) and ANTs non linear (bottom right panel) are 
superimposed to probability density function of the localization errors obtained with the affine transformation 
based on landmarks. In the lower part of each panel, the same data are presented as a box plot. Left and right 
edges of the box indicate the 25th and 75th percentile, whereas the central mark indicates the median. The 
whiskers extend to the most extreme data value not considered an outlier. Each dot represents a sensor of a 
participant. Probability density functions were estimated with the kernel density estimation method and graphs 
were generated as described in Allen et al.65.

Table 1.   Mean computational time required by the different registration approaches.

Registration approach
Computational time
Mean (SD)

Affine landmarks 0.083 (0.003) s

CDP affine 10.9 (0.1) min

CPD non linear 81.5 (5.7) min

ANTs affine 166.1 (14.3) min

ANTs non linear 185.2 (10.2) min
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Both techniques were able to accurately detect sensor positions (errors lower than 1.5 mm on average), with 
a slightly lower error obtained with the photogrammetry-based approach. While the variability in the error 
distribution depends on the resolution and quality of the lenses of the smartphone for the photogrammetry-
based method, the variability in the error distribution for Polhemus only depends on the operator manual abil-
ity, thus introducing a subjective error when using Polhemus. The median localization error obtained with the 
photogrammetry-based method (0.7 mm) is in line with other photogrammetry studies24–26,30 which reported 
mean errors ranging between 0.41 and 1.3 mm and 3D scanning studies31,32,62 which reported mean errors rang-
ing between 0.9 and 1.5 mm. The median localization errors obtained with Polhemus (0.9 mm) is in line with 
that reported in Russell et al.22 and slightly lower than that reported in Taberna et al.32. Baysal and Sengul24, Dalal 
et al.62 and Clausner et al.26 found, instead, that the localization error associated with the use of the electromag-
netic digitizer was around 7 mm. This discrepancy with our results can likely be explained by methodological 
differences relating to different sizes and shape of target sensors. In the above cited studies, the electromagnetic 
digitizer was used to localize EEG electrodes, whose area is at least ten times bigger than the area of the markers 
we digitized. It is extremely difficult for a user to place the stylus pen exactly at the centre of the electrode, thus 
introducing a subjective error. It is likely that the small dimension and the hollow shape of the markers on our 
head phantom may have ease the user’s task by driving the stylus exactly where it was expected to be and therefore 
lowered their error. The performance of the photogrammetry-based method, instead, does not depend on the 
dimension of the marker since the centre is computed as the centre of mass of the selected points. The accuracy 
of photogrammetry-based approaches could suffer when dealing with high-density montages with sensors very 
close to each other. In this case, two or more sensors could be detected as a single cluster. A possible solution, 
which should avoid loss in accuracy, could be to glue a small coloured circular sticker in the center of the sensor 
as marker of sensor position, thus increasing the distance between close sensors.

The photogrammetry-based method allows the experimenter to save, on average, a third of the time when a 
high-density marker configuration is employed. The time required to record sensor positions with the electro-
magnetic digitizer increases linearly with the number of sensors, whereas the time required by the photogram-
metry-based approach is constant.

Since our photogrammetry-based method was tested with a video recorded while the phantom was being 
turned, we hypothesize the proposed method does not require the participant to stay motionless. A further study 
should be conducted to infer whether sudden movements during the video recording could affect the mesh 
generation or whether it is sufficient to manually remove the resulting blurred images before reconstructing the 
point cloud, as shown in Barbero-Garcìa et al.63. There are situations (e.g., with infants) where the total experi-
mental time, as well as the compliance of the subject, is very limited. In these cases, the photogrammetry-based 
approach could save researchers’ time and effort and reduce errors in detecting sensor positions.

It is important to highlight that the time saved by researchers during the acquisition of the sensor positions 
with photogrammetry-based method comes at the expenses of a longer post-processing time compared to tech-
niques based on electromagnetic digitizers. After data collection, the photogrammetry-based method requires 
additional time to process the video and obtain the head mesh from which the markers can be automatically 
detected. It should be noted, however, that this post-processing time, if the process is completely automatic, does 
not occupy researchers’ time. A study by Barbero-Garcìa et al.63, for example, presented an automatic solution 
for the creation of a 3D head model starting from the acquisition of multiple frames with a smartphone.

Since the aim of the validation study was to infer whether a smartphone could be reliably used to localize 
EEG/fNIRS sensors with high precision, the mesh was created with the original video resolution. This process 
required, on average, about 2 h. A decrease in the resolution employed to build the mesh should significantly 
decrease the post-processing time without necessarily reducing accuracy. The resolution of the smartphones 
Samsung and Asus, indeed, was half the resolution of the smartphones OnePlus and iPhone, but their error 
distributions were not worse than those obtained with the Polhemus (Fig. 4). This suggests that 1920 × 1080 can 
be considered as an upper bound for the required image resolution and that therefore the mesh generation does 
not require more than 65 min on a typical laptop. Another aspect to consider is that the markers on our head 
phantom had a diameter of 3 mm, whereas common dimensions for EEG and fNIRS sensors are around 1 cm. 
We expect the reconstruction of larger objects to require both a lower number of frames and a lower resolu-
tion, further reducing the computational post-processing time for generating the mesh. Further studies should 
be conducted to define the minimum number of frames to be used and the maximum down-sampling factor 
applicable to the images based on the size of the details to be reconstructed.

The proposed photogrammetry-based method is also more cost-effective than other approaches since it is 
significantly less expensive than the other photogrammetry/3D scanning methods as well as the electromagnetic 
digitizer. Furthermore, from the smartphone display the operator can always see what is being recording. This 
aspect should not be underestimated since with the 3D scanning methods this is not possible: the information 
provided by these methods during the acquisition does not allow the experimenter to predict the quality of the 
3D model that will be generated.

Eventually, a note on the error that users could introduce when using the electromagnetic digitizers compared 
to the photogrammetry-based approach. The accuracy in detecting the sensor position with electromagnetic 
digitizers relies on the user’s ability to point the stylus exactly at the centre of the sensor. If the stylus is not cor-
rectly located, this could introduce an error in the sensor position. If this error occurs on one of the landmarks’ 
positions, the registration of all sensor positions will be affected by this error.

The second aim of the study was to test whether the individual head surface acquired with photogrammetry 
can be a valid aid to improve the registration of the individual sensor positions to the MRI atlas. To investigate 
this aspect, we compared the standard technique (affine transformation between cranial landmarks) to four 
different registration approaches. To the best of our knowledge, this is the first attempt to directly map the 
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individual surface acquired with photogrammetry/3D scanning to a template surface, without the individual 
MRI scan as an intermediate step.

Although the errors of all registration approaches were comparable in their order of magnitude, a signifi-
cant reduction in all metrics was consistently obtained when using the surface information in the registration 
compared to when using the cranial landmarks alone. The most accurate registration approach consisted in a 
rigid transformation using nasion, Cz, left and right preauricular points followed by an affine transformation 
computed with the CPD algorithm44 between the two surfaces. Since the aim of the rigid transformation is to 
provide only a rough alignment between the two surfaces, small errors in cranial landmarks identification would 
not affect the accuracy of the final registration result. It is worth highlighting that the landmarks, on which this 
rigid transformation is based, do not include inion. This is an important aspect, since the inion is the most dif-
ficult cranial landmark to identify, both on a real and virtual head.

The CPD non linear approach yielded results comparable with the CPD affine approach, whereas the two 
approaches based on a volume transformation performed worse than CPD, showing however improved results 
compared with the affine transformation based on landmarks. The two head surfaces to be aligned are quite 
similar in their macro-features, therefore, non linear registrations might not be required. Non linear registrations 
are also less reliable than linear registrations, since they possess more degrees of freedom. In this context, an 
affine transformation seems to be the ideal compromise. Volume-based registrations should provide compara-
ble results to CPD registrations since they use the head surface information. We hypothesize that this different 
performance might be due to the steps transforming the surface to a volume (e.g., the choice of the grid step 
resolution) and then mapping back the positions obtained in the volume to the surface, which might introduce 
additional displacement errors.

Our results indicate that the registration approach based on CPD affine should yield a more accurate EEG 
source localization, since 5.0 mm has been shown to be the maximum accepted error on sensor locations to 
obtain negligible errors on source localization64. The median values of the Euclidean distance relative to sensor 
positions across sensors and subjects was 4.5 (MAD = 2.1) mm with CPD affine, whereas for the affine transfor-
mation based on landmarks was 6.7 (MAD = 3.1) mm. We recommend using a photogrammetry-based approach 
with CPD affine registration in studies requiring accurate sensor localization (e.g., source reconstruction or image 
reconstruction studies), whereas the easier affine transformation based on landmarks could be a valid option in 
studies not requiring high accuracy in sensor localization.

One drawback of the CPD affine approach compared to the affine transformation based on landmarks is the 
computational time, which was on average around 11 min for the former compared to less than 1 s for the latter. 
We expect this computational time to be reduced by increasing the down-sampling factor of the surfaces, but 
further studies are required to investigate how decreasing the number of mesh points affects the registration 
error. We believe that, except for situations requiring real-time application of the registration approach, the 
computational time of CPD would not have a huge impact on the analysis pipeline of both EEG/fNIRS users.

In this study we tested the localization and registration errors in an ideal situation, to evaluate the real impact 
of the detection techniques and registration approaches. However, both EEG and fNIRS systems are made with 
bundles of fibres/cables and bulky sensors located on the participants’ head. Due to the presence of the cables, 
head surfaces derived with the photogrammetry-based approach will be larger than the actual head size, thus 
affecting the results of the registration. Furthermore, sensor locations based on the position of the upper surface 
will be a few millimetres to one centimetre above the scalp. A further step will be therefore required, that is to 
project the detected sensor locations to the head surface. We envisage an easy and straightforward possible 
solution to this problem, that is to record two videos of the subject’s head, one with the cap without the sensors 
and the other one while the subject is wearing the cap with the sensors attached. The former video could be 
used to obtain a realistic surface of the participant’s head, which can be used to estimate, with CPD, an accurate 
affine transformation between the participant’s surface and the atlas. The latter can be used to identify sensor 
positions, which can be then orthogonally projected on the participant’s head surface. An accurate registration 
between the two meshes can be obtained exploiting nose and facial features. Future studies should investigate the 
feasibility of this solution and the additional localization errors of this further step. Using the photogrammetry-
based method might be problematic when dealing with infants because it is not possible to record a single video 
of their whole head whilst held on the mother’s lap. This problem could be solved either by recording multiple 
videos whilst the infant is held in different positions and then merging all frames before deriving the mesh, or 
by deriving the meshes of the visible portions of the head from different videos and merging the surfaces with 
software like Meshlab50.

In conclusion, in this paper, we described and validated a low-cost photogrammetry-based approach that 
can be easily employed to identify sensor locations by recording a video of the subject’s head with a smartphone. 
Furthermore, we compared four different registration approaches that exploited the information of the subject’s 
head shape measured with photogrammetry with the gold standard registration approach based on an affine 
transformation between landmarks. Our results highlighted that the most accurate approach to register indi-
vidual sensor positions to an atlas is the combination of the photogrammetry-based technique with an affine 
transformation between the individual and atlas head surface performed with CPD.

Data availability
The data of the validation study, results of both validation and registration study and all the code developed in 
this paper have been released via https://​github.​com/​sbrig​adoi/​Smart​phone-​Photo​gramm​etry.
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