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Purpose: To compare different multi-echo combination methods for MRI QSM.
Given the current lack of consensus, we aimed to elucidate how to optimally
combine multi-echo gradient-recalled echo signal phase information, either
before or after applying Laplacian-base methods (LBMs) for phase unwrapping
or background field removal.
Methods: Multi-echo gradient-recalled echo data were simulated in a numeri-
cal head phantom, and multi-echo gradient-recalled echo images were acquired
at 3 Tesla in 10 healthy volunteers. To enable image-based estimation of
gradient-recalled echo signal noise, 5 volunteers were scanned twice in the same
session without repositioning. Five QSM processing pipelines were designed: 1
applied nonlinear phase fitting over TEs before LBMs; 2 applied LBMs to the
TE-dependent phase and then combined multiple TEs via either TE-weighted
or SNR-weighted averaging; and 2 calculated TE-dependent susceptibility maps
via either multi-step or single-step QSM and then combined multiple TEs via
magnitude-weighted averaging. Results from different pipelines were compared
using visual inspection; summary statistics of susceptibility in deep gray matter,
white matter, and venous regions; phase noise maps (error propagation theory);
and, in the healthy volunteers, regional fixed bias analysis (Bland–Altman) and
regional differences between the means (nonparametric tests).
Results: Nonlinearly fitting the multi-echo phase over TEs before applying
LBMs provided the highest regional accuracy of 𝜒 and the lowest phase noise
propagation compared to averaging the LBM-processed TE-dependent phase.
This result was especially pertinent in high-susceptibility venous regions.
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Conclusion: For multi-echo QSM, we recommend combining the signal phase
by nonlinear fitting before applying LBMs.

K E Y W O R D S

MRI, multi-echo QSM, quantitative susceptibility mapping

1 INTRODUCTION

MRI QSM aims to determine the underlying spatial
distribution of tissue magnetic susceptibility (𝜒) from
gradient-recalled echo (GRE) phase data (𝜙):

𝜙(r,TE) = 𝛾ΔBTot(r,TE)TE + 𝜙0(r), (1)

where r is a vector of image space coordinates, 𝛾 the
proton gyromagnetic ratio, TE the echo time, ΔBTot the
𝜒-induced total field perturbation along the scanner’s z
axis, and 𝜙0 the TE-independent phase offset at a nominal
TE = 0 ms.

For QSM, the acquired phase must be spatially
(single-echo data) or spatiotemporally (multi-echo data)
unwrapped to resolve 2𝜋 aliasing. The unwrapped𝜙 is pro-
portional to ΔBTot (Equation 1), which is a combination of
background (ΔBBg) and local field contributions (ΔBLoc):

ΔBTot(r) = ΔBBg(r) + ΔBLoc(r). (2)

ΔBBg are induced by the global geometry, air–tissue inter-
faces, and any field inhomogeneities. ΔBLoc reflect the
tissue 𝜒 inside the region of interest (ROI), for example,
the brain. For QSM, ΔBBg must be removed from ΔBTot.
The resulting ΔBLoc map is in the following relationship
with 𝜒 :

ΔBLoc(r) = d(r) ⋆ 𝜒(r), (3)

where d is the magnetic dipole and ⋆ denotes a spatially
dependent convolution. Based on Equation 3, the local dis-
tribution of tissue 𝜒 , that is, the QSM map, is calculated by
solving an ill-posed ΔBLoc-to-𝜒 problem.

Recently, the QSM community critically reviewed
how to best perform phase unwrapping1 and ΔBBg
removal.2 Moreover, it promoted 2 challenges to com-
pare algorithms for ΔBLoc-to-𝜒 inversion, but a con-
sensus has yet to be reached.3,4 A further open ques-
tion toward QSM standardization is how and at which
stage of the processing pipeline multi-echo data from

different echoes should be combined. This question is
relevant because phase unwrapping, ΔBBg removal, or
both, are often performed using Laplacian-based methods
(LBMs).1,2

Laplacian phase unwrapping aims to calculate the
2𝜋-aliasing-free phase as5:

∇−2 (∇2
𝜑
)
= ∇−2 (cos𝜑w∇2 (sin𝜑w) − sin𝜑w∇2 (cos𝜑w)

)
,

(4)

with ∇2 and ∇−2 the forward and inverse Laplace
operators, and 𝜙w the aliased phase. Laplacian ΔBBg
removal relies on the harmonicity of ΔBBg inside the
ROI (i.e., ∇2ΔBBg(r) = 0, r ∈ ROI) and aims to solve this
Equation2:

∇−2 (∇2 (ΔBLoc(r))
)
= ∇−2 (∇2 (ΔBLoc(r) + ΔBBg(r)

))
,

r ∈ ROI. (5)

The inverse discrete Laplace operator is not well
defined and requires regularization, which is equivalent
to spatially high-pass filtering the phase or local field.2
However, the known varying frequency content at differ-
ent TEs6,7 could lead to different degrees of LBM-induced
high-pass filtering at different echoes, alter the linearity
of Equation 1, and thus introduce inaccuracies in the esti-
mated ΔBLoc and 𝜒 maps. To investigate the issue, this
study aimed to compare existing strategies for combining
the multi-echo signal phase (see the Theory section for fur-
ther details) when using LBMs for phase unwrapping or
ΔBBg removal.

Five processing pipelines for QSM were designed
incorporating LBMs for both phase unwrapping and
ΔBBg removal and combining the signal from differ-
ent TEs by fitting or averaging before or after apply-
ing LBMs. These pipelines were applied to both numer-
ically simulated data and images acquired in vivo.
Results from each pipeline were compared qualitatively
by visual inspection and quantitatively via analysis of
the regional 𝜒 bias and precision, as well as noise
propagation.
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2 THEORY

2.1 Multi-echo combination

Previous studies employing multi-step reconstruction
pipelines for QSM at 3 Tesla have combined the sig-
nal from multiple echoes by either averaging8–11 or fit-
ting12–15 before or after applying LBMs. For multi-echo
combination in QSM, this study focuses on approaches
based on weighted averaging8–11 or complex nonlinear
fitting (NLFit)12,13 that outperform approaches based on
unweighted averaging16 or linear fitting.14

2.1.1 Fitting

Multi-echo combination via nonlinear fitting (NLFit) has
formulated the temporal evolution of the complex signal
as a nonlinear least squares problem12:

ΔB∗Tot(r), 𝜙
∗
0(r) = argminΔBTot(r),𝜙0(r)

‖S (r,TEi) −M (r,TEi) exp (i𝜙 (r,TEi))‖2
2, (6)

where S denotes the acquired complex signal, M the sig-
nal magnitude, 𝜙 the signal phase (Equation 1), and TEi
the i-th echo time. This approach aims to mitigate noise
in ΔBTot by correctly modeling as normally distributed the
noise in the real and imaginary parts of the complex sig-
nal. Unlike weighted-averaging–based approaches, NLFit
enables estimating 𝜙0. Notably, the input phase to nonlin-
ear fitting is minimally processed because it only requires
to be temporally unwrapped, thus avoiding the application
of LBMs before multi-echo combination.

2.1.2 Weighted averaging

Multi-echo combination (with n echoes) via weighted
averaging has been performed using either TE-based
weighting factors8,9 or phase SNR-based weighting fac-
tors.10

TE-based weighted averaging (TE-wAvg)8,9 accounts
for the phase at shorter TEs being affected by larger noise
levels than at longer TEs. TE-wAvg calculates a combined
ΔBTot as

ΔBTot(r) =
1
𝛾

n∑

i=1
w (r,TEi)

𝜙 (r,TEi)
TEi

, (7)

with weights equal to:

w (r,TEi) =
TEi∑n
𝑗=1TE𝑗

. (8)

TE-wAvg requires temporal unwrapping of the input
multi-echo phase, resulting in a combined ΔBTot, which
still contains ΔBBg contributions.

SNR-based weighted averaging (SNR-wAvg)10

accounts for different tissue types reaching optimal SNR
at different TEs and calculates a combined local field map
(ΔBLoc) as:

ΔBLoc(r) =
1
𝛾

n∑

i=1
w (r,TEi)

ΔBLoc (r,TEi)
TEi

, (9)

with weights equal to:

w (r,TEi) =
TEi exp

(
−TEiR∗2(r)

)

∑n
𝑗=1TE𝑗 exp

(
−TE𝑗R∗2(r)

) . (10)

In Equation 10, R∗2 denotes the map of voxel-wise
transverse relaxation rates, which is related to the signal
magnitude M by:

M(r,TE) = M0(r) exp
(
−R∗2(r)TE

)
, (11)

with M0 the initial transverse magnetization. SNR-wAvg
requires performing temporal and spatial unwrapping
as well as background field removal on the input
multi-echo phase, resulting in a background field–free
field map.

Alternatively, a distinct 𝜒 map has been calculated
at each TE, and multi-echo combination of 𝜒 over
time has been performed via weighted averaging using
magnitude-based weighting factors (Susc-wAvg).11 Based
on the inverse proportionality of the phase noise and mag-
nitude SNR,17 this method aims to improve the SNR of the
combined 𝜒 map as:

𝜒(r) =
n∑

i=1
w (r,TEi)𝜒 (r,TEi) , (12)

with weights equal to:

w (r,TEi) =
M2 (r,TEi)TE2

i
∑n
𝑗=1

(
M2

(
r,TE𝑗

)
TE2

𝑗

) . (13)

2.2 Noise propagation

Previous studies using fitting13 or SNR-wAvg10 have cal-
culated expressions for the noise in the total field map
(𝜎 (ΔBTot)). For TE-wAvg or SNR-wAvg, expressions for
𝜎 (ΔBTot) have not been calculated and were therefore
derived here. For each multi-echo combination method,
expressions for noise propagation from ΔBTot to the
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corresponding ΔBLoc and 𝜒 images were also derived
here.

Based on error propagation, the noise in ΔBTot calcu-
lated using a linear least squares fitting approach13 is (see
Supporting Information, Section 1):

𝜎
(
ΔBFit

Tot
)
=

√∑n
i=1

1
𝜎2(𝜙(TEi))

𝛾

√√√√√√

∑n
i=1

1
𝜎2(𝜙(TEi))

∑n
i=1

TE2
i

𝜎2(𝜙(TEi))
−
(∑n

i=1
TEi

𝜎2(𝜙(TEi))
)2

. (14)

Equation 14 also corresponds to the a priori noise
estimate found in nonlinear least squares fitting,12 thus
𝜎
(
ΔBNLFit

Tot
)
= 𝜎

(
ΔBFit

Tot
)
.

Based on Equations 7–10, ΔBTot calculated using
TE-wAvg and ΔBLoc calculated using SNR-wAvg, respec-
tively, have variances equal to:

𝜎
2
(
ΔBTE−wAvg

Tot

)
= 𝜎2

(∑n
i=1𝜙 (TEi)
𝛾
∑n

i=1TEi

)

(15)

𝜎
2
(
ΔBSNR−wAvg

Loc

)
= 𝜎2

(
1

n𝛾

n∑

i=1

TEi exp
(
−TEiR∗2

)

∑n
𝑗=1TE𝑗 exp

(
−TE𝑗R∗2

)
𝜑 (TEi)

TEi

)

.

(16)

Assuming that noise in the single-echo phase is temporally
uncorrelated and based on error propagation, the noise
in ΔBTot/ ΔBLoc calculated using TE-wAvg/SNR-wAvg is,
respectively, equal to:

𝜎

(
ΔBTE−wAvg

Tot

)
=

∑n
i=1𝜎 (𝜙 (TEi))
𝛾
∑n

i=1TEi
(17)

𝜎

(
ΔBSNR−wAvg

Loc

)
= 1
𝛾

n∑

i=1

exp
(
−TEiR∗2

)

∑n
𝑗=1TE𝑗 exp

(
−TE𝑗R∗2

)𝜎 (𝜑 (TEi)) .

(18)

Equations 17 and 18 omit the r dependency because they
combine the multi-echo phase voxel by voxel.

2.2.1 Noise in the local field map

Based on error propagation and the orthogonality18 of
ΔBLoc and the ΔBBg in the ROI, for example, the brain:

𝜎 (ΔBLoc) =
√
𝜎2 (ΔBTot) − 𝜎2

(
ΔBBg

)
⇔ 𝜎 (ΔBLoc) ≤ 𝜎 (ΔBTot)

(19)

where ⇔ denotes an “if and only if” relationship, and
𝜎 (ΔBLoc) = 𝜎 (ΔBTot) is the worst-case scenario.

2.2.2 Noise in the susceptibility map

Due to the circular convolution theorem, the deconvo-
lution operation in Equation 3 can be performed by
point-wise division in the Fourier domain. Thus, if the
regularized inverse dipole kernel in k-space D̃−1 can be
analytically derived independent of the Fourier transforms
of 𝜒 or ΔBLoc, 𝜎(𝜒) can be calculated as (see Supporting
Information, Section 2):

𝜎(𝜒(r)) = 1
B0

√
FT−1

(
D̃−2(k)FT

(
𝜎2 (ΔBLoc(r))

))
, (20)

Where FT and FT−1, respectively, denote the direct and
inverse Fourier transforms, and k denotes k-space coor-
dinates. Deriving an analytical expression for D̃−1 is
possible, for example, when considering thresholded
k-space division or the Tikhonov-regularized minimal
norm solution.13,19,20

For weighted averaging of TE-dependent 𝜒

(Equations 12 and 13), based on phase error propagation
over time and Equation 20, 𝜎 (ΔBLoc (TEi)) equals

𝜎 (ΔBLoc (TEi)) =
𝜎 (𝜙 (TEi))
𝛾TEi

. (21)

Based on Equations 12, 13, 20, and 21 (see Supporting
Information, Section 3), 𝜎

(
𝜒

Susc−wAvg) is the square
root of:

𝜎
2 (
𝜒

Susc−wAvg) =

1
(B0𝛾n)2

n∑

i=1
𝜒

2 (TEi)
⎛
⎜
⎜
⎜
⎝

4M2 (TEi)TE4
i 𝜎

2 (M (TEi))
∑n
𝑗=1

(
M2

(
TE𝑗

)
TE2

𝑗

)2

+
M4 (TEi)TE4

i
∑n
𝑗=1

(
M2

(
TE𝑗

)
TE2

𝑗

)4

n∑

𝑗=1
4M2 (TE𝑗

)
TE4

𝑗
𝜎

2 (M
(

TE𝑗
))

−
2M2 (TEi)TE2

i
(∑n

𝑗=1M2
(

TE𝑗
)

TE2
𝑗

)3 4M2 (TEi)TE4
i 𝜎

2 (M (TEi))
⎞
⎟
⎟
⎟
⎠

+

(
M2 (TEi)TE2

i
∑n
𝑗=1M2

(
TE𝑗

)
TE2

𝑗

)2

𝜎
2 (𝜒 (TEi)) . (22)

Notably, Equation 22 requires analytically describing 𝜎(𝜒)
(Equation 20).

3 METHODS

Where not otherwise stated, image analysis was performed
on a 64-bit Microsoft (Redmond, WA) Windows 11 Pro
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operating system (Intel(R) (Santa Clara, CA) Core(TM)
i5-9400 CPU@2.90GHz processor; 16 GB RAM) using Mat-
Lab (R2021b, MathWorks, Natick, MA). Preliminary ver-
sions of this study were presented at the 2016 and 2018
annual meetings of the International Society for Magnetic
Resonance in Medicine.21,22

3.1 In vivo data acquisition

Multi-echo 3D GRE imaging of 10 healthy volunteers
(average age/age range: 26/22–30 years, 5 females) was
performed in 2 centers (University College London Hos-
pital and Queen Square Multiple Sclerosis Centre, Uni-
versity College London) equipped with the same 3 Tesla
MRI system (Philips Achieva, Philips Healthcare, Best,
NL; 32-channel head coil). Five subjects were acquired in
each center. All volunteers provided written informed con-
sent, and the local research ethics committees approved
the experimental sessions. Images were acquired using a
transverse orientation, FOV = 240×240×144 mm3, voxel
size = 1-mm isotropic, flip angle = 200, TR = 29 ms, 5
evenly spaced echoes (TE1/TE spacing = 3/5.4 ms), band-
width = 270 Hz/pixel, SENSE23 factors = 2/1.5, flyback
gradients= on, no flow compensating gradients, total scan
duration= 04:37 min:s.24 Five subjects were scanned twice
within the same session without repositioning to enable
image-based calculation of magnitude and phase SNRs.

3.2 Data simulation from a numerical
head phantom

To ensure the availability of ground-truth 𝜒 values against
which to test the accuracy of QSM pipelines, a Zubal
numerical head phantom was used25 with the following
ROIs: the caudate nucleus (CN), globus pallidus (GP),
putamen (PU), thalamus (TH), superior sagittal sinus,
gray and white matter (GM and WM), and CSF. To match
the acquisitions in vivo, the original 1.5-mm isotropic
phantom was resampled to a 1-mm isotropic resolution
with matrix size = 384×384×192 voxels. Compared to our
previous study,26 the numerical phantom was updated
to achieve realistic regional means ± SDs for 𝜒 , the
proton density (M0), and the transverse relaxation rate
(T∗2 = 1∕R∗2) (see Supporting Information, Section 4). Sim-
ulated multi-echo complex data were generated based
on these ground-truth spatially variable 𝜒 , M0, and T∗2
distributions, as:

S (r,TEi) = M (r,TEi) exp (i𝜙 (r,TEi)) , (23)

with 𝜙 and M, respectively, described by Equations 1 and
11, and TEs matched to the in vivo acquisitions. Random

zero-mean Gaussian noise with a SD = 0.07 was added to
the real and imaginary parts of the noise-free signal inde-
pendently.17,26 The random noise matrix was regenerated
at each TE.

3.3 Data preprocessing

A brain mask was calculated for each subject by applying
FSL brain extraction tool27,28 with robust brain center esti-
mation (threshold = 0.3) to the magnitude image at the
longest TE. This choice of TE accounted for the greater
amount of signal dropout near regions of high- 𝜒 gradients
compared to shorter TEs.

A whole-brain mask for the Zubal phantom was cal-
culated by applying FSL brain extraction tool with robust
brain center estimation (threshold = 0.5) to the T∗2 map of
the numerical phantom.26

3.4 Processing pipelines for QSM

Five distinct processing pipelines (Figure 1) were applied
to both the numerically simulated and the healthy vol-
unteer data, and the time required to run each pipeline
was measured using MatLab’s stopwatch timer (Math-
Works). Three of these pipelines (NLFit, TE-wAvg, and
SNR-wAvg) combined the phase across TEs at different
stages before performing the ΔBLoc-to- 𝜒 inversion. Two
other pipelines (Susc-wAvg and Susc-total generalized
variation (TGV)-wAvg) first calculated a distinct 𝜒 map at
each TE and then combined the 𝜒 maps. The following
paragraphs describe each processing pipeline in detail.

The NLFit pipeline26 first combined the complex GRE
signal by nonlinear fitting over TEs12 using the Cor-
nell QSM software package’s Fit_ppm_complex function.29

It then applied simultaneous spatial phase unwrapping
and ΔBBg removal using sophisticated harmonic artifact
reduction for phase data (SHARP),30 a direct solver of
Equation 5.30

SHARP was chosen because it has been widely
used in the literature on QSM and is both robust
and numerically efficient.2 Moreover, in our recent
study comparing multi-echo and TE-dependent QSM, a
multi-echo pipeline incorporating SHARP gave highly
accurate multi-echo QSM values.26 SHARP was applied
using the minimum-size 3-voxel isotropic 3D Laplacian
kernel,30 a threshold for truncated singular value decom-
position equal to 0.05, and a brain mask eroded by 5 voxels.

The TE-wAvg processing pipeline first applied Lapla-
cian unwrapping to the phase at each TE using a threshold
for truncated singular value decomposition equal to 10−10

(i.e., the default value in Ref. 29). Second, it calculated
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F I G U R E 1 Processing pipelines for multi-echo QSM. For each multi-echo combination method (NLFit, TE-wAvg, SNR-wAvg,
Susc-wAvg, and Susc-TGV-wAvg), the processing steps are described as separate processing streams. NLFit, nonlinear phase fitting;
SNR-wAvg, SNR-weighted phase averaging; Susc-wAvg and Susc-TGV-wAvg, magnitude-weighted susceptibility averaging; TE-wAvg,
TE-weighted phase averaging

ΔBTot by averaging the unwrapped phase according to
Equations 7 and 8.8,9 Then, it calculatedΔBLoc by applying
SHARP with the same parameters as in NLFit.

The SNR-wAvg processing pipeline first applied simul-
taneous phase unwrapping andΔBBg removal to the phase
at each TE using SHARP with the same parameters as
in NLFit. An R∗2 map was calculated by voxel-wise fit-
ting Equation 11 using MatLab’s nlinfit function, where
initial values for R∗2 and M0 were calculated by linearly
fitting the log-linearized version of Equation 11. The
SNR-wAvg pipeline then calculatedΔBLoc by averaging the
unwrapped and background field-free phase according to
Equations 9 and 10.10

In the NLFit, TE-wAvg, and SNR-wAvg pipelines,
ΔBLoc-to- 𝜒 inversion was performed using Tikhonov reg-
ularization with correction for susceptibility underesti-
mation and using the L-curve method to determine the
optimal value for the regularization parameter.13,30,31 This

inversion method was chosen because it is computation-
ally efficient and substantially reduces streaking artifacts
relative to thresholded k-space division.32

The Susc-wAvg processing pipeline calculated a dis-
tinct 𝜒 map at each TE by applying simultaneous phase
unwrapping and ΔBBg removal using SHARP as in NLFit
and performing the ΔBLoc-to-𝜒 inversion using Tikhonov
regularization as in NLFit, TE-wAvg, and SNR-wAvg. This
pipeline then calculated a combined 𝜒 map according to
Equations 12 and 13.11

The Susc-TGV-wAvg processing pipeline applied
1-step TGV33 to the phase at each TE and then calcu-
lated a combined 𝜒 map as in Susc-wAvg. The TGV
method was tested because it avoids stair-casing arti-
facts in the resulting 𝜒 map while correctly preserving
structural borders.33 Moreover, in our recent study com-
paring multi-echo and TE-dependent QSM, TGV provided
highly accurate TE-dependent QSM images.26 TGV
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(v1.0.0_20210629) was run in Neurodesk (v20220302,
https://neurodesk.github.io/) with the default parame-
ter values (𝛼1, 𝛼0) = (0.0015,0.005), which are optimal for
medical imaging applications.33

3.5 ROI segmentation in the healthy
volunteer images

Regional 𝜒 values were compared within the simulated
and in vivo data, similarly to our previous study.26 ROIs
similar to those in the numerical phantom were seg-
mented in vivo: the CN, GP, PU, TH, posterior corona
radiata (PCR) as a WM ROI, and the straight sinus (StrS)
as a venous ROI. Briefly, for each subject, the CN, GP,
PU, TH and PCR were segmented based on the Eve 𝜒

atlas,34 for which the GRE magnitude image was aligned to
each subject’s fifth-echo magnitude image using NiftyReg
(NiftK v14.11.0)35,36 (TEEve/TE5 = 24/24.6 ms). The qual-
ity of ROI alignment was assessed by visual inspection.
The ITK-SNAP (active contour segmentation tool37 was
used to segment the StrS over several slices based on the
fifth-echo magnitude image, which presented the best con-
trast between the StrS and the surrounding brain tissue.

3.6 Quantitative evaluation of the
measured 𝝌

In the numerical phantom simulations, each QSM
pipeline’s performance relative to the ground truth
was visually assessed by calculating a difference
image between the corresponding ΔBLoc∕𝜒 map and
ΔBTrue

Loc ∕𝜒
True. Here, ΔBTrue

Loc referred to the ground-truth
local field calculated using the reference scan method,18,38

and 𝜒
True to the ground-truth magnetic susceptibility

distribution with realistic regional means ± SDs of 𝜒
(Supporting Information Figure S1B). Means and SDs
of 𝜒 were calculated for each pipeline in each ROI with
𝜒

True ≠ 0, that is, the CN, GP, PU, TH, superior sagittal
sinus, and WM. The RMSEs of both ΔBLoc and 𝜒 relative
to 𝜒

True were also calculated throughout the brain vol-
ume.26 Notably, RMSEs for ΔBLoc could not be calculated
for the 1-step Susc-TGV-wAvg pipeline.

In the volunteers, due to to the lack of a ground
truth, representative susceptibility difference images were
calculated relative to 𝜒

NLFit because the NLFit pipeline
performed multi-echo combination at the earliest possi-
ble stage; and relative to 𝜒TE−wAvg, because the TE-wAvg
pipeline had the lowest local field RMSE in the numeri-
cal phantom simulations (see the Results). Regional means
and SDs of 𝜒 were calculated for each processing pipeline
and compared against 𝜒 values in subjects of a similar age

from the QSM literature. RMSEs could not be calculated
because of the lack of a ground truth. For visualization pur-
poses, the pooled averages and SDs were calculated26 after
verifying that all intrasubject SDs of 𝜒 were larger than the
intersubject SD of 𝜒 .

3.7 Noise propagation maps

Only the healthy volunteers scanned twice were consid-
ered for this analysis. To enable image SNR calculation, in
1 healthy volunteer, five 20×20-voxel ROIs were drawn on
a sagittal slice of the first-echo magnitude image,39 includ-
ing both the GM and WM and excluding regions with
artifacts induced by SENSE, motion, or flow. All 5 ROIs
were applied across the other 4 volunteers by using rigid
alignment transforms (NiftyReg36) between the first-echo
magnitude images.

In each subject, ROI-based magnitude (MROI), mag-
nitude noise (𝜎ROI(M)), and phase noise values (𝜎ROI(𝜙))
were calculated based on the SNR difference method40:

MROI(TE, r) = 1
2

mean (M1(TE, r) +M2(TE, r)) , r ∈ ROI

(24)

𝜎ROI(M(TE, r)) =
√

R
2

SD (M1(TE, r) −M2(TE, r)) , r ∈ ROI

(25)

𝜎ROI(𝜙(TE, r)) =
√

R
2

SD (𝜙1(TE, r) − 𝜙2(TE, r)) , r ∈ ROI.

(26)

Here, M1∕𝜙1 and M2∕𝜙2, respectively, denote the magni-
tude/phase images from the first and second scan, and
R = 3 is the 2D SENSE factor calculated by multiplying the
SENSE factors applied along the 2 phase encoding direc-
tions.41 The values calculated based on Equations 24–26
were averaged across the 5 ROIs to calculate summary val-
ues of magnitude, magnitude noise, and phase noise at
each TE.

For both the numerical phantom simulations and the
healthy volunteers, a phase noise 𝜎(𝜙)map was calculated
at each TE as17,42:

𝜎(𝜙(TE, r)) = c(TE) 1
SNR(TE, r)

= c(TE)𝜎ROI(M(TE, r))
M(TE, r)

.

(27)

where c(TE)was a constant equal to 1 (by definition) in the
numerical phantom simulations and equal to:

c(TE) = 𝜎ROI(TE)
1

SNRROI(M)

= 𝜎ROI(𝜙(TE))𝜎ROI(M(TE))
M(TE)

(28)

https://neurodesk.github.io/
https://www.itksnap.org/pmwiki/pmwiki.php?n=Main.Publications
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in the healthy volunteers. Notably, calculating phase noise
analytically as in Equation 27 enabled the direct compar-
ison of noise propagation between numerical simulations
and data acquired in vivo.

For the NLFit, TE-wAvg, and SNR-wAvg pipelines, the
𝜎 (ΔBLoc)map was calculated based on the multi-echo 𝜎(𝜙)
maps according to Equations 14 and 17–19. Then, the 𝜎(𝜒)
map was calculated according to Equation 20 with B0 =
3 Tesla and the Tikhonov-regularized inverse magnetic
dipole kernel with regularization parameter 𝛼 13 :

D̃−2(k; 𝛼) = D(k)
D(k)2+𝛼

(29)

and correction for 𝜒 underestimation.30 For the
Susc-wAvg pipeline, the 𝜎(𝜒) map was calculated based
on Equation 22. 𝜎(𝜒) maps were not calculated for the
Susc-TGV-wAvg pipeline because TGV estimates 𝜒 itera-
tively33 and an analytical expression for 𝜎(𝜒) could not be
derived.

To compare 𝜎(𝜒) maps across pipelines, a line pro-
file was traced in the same location of all 𝜎(𝜒) images,
and the 𝜎(𝜒) value of each voxel along this pro-
file was plotted. To compare the noise intensity and
its variability between processing pipelines, the mean
and SD of this representative line profile were also
calculated.

3.8 Statistical analysis

Statistical analyses were performed based on the healthy
subject data. For each ROI and each pair of pipelines,
Bland–Altman analysis of the average 𝜒 was used to
assess if pairs of pipelines systematically produced differ-
ent results. For each ROI, statistically significant differ-
ences between pipelines were tested by considering the
corresponding distributions of average 𝜒 values across
subjects. To assess whether to apply parametric paired t
tests or nonparametric sign tests, the normal distribution
of the differences between paired 𝜒 values was assessed
using the Shapiro–Wilk test. All statistical tests were
2-tailed, and an uncorrected P value< 0.05 was considered
significant.

4 RESULTS

4.1 Pooling of 𝝌 measurements

For each ROI and each processing pipeline, all intrasubject
SDs of𝜒 were larger than the intersubject SD. Thus, pooled
means and SDs were calculated.26

4.2 Performance of pipelines
for multi-echo QSM

The Susc-wAvg and Susc-TGV-wAvg processing pipelines
were the longest to run (Supporting Information Table S1)
because they calculated a QSM map at each TE. The longer
processing times required for the numerical phantom data
were linked to the larger matrix size (384×384×192) com-
pared to acquisitions in vivo (240×240×144).

In the numerical phantom, Figure 2 shows the
ground-truth 𝜒 (A, G), the QSM images calculated by
each processing pipeline (B–L), their difference rela-
tive to the ground truth (M–V), and the RMSEs of 𝜒
throughout the brain volume (bottom row). Analogous
results for ΔBLoc are shown in Supporting Information
Figure S2. In the numerical phantom simulations, the 𝜒
map calculated using the NLFit pipeline had the largest
RMSE (109.4%) followed, in decreasing order, by the
SNR-wAvg (94.3%), TE-wAvg (93.5%), Susc-wAvg (91.5%),
and Susc-TGV-wAvg pipelines (80.4%) (Figure 2, bottom
row). The ΔBLoc map calculated using the Susc-wAvg
pipeline had the largest RMSE (average across TEs:
85.0%), followed in decreasing order by the NLFit (81.2%),
TE-wAvg, and Susc-wAvg pipelines (both 71.8%).

In the numerical phantom and for each processing
pipeline, Figure 3A shows the regional means and SDs
of 𝜒 . The error between the calculated and ground-truth
𝜒 appeared similar for all processing pipelines, although
slightly larger SDs were always observed for the NLFit
pipeline (Figures 2M–V and 3A). The superior sagittal
sinus, which was the structure with the largest 𝜒True,
showed the largest susceptibility errors for all processing
pipelines (arrowheads in Figures 2G–L, R–V, and 3A).

For one representative volunteer, Figures 4A–J show
the susceptibility images calculated using each process-
ing pipeline. Additionally, differences images are shown
relative to the 𝜒

NLFit (K-R) and the 𝜒
TE−wAvg maps

(S-Z). Here, susceptibility differences between processing
pipelines were most prominent in the StrS (arrowheads
in Figures 4F–J, O–R, W–Z). In the healthy volunteers,
Figure 3B shows the pooled regional means and SDs
of 𝜒 calculated by each processing pipeline. The aver-
age 𝜒 measured in the deep-GM ROIs and in the PCR
had values within the ranges reported by previous stud-
ies34,43–47: 0.01–0.13 ppm for the CN, 0.06–0.29 ppm for
the GP, 0.02–0.14 ppm for the PU, −0.02–0.08 ppm for the
TH, and−0.06–0.03 ppm for the PCR. In the StrS, only
𝜒

NLFit had an average value close to the previously reported
range for venous blood, namely, 0.17–0.58 ppm32,46,48,49

(Figure 3B).
In the CN, GP, and venous ROIs, the regional χ mea-

sured in vivo had a relative accuracy across pipelines
similar to the numerical phantom simulations: the NLFit
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F I G U R E 2 𝜒 maps calculated using distinct multi-echo combination methods in the numerical phantom simulations. The same
transverse and sagittal slices are shown for the ground-truth susceptibility map (A, G), and for the susceptibility maps calculated using NLFit
(B, H), TE-wAvg (C, I), SNR-wAvg (D, J), Susc-wAvg (E, K), and Susc-TGV-wAvg (F, L). The figure also shows the difference between each
susceptibility map and the ground truth (M–V). The bottom row shows the RMSEs of 𝜒 for each pipeline. In all the sagittal images (G–L,
R–V), the yellow and blue arrowheads, respectively, point at the same posterior and anterior locations in the superior sagittal sinus

and Susc-TGV-wAvg pipelines, respectively, provided the
highest and lowest means of 𝜒 , whereas the TE-wAvg,
SNR-wAvg, and Susc-wAvg pipelines provided interme-
diate values (Figure 3). Slightly different trends were
observed in the PU, TH, and WM ROIs, where, in vivo, the
NLFit and Susc-TGV-wAvg pipelines provided the lowest
(absolute) means of 𝜒 ; and the TE-wAvg, SNR-wAvg, and
Susc-wAvg pipelines provided higher values (Figure 3B).
In the numerical phantom simulations, the NLFit pipeline
always had the largest SD of 𝜒 (Figure 3A). In contrast, in
vivo, the NLFit pipeline had the smallest SD of 𝜒 in the
CN, PU, TH, and PCR, and SDs of 𝜒 comparable to other
pipelines in the GP and StrS (Figure 3B).

4.3 Phase noise propagation into
the 𝝌 maps

Figures 5 and 6 show the estimated 𝜎(𝜒) maps and
profiles in the numerical phantom simulations and

a representative healthy subject, respectively. All 𝜎(𝜒)
images contained some degree of streaking artifacts, espe-
cially in vivo, because these are a manifestation of error
propagation from ΔBLoc to 𝜒 caused by the dipole kernel
null space.20 In the phantom, the NLFit and Susc-wAvg
pipelines had the 𝜎(𝜒) line profiles with the lowest means
and SDs (Figures 5A,D,E,H,I). The NLFit and SNR-wAvg
pipelines always resulted in the lowest streaking artifacts
burden (Figures 5A,E,C,G,I and 6A,E,C,G,I). Streaking
artifacts were more severe in the TE-wAvg and Susc-wAvg
pipelines, especially near high-𝜒 venous structures.

4.4 Statistical analysis

In the healthy volunteers, for all processing pipelines
and ROIs, the Shapiro–Wilk test always rejected the
hypothesis of normally distributed paired differences of
𝜒 . Therefore, pairwise comparisons between pipelines
were always evaluated using the nonparametric sign test.
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F I G U R E 3 Means and SDs
of 𝜒 in the phantom and healthy
volunteer ROIs. The means and
SDs (error bars) of 𝜒 are shown in
each ROI of the numerically
simulated (A) and pooled healthy
volunteer data (B) for each
processing pipeline. In the
numerical phantom, the
ground-truth 𝜒 is also shown. In
the healthy volunteers, significant
differences between pairs of
pipelines are denoted using the
symbols * ( P value <0.05) and ** (
P value <0.01) . CN, caudate
nucleus; GP, globus pallidus;
PCR, posterior corona radiata;
PU, putamen; StrS, straight sinus;
TH, thalamus; WM, white matter;
SSS, superior sagittal sinus

Significant differences between pipelines are shown in
Figure 3B, whereas the between-pipeline biases are shown
in Figure 7. A lower threshold equal to |0.01| ppm (|⋅|
denotes the absolute value) was chosen because, below
this level, interpipeline differences cannot be disentangled
from the intrapipeline variability (i.e., the regional SD).

A bias greater than |0.01| ppm was observed for
the NLFit pipeline relative to all other pipelines in
the CN and StrS (Figure 7). A bias greater than |0.01|
ppm was observed for the Susc-TGV-wAvg pipeline rel-
ative to all other pipelines in the GP, and relative
to the TE-wAvg and Susc-wAvg pipelines in the StrS

(Figure 7). These results suggests that, for accurate 𝜒

quantification, some of the significant differences detected
by the sign test, for example, between the TE-wAvg,
SNR-wAvg, and Susc-wAvg pipelines, may be negligible
(Figures 3B and 7).

5 DISCUSSION

Aiming to elucidate the optimal strategy for multi-echo
combination for QSM, this study compared multi-echo
combination methods applied at different stages of the



BIONDETTI et al. 11

F I G U R E 4 𝜒 maps calculated using distinct multi-echo combination methods in a representative healthy volunteer. The same
transverse and sagittal slices are shown for the susceptibility maps calculated using NLFit (A, F), TE-wAvg (B, G), SNR-wAvg (C, H),
Susc-wAvg (D, I), and Susc-TGV-wAvg (E, J). The figure also shows the differences between the TE-wAvg, SNR-wAvg, Susc-wAvg, and
Susc-TGV-wAvg maps and the NLFit map (K-R); and the differences between the NLFit, SNR-wAvg, Susc-wAvg, and Susc-TGV-wAvg maps
and the TE-wAvg map (S-Z). In all the sagittal images (F-J, O-R, W-Z), the yellow arrowheads point at the same location in the StrS

QSM processing pipeline before or after LBMs for phase
unwrapping or background field removal. Each pipeline
was applied to numerically simulated data and images
from healthy volunteers.

The higher relative accuracy of the NLFit pipeline
in the numerical phantom simulations and in vivo sug-
gests that, for QSM, combining the temporally unwrapped
multi-echo phase before applying LBMs for spatial phase
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F I G U R E 5 Susceptibility noise profiles in the numerical phantom simulations. The same sagittal slice is shown for susceptibility noise
(𝜎(𝜒)) images calculated using the NLFit, TE-wAvg, SNR-wAvg, and Susc-wAvg pipelines (A–D). The susceptibility noise is plotted for a line
profile traced on the 𝜎(𝜒) images (E–H), including the high-𝜒 superior sagittal sinus. All line profiles are also shown combined in the same
plot (I). The mean and the SD of 𝜎(𝜒) are shown for each line profile

F I G U R E 6 Susceptibility noise profiles in a representative healthy volunteer. The same sagittal slice is shown for susceptibility noise
(𝜎(𝜒)) images calculated using the NLFit, TE-wAvg, SNR-wAvg, and Susc-wAvg pipelines (A–D). The susceptibility noise is plotted for a line
profile traced on the 𝜎(𝜒) images (E–H) including the high-𝜒 StrS. All line profiles are also shown combined in the same plot (I). The mean
and SD of 𝜎(𝜒) are shown for each line profile

unwrapping orΔBBg removal is preferable to averaging the
TE-dependent LBM-processed phase or 𝜒 . This sugges-
tion appears to conflict with the higher RMSEs associated
with the NLFit pipeline compared to other pipelines in
the phantom simulations (Figures 2 and Supporting Infor-
mation Figure S2). However, the RMSE jointly reflects
systematic and random errors because it measures the bias
between the estimated and true value and also reflects the
variability of the estimated 𝜒 relative to its average value.3
Thus, the RMSE must always be interpreted in combi-
nation with complementary measurements of bias and
precision. Furthermore, RMSEs of ΔBLoc are difficult to
interpret. In contrast with RMSEs of𝜒 , they allow compar-
ison of different pipelines without the effect of ΔBLoc-to-𝜒

inversion. However, they are voxel-based measures based
on a signal that is intrinsically nonlocal becauseΔBLoc vari-
ations extend beyond the anatomical region of 𝜒 shift that
generated them.19 Thus, the best set of metrics for compar-
ing images generated by a processing pipeline for QSM is
still an active area of research.3,4

There are several potential explanations as to why
LBMs applied before multi-echo combination reduce
the overall accuracy of QSM. Firstly, in contrast with
path-based or region-growing–based phase unwrapping,
Laplacian phase unwrapping usually removes some ΔBBg
components from the input phase image.30 Thus, the con-
sistently lower accuracy of𝜒 calculated using the TE-wAvg
processing pipeline was probably driven by the incorrect
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F I G U R E 7 Bias between multi-echo pipelines for QSM in each ROI. The mean and SDs (error bars) of the bias are shown in each healthy
volunteer ROI for all pairs of multi-echo processing pipelines. The gray band denotes the [−0.01–0.01] ppm interval. If the mean of the bias
was within this interval, the difference between the corresponding pair of QSM pipelines was considered negligible. ROI, region of interest

assumption that the TE-dependent LBM-unwrapped
phase corresponded to the true unwrapped phase. LBMs
for ΔBBg removal also applied truncated singular value
decomposition (with a larger truncation threshold), but
here the high-pass filtering effect was expected because
background fields are slowly varying. Finally, the similar
accuracy and values of 𝜒 calculated using the TE-wAvg,
SNR-wAvg, and Susc-wAvg pipelines suggests a negligible
difference between averaging the Laplacian unwrapped
phase over TEs before (TE-wAvg pipeline) or after
TE-dependent Laplacian ΔBBg removal (SNR-wAvg and
Susc-wAvg pipelines).

In the numerical phantom simulations, all processing
pipelines resulted in higher SDs of 𝜒 compared to the
ground truth, suggesting that noise in the multi-echo sig-
nal phase was amplified by all pipelines. This result is
in line with the known noise amplification of ill-posed
inverse problems. However, the estimated SDs of 𝜒 varied
across pipelines. In the simulations, the Susc-TGV-wAvg
pipeline had the smallest SDs of 𝜒 (Figure 3A). How-
ever, in vivo, the NLFit pipeline generally had the small-
est SDs of 𝜒 (Figure 3B). Both the TGV reconstruction
pipeline and shortcomings of the numerically simulated
data could explain these discrepancies in the performance
of the Susc-TGV-wAvg pipeline. The numerically simu-
lated data were generated based on a digital phantom
which, despite varying regional 𝜒 values in a realistic

fashion (see Supporting Information, Section 4 and Figure
S1), ultimately still appeared as a smooth piece-wise
constant model (Figure 2A,G). As previously observed,3
piece-wise constant geometries allow good recovery of
the underlying𝜒 distribution using TGV-based algorithms
because the piece-wise constant constraints exactly match
the underlying 𝜒 distribution. However, in regions with
flow, anisotropic 𝜒 distributions, or microstructure, these
numerical models are likely to depart from a realistic rep-
resentation of the tissue 𝜒 . To overcome the limitations
of this assumption, future studies could exploit a newly
developed realistic head phantom for QSM, which does not
have a piecewise constant 𝜒 distribution and incorporates
microstructural effects.50

In both numerical simulations and healthy volunteers,
based on the line profiles traced on the noise maps and
streaking artifact reduction, the NLFit pipeline had bet-
ter noise mitigation (Figures 5 and 6). This result suggests
that combining the temporally unwrapped multi-echo
phase by nonlinear complex fitting, designed to account
for noise in the complex signal,12 results in better noise
management than combining the multi-echo phase by
averaging. As previously shown,12 errors in the combined
field map mainly result from both noise in the signal
phase and phase unwrapping errors near high-𝜒 regions
(e.g., the veins). Both sources of error were successfully
managed by nonlinear complex fitting, as shown by the
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dramatic reduction of streaking artifacts in Figure 6A.
In line with previous observations,51 this result also sug-
gests that the regularization strategy employed by the
ΔBLoc-to 𝜒 step can mitigate artifactual streaking errors
only when major sources of error in the field map have
been tightly constrained. At visual inspection in vivo, the
SNR-wAvg was the second-best pipeline for the mitigation
of streaking artifacts (Figure 6). Thus, if applying non-
linear complex fitting is not possible, averaging using the
SNR-weighting–based method could offer the best alterna-
tive for noise reduction.

All these indications do not necessarily apply to 𝜒

estimation in WM tissue. Indeed, due to WM’s ordered
microstructure, a comprehensive estimation of 𝜒 in WM
requires acquiring gradient-recalled echo images at mul-
tiple head orientations and modeling 𝜒 as a tensor.52,53

Thus, further studies are needed to evaluate the applica-
bility of these results to WM tissue.

In the present study, all experiments were limited to
one field strength (i.e., 3 Tesla). Because tissue relaxation
times (e.g., T∗2 ) shorten with increasing field strength, but
the signal phase at a given TE increases, further work is
needed to assess the relevance of these results at ultrahigh
fields. Finally, it must be noted that in the numerical phan-
tom simulations, all processing pipelines underestimated
𝜒

True (Figure 3). However, in QSM some degree of under-
estimation is always expected due to the ill-posed nature
of the ΔBLoc-to-𝜒 inverse problem.20

6 CONCLUSION

The higher accuracy of regional 𝜒 values and better noise
management of the NLFit pipeline suggest that, for QSM,
combining the multi-echo phase by nonlinearly fitting
over TEs before applying LBMs is preferable to com-
bining the TE-dependent LBM-processed phase or 𝜒 by
averaging.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Section 1. Noise in total field map calculated by fitting
Section 2. Noise propagation from the local field to the
susceptibility map
Section 3. Noise propagation in the Susc-wAvg pipeline
Section 4. Numerical phantom simulations
Figure S1. Properties of the numerical phantom. M0 in
arbitrary units (a. u.), T∗2 in ms and 𝜒 in parts per million
(ppm) assigned to various ROIs in the numerical phantom
are shown in (A). The location of these ROIs is shown in
the 𝜒 (B) and T∗2 maps (C) of the numerical phantom
Table S1 . Total image processing time. The table shows
the time required to run each pipeline for the numer-
ical phantom simulations and data acquired in vivo.
The time reported for the SNR-wAvg pipeline does not
include the time required for R∗2 mapping, as optimiz-
ing this step was outside the scope of the present study.
For the Susc-TGV-wAvg pipeline, approximate timings
are reported because image reconstruction was performed
using first Neurodesk (QSM calculation at each TE) and
then MatLab (multi-echo combination)
Figure S2 . ΔBLoc maps calculated using distinct
multi-echo combination methods in the numerical phan-
tom simulations. The same transverse and sagittal slices
are shown for the ground-truth local field map (A, G),
and for the local field maps calculated using NLFit (B, H),
TE-wAvg (C, I), SNR-wAvg (D, J), and Susc-wAvg at each
TE (E, O). The figure also shows the difference between
each local field map and the ground truth (P-E2). The
bottom row shows the RMSEs of ΔBLoc for each pipeline
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