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Abstract 

1. Animal density is a fundamental parameter in ecology and conservation, and yet has 

remained difficult to measure. For terrestrial mammals and birds, camera-traps have 

dramatically improved our ability to collect systematic data across a large number of species, 

but density estimation (except for species with natural marks) is still faced with statistical and 

logistical hurdles, including the requirement for auxiliary data, large sample sizes, and an 

inability to incorporate covariates.  

2. To fill this gap in the camera-trapper’s statistical toolbox, we extended the existing Random 

Encounter Model (REM) to the multi-species case in a Bayesian framework. This multi-species 

REM can incorporate covariates and provides parameter estimates for even the rarest 

species. As input to the model, we used information directly available in the camera-trap data. 

The model outputs posterior distributions for the REM parameters – movement speed, 

activity level, the effective angle and radius of the camera-trap detection zone, and density – 

for each species. We applied this model to an existing dataset for 35 species in Borneo, 

collected across old-growth and logged forest. Here, we added animal position data derived 

from the image sequences in order to estimate the speed and detection zone parameters.  

3. The model revealed a decrease in movement speeds, and therefore day-range, across the 

species community in logged compared to old-growth forest, whilst activity levels showed no 

consistent trend. Detection zones were shorter, but of similar width, in logged compared to 

old-growth forest. Overall, animal density was lower in logged forest, even though most 

species individually occurred at higher density in logged forest. However, the biomass per unit 

area was substantially higher in logged compared to old-growth forest, particularly among 

herbivores and omnivores, likely because of increased resource availability at ground level. 



 
 

We also included body mass as a variable in the model, revealing that larger-bodied species 

were more active, had more variable speeds, and had larger detection zones.  

4. Caution is warranted when estimating density for semi-arboreal and fossorial species using 

camera-traps, and more extensive testing of assumptions is recommended. Nonetheless, we 

anticipate that multi-species density estimation could have very broad application. 

 

Keywords: density estimation, camera-trap, wildlife monitoring, Random Encounter Model, 

animal movement rate, animal activity, animal day-range, selective logging 

  



 
 

1. Introduction  

Density – the number of animals per unit area – is a fundamental parameter in ecology and 

conservation. For example, it underpins our ideas about the flow of energy and matter in 

ecosystems (Barnes et al., 2014), it underpins our understanding of global change (McRae et 

al., 2017), and it allows for robust assessment of conservation impact (Donald et al., 2007).  

Despite its importance, density is a difficult parameter to measure. Many species are cryptic, 

actively avoid human observers, or occur at low density, making it difficult to gather sufficient 

data. For terrestrial mammals and birds, camera-traps have dramatically improved our ability 

to detect and monitor species, and even whole communities (Wearn & Glover-Kapfer, 2017, 

2019). Camera-traps can be deployed in large numbers and left to autonomously collect data 

continuously for months, making even the rarest species a potential target for monitoring. 

However, logistical and statistical hurdles to density estimation with camera-traps mean that 

it has remained rare in the literature (Gilbert et al., 2021).  

There are at least nine approaches currently available for density estimation with camera-

traps, and all have difficulties associated with their implementation (Gilbert et al., 2021; Table 

S1.1, Appendix S1). For the Random Encounter Model (REM), the first approach that was 

developed specifically for camera-traps (Rowcliffe et al., 2008), uptake has remained low 

because of the widespread use of non-random camera placement (violating a key REM 

assumption), the inability to incorporate covariates during modelling, and the requirement 

for estimates of certain parameters that are difficult to measure in practice. REM consists of 

four component parts: 1) animal day-range, itself a product of movement speed (Rowcliffe et 

al., 2016) and activity levels (Rowcliffe et al., 2014); 2) the size of the detection zone, defined 

by the angle and radius (Rowcliffe et al., 2011); 3) the number of animal detections made at 



 
 

each location, and 4) the sampling effort at each location. Whilst (3) and (4) are known with 

certainty, (1) and (2) are usually unknown. Day-range (the average daily distance travelled), 

in particular, is difficult to measure in wild populations. Previous REM studies have usually 

relied on auxiliary data to estimate this parameter, e.g. from collared animals (Caravaggi et 

al., 2016) or follows of habituated animals (Cusack et al., 2015).  

Whilst the gap in the camera-trapper’s toolbox for density estimation remained unfilled, an 

alternative – occupancy modelling – matured and rose to prominence (Delisle et al., 2021). 

Although occupancy is a metric of distribution, not density, best-practice methods have been 

well-described, and it only requires simple detection/non-detection data. However, it was 

really the development of community occupancy models, which simultaneously estimate 

occupancy (including covariate effects) for multiple species (Kéry & Royle, 2016), which has 

led to the primacy of occupancy over density estimation in recent camera-trap studies (Delisle 

et al., 2021).  

Here, we extend the REM approach in several ways by implementing it in a Bayesian 

framework. This allows us to: 1) incorporate multiple species simultaneously, including rare 

species, 2) add covariates on any aspect of the model, and 3) propagate errors through the 

multiple components of the model. In addition, we rely only on information available in the 

camera-trap images to estimate parameters; no auxiliary data are used. We apply this 

approach to a community of Bornean mammals and birds, estimating the density of each 

species across land-use type.  

2. Materials and methods 

2. 1. Camera-trapping field methods 



 
 

The study design and field protocols used to collect the data are described in full elsewhere 

(Wearn et al., 2017). For this work, we used data collected between May 2011 and November 

2013 from 510 camera-trap locations spread across two land-use types in Malaysian Borneo: 

old-growth forest in the Maliau Basin Conservation Area and Brantian-Tatulit Virgin Jungle 

Reserve (n = 206), and selectively-logged forest in the Kalabakan Forest Reserve (n = 304). 

Cameras were left in place for a mean of 51 days (range: 1-109), for a total effort of 26,084 

days (old-growth: 9,467; logged: 16,617). Crucial to the assumptions of REM, we placed 

cameras randomly with respect to animal movement (strictly within 5 m of pre-determined 

points). Camera-traps were set with the sensor approximately 30 cm off the ground and were 

programmed to take 10 images per trigger (at ~2 frames per second).  

We also collected two types of calibration imagery – for camera locations and for camera-

traps – which would later assist with the reconstruction of animal positions and speeds 

(described below and in Appendix S2). To calibrate camera locations, one person moved an 

object of known dimensions, in this case a 1 m pole, around the camera-trap’s field of view 

(setup in its final deployed position), aiming for approximately 6 to 20 pole locations, whist a 

second person close to the camera triggered the passive infrared sensor with their hand. This 

process took 5-10 minutes per location. To calibrate the camera-trap model used (Reconyx 

HC500), we took images of an array of objects with known dimensions (again, 1 m poles) at 

known distances and angles from the camera. This was done at a field station, in a single 

location. We calibrated 16 camera-traps and here use the average calibration parameters 

across this sample.  

2. 2. Animal position and speed data 



 
 

We tracked the image pixel positions of animals in two ways: 1) the pixel positions of animals 

when the camera’s passive infrared (PIR) sensor was definitely triggered, and 2) the pixel 

positions of animals as they moved across image sequences. The former would provide data 

to model the size of the camera-trap detection zone, whilst the latter would provide estimates 

of animal speed. The ground ‘position’ of animals was standardised as midway between the 

forelimbs. For definite trigger locations, we used animal positions only from the first image of 

each sequence of 10, given that PIR sensors can fail to detect animals even when apparently 

inside the notional detection zone. For the movement sequences, we tracked all straight-line 

movements of animals and paused the tracking if an animal appeared to show a behavioural 

response to the camera (e.g. moving or orientating towards the camera), if an animal was 

resting or sleeping, or if an animal’s location could not accurately be determined (e.g. if the 

body was occluded by an object, or if they were very close to or very far from the camera).  

Images were annotated with pixel positions using a modified version of the open-source 

graphics software, Blender (https://www.blender.org), with data stored in an underlying 

SQLite database. In total, 88,014 animal pixel positions were extracted (movement tracks and 

trigger locations combined), for 76 species across 307 locations. These data took 

approximately 180 person-days to generate. We here used only the data from old-growth and 

logged forest, and only for the focal species (defined below). This included 62,384 animal 

movement positions and 10,976 trigger locations, across 35 species and 249 locations (old-

growth: 88; logged: 161). 

Using the calibration imagery, we were able to convert each pixel position into radial and 

angular distances from the camera (see Appendix S2 for a detailed description). This involved 

using a pinhole camera model to describe two relationships: 1) between the size of the 



 
 

calibration object in the image (in pixels) and its actual size and distance from the camera; 

and 2) between the X-Y pixel position in the image and the angular distance from the camera’s 

principal axis. Calibration models for a deployment location used the first relationship above 

to calculate pole distances, and then used these distances, together with the second 

relationship, to describe the relationship between pixel positions in an image and radial and 

angular distances from the camera. Finally, the calibration models were used to predict radial 

and angular distances of animals from the camera based on their pixel positions within the 

images. These estimates were input directly to the detection zone modelling (see below), 

using only the definite trigger locations. To recover animal speed, trigonometry was used to 

calculate the total distance moved across a movement sequence, and then this distance was 

divided by the time elapsed (taken from the image date-time information). 

2. 3. Bayesian multi-species REM 

To date, no closed-form solution to the likelihood has been derived for the REM (but for a 

partial solution see: Jourdain et al., 2020). This has meant that it has not been possible to 

incorporate covariates into analyses. In addition, the sampling variances associated with each 

part of the REM have been propagated into the final density estimate using a combination of 

non-parametric bootstrapping and the delta approximation method (Rowcliffe et al., 2008).  

Bayesian inference using Markov chain Monte Carlo (MCMC) methods offers a solution to 

these shortcomings, since the component parts of the REM model can be specified and then 

integrated with estimation of animal density in a single hierarchical model, all whilst 

propagating the errors associated with each component part. Moreover, specifying the REM 

as a hierarchical model allows complete flexibility over how and where covariates are 

introduced into the model. Here, we used land-use type as a covariate on density, as well as 



 
 

in each of the REM sub-models for animal speed, activity level, detection angle, detection 

radius and the detection counts. We also included species body-mass as a hyper-covariate to 

help explain speed, activity level, detection angle and detection radius.   

A Bayesian approach also makes REM possible for rare species. Likelihood-based approaches 

– as currently used for the activity level, speed and detection zone components of the REM – 

are subject to asymptotic assumptions that are unlikely to hold in the case of rare species 

with sparse data; Bayesian methods make no such assumptions. Perhaps most powerfully, a 

Bayesian approach makes a multi-species or “community-level” REM possible, by treating 

species as a random effect in the hierarchical model. This approach, which “borrows” 

information from common species in order to allow parameters for the rarer species to be 

estimated, has become widely used in community occupancy modelling (e.g. Tobler et al., 

2015; Wearn et al., 2017).  

Here, we defined our focal community as the 35 species of mammal and bird which were: 

large (> 500 g body mass), habitually active on the ground (i.e. can be reliably detected with 

camera-traps, if present), and non-migratory in the study areas. Small animals were excluded 

because they likely violate the assumptions of the distance sampling approach we used to 

model camera detection zones. Specifically: 1) we suspected that they might sometimes pass 

underneath camera-traps without being detected, and 2) detection probability for some 

species might always be < 1, even when directly in front of the camera. 

2. 3. 1. Day-range 



 
 

Day-range was estimated as the product of movement speed and activity level. Observed 

speeds i for species s were modelled using a size-biased (SB) log-normal distribution 

(Rowcliffe et al., 2016): 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ,𝑠𝑠~SB Lognormal(𝜇𝜇𝑖𝑖,𝑠𝑠,𝜎𝜎𝑖𝑖 ,𝑠𝑠) (1) 

where 𝜇𝜇 and 𝜎𝜎 are the mean and standard-deviation of the speeds, respectively. A size-biased 

distribution was appropriate because faster animals are more likely to contact camera-traps. 

A log-normal distribution was assumed, since it previously was found to fit real data better 

than a gamma or Weibull distribution (Rowcliffe et al., 2016). A log-normal distribution 

typically produces higher speed estimates than the alternatives, leading to lower estimates 

of animal density (Rowcliffe et al., 2016). 

Covariates on movement speed and standard deviation were introduced via linear predictors, 

using an identity link and a log link, respectively. Here, we used land-use type, LU, as a sole 

covariate: 

 𝜇𝜇𝑖𝑖 ,𝑠𝑠 = 𝛼𝛼0𝑠𝑠 + 𝛼𝛼1𝑠𝑠𝐿𝐿𝐿𝐿𝑖𝑖 (2) 

 log�𝜎𝜎𝑖𝑖 ,𝑠𝑠� = 𝛽𝛽0𝑠𝑠 + 𝛽𝛽1𝑠𝑠𝐿𝐿𝐿𝐿𝑖𝑖  (3) 

The intercepts and slopes of these linear predictors for a given species were themselves 

random effects in hyper-distributions for the community-level mean speed and community-

level variance. For example, for the intercept and slope for mean speed: 

 𝛼𝛼0𝑠𝑠~Normal(𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝛼𝛼0𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝛼𝛼0𝑠𝑠 ) (4) 

 𝛼𝛼1𝑠𝑠~Normal(𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝛼𝛼1𝑠𝑠 ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝛼𝛼1𝑠𝑠 ) (5) 

where the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  hyper-parameters are the mean and standard deviation, 

respectively, of a normal distribution.  



 
 

In turn, the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 hyper-parameters of the hyper-distributions for the intercepts 𝛼𝛼0𝑠𝑠 and 𝛽𝛽0𝑠𝑠 

were a function of species body mass (taken from Wearn et al., 2017). For example, for 

𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝛼𝛼0𝑠𝑠:  

 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝛼𝛼0𝑠𝑠 = 𝛾𝛾0 + 𝛾𝛾1. log (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠) (6) 

The use of body mass as a hyper-covariate means that the model can leverage information 

about the expected mean and standard deviation of movement speed for a given species not 

only from the observed speed data (which, for rare species, might be sparse), but also the 

broader scaling relationship between the body mass of a species and its mean speed and 

standard deviation. We expected that larger species would travel more quickly and have more 

variable speeds.  

To model activity levels, we used a combination of non-parametric and Bayesian approaches. 

This was done because the key distribution – a circular kernel distribution (Ridout & Linkie, 

2009) – was not available in the software used for Bayesian inference. First, we extracted 

independent times-of-detection for each species (i.e. detections separated by more than 1 

hour) from the camera-trap data. We then used the ‘activity’ package in R (Rowcliffe et al., 

2014) to fit circular kernel distributions to the data for each combination of species and land-

use, and in each case estimate the mean and standard error of activity level. We then 

generated a sample of 1000 activity levels for each combination of species and land-use, using 

a beta distribution with parameters matching those that were estimated using the circular 

kernel distribution. These activity level samples were then taken forward into the Bayesian 

hierarchical model, propagating forwards the errors associated with the activity level 

estimation. For combinations of species and land-use which had fewer than 15 times-of-

detection, activity level estimation in the ‘activity’ package was not attempted; instead 



 
 

activity levels for these species were directly estimated in the Bayesian hierarchical model, by 

exploiting the modelled relationship between body mass and activity level (see below). For 

these species, we expect activity level estimates to be less precise and less accurate, since 

only their body mass information was included in the model.  

The activity level samples j for species s were modelled using a beta distribution: 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗 ,𝑠𝑠~Beta(𝑚𝑚𝑗𝑗,𝑠𝑠, 𝑣𝑣𝑗𝑗,𝑠𝑠) (7) 

where 𝑚𝑚 and 𝑣𝑣 are the mean and sample-size parameters. This parameterisation of the beta 

distribution was chosen instead of the standard parameterisation in terms of two shape 

parameters so that covariates – here, only land-use type – on the mean activity level and 

sample-size parameters could be introduced. Linear predictors with a logit and log link were 

used for the mean and sample-size parameters, respectively: 

 logit�𝑚𝑚𝑗𝑗,𝑠𝑠� = 𝜀𝜀0𝑠𝑠 + 𝜀𝜀1𝑠𝑠𝐿𝐿𝐿𝐿𝑗𝑗 (8) 

 log�𝑣𝑣𝑗𝑗,𝑠𝑠� = 𝜏𝜏0𝑠𝑠 + 𝜏𝜏1𝑠𝑠𝐿𝐿𝐿𝐿𝑗𝑗 (9) 

Like the speed sub-model, the intercepts and slopes of these linear predictors were 

themselves random effects in hyper-distributions for the community-level mean and variance 

of activity level. In turn, the hyper-parameter for mean activity level at the community level 

was a function of the body mass of a species, with the expectation that larger species would 

be more active. No body mass covariate was used for the sample size parameter at the 

community level, since we had no specific hypothesis in this case. 

2. 3. 2. Detection zone  

Distances 𝑟𝑟 (i.e. radii) and angles 𝜃𝜃 for the trigger locations, were modelled using a distance 

sampling approach (Rowcliffe et al., 2011). Whilst this approach corrects for imperfect 



 
 

detection, an important assumption here is that detection is nonetheless certain at a single 

point directly in front of the camera-trap. If this is violated, density estimates will be 

negatively biased.  

The approach for distances and angles was similar, so we here focus on the approach to the 

distance data and highlight where the approach for angles was different. Detection distances 

were modelled as an outcome of both a state process and an observation process. The state 

process was the latent number of animal ‘passes’, i.e. the number of times animals entered 

the notional detection zone of a camera-trap, c. These are potential triggers, of which not all 

actually cause cameras to be triggered. These animal passes were assumed to be Poisson-

distributed: 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐 ,𝑠𝑠~Poisson(𝜆𝜆𝑐𝑐,𝑠𝑠) (10) 

The observation process consisted of the probability of an animal appearing at a given 

distance, multiplied by the probability that the animal would be detected by the passive 

infrared sensor at that given distance. Animal passes are more likely to occur further from a 

camera, because the width of the field-of-view is larger at greater distances. This is also the 

case in conventional distance sampling using point transects, wherein a triangular distribution 

is used (Buckland et al., 2001; Rowcliffe et al., 2011). The probability density of the distances 

of the latent passes was therefore: 

 𝑓𝑓(𝑟𝑟𝑐𝑐,𝑠𝑠) =
2. 𝑟𝑟𝑐𝑐,𝑠𝑠

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 2
 (11) 

where 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚  was the maximum distance at which camera-traps triggered in the study (here, 

24.2 m). To model the triggering properties of a camera-trap sensor, specifically the declining 

sensitivity with distance, a hazard detection function was used: 



 
 

 
𝑝𝑝(𝑟𝑟𝑐𝑐,𝑠𝑠) = 1− exp (−�

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐,𝑠𝑠

𝑟𝑟𝑐𝑐,𝑠𝑠
�
𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐 ,𝑠𝑠

) (12) 

where the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 parameters define the width and steepness of the hazard 

function, respectively. The hazard allows for a “shoulder” of certain detection close to the 

camera, and was previously found to fit real camera-trap data better than the half-normal 

(Rowcliffe et al., 2011).  

Given probability density functions for the latent distances and their probabilities of 

observation, the overall detection probability of a given camera-trap, evaluated across the 

full length of the notional detection zone, was therefore: 

 𝑝𝑝∗𝑐𝑐,𝑠𝑠 = � 𝑓𝑓(𝑟𝑟𝑐𝑐,𝑠𝑠)𝑔𝑔(𝑟𝑟𝑐𝑐,𝑠𝑠

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

0
) 𝑑𝑑𝑑𝑑 (13) 

Using the overall detection probability, the effective radius 𝑟𝑟∗ was then calculated as a 

derived parameter. This was done by re-arranging the canonical distance sampling estimator 

(Buckland et al., 2001) like so:  

 𝑟𝑟∗𝑐𝑐,𝑠𝑠 = �𝑝𝑝∗𝑐𝑐,𝑠𝑠𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 (14) 

Finally, the observed number of triggers was modelled with a binomial distribution, with the 

latent number of animal passes determining the number of ‘trials’ and the detection 

probability determining the probability of success: 

 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐,𝑠𝑠~Binomial(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐,𝑠𝑠, 𝑝𝑝∗𝑐𝑐,𝑠𝑠) (15) 

For modelling detection angles, the observation process was taken from the line transect case 

in distance sampling, and a uniform distribution for the latent angles was therefore used 

(Buckland et al., 2001; Rowcliffe et al., 2011). This uniform distribution was defined between 

zero and the maximum angle observed in the study (here, 58°). For the detection function, a 



 
 

half-normal was used instead of the hazard, because it was previously found to fit real 

camera-trap data better (Rowcliffe et al., 2011).  

Covariates were introduced into the detection zone sub-model using a similar approach to 

that already outlined for the speed and activity sub-models. Land-use covariates were 

introduced on the scale and shape parameters of the hazard detection function using linear 

predictors and log link functions. The same was done for the scale parameter of the half-

normal detection function. Community-level hyper-distributions allowed the detection 

function parameters to vary by species. In addition, we expected that larger species would be 

detected at greater distances and greater angles, and so the community-level means for the 

two scale parameters (for the hazard and the half-normal) were also modelled as a function 

of species body mass. No species-level covariates were used for the shape parameter of the 

hazard, as we had no clear hypotheses in this case.  

2. 3. 3. Observed counts and density 

We modelled animal density using a gamma distribution, which is a natural choice for any 

continuous, positive variable, and can accommodate ‘long tail’ distributions (Bolker, 2008). 

The other choice was a log-normal distribution, which is often indistinguishable in practice.  

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐 ,𝑠𝑠~Gamma �𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐,𝑠𝑠
, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐,𝑠𝑠

� (16) 

The two parameters of the gamma – its shape and rate – were modelled as a function of land-

use type, using log links. Hyper-distributions for the two parameters also allowed density to 

vary by species. 



 
 

We added zero-inflation according to land-use type 𝑙𝑙, in order to allow for cases where a 

species simply did not occur in a given land-use. The occurrence of a species was modelled 

with a Bernoulli distribution:  

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙,𝑠𝑠 = Bernoulli(Ω𝑠𝑠) (17) 

For species which were detected in a given land-use during sampling, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙,𝑠𝑠  is equal 

to 1 in every MCMC iteration. Otherwise, it varies across iterations, and the mean of these 

values provides the probability that the species occupies the given land-use, despite not being 

detected.  

The final step of the Bayesian implementation of REM was to link the various component 

parts of the REM. We did this by re-arranging the REM to make the detection counts the 

subject, and then formulating it as a linear predictor inside a log link:  

 log (𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐,𝑠𝑠
) = log�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑐𝑐,𝑠𝑠� + log�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐,𝑠𝑠� + log�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 ,𝑠𝑠�

+ log�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐 ,𝑠𝑠�+ log�2 + 𝜃𝜃∗𝑐𝑐,𝑠𝑠� + log�𝑟𝑟∗𝑐𝑐,𝑠𝑠� − log (𝜋𝜋) 

(18) 

where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the number of camera-trap days and 𝜃𝜃∗ is the effective detection angle. The 

speed and activity for a given species at a given location were calculated as derived variables, 

since they were not directly modelled. The detection counts were then modelled with a 

Poisson distribution multiplied by the zero-inflation by land-use type: 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠~Poisson�𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐,𝑠𝑠
�. occurrence𝑐𝑐,𝑠𝑠 (19) 

For the detection counts, we tallied the number of times animals ‘contacted’ camera-traps, 

i.e. were observed to enter the field-of-view of a camera-trap. For group-living animals (in 

particular, bearded pig Sus barbatus and Sunda pig-tailed macaque Macaca nemestrina), it 

was difficult to verify for each individual when a contact had occurred (because other 



 
 

individuals in the group may have already triggered the camera). We therefore counted for 

each group the total number of individuals seen across a sequence of images and assigned 

one contact to each individual. If individuals contacted cameras on average less than or more 

than once, then our density estimates for group-living species will be too high or too low, 

respectively.   

2. 4. Inference via MCMC 

We formulated this model in BUGS code and used JAGS (version 4.3.0; Plummer, 2017), called 

from R (version 3.6.1; R Development Core Team, 2019), to obtain samples of the joint 

posterior distribution. Modifications to the parameterisation of the model outlined above 

were necessary in order to formulate it in the BUGS language (Appendix S2). We used 

standard vague priors for all parameters (Kéry & Royle, 2016). We also assessed the goodness-

of-fit of our detection count model with a posterior predictive check, based on the Pearson 

residuals of the counts (Kéry & Royle, 2016; Appendix S2).    

3. Results 

Across the species community, day-range (Fig. 1) was a median of 1.2 km per day shorter in 

logged forest compared to old-growth forest (95% credible interval (CI): -2.37 to -0.18), 

amounting to a median decrease of 20% (CI: -33.6 to -3.56 %). This change in day-range across 

land-use type was driven by changes in animal speed rather than activity levels (Fig. 2). 

Species in logged forest travelled a median of 0.12 km hr-1 (CI: -0.21 to -0.05 km hr-1) or 18% 

(CI: -26.7 to -8.30 %) slower than in old-growth forest, whilst there was no clear difference in 

activity levels (median difference = -0.004; CI: -0.047 to 0.048). There was a positive 

relationship between (the log of) species body mass and activity level (slope parameter = 0.17; 



 
 

CI: 0.06 to 0.28; Fig. 3A), but no clear relationship with (the log of) speed (slope = 0.04; CI: -

0.12 to 0.19). Species with higher body masses did, however, have more variable speeds 

(slope for the precision of log-speed = -0.07; CI: -0.13 to -0.002; Fig. 3B). 

Detection zones across species (Fig. 4) were smaller in logged forest compared to old-growth 

forest by a median of 0.61 m2 (CI: -1.18 to -0.16 m2), amounting to a median decrease of 16% 

(CI: -25.7 to -5.11 %). This difference was overwhelmingly due to the shorter effective 

detection distances in logged forest, rather than any change in effective detection angles (Fig. 

5). Across species, the effective distance was a median of 0.3 m shorter in logged forest than 

in old-growth forest (CI: -0.53 to -0.09 m), amounting to a decrease of 8.3 % (CI: -13.4 to -2.72 

%). There was a positive relationship between (log) body mass and both effective detection 

angles (slope = 0.38; CI: 0.31 to 0.48; Fig. 6A) and distances (slope = 0.27; CI: 0.11 to 0.42; Fig. 

6B). Moreover, the slopes in both cases were different between land-use types (slope 

differences from old-growth to logged forest for angles and distances, respectively: -0.06 and 

0.15; Fig. 6).  

Density estimates ranged from as low as 0.01 animals km-2 (Malay weasel Mustela nudipes), 

up to 17 animals km-2 (greater mouse-deer Tragulus napu) (Table S3.1, Appendix S3). The 

uncertainty associated with the estimates, as measured using the coefficient of variation (CV), 

increased sharply when the sample size (number of ‘contacts’) for a species was less than 30 

(Fig. S4.1, Appendix S4). However, in most cases (42 of 78 estimates), CVs were in an 

acceptable range (CV < 35%; Bessone et al., 2020).  

It was not possible to independently validate the density estimates, but there was broad 

correspondence with previously-published density estimates from other sites, where data 

were available (Table S3.2, Appendix S3). For 11 of the 14 comparisons that were possible, 



 
 

the REM estimates were within the range of previous estimates, and lower than previous 

estimates in the remaining cases (Fig. S4.2, Appendix S4). For the Bornean orangutan (Pongo 

pygmaeus) and Sunda clouded leopard (Neofelis diardi), REM densities were also compared 

post-hoc with alternative estimates from the same study landscape, derived from nest count 

surveys and spatially-explicit capture-recapture, respectively (Appendix S4). Although the 

comparisons were weakened by spatial and temporal mismatches in the datasets, the REM-

derived orangutan densities appeared low when compared to alternative estimates, whilst 

the clouded leopard densities were comparable (Fig. S4.3, Appendix S4).  

Most species increased in density from old-growth to logged forest (20 of 35 species; Fig. 7). 

Notably, sambar deer (Rusa unicolor), bearded pig (Sus barbatus) and Malay civet (Viverra 

tangalunga) increased by 674% (CI: 362.2 to 1190 %), 321% (CI: 196.2 to 489.3 %) and 255% 

(CI: 126.4 to 449.7 %), respectively. However, there was no clear evidence across species that 

the average change in density was positive, because any gains were matched by losses 

(median change = 12.4%; CI: -24.4 to 51.6 %). Indeed, there were 8.9 fewer animals km-2  

overall in logged compared to old-growth forest (CI: -16.3 to -2.38 animals km-2), which 

amounts to a 20% decline (CI: -32.4 to -5.91 %). This pattern was driven by large declines from 

old-growth to logged forest in some of the more common species. In particular, the greater 

and lesser mouse-deer species (T. napu and T. kanchil) declined by 98% (CI: -99.3 to -94.3 %) 

and 69% (CI: -83.8 to -42.0 %), respectively, and the Bornean yellow muntjac (Muntiacus 

atherodes) declined by 86% (CI: -93.3 to -67.2 %).   

Finally, we calculated post-hoc the biomass of animals in major trophic groupings (groupings 

followed Wearn et al., 2017). The resulting ‘trophic pyramids’ (Fig. 8) illustrated the dramatic 

increase (by 754 kg km-2; CI: 558 to 1021 kg km-2) in herbivore biomass in logged versus old-



 
 

growth forest, as well as the reduction (-85.4 kg km-2; CI: -118 to -61.1 kg km-2) in frugivore 

biomass. Overall, animal biomass was 890 kg km-2 higher in logged forest compared to old-

growth forest (CI: 682 to 1161 kg km-2). 

4. Discussion 

We here extended the REM approach to a Bayesian mode of inference, allowing for multi-

species density estimation from camera-trap data for the first time. We used as input to the 

model only information that is available in the camera-trap images, rather than relying on 

auxiliary data or intensive measurements in the field. The output of the model was a set of 

posterior distributions for the REM parameters for each species. Uncertainty about 

movement speed, activity level and the detection zone was fully propagated into the final 

density estimates. The Bayesian hierarchical modelling approach also allowed us to 

incorporate covariates into the REM. This provided us with REM parameter estimates by land-

use type and revealed the importance of body-size in explaining differences across species in 

both their ecology and in the camera-trap detection process.  

4. 1. New insights gained 

The multi-species REM yielded density estimates for 35 species of Bornean mammal and bird, 

of which 17 are threatened with extinction (Vulnerable or higher on the IUCN Red List; IUCN, 

2021). For many of these species, this is the first time their density has been estimated, 

improving our understanding of their conservation status. It is also now possible to make 

‘apples to apples’ comparisons of densities, either across species or across sites. For example, 

a conservation manager can infer that sun bears (Helarctos malayanus) were rarer than 

banded civets (Hemigalus derbyanus), and might therefore be more sensitive to any offtake 



 
 

(e.g. through snare trapping), but that banded civets became rarer in logged compared to old-

growth forest (in contrast to sun bears), and therefore are more sensitive to disturbance from 

logging. These comparisons would not be as straightforward using occupancy as a metric, 

because occupancy is sensitive to differences in home-range size (Efford & Dawson, 2012) 

and the duration of sampling (Steenweg et al., 2018). This is also the case for relative 

abundance measures, such as local abundance (e.g. Granados et al., 2016; Wearn et al., 2017). 

A multi-species REM also opens up the possibility of monitoring population trends across a 

suite of species simultaneously, although detecting changes with high confidence will be 

remain difficult for the rarest species (with sample sizes < 30) due to the low precision of the 

estimates. 

We can also combine density estimates across species and calculate emergent, ecosystem-

level variables, such as the overall density of animals or the total biomass. This revealed that, 

even though most species occurred at higher density in logged forest (in line with previous  

studies), there were overall fewer animals per unit area in logged compared to old-growth 

forest. This has not previously been reported for Borneo, given the focus on occupancy and 

relative abundance (Granados et al., 2016; Wearn et al., 2017), and likely has implications for 

the ecosystem functioning of logged forests in the region.  

REM also provides insights into the ecology of study species and is therefore much more than 

just a way of “counting animals”. Similar benefits have been highlighted for spatially-explicit 

capture-recapture modelling of marked species (Royle et al., 2014), but the same cannot be 

said for any of the other density estimation methods for unmarked species. Here, the REM 

approach revealed that, compared to old-growth, logged forests were characterised by 

slower-moving, larger-bodied animals, with more variable speeds. The likely explanation for 



 
 

this is that logged forests provide a higher density of resources, in particular resources at 

ground level for herbivores and omnivores (Meijaard & Sheil, 2008), leading to less time spent 

travelling and more time foraging. This is an example of how the deeper insights provided by 

the REM approach allow for more direct links to be made between pattern and process.  

4. 2. Assumptions and caveats with unmarked density estimation 

Whilst we have removed important barriers in this study towards broader use of REM, 

important assumptions in the approach remain (reviewed in: Wearn & Glover-Kapfer, 2017; 

Gilbert et al., 2021). These assumptions require further testing and validation before the REM-

based density estimates we present here can be assumed to be accurate. We urge caution 

when interpreting the exact density estimates for each species, especially in an applied 

setting, where incorrect inferences might lead to perverse management and conservation 

outcomes. Ideally, REM-based estimates should be used in decision-making alongside other 

forms of evidence (e.g. expert knowledge) and density estimates should be compared to 

those derived from other approaches. 

We consider the strongest assumption in the REM approach to be that all animals in the study 

population are active at the peak of activity (Rowcliffe et al., 2014). This is likely a reasonable 

assumption for terrestrial, non-fossorial species with clearly defined nocturnal or diurnal 

activity patterns. However, violations of the assumption might occur in cathemeral species 

and, most especially, in arboreal and fossorial species, which can carry out their activities fully 

outside the realm of ground-based camera-traps. If only a proportion of animals in the study 

area are active at the peak, then we may have overestimated activity levels, and 

underestimated density. We consider that this might have been the case for some of the most 

arboreal and fossorial species in our study, including the semi-arboreal yellow-throated 



 
 

marten (Martes flavigula), binturong (Arctictis binturong), long-tailed macaque (Macaca 

fascicularis) and Bornean orangutan, as well as the fossorial Sunda pangolin (Manis javanica).  

The REM approach is not alone in making strong assumptions about animal activity. All of the 

density estimation methods for unmarked species make assumptions about activity, and only 

the capture-recapture approaches are free of this. In common with REM, the Random 

Encounter and Staying Time (REST) and camera-trap Distance Sampling (CT-DS) approaches  

explicitly include activity level as a parameter (Howe et al., 2017; Nakashima et al., 2018; 

Bessone et al., 2020), whilst the Time-to-event (TTE), Space-to-event (STE) and Instantaneous 

Sampling (IS) approaches (Moeller et al., 2018) have an undeclared assumption that animals 

are always available for detection. Given the importance of understanding activity levels, 

further studies would be helpful to test assumptions, for example using arboreal camera-

traps (e.g. Haysom et al., 2021).  

Other aspects of the REM would also warrant further validation and-or direct comparison 

with other approaches, including the estimation of movement speed (e.g. by comparing with 

GPS-collaring) and detection zone dimensions. Nakashima et al. (2022) recently showed that 

a paired camera-trap approach can be used to validate the assumption that detection is 

certain directly in front of the camera-trap. This study (using a different camera-trap model 

to our study) showed that 9% of detections in a 1.6 m2 notional detection zone were missed 

(for species > 500 g). This has implications for all the unmarked approaches to density 

estimation which exploit the camera-trap sensor (REM, REST, CT-DS and TTE).  

4. 3. Applying the multi-species REM in practice 



 
 

The two most important survey design requirements for REM (reviewed in: Wearn & Glover-

Kapfer, 2017) are that cameras are placed randomly with respect to animal movement and 

that high-performance camera-traps are used, i.e. those with a fast trigger speed (< 0.3 s) and 

ability to record either video or sequences of images in quick succession. For modelling speed 

and the detection zone, animal position data are required, which can be generated either by: 

i) collecting intensive field measurements (Rowcliffe et al., 2016), ii) using reference points 

with a known distance that are placed, or occur naturally, in the field-of-view of camera-traps 

(Caravaggi et al., 2016; Palencia et al., 2021), or iii) calibrating camera-trap locations and the 

camera-trap models used by taking images of objects of known size (see Appendix S5 for 

guidance). The principal benefit of methods (ii) and (iii) are that the animal locations are 

generated in the lab rather than in the field. This provides opportunities to scale the data 

collection cost-effectively, e.g. using a citizen science approach or an automated approach to 

track animal locations (e.g. using a ‘bounding box’ classifier; Norouzzadeh et al., 2021). 

Collecting the position data post-hoc in the lab also means that the detection locations for 

rare species are already known, allowing those sequences to be prioritised.  

Once generated, the position data can be analysed with a REM approach, as done here, but 

with some alterations in the processing steps can also be analysed using a REST, CT-DS or TTE 

approach. For REST, a notional zone of perfect detection needs to be defined, for which the 

effective detection zone could be used, and then the average ‘staying time’ within this zone 

can be calculated from the position data. For CT-DS, the distances from the camera at exact 

clock times (e.g. every 2 seconds) need to be extracted from the position data. TTE requires  

an estimate of animal speed and so the processing steps are similar to REM.    

4. 4. A new method in the camera-trapper’s toolbox 



 
 

The multi-species REM represents a much sought-after new tool at the disposal of ecologists 

and conservationists, albeit with some strong accompanying assumptions. We expect that 

similar multi-species models could be developed for REST, CT-DS and the other unmarked 

methods. The analyses for unmarked density estimation are more laborious than for 

occupancy, but they provide the gold-standard of monitoring – density – rather than a 

measure of distribution. We also anticipate that the labour savings on the horizon with the 

rapid development of automation algorithms for camera-trap images will free up time that 

would have been spent on the detection and identification of species (Norouzzadeh et al., 

2021). With investment in training, as well as further software development and testing of 

assumptions, we see no reason why multi-species monitoring of populations cannot expand 

greatly in use across a diversity of contexts, species and biomes. 
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Figure captions 

 

Figure 1. Day-range estimates from camera-trap data for 35 species of Bornean mammal and 

bird, in old-growth and logged forest. Species with clear differences in day-range between 

land-use types (i.e. credible intervals on the estimated differences did not cross zero) are 

shown with filled ridges, whilst those without clear differences are shown with transparent 

ridges.  

 

Figure 2. Changes in speed and activity level across land-use type for a community of Bornean 

mammals and birds. Vectors show the direction of change in the two parameters from old-

growth to logged forest. The product of activity level and speed is day-range (the distance 

travelled in a 24-hour period). Vectors for species showing clear changes in day-range across 

land-use type (i.e. credible intervals on the estimated change did not cross zero) are labelled 

with the species common name, whilst vectors for species showing no clear changes are 

unlabelled and are semi-transparent. 

 

Figure 3. Relationships between (the log of) body mass versus A) activity level and B) the 

variance in (the log of) movement speed across species, including 95% credible intervals. 

Estimated activity levels and variances in (log) speed for each species are shown as points. 

 



 
 

Figure 4. Estimated camera-trap detection zones in old-growth and logged forest for 35 

species of Bornean mammal and bird. Detection zones are defined by two parameters – the 

effective detection angle and distance – which define the width and depth of detection zones, 

respectively. Points show the locations of animals when the camera-traps were triggered. 

Points further than 10 m from camera-traps (< 1% of the data) are here not shown to allow 

use of the same scale across species. 

 

Figure 5. Changes in effective detection angle and radius across land-use type for a 

community of Bornean mammals and birds. Vectors show the direction of change in the two 

parameters from old-growth to logged forest. The combination of the radius and angle 

determine the size of the camera-trap detection zone. Vectors for species showing clear 

changes in detection zone across land-use type (i.e. credible intervals on the estimated 

change did not cross zero) are labelled with the species common name, whilst vectors for 

species showing no clear changes are unlabelled and are semi-transparent. 

 

Figure 6. Relationships between (the log of) species body mass versus A) effective detection 

angle and B) effective detection distance across species, including 95% credible intervals. 

Estimated effective detection angles and distances for each species are shown as points. 

 

Figure 7. Density estimates from a hierarchical random encounter model for a community of 

Bornean mammals and birds, in old-growth and logged forest. Species are ordered by their 

density in old-growth forest, with ‘common’ species in the top panel and ‘rare’ species in the 



 
 

bottom panel. Species with clear differences in density between land-use types (i.e. credible 

intervals on the estimated differences did not cross zero) are shown with filled ridges, whilst 

those without clear differences are shown with transparent ridges.  

 

Figure 8. Estimated biomass of Bornean mammals and birds across broad trophic groupings, 

in old-growth and logged forest. The lower, middle and outer limits of each bar show the 

lower 95% credible intervals (CIs), medians and upper 95% CIs, respectively. Labels indicate 

the summed biomass for each trophic group. 
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