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Diagnosis of systemic lupus erythematosus (SLE) in childhood [juvenile-onset (J) SLE],

results in a more severe disease phenotype including major organ involvement, increased

organ damage, cardiovascular disease risk and mortality compared to adult-onset

SLE. Investigating early disease course in these younger JSLE patients could allow

for timely intervention to improve long-term prognosis. However, precise mechanisms

of pathogenesis are yet to be elucidated. Recently, CD8+ T-cells have emerged as

a key pathogenic immune subset in JSLE, which are increased in patients compared

to healthy individuals and associated with more active disease and organ involvement

over time. CD8+ T-cell subsets have also been used to predict disease prognosis

in adult-onset SLE, supporting the importance of studying this cell population in SLE

across age. Recently, single-cell approaches have allowed for more detailed analysis

of immune subsets in JSLE, where type-I IFN-signatures have been identified in

CD8+ T-cells expressing high levels of granzyme K. In addition, JSLE patients with

an increased cardiometabolic risk have increased CD8+ T-cells with elevated type-I

IFN-signaling, activation and apoptotic pathways associated with atherosclerosis. Here

we review the current evidence surrounding CD8+ T-cell dysregulation in JSLE and

therapeutic strategies that could be used to reduce CD8+ T-cell inflammation to improve

disease prognosis.
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INTRODUCTION

Diagnosis of systemic lupus erythematosus (SLE) in childhood, juvenile-onset SLE (JSLE, onset
<18 years of age, ∼20% cases), presents a more severe disease phenotype with an increased
cardiovascular disease (CVD) and standardized mortality risk (almost 6-fold) compared to
adult-onset SLE (1–3) (Table 1). JSLE patients also have increased prevalence of renal and
neuropsychiatric involvement compared to patients with adult-onset SLE (3). Together, this has
resulted in reports of early and irreversible damage in JSLE patients, with one study reporting
this in 44.2% of patients 3.8 years from diagnosis, commonly relating to kidney disease, scarring
alopecia and cognitive impairment (13). It is speculated that these age-of-onset-specific differences
in prognosis may be due to increased pro-inflammatory type-I IFN signatures in JSLE, where
there have been reports of an 80–90% prevalence compared to around 50% seen in adult-onset
patients (23).
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TABLE 1 | Summary of important demographic and clinical characteristics of patients with juvenile-onset compared to adult-onset SLE.

JSLE (onset <18) Adult-SLE (onset ≥18) References

Demographic

General prevalence Around 1.9–25.7 (Worldwide) or 9.38–10.08

per 100,000 (US) or 15–20% of all SLE

cases

Around 29–210 (Europe) or 48–367 per

100,000 (US)

(4–10)

Female predominance Around 80% Around 90% (4, 8)

Clinical outcomes

Standardized mortality ratio 18.3 standardized mortality ratio or 2-fold

higher mortality rate vs. adult-SLE

3.1 standardized mortality ratio or 2-fold

lower mortality rate vs. JSLE

(3, 11, 12)

Renal disease (nephritis) 44–60% 33–37.1% (3, 7, 11–14)

Neuropsychiatric (central nervous system) 25–29% 19.6–20% (3, 11)

Cardiovascular disease risk relative to healthy 100–300-fold 50-fold (women 35–44) (1, 2, 15, 16)

Therapy

Proportion on high dose prednisolone

treatment

97% 82% (12, 17)

Proportion on immunosuppressive therapy 66–68% 37–43% (12, 17)

Disease control

Remission off treatment 10.8–31% 14.5% (18–22)

Remission on treatment 42–61% 29% (18–22)

Low disease states 32–82% 37.2–44% (18–22)

CVD is responsible for around 50% of all deaths in Western
countries, and whilst this is a remarkable statistic alone, in JSLE
the risk is exacerbated (1), and it is estimated that patients have a
100–300-fold increased risk of mortality from CVD compared to
age-matched healthy individuals (2). This relative risk in JSLE is
greater than in adult-SLE, where women with adult-SLE between
the ages of 35–44 increases the risk of coronary artery disease
by 50 times (15). Atherosclerosis, a chronic inflammation of
the medium-sized to large arteries, secondary to lipid deposition
within the sub-endothelial intimal layer (atherosclerotic plaque),
is a major cause of this CVD. Investigating the early development
of atherosclerosis in these younger, more severely affected
JSLE patients is of great importance to improve long-term
prognosis. The interplay between traditional CVD risk factors
and factors associated with active disease, inflammation and
steroid treatment could contribute to the early, accelerated
atherosclerosis in JSLE patients (1, 24, 25). Whilst the precise
mechanisms are yet to be fully elucidated, there is no doubt that
atherosclerosis and JSLE share several autoimmune pathways,
particularly regarding inflammation and dyslipidaemia (26).

Despite these observations, few specific guidelines exist for the
management of JSLE as an independent disease subset of SLE,
especially as patients transition to adulthood, and basic research
in this group of patients is scarce. There is an urgent need to
investigate mechanisms of immunopathogenesis in this younger
group of JSLE patients to improve disease monitoring, treatment
options and quality-of-life. A recent abundance of findings
surrounding a pathogenic role for CD8+ T-cells has emerged
in JSLE research relating to their contribution to specific organ
involvement and comorbidities such as atherosclerosis, as well
as their systemic pro-inflammatory effects through functional
and metabolic responses to type-I IFNs (Figure 1). Here we will

review these new findings in JSLE and discuss possibilities for
advancing therapeutic strategies to target this younger, more
severely affected disease group.

CD8+ T-CELLS AND THE PATHOGENESIS
OF JSLE AND ATHEROSCLEROSIS

Due to greater focus on CD4+ T-cells in antibody-mediated
autoimmunity (27, 28), there is a lack of CD8+ T-cell studies
within the already scarce JSLE research available. In light of
this, our recent study utilized sophisticated machine learning
methodology to improve the analytical capacity of immune
phenotype data collected from a JSLE patient cohort, where we
investigated the immune profiles of adolescent JSLE patients
compared to age-matched healthy individuals (HCs), as well
as the longer-term clinical outcome measures from immune
stratified groups (29). The study identified a unique and highly
predictive immune signature of JSLE, validated using multiple
machine learning methods, including a significant increase total
and naïve CD8+ T-cells and reduced effector memory CD8+ T-
cells, compared to HCs. Interestingly, total and effector memory
CD8+ T-cells were significantly increased in 2 uniquely clustered
patient groups that had a more active disease trajectory over
5-years of follow-up (increased average SLE Disease Activity
Index, SLEDAI and decreased number of visits in Lupus Low
Disease Activity State, LLDAS) and a higher prevalence of lupus
nephritis (30). To our knowledge, this was the first time that
CD8+ T-cells had been described and associated with pathogenic
mechanisms and clinical outcomes in JSLE patients (Figure 1).
Of note, CD4+ T-cells in this study were reduced in JSLE patients
and were associated with better clinical outcomes, suggesting a
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FIGURE 1 | Summary of speculated pathogenic mechanisms of CD8+ T-cells in JSLE. (A) Total and naïve CD8+ T-cell frequencies are increased in circulation in

JSLE patients. CD8+ T-cell functional differences have also been described in JSLE, including high expression levels of granzyme B/K (GZMB/K) and perforin

transcripts, as well as CD69 and PD-1 expression, suggesting an activated, cytotoxic, pro-apoptotic, but exhausted CD8+ T cell profile. CD8+ FOXP3+ (suppressor)

T-cells have also been described in JSLE using single cell technologies. Total and effector memory (EM) CD8+ T-cells have been associated with worse disease

outcomes and organ involvement in JSLE, including (B) lupus nephritis and atherosclerosis (cardiovascular disease). Speculated mechanisms of organ involvement

are displayed. With this respect, it has been recently shown that CD8+ T-cells are the predominant immune cell in established human atherosclerotic plaques and that

high cardiometabolic risk JSLE patients have increased pro-inflammatory and pro-apoptotic circulating CD8+ T-cells associated with type-I interferon (IFN) signaling,

which could influence plaque instability through effects on macrophage (green) foam cell (yellow) formation and apoptosis of vessel smooth muscle cells (SMCs).

Dotted arrows represent indirect processes, including cellular maturation/differentiation and the effects of inflammatory mediators on cell signaling. Increased central

nervous system (CNS) involvement is also associated with JSLE, however, immune mechanisms are less investigated. This Figure was produced using resources from

Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.

more pathogenic role of CD8+ T-cells in JSLE. This key role of
CD8+ T-cells has previously been identified in adult-onset SLE
patients, where memory CD8+ T-cell expansion was associated
with a worse prognosis of disease using transcriptional profiling
(31, 32). Despite this, effector memory CD8+ T-cells in adult-
onset SLE have been shown to have increased apoptotic profiles
(increased tendency to undergo apoptosis upon stimulation)
and decreased proliferative capacity, but also to express high
levels of IFN-γ, perforin and granzyme B, highlighting possible
pathogenic mechanisms of chronic inflammation and organ
damage (33). In support, activated CD8+ T lymphocytes
expressing perforin and granzyme B correlate positively with
disease activity (SLEDAI) in adult patients (34, 35). RNA
sequencing of lupus nephritis biopsy tissue in adult patients has
also identified CD8+ T cells expressing high levels of GZMB and
GZMK transcripts (36). Further investigations into the specific
functional profiles of CD8+ T-cells in younger JSLE patients,
their specific involvement in organ inflammation and damage,
and how these compare to those of adult-SLE patients, will be
important in addressing the increased damage and mortality risk
in this patient population.

As well as improved analytical techniques, modern
technologies have also enhanced the explorative capacity of
specific immune cell population phenotypes in rare JSLE
patient cohorts, as well as internal cohort heterogeneity, a

strong reason for the failure of clinical trials (37). A recent
study from Nehar-Belaid et al. has demonstrated this using
single-cell RNA sequencing in a small cohort of 33 children with
JSLE and 11 matched HCs (38). Despite detecting phenotype
heterogeneity between patients, this study identified 2 unique T-
cell sub-clusters of CD8+ T-cells that had strong transcriptomic
cytotoxic programs (PRF1, GZMB, GZMA, and KLRG1), but
unique helper T-cell profiles of either Th17 (RORC and IL17RE)
or Th2/Tregs (GATA3, CCR6 and FOXP3), compared to healthy
individuals, supporting the complexity of CD8+ T-cell profiles
in the context of JSLE. Studies in adult patients have explored
similar CD8+ FOXP3+ (suppressor phenotype) T-cells in
more detail, where these cells have been found to be defective or
dysregulated, however, patient and cohort immune heterogeneity
has resulted in mixed reports surrounding their frequency in
circulation and functional phenotype in SLE compared to healthy
individuals (39–41). Finally, in support of our previous study
(30), this single cell analysis of JSLE also found that CD4+ T-cells
were underrepresented in JSLE compared to healthy individuals,
again supporting a more pathogenic role of CD8+ T-cells.

An important subset of CD8+ T-cells that should be
considered in the context of JSLE are CD28- cells. Whilst
most studies have focused on adult-SLE, it is speculated that
these cells, with a tolerogenic and regulatory phenotype in
healthy individuals, could have therapeutic potential in JSLE
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(42, 43). These cells have high antigen experience, resulting in
downregulation of CD28 and subsequent shortening of telomeres
through lack of telomerase activity, and therefore a senescent
profile (long lived, terminally differentiated and oligoclonal)
(44). This has led to controversy related to their anti- vs. pro-
inflammatory role, with some studies reporting an upregulation
of FOXP3 and Treg phenotype in healthy individuals (45–47),
whilst others have reported cytotoxic markers such as granzyme
A and perforin on their surface (48). This controversy has been
further exacerbated in the context of SLE, where CD8+CD28- T-
cells have been shown to lack FOXP3, positively correlate with
disease activity (SLEDAI score) and be increased in patients with
lupus nephritis (49). Instead of supporting a pro-inflammatory
role for these cells, these observations could be the result of
impaired anti-inflammatory functions in adult-SLE, as previously
highlighted (50). In support of their anti-inflammatory potential,
CD8+CD28- T-cells have also been shown to be increased in
adult-SLE patients with inactive disease, whilst CD8+ CD28+ T-
cells correlated positively with SLEDAI score and renal damage,
(51). It is clear that additional markers are will be required to
further categorize this subset of CD8+ T-cells (43), and further
studies are warranted to uncover their pathogenic role in both
JSLE and adult-SLE. In addition, their counterpart CD4+ CD28-
T-cells have in fact a immunogenic and effector phenotype
(52), highlighting the complexity of T-cell profiles and strength
of single-cell technologies to improve targeted therapy toward
distinct T-cell subsets in JSLE.

Cardiovascular disease represents one of the leading causes
of mortality in JSLE through atherosclerosis (1). The vast
majority of atherosclerosis research thus far has been focused
on macrophages; however, the discovery of T-cell abundance in
human atherosclerotic plaques has highlighted the participation
of the adaptive immune system in atherogenesis (53). With this
respect, CD8+ T-cells were recently shown to be extremely
abundant in human atherosclerotic plaques (>30% of immune
cells) (54). In this single-cell study, CD8+ T-cells were the most
enriched immune subset in atherosclerotic plaques compared
to peripheral blood (39 vs. 26%), whilst CD4+ T-cells were
lower in frequency (50 vs. 65%), supporting active migration
and a key pathogenic role of CD8+ T-cells. CD8+ T-cell
cytotoxic functions can contribute to the promotion of cell
death, necrotic core formation and plaque instability, where their
relative frequency in plaques increases with progression (55, 56).
Another single-cell study of human atherosclerosis identified a
unique effector memory CD8+ T-cell subset in atherosclerotic
plaques, expressing high levels of of GZMK, GZMA, and CD69
(57), a similar profile to those seen upregulated in circulation
in JSLE patients (30, 38). Enrichment of these pro-inflammatory
circulating CD8+ T-cells in JSLE patients, highlights their
possible association with the increased atherosclerotic risk for
patients (Figure 1). In support, it has been shown recently
by Robinson et al. that JSLE patients with an increased
cardiometabolic risk, defined using biomarkers from adult SLE
patients with sub-clinical atherosclerotic plaque, have a unique
an exclusive increase in circulating CD8+ T-cells (58). These
CD8+ T-cells from high cardiometabolic risk JSLE patients had
increased activation and exhaustion markers (CD69 and PD-1),

matching the previously described phenotype of CD8+ T-cells in
human atherosclerotic plaques (54).

Type-I IFN Signatures and CD8+ T-Cells in
JSLE and Atherosclerosis; Implications for
Treatment
Robinson et al. showed that CD8+ T-cells from high
cardiometabolic risk JSLE patients had enriched activation,
pro-apoptotic and SLE-specific IFN-signaling transcriptomic
pathways associated with atherosclerosis, highlighted by a
significant pathway enrichment overlap with transcriptomes of
CD8+ T-cells isolated from human and mouse atherosclerotic
plaques (54, 59). Importantly, altered IFN signatures and
other shared pathways of atherosclerosis were not identified in
matched isolated CD4+ T-cells in this study, suggesting that
this is unique to the CD8+ T-cell compartment. As well as the
increased prevalence of type-I IFN signatures in JSLE compared
to adult-SLE patients (23), circulating type-I IFN levels are
also associated with subclinical markers of atherosclerosis
(60–62), including endothelial dysfunction and abnormal
vascular repair (61, 63). Type-I IFNs have also been heavily
implicated in multiple stages of the atherosclerotic process
through driving pro-inflammatory responses (64–66). These
include promoting immune cell recruitment and infiltration
to arteries, subendothelial foam cell formation, fibrous cap
thinning, plaque rupture and resultant thrombo-vascular events
(67). The co-inflammatory role of type-I IFNs in T-cells in
association with atherosclerosis is less described, however, it
has been shown that pDCs colocalise with and stimulate T-cells
in atherosclerotic plaques through IFNα, enabling cytotoxic
T-cells to kill vascular smooth muscle cells, which can destabilize
the plaque (66). In support, the same study showed that IFNα

concentrations in atheroma tissues also correlated strongly with
plaque instability scores. In addition, transcriptomic analysis of
CD8+ T-cells isolated from atherosclerotic plaques has shown
enriched IFN-signaling pathways as well as increased activation,
exhaustion and cytotoxicity (54), supporting a link between
IFNs, CD8+ T-cell activation and atherosclerosis.

Type-I IFN-signatures can now be identified at the single-
cell level, allowing for more detailed analysis of cell subsets; in
children with JSLE, a subset of CD8+ T-cells expressing high
levels of GZMK transcripts have emerged with potent type-I
IFN-signatures (38), representing 1 of the 3 immune subsets
that were overrepresented in the JSLE group compared to HCs,
and 1 of the 8 clusters (from 20) that contributed the most
to the global IFN signature of JSLE patients. This supports a
link between IFN and CD8+ T-cell function in JSLE that could
be implicated in atherosclerosis. In contrast, type-I IFNs were
recently shown to impact CD8+ T-cell metabolism in adult
patients with SLE (68), where CD8+ T-cells from patients with
a high IFN-signature had enlarged mitochondria and lower spare
respiratory capacity associated with increased cell death due to
prolonged IFN stimulation (62). Therefore, chronic stimulation
of CD8+ T-cells with type-I could also reduce their frequency in
JSLE long-term. As the investigations into the role of CD8+ T-
cells in atherosclerosis expand, relating this to autoimmunity will
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be play a key part in understanding their pro-inflammatory role
in exacerbating atherosclerosis progression.

Targeting CD8+ T-cells, either directly or through type-I IFN
targeted therapies, could hold therapeutic potential in JSLE to
reduce inflammation and disease-associated manifestations and
co-morbidities such as nephritis and CVD (Figure 1). Current
immunotherapies used in JSLE may not specifically alter CD8+
T-cells (69), as highlighted by our recent study, where we did
not find major significant differences in conventional treatments
between JSLE subgroups with high and low circulating CD8+ T-
cells (30). However, new therapeutic strategies aimed at CD8+
T-cells could be beneficial.

With the shared anti-viral mechanisms (70) and mechanistic
evidence discussed from studies in JSLE, there is a possibility
for indirect therapeutic targeting of CD8+ T-cells via IFN
pathways to reduce long-term damage and CVD from IFN-
driven inflammation. With this respect, clinical trials blocking
type-I IFN signaling through the IFN receptor or the JAK/STAT
signaling pathway are already underway in SLE to reduce
autoimmune inflammation (71, 72), which could also prevent
atherosclerosis progression in patients. An example is the
biologic anifrolumab, which has reached the primary endpoint
[response by British Isles Lupus Assessment Group (BILAG)
disease activity score] in an SLE trial (73). Anifrolumab binds
to subunit 1 of the type I IFN receptor, blocking the activity of
IFN-α, IFN-β and IFN-ω through the JAK/STAT pathway, thus
preventing the expression of inflammatory genes. Janus kinase
(JAK) inhibitors, licensed for use in inflammatory arthritis, act
by inhibiting pro-inflammatory cytokine signaling through the
JAK/STAT pathways (69) and they have been also tested in
SLE and showed benefit in early phase trials (74, 75). Based on
evidence highlighted by this review, stratifying patients by their
inflammatory CD8+ T-cell profiles could improve the clinical
efficacy of anifrolumab in the context of both long-term disease
activity and cardiovascular outcomes. Patients in these clinical
trials are already considered in terms of IFN gene signatures,
and therefore, follow-up analysis of CD8+ T-cells pre- and
post-treatment could highlight a key inflammatory pathway that
is targeted (76). With this respect, blocking IFN receptors on
the surface of CD8+ T-cells could reduce the cytotoxic profile
induced by IFN to prevent both circulatory and tissue specific
damage caused by pro-apoptotic mechanisms in JSLE.

Clinical trials in SLE do not usually include patients with JSLE,
or stratify patients based on comorbidities such as dyslipidaemia,
leading to mixed results regarding atherogenic lipid profiles
and arterial thrombotic events in SLE (69), and therefore
larger and better designed studies are warranted. Whether or
not these CD8+ T cell targeted treatments will ultimately be
beneficial for both JSLE and associated atherosclerosis will likely
depend on the specific cell subsets, tissue penetration and JSLE
phenotype specificity, disease activity and stage of atherosclerotic
lesion progression.

Additional CD8+ T-Cell Therapeutic
Opportunity in JSLE
CD8+ T-cell targeted therapies for the future could involve
inducing CD8+ suppressor T-cells in JSLE patients (77),
especially as CD8+ suppressor T-cells have also been identified

in atherosclerotic lesions of induced mouse models, where they
carry out immunosuppressive functions and adoptive transfer
of these cells reduces plaque size and macrophage infiltration
(78). Low-dose IL-2 administration has already been shown
to foster a dose-dependent increase in CD8+ suppressor T-
cells in type-I diabetes patients (79), something that could be
applied to JSLE patients for immunosuppression (80). It has
also been shown that T-cell receptor stimulation with anti-
CD3 monoclonal antibodies can specifically induce the CD8+
suppressor T-cell population, which could have a dual effect
on JSLE activity and atherosclerosis progression. However, it
has also been shown that CD8+ suppressor T-cells generated
in vitro with IL-2 and GM-CSF from cells isolated from SLE
patients with active disease or in remission, were not able to
suppress in cells collected from patients with active disease, a
function well-maintained by patients in remission (41). This
suggests that these therapeutic strategies may depend on patient
disease activity at the time of administration. It has also been
shown that intravenous injection of a naturally occurring peptide,
nucleosomal histone peptide H4 71–94, into lupus-prone mice
can induce CD8+ suppressor T-cells, which can subsequently
suppress lupus nephritis for up to 2 months (81). Cell-based
immunotherapy using in vitro expanded CD8+ suppressor
T-cells injected into mouse models engrafted with synovial
tissues from patients with rheumatoid arthritis has also shown
immunosuppressive potential, reducing inflammatory cytokine
production and costimulatory ligands in the tissue (82). This
highlights the strength of identifying specific CD8+ T-cell
subsets from both conventional and single-cell approaches that
can be targeted therapeutically to reduce inflammation.

Finally, following the success of B-cell depletion monoclonal
antibody therapies in SLE, a direct depletion of CD8+ T-cells
using monoclonal antibodies could be a future possibility for
reducing inflammation in active JSLE. These therapeutic
strategies have already shown promise in suppressing
inflammatory damage in several experimental autoimmune
models (83–86).

CONCLUSIONS

Investigating pathogenic mechanisms of disease in JSLE
addresses many unmet needs. A key advantage is that successful
translation of basic research to clinical implications will
hopefully result in better disease outcomes for children and
young people which has significant societal implications. With
this respect, JSLE patients are younger and likely have a shorter
disease duration at inclusion in clinical studies, enabling the
investigation of early pathogenic mechanisms associated with
the disease. Disease onset in JSLE is usually more severe leading
to early diagnosis and hopefully better patient stratification
based on disease and therapeutic burden, as well as damage,
which can mitigate against heterogeneity to immunological
research, particularly when studying multi-omic data (87). There
are, however, several challenges of JSLE research, including the
limitation of smaller cohorts, as only 15–20% of all SLE patients
have childhood onset. This makes addressing both global
patient differences and heterogeneity between patients harder to
explore. For younger patients, there are also more ethical issues
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surrounding their involvement in research, from blood collection
to limited clinical trial options to test new therapies, also adding
limitations to basic research and translational prospects. Larger
multi-center cohort studies with long-term follow-up and
bio-banked samples can answer some of the research priorities
we have in this understudied patient population. Finally, more
severe inflammation and organ damage in JSLE, compared
with adult patients (3), suggests that we cannot assume that the
underlying pathogenic mechanisms are similar across age. With
this respect, more JSLE-specific research and clinical trials are
required to justify the specific approval and use of therapeutics
in JSLE.

Despite these challenges, the future is bright for JSLE
research. Modern and sophisticated analysis and single-cell
techniques now allow researchers to maximize the use of
rare biological samples and investigate heterogeneity for
personalized and more targeted approaches (29). With the
growing evidence from both clinic and basic research studies,
there is now a much-improved recognition of JSLE as an
individual subset of SLE, which will hopefully improve research
funding and progress, as well as increase recruitment to
investigational clinical trials to address the unmet needs
of this patient group. This will hopefully promote better
education within this younger population about their disease and
management to ultimately improve long-term quality-of-life and
disease outcomes.

Here we provide strong evidence that CD8+ T-cells play a
dominant pathogenic role in: (1) development; (2) severity; (3)
long-term prognosis of JSLE, as well as; (4) a key association
with cardiovascular co-morbidities through the acceleration of
atherosclerosis (Figure 1). CD8+ T-cells should become a key
target focus for new therapeutics and will be an important tool
for patient stratification. Whilst it is likely that a combination
of both increased CD8+ T-cell numbers and their more
proinflammatory phenotype contribute to JSLE pathogenesis
and outcomes, we propose that introduction of a peripheral

blood T-cell immunophenotyping panel to clinical research in

large cohort of patients to account for patient heterogeneity
could be of huge benefit to treatment strategies and advance
the understanding of JSLE pathogenesis. We advocate that
creating an immune atlas for JSLE characterization in relation
to organ involvement, disease activity/damage and medication,
particularly focused on CD8+T cell populations, which are key
drivers of peripheral blood immune abnormalities in JSLE, will
help define distinct molecular signatures associated with various
disease pathotypes and states. As immune phenotypic studies
are improving in JSLE using new technologies, a focus on the
mechanisms of CD8+ T-cell inflammation and loss of tolerance
in disease will hopefully emerge. Together, this will help to direct
both current and new therapies toward a more targeted and
personalized approach, translating basic research for the benefit
of patients from a young age.
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