
SYSTEMATIC REVIEW
published: 03 June 2022

doi: 10.3389/fpubh.2022.900077

Frontiers in Public Health | www.frontiersin.org 1 June 2022 | Volume 10 | Article 900077

Edited by:

João Valente Cordeiro,

New University of Lisbon, Portugal

Reviewed by:

Thaddeus Marzo Carvajal,

De La Salle University, Philippines

Alina Deshpande,

Los Alamos National Laboratory

(DOE), United States

*Correspondence:

Wellington Pinheiro dos Santos

wellington.santos@ufpe.br

Specialty section:

This article was submitted to

Digital Public Health,

a section of the journal

Frontiers in Public Health

Received: 19 March 2022

Accepted: 03 May 2022

Published: 03 June 2022

Citation:

Lima CLd, da Silva ACG,

Moreno GMM, Cordeiro da Silva C,

Musah A, Aldosery A, Dutra L,

Ambrizzi T, Borges IVG, Tunali M,

Basibuyuk S, Yenigün O, Massoni TL,

Browning E, Jones K, Campos L,

Kostkova P, Silva Filho AGd and dos

Santos WP (2022) Temporal and

Spatiotemporal Arboviruses

Forecasting by Machine Learning: A

Systematic Review.

Front. Public Health 10:900077.

doi: 10.3389/fpubh.2022.900077

Temporal and Spatiotemporal
Arboviruses Forecasting by Machine
Learning: A Systematic Review

Clarisse Lins de Lima 1, Ana Clara Gomes da Silva 1, Giselle Machado Magalhães Moreno 2,

Cecilia Cordeiro da Silva 3, Anwar Musah 4, Aisha Aldosery 4, Livia Dutra 2, Tercio Ambrizzi 2,

Iuri V. G. Borges 2, Merve Tunali 5, Selma Basibuyuk 5, Orhan Yenigün 5,

Tiago Lima Massoni 6, Ella Browning 7, Kate Jones 7, Luiza Campos 8, Patty Kostkova 4,

Abel Guilhermino da Silva Filho 3 and Wellington Pinheiro dos Santos 9*

1Nucleus for Computer Engineering, Polytechnique School of the University of Pernambuco, Poli-UPE, Recife, Brazil,
2Department of Atmospheric Sciences, IAG-USP, University of São Paulo, São Paulo, Brazil, 3Center for Informatics, Federal

University of Pernambuco, CIn-UFPE, Recife, Brazil, 4Centre for Digital Public Health and Emergencies, Institute for Risk and

Disaster Reduction, University College London, London, United Kingdom, 5 Boǧaziçi University, Institute of Environmental
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Arboviruses are a group of diseases that are transmitted by an arthropod vector.

Since they are part of the Neglected Tropical Diseases that pose several public health

challenges for countries around the world. The arboviruses’ dynamics are governed

by a combination of climatic, environmental, and human mobility factors. Arboviruses

prediction models can be a support tool for decision-making by public health agents.

In this study, we propose a systematic literature review to identify arboviruses prediction

models, as well as models for their transmitter vector dynamics. To carry out this review,

we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct,

Springer Link, and Scopus. We search for studies published between the years 2015 and

2020, using a search string. A total of 429 articles were returned, however, after filtering by

exclusion and inclusion criteria, 139 were included. Through this systematic review, it was

possible to identify the challenges present in the construction of arboviruses prediction

models, as well as the existing gap in the construction of spatiotemporal models.

Keywords: digital epidemiology, computational intelligence, arboviruses forecast, machine learning, systematic

review, dengue, chikungunya, Zika virus

1. INTRODUCTION

Vector-borne diseases present a major public health challenge for many countries around the
world (1–3). Arboviral diseases are diseases caused by arthropod-borne viruses which are viruses
that need a vertebrate host and a hematophagus arthropod (the transmitting vector) in order
to maintain themselves in nature (4–6). Arboviruses transmitted by Aedes aegypti, e.g., manage
to maintain themselves in nature through a human-mosquito cycle. In other words, for the
transmission of one of these diseases, it is only necessary for the hematophagous arthropod to
inject its infectious saliva into the blood of a non-viremic individual at the time of the bite.
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However, non-vertical transmission is also possible, such
as during sexual intercourse, from mother to child during
pregnancy or childbirth, in addition to transmission of blood,
bone marrow, and organ transplantation (6).

Since arboviruses are part of the Neglected Tropical Diseases
(NTDs) group, they impact directly and indirectly the countries
wherein they are endemic (7). The direct impact is related
to the number of people infected and the number of deaths
caused by arboviruses. On the other hand, the indirect impact is
more associated with socioeconomic impacts (7). Dengue, Zika,
and chikungunya fever, transmitted by Aedes mosquitoes, are
examples of diseases that belong to the group of NTDs. According
to the World Health Organization, dengue fever is present in
more than 100 countries around the world. Furthermore, in the
last decade, there has been an increase of around 300% in the
number of cases of the disease (2). Chikungunya, in turn, has
been identified in more than 60 countries since 2004, when it first
spread to countries in Europe and the Americas (8), whereas the
Zika virus is currently present in a total of 86 territories around
the world (9). Thus, the arboviral diseases rapid global spread
amplified the challenges faced by the scientific and governmental
communities (10).

The arboviruses dynamics are associated with several
heterogeneous factors that involve demographic, climatic, and
environmental aspects of a region. Demographic changes arising
from intense migratory flows from rural to urban areas have led
cities to grow inordinately. The swelling of urban populations
along with urban population mobility associated with other
factors, such as poor sanitation, also plays an important role in
transmission vector proliferation. In addition, the lack of water
distribution, as well as the difficult access to health systems,
also bring barriers to controlling the vector (3, 11, 12). Another
aspect associated with arbovirus dynamics is the local climatic
and environmental conditions. Luminosity, rainfall, relative
humidity, and temperature, act directly on the mosquitoes’
development and interfere with the eggs’ hatch, as well as their
lifetime and dispersion (3, 11, 13).

With climate change and the increase in the number
and frequency of international flights, two new arboviruses
transmitted by the A. aegypti mosquito have emerged in Brazil:
Chikungunya and the Zika virus. Raising, in this way, new
challenges regarding the control and monitoring of the vector
(14–19).

Hence, considering the impact caused by the vector-borne
diseases, several research groups have directed their efforts to
understand the dynamics of arboviruses through mathematical
and computational models for the creation of prediction models
(3, 20, 21). We believe that prediction models can be a good
tool for health authorities to implement public policies for rapid
monitoring and control of the arboviruses spread. Therefore,
this document proposes a systematic review of the literature
to identify models for predicting arboviruses cases transmitted
by the A. aegypti—dengue fever, Zika virus disease, and
chikungunya—as well as the mosquito dynamics. In particular,
this review seeks to answer the following research questions. In
particular, this systematic review seeks to analyze what are the
biggest challenges when it comes to implementing arboviruses

prediction models. In addition, we sought to identify the main
techniques for predicting mosquito cases or foci and which are
the main variables that interfere in the dynamics of disease
transmission and the dynamics of the transmission vector.

2. METHOD

The strategy for conducting this systematic review is detailed
in Figure 1. First, we performed an automatic search in
scientific databases, such as IEE Xplore, PubMed, Science Direct,
Springer Link, and Scopus. We searched for articles published
between 2015 and 2020 wherein the metadata, titled or abstract
contained the terms defined in the following search string:
[“Arboviruses” OR “arthropod-borne virus” OR “dengue” OR

“chikungunya” OR “mosquito-borne disease”] AND [“Machine
Learning” OR “Deep Learning” OR “neural network” OR

“artificial intelligence”] AND [“forecast”OR “prediction”].
In the following step, we identified the number of articles

that were retrieved from each scientific database. We then
checked if the articles met the exclusion criteria. In this review,
we excluded works that were not in English, works that were
not completed, and documents classified as posters, tutorials,
editorials, or calls for articles. We also excluded works that did
not include arbovirus or breeding site prediction and works that
did not include computational techniques.

After filtering according to the exclusion criteria, we briefly
read the article’s abstract, introduction, and conclusion. This
step was essential in order to select the articles according to the
inclusion criteria. The works selected in that phase were those
which met at least one of the following criteria:

1. Works with computational intelligence methods to predict
arboviruses cases.

2. Works with computational intelligence methods to predict
mosquito breeding sites.

3. Works with computational intelligence methods to predict the
mosquitos’ dynamics.

4. Works with statistical learning (Bayesian and other
probabilistic methods).

5. Works involving forecasting with differential equations.

The remaining articles after filtering by the inclusion criteria
were fully read and evaluated according to the quality criteria
described in Table 1. We used a 0-1 scale to assess study quality,
where Yes (Y) = 1; Partially (P) = 0.5, and No (N) = 0. Three
reviewers performed articles assessment, independently, and the
disagreements were resolved by discussion among the reviewers.

From the articles selected by the inclusion criteria, we extract
the following information: the title of the article, the name of
the authors, the institution, the application of the study, the
methodology applied to the study, the prediction model, results,
the advantages, and the disadvantages of the method.

3. RESULTS AND DISCUSSION

The search process returned 51 articles from IEEE Xplore, 95
articles from PubMed, 238 from Scopus, 20 from Science Direct,
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FIGURE 1 | This system consisted of the following steps: (1) First, we performed a search of scientific databases (IEEE Xplore, PubMed, Scopus, Science Direct, and

Springer Link). (2) We then filtered the returned articles according to the exclusion criteria. (3) In the next step, we selected the article that remained from the previous

stage according to the inclusion criteria. (4) After completing the previous step, we read, evaluated, and summarized the studies included in the review. (5) In the last

step of this review, we grouped the studies considering their common characteristics.
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TABLE 1 | Quality criteria used to evaluate the selected studies.

ID Quality criteria Answer

QC1 Are the objectives clearly stated? Y/P/N

QC2 Are the data sources clearly described? Y/P/N

QC3 Do the authors present the variables to build their

models?

Y/P/N

QC4 Do the author explicitly defined which computational

techniques or prediction model they used as well as

their architectures and parameters?

Y/P/N

QC5 Do the authors report which metrics they used in

order to evaluate their models?

Y/P/N

QC6 Are the conclusions coherent to the study findings

and also with the set objectives?

Y/P/N

QC7 Do the authors detail the weakness of their work? Y/P/N

and 25 from Springer Link. It is important to emphasize that, for
the Science Direct database, the search string had to be reduced.
For this database, the number of Boolean operators in the original
string search was not supported. In this case, we used the
terms: (“dengue”OR “zika”OR “chikungunya”)AND (“Machine
Learning” OR “artificial intelligence” OR “regression”) AND

(“forecast” OR “prediction”). From the 429 works collected,
181 were excluded in the filtering by the exclusion criteria
stage. Among these 181 articles, 145 were duplicated studies,
32 were posters, abstracts, books, proceedings, or systematic
literature review. In addition, two of them were excluded because
they were not in English, and two articles were unfinished.
We then screened the remaining 248 studies by reading the
title, abstract, and conclusion. After the inclusion criteria stage,
109 were removed from this study for not meeting any of
the inclusion criteria. Hence, 139 articles were included in this
systematic review.

In the last step of the systematic review, we grouped the
139 selected articles according to their common characteristics
(Table 2). The studies were divided into six groups: Arboviruses
(counts) prediction (Group 1), Arboviruses detection (Group 2),
Outbreaks and Risk prediction (Group 3), Models of mosquitoes
dynamics, breeding sites models (Group 4), Clustering,
modeling, and spatiotemporal prediction of arboviruses (Group
5), and Other Approaches (Group 6). In Group 1, we considered
only the studies that presented models for counting arboviruses.
In Group 2, we only included the studies that involved
arboviruses detection. Group 3, in turn, is composed of studies
that present models for predicting arbovirus outbreaks, as well
as predicting the risk of an outbreak. The studies that presented
vector monitoring and prediction models were included in
Group 4. Those articles that investigated arboviruses prediction
models with a spatiotemporal approach were included in Group
5. Finally, the studies that presented more than one of the
approaches mentioned above—or that did not fit into any of the
previous groups—were included in Group 6.

3.1. Arboviruses (Counts) Prediction
Among the 139 selected studies, about 80 studies are related to
the prediction of the incidence of arboviruses cases (Table 2).

TABLE 2 | Number of studies per group, considering the following stratification:

Group 1: prediction of arboviruses by counting; Group 2: detection of arboviruses;

Group 3: prediction of risk and epidemiological outbreaks of arboviruses; Group 4:

modeling the dynamics of mosquitoes and breeding sites; Group 5:

spatio-temporal modeling; Group 6: other approaches.

Group Description Number of

studies

Group 1 Arboviruses (count) prediction 80

Group 2 Arboviruses detection 15

Group 3 Arboviruses Outbreaks and Risk prediction 18

Group 4 Models of mosquitoes dynamics, breeding

sites models

10

Group 5 Clustering, spatiotemporal modeling 9

Group 6 Other approaches 7

Considering the year of publication, we observed that most of
the studies in this group were published in 2018 and 2019. The
number of articles published in 2018 and 2019 was 19 and 22,
respectively, with a drop in the number of publications related
to this topic in the year 2020 (Figure 2). Regarding the scores
referring to quality criteria, we noticed that most scores were
high, with the exception of QC7. For this criterion, the average
score achieved by the studies was 0.33 (Figure 3).

The A. aegypti is the transmitter vector of three different
type arboviral diseases. Taking into account the types of
arboviruses transmitted by this mosquito, we found a significant
amount of work focused on the construction of dengue fever
transmission models. In these studies, the authors, in most cases,
do not distinguish the serotype of the disease. In other words,
dengue cases are generally considered as: dengue fever, dengue
hemorrhagic fever and dengue shock syndrome, including local
and imported cases. However, the studies of (22–27) are only
focused on prediction models for dengue hemorrhagic fever.
Regarding the other two diseases transmitted by the Ae. aegypti,
we found a small number of articles addressing Zika virus disease
and chikungunya’s numeric prediction models (28–33).

The returned studies also brought a great variety related to
the attributes used to build arboviruses prediction models. It
is noted that, in several studies, prediction models are built
taking into account only past values of disease cases (17, 25,
29–31, 34–38). However, arboviruses are diseases that need
a transmitting vector for the arbovirus cycle in nature to
complete. Furthermore, climatic factors directly affect the life
cycle of the transmittingmosquito. In this context, several studies
have investigated prediction models considering the effect of
climatic and environmental variables on arbovirus transmission.
Therefore, we observed a wide variety of studies that used at least
one of the following variables as model attributes: temperature,
rain, and relative humidity. However, some studies included
other parameters in their models such as the number of rainy
days (39–41), number of stormy days, and wind speed (41).

Furthermore, environmental variables obtained through
remote sensing were also explored in a relevant number
of studies. The most common were normalized difference
vegetation index (NDVI) (42–44), vegetation index (45),
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FIGURE 2 | Distribution of the number of articles according to the year of publication for each group.

enhanced vegetation index (46), smoothed vegetation index,
smoothed brightness temperature index, vegetation condition
index, vegetation health index (44), land surface temperature
(43, 46, 47), Southern Oscillation Index (SOI), and Sea Surface
Temperature Anomaly (SSTA) (48). In the studies of (47)
and (44), the authors included information on the EL Ninõ
phenomenon as well as (47)—that included variables related to
the El Niño SouthernOscillation Index—and (44)—that included
the Oceanic Niño Index variable in their model.

The research groups also explored attributes other than
climate variables, such as epidemiological surveillance variables
and sociodemographic variables. Among the epidemiological
surveillance variables, the most used were: the number of
larva-free, house index (39, 49), weekly breeding percentage
(50), container (49), breteau index (49, 51, 52), standard space
index, adult mosquito density, Ae. aegypti larvae infection,
and female mosquito infection rate (52). Mosquito dynamics
interfere with arbovirus dynamics. Including this information
in predictive models can be an outlet for the search for
more robust models that can understand the arboviruses’
dynamics in a given region. Sociodemographic aspects also
influence the arboviruses dynamics. Considering this fact,
Dharmawardana et al. (45) also implemented in their model a
mobility model in order to predict the dengue cases’s incidence
curve. Still considering sociodemographic information, other
researchers included in their models’ population density (32, 40),
poverty percentage (32), population (41, 46, 53), Gini Index—a

measure of income inequality—, education coverage (24), and
unavailability of the garbage dump. In the model developed
by (50), the population size attribute was considered for both
the resident population and non-resident foreign population.
Models considering sociodemographic factors can help us to
understand how population dynamics are related to arboviruses
cases. In this way, it can help to guide socio-educational
actions and to direct the implementation of basic sanitation and
infrastructure policies.

Continuing the analysis regarding the variables included in
the prediction models, we observed that data from social media
and search volume reported by search engines can be a powerful
tool in monitoring arbovirus-borne diseases. In the study of (54),
data from Baidu (a popular search tool in China) and social
media are used to model the incidence of dengue in Guangzhou,
China. Data referring to the number of comments, number of
likes, and number of forwarding that are associated with dengue
as a primary keyword are captured. In the studies of (30) and
(27), the authors use Google Trends data to generate models
for predicting Zika and dengue hemorrhagic fever, respectively.
Espina and Estuar (36), in turn, use Twitter data to identify
infodemiological content to be used in predicting dengue. In a
world where information is gaining speed at every moment, the
implementation of arbovirus models using social media can be an
alternative for monitoring, surveillance, and disease prediction.

Taking into account the datasources used by the authors,
we identified that in a vast majority of the returned studies,
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FIGURE 3 | Average score for each quality criteria for the studies from each group.

the data were obtained through government institutions.
These institutions were responsible for either epidemiological
surveillance or meteorological monitoring of the study area. One
of the limitations presented in studies that use government data
is the underreporting cases (55). Usually, when the individuals
do not have the most severe form of the disease, they do not seek
health services. Hence, under these conditions, those individuals
are not included in the statistics. Moreover, health data usually
have other limitations such as missing values, e.g., (55). However,
some works use alternative sources to obtain data. Data can also
be obtained through social media and search engines (27, 29,
30, 36, 54) and through data from the WHO (29, 31). On the
other hand, we observed that in some studies, the authors do not
explicit the origins of the collected data (37, 39, 43, 44, 56–60).
The lack of information regarding the datasources can affect the
study’s reproducibility since the databases’ original conditions to
generate the models are not clear.

When we evaluated the studies regarding the types of
models used in the predictions, we observed that the vast
majority of authors investigated moving average models
(27), such as the Autoregressive Integrated Moving Average
(ARIMA) (17, 23, 29, 35, 41, 43, 46, 56, 61–63), Seasonal
Autoregressive Integrated Moving Average (SARIMA) (55, 63–
66), Autoregressive IntegratedMoving Average with Explanatory
Variable (ARIMAX) (67). Several works have also presented a
wide variety of models using artificial neural networks, mainly
the LSTM (59, 68–70). But models using backpropagation neural

networks (BPNN), GANN networks (60), Elman Recurrent
Neural Network LevenbergMarquardt Algorithm (ERMN/LMA)
(22), and Deep feed-forward neural networks (28) were also
investigated. Although neural networks have been extensively
explored, in many studies, the authors did not explain the type
of network they were investigating (23, 45, 46, 61, 66, 71, 72).

When working with prediction, we also prioritize the
computational cost associated with the implemented technique.
In this sense, optimization algorithms can help us to reduce
the computational cost by reducing model training time.
Optimization algorithms do this by looking for attributes that
represent the dataset being studied. Therefore, some studies
in this group investigated some optimization techniques. In
the study of (57), the authors investigated several optimization
algorithms associated with the Least Square Support Vector
Machine (LSSVM). The investigated algorithms were: Moth
Flame Optimization (MFO), Gray Wolf Optimizer (GWO),
Firefly Algorithm (FA), and Artificial Bee Colony (ABC)
algorithm. Saptarini et al. (22), in turn, used Genetic Algorithm,
as well as (68). Finally, we notice that, when it comes to predicting
the count or incidence of arboviruses, there are a wide variety of
model applications.

In the articles evaluated by this group, we observed that
among the main diseases transmitted by A. aegypti, the models
for predicting dengue cases are the most explored by research
groups. As the diseases transmitted by this vector present similar
symptoms in their milder forms, in regions where dengue,
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zika, and chikungunya viruses circulate, the models may present
errors related to the low distinction between the diseases. The
models that included climatic variables and/or variables of
sociodemographic aspects performed better than those that only
took into account the historical series of confirmed cases of
the disease.

As for the origin of the data sources, we observed that the data
obtained by governmental institutions provide greater reliability
to the models. However, these models have limitations, mainly
in relation to the underreporting of cases. Underreporting can
impair the performance of case prediction models. The data
that are obtained through the analysis of user behavior in social
networks can act as an important tool in the prediction of
arboviruses. Since, in some regions, the public system may take a
long time to update notifications, alternative data sources can be
a good solution in the development of robust models, especially
in critical situations such as during arbovirus outbreaks. On
the other hand, models generated using data solely from social
networks may not be applied in regions where access to
the Internet and mobile devices are scarce. That is, in some
peripheral regions, the model may not be able to identify disease
cases in that region.

Regarding the prediction models selected, we observed that
most of the studies that used Artificial Intelligence opted for
deep learning models. Despite the promising results that were
obtained, the use of deep networks, such as LSTM, is linked
to large memory consumption. In other words, it takes a lot
of training time and resources to create applications for the
real world. Moving average models, in turn, are good tools for
capturing trends, periodic changes, and random distortions in
historical series. In addition, they are simple and quick to apply.

Thus, the models of the historical series are very relevant
and can be a very useful tool in the planning of public policies
to combat arboviruses. However, these models are not able
to provide information regarding the spatial distribution of
diseases. That is, they are not able to point out which areas are
being more or less affected by diseases transmitted by A. aegypti.

3.2. Arboviruses Detection
For this group, 15 studies were selected from the 139 included in
this review (Table 2). The publication years for this group varied
between 2015 and 2020, wherein the majority of the studies were
published in 2019 and 2020 (4 and 8 articles, respectively). For
the years 2015, 2017, and 2018, there was only one publication on
this topic (Figure 2). Considering the quality criteria evaluated,
the vast majority reached a low score in QC7 as presented in
Figure 3.

Among these 15 articles in this group, we noticed that they
focus on two of the three arboviral diseases transmitted by
the A. aegypti. That is, 12 articles focused on dengue fever
prediction models, whereas three of them focused on Zika virus
disease. It is also important to highlight that, in all articles, the
authors used machine learning algorithms in order to build their
prediction model.

For Zika virus disease prediction, we noticed that the
authors investigated different algorithms to predict positive
cases of the disease. Jarrin et al. (73) evaluated support vector

machines (SVM) and logistic regression to build their models,
whereas Jarrin et al. (74) and Mahalakshmi and Suseendran (75)
investigated Random Forest and Multilayer Percetron (MLP)
algorithms, respectively.

Jarrin et al. (73) investigated SVM and RL algorithms—
implemented in Python 3.7—to classify individual samples into
“infected” or “uninfected” with the Zika virus. According to
the author’s results, the classifier showed a better accuracy for
the “infected” class. The method presented by (73) can be used
for the early diagnosis of ZIKV infection. Jarrin et al. (74), on
the other hand, used mass spectrometry approaches to detect
ZIKV by RT-PCR using RNA samples extracted from serum
and urine to classify the diagnosis. The problem presented by
(74) was modeled using Random Forest using MATLAB R2017a.
The model presented by the authors is a robust platform that
can be implemented in routine laboratories in order to help
to support the diagnosis. Mahalakshmi and Suseendran (75)
used the Multilayer Perceptron (MLP) artificial neural networks
classifier. The data used is synthetic and was collected from the
Internet. For prediction, the Weka software (version 3.8) was
used. As the study was carried out with synthetic data, it is
essential that tests be carried out with data from real databases.
Having been trained only with artificial instances, when coming
into contact with a real-world dataset, the accuracy of the
generated model can drop significantly.

To predict dengue, the selected studies used different
predictors. Mello-Román et al. (76) have developed a system in
which data collection is based on the symptoms of the disease.
The dataset is composed of cases registered by the Paraguayan
health system, e.g., patients admitted due to fever and complete
dengue diagnosis. Mello-Román et al. (76) carried out their tests
using the IBM SPSSModeler software in order to train their MLP
and SVM algorithms. According to the author’s results, the MLP
showed better accuracy over the SVM classifiers.

(77) provide a prediction of the types of dengue cases. In
order to investigate the best classifier, the authors evaluated the
Decision Tree (DT) and Random Forest (RF) algorithms. Ho
et al. (78) group explored a different method to speed up dengue
diagnoses in the laboratory. The authors analyzed the decision
tree (DT), deep neural network (DNN), and logistic algorithms.
In this way, through the clinical parameters identified in the
study, it is possible to help with the burden of laboratories for
the diagnosis of dengue. Alam et al. (79) in their approach bring
a prototype of a new framework for analyzing biomedical data
called biocloud. The data gathered on this framework is modeled
with a support vectormachined to classify the disease’s cases. This
type of technology can provide services at a low cost and can be
used in remote areas.

Ganthimathi et al. (80) developed an early dengue diagnosis
system using Artificial Intelligence. In their research,
Ganthimathi et al. (80) investigated two separate machine
learning algorithms: support vector machine as well as k-
nearest neighborhood. According to Ganthimathi et al. (80)’s
findings, both algorithms presented good performances,
however, the SVM showed superior performance compared to
KNN’s performance. Kapoor et al. (81) also treated the dengue
prediction problem as a classification problem. Thus, in the
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study, Kapoor et al. (81) investigated four different classifiers,
namely Random Tree, Random Forest, Support Vector Machine
(SVM), and artificial neural networks. An interesting aspect
of (81)’s model is that they used as their model’s not only
demographic information but also symptomatological data and
clinical trial reports. Ariffin and Aris (82), in turn, created a
system to help individuals in the self-diagnosis of dengue cases.
As a classifier, the authors used artificial neural networks. As
shown by the results obtained by (82), the model developed
achieved high reliability for detecting the disease. Despite being
a disease that helps in self-diagnosis, it is important to emphasize
that medical guidelines are not dispensed with using the tool.
Dharap and Raimbault (83) brought a different approach
from the others studies commented so far. In their approach,
Dharap and Raimbault (83) assessed the effectiveness of medical
hematology analyzers that flags arboviruses’ presence in blood
samples. The machine learning algorithms used in their study
were regression and Random Forest. With their results, they
demonstrated that it is possible to screen arboviruses infection
using a low cost, but also an effective predictor.

Srivastava et al. (84) bring a classification of dengue using
online learning. Thus, learning takes place with just a few
training examples. No retraining of the model or redeployment
of the prediction engine is required. The following algorithms
were used: Adaptive Regularization of Weights (AROW) and
its Variants, Gradient Descent Online (OGD), Confidence
Weighted Learning (CW) and Soft Variants (SCW 1 and
Scw 2), Normalized HERD (NHERD), Passive Aggressive (PA)
and its variants PA1 and PA2, Improved Ellipsoid Method
(IELLIP), Approximate Large Margin Algorithm (ALMA),
Second Order Perceptron and Perceptron (SOP), Relaxed
OnlineMaximumMargin Algorithm (ROMMA), and Aggressive
Romma (AROMMA). The evaluation of the classifiers was done
offline in the Weka software with SVM and RF, and later, the
classifiers were evaluated online. Additionally, this system is a
health system helping to signal patients with a high probability
of being diagnosed with dengue. Sasongko et al. (85) focused on
finding the best backpropagation algorithms for early detection
of dengue with the addition of multilayer perceptron (MLP)
optimization through five algorithms. The backpropagation
algorithms used were Gradient Descent (GD), BFGS Quasi-
Newton (BQN), Conjugate Gradient Descent—Powel (CGD),
Resilient Backpropagation (RB), and LevenbergMarquardt (LM).
Additionally, the Levenberg Marquardt algorithm proved to be
the best for detecting dengue. In other words, this algorithm
solves the data outlier problem well.

Iqbal and Islam (86)’s group performed a performance
evaluation of different dengue outbreak prediction classifiers.
The methods were evaluated by eight different performance
parameters. Iqbal and Islam (86) evaluated K-nearest neighbor
(kNN), Support vector machine (SVM), Artificial neural network
(ANN), Naive Bayes classifier, Decision tree, and Logistic
regression classifier (LogitBoost) algorithms. The experiments
were carried out with the Weka learning software. Among the
trained algorithms, according to the authors, the one with the
best performance was LogitBoost. This classifier had the best
classification accuracy, sensitivity, and specificity metrics.

Balamurugan et al. (87) created a classifier for detecting
dengue cases based on combinatorial characteristics based on
weighted entropy scores based on ideal classification. The
algorithms used to extract the most important attributes were
Correlation based Feature Selection (CFS), Genetic Algorithms
(AG) and Particle Swarm Optimization (PSO), in addition to
the Optimized Classification Algorithm based on Weighted
Entropy Score (EWSORA). Finally, the data were submitted
to conventional classifiers such as Naïve Bayes, J48, Multilayer
Perceptron (MLP), and Support Vector Machine (SVM). For
evaluation, the Weka software was used. As metrics to evaluate
the best models for predicting dengue, accuracy, true positive
rate, precision, Recall, F Measure, and ROC were used.
After applying the Genetic Algorithm (GA), Particle Swarm
Algorithm (PSO), and Correlation-Based Resource Selector
(CFS) algorithms for resource selection, the J48 and MLP
classifiers proved to be better. EWSORA has greatly improved
the accuracy performance for several classifiers, mainly for
Genetic Algorithm (GA), Particle Swarm Algorithm (PSO), and
Correlation Based Resource Selector (CFS).

3.3. Arboviruses Outbreaks and Risk
Prediction
Among the studies evaluated in this systematic review, we
observed that 18 articles were related to the prediction of the
occurrence of arboviruses outbreaks, or the prediction of the
risk of the occurrence of disease outbreaks (Table 2). Taking into
account the years of publication of the articles, it is observed that
most were published in 2016, as shown in Figure 2. Regarding the
quality criteria, the studies achieved scores above 0.7, as shown
in the graph in Figure 3. On the other hand, it is important
to highlight that among the evaluated studies, the average QC7
score was quite low. In other words, most of the studies did not
explicitly state the limitations of the investigated models.

Considering the types of arboviruses, we observe that the
vast majority of the studies evaluated focused on the prediction
of outbreaks or risk of dengue fever (18, 88–99). Two of the
studies involving dengue risk prediction or dengue outbreak were
focused on only one dengue serotype (dengue hemorrhagic fever)
(89, 90). However, Brett and Rohani (95) show in their study an
approach using each serotype for their prediction. In the study of
(100) and (101), the authors investigated models for predicting
the risk of Zika virus outbreaks, while (102) took into account
all cases of arboviruses (dengue, Zika virus, and chikungunya) in
their model.

As for the variables used to generate the prediction models, we
observed that several studies included the climatic variables (90)
where the most common are temperature (18, 91–94, 96, 98, 100,
102), rainfall (18, 91–94, 96–98, 100). Other climatic variables
appear less frequently, such as wind speed (90, 91), vapor pressure
(100), sunshine (91), atmospheric, and SST predictors (97).
Regarding the predictors used for model generation, we observe
a greater variety of predictors that are not associated with climate
variables, when compared to the predictors used in Section 3.1.
The population density, number of travelers, temperature, health
expenditure per capita, gross domestic product per capita, water
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coverage, ZIKV transmission in nearby countries were examples
of predictors used in the study of (100). In contrast, Akhtar et al.
(101) used gross domestic product per capita, physicians per
1,000 people, and beds per 1,000 people, population densities,
in addition to Zika cases. Predictors based on transmitter
vector monitoring data have been extensively explored, such as
mosquito occurrence (100), breteau index, and ovitrap index
(98). It is important to highlight that two of the studies evaluated
did not clarify which variables were used in the investigated
prediction models.

Regarding the data sources, in a considerate amount of
works, the authors usually obtained their databases through local
government data sources (90–94, 96, 98, 99, 102). However,
some works obtained their databases through other international
sources, such as the US National Oceanic and Atmospheric
Administration (95), Pan Amerian World Health Organization
(PAHO), International Air Transport Associate, World Bank,
US Bureau of Economic Analysis (101), and World Health
Organization (WHO) (103). Two of the works included in this
group did not present information related to the origins of the
data sources obtained. In addition, no works were found that
used alternative sources such as data originated by means of
search engines, as well as data generated through social networks.

Finally, for risk predictions or prediction of arbovirus
outbreaks, we found several approaches. Models were
investigated using artificial neural networks (89, 101, 102, 104),
decision trees (89, 99), gradient boosting regression tree (GBRT)
(100), naïve Bayes (89), extreme learning machines (90), Least
Absolute Shrinkage and Selection Operators (LASSO) and Ridge
(92), support vector machines (SVM) (18, 91, 93). Moreover,
early warning signals (EWs) derived from the theory of critical
slowing down (95), the Shewhart model (98), population loss
value at risk model (103) were also investigated.

In the articles evaluated for this group, we also observed that
dengue was the arbovirus that received the most attention in
terms of creating models for predicting outbreaks or disease risk.
In the models of the studies, the climatic variables of temperature
and precipitation are the predictors that appear most frequently
in the prediction models. However, regarding predictors that are
not related to climate variables, there is no assessment of which
factors most impact the performance of the prediction model.
That is, none of the studies presented the performance of models
with different predictor configurations in a comparative way.

As for the types of models used, we observed that most
studies used non-deep machine learning algorithms to generate
the predictionmodels. Despite the promising results, it is difficult
to indicate which algorithms had the best performances. The
authors used different predictor configurations for the different
models, which made it difficult to carry out a more in-depth
analysis of the types of models used.

3.4. Models of Mosquitoes Dynamics,
Breeding Sites Models
Of the 139 selected articles, 10 were predicted with vector control
(Table 2). The years of publication range from 2015 to 2020. For
the years 2015, 2016, 2017, 2018, 2019, and 2020, 1, 2, 1, 1, 4,

and 1 were selected, in this order (Figure 2). Analyzing Figure 3,
we found that the articles scored relatively low on quality criteria
5 and 7. Among these, 7 developed models based on machine
learning and 5 based on statistical methods.

Haddawy et al. (105) featured a pipeline design to detect
mosquitos’ breeding sites using geotagged images with a machine
learning approach. In Haddawy et al. (105)’s model, they use
container count with resultant in order to create container
density maps. The relationship between the densities of the eight
types of recipients and the larval survey data was calculated
using multivariate linear regression and obtained good precision.
For object recognition, Haddawy et al. (105)’s group evaluated
a convolutional neural network (R-CNN). Thus, creating geo-
tagged container density maps is favorable for providing large-
scale detailed hazard maps.

Raja et al. (106) developed early Aedes outbreaks prediction
models using a machine learning approach. In order to build
the prediction models, they used temperature, precipitation, start
date notification, and notification date, as well as vector indices
such as Aedes albopictus, A. aegypti, and larvae count.

Raja et al. (106) ran experiments using Bayesian Network
Models method in order to create the prediction models. The
system interface was implemented in C++ (backend) and the
frontend implemented in JapaScript, CSS, and HTML5. The
system is able to make predictions considering a 7 days horizon.

Asmai et al. (107)’s proposal was to create a Mobile
Application for the Intelligent Detection of Mosquito Larvae
(iMOLAP). The mobile app uses the convolutional neural
networks (CNN) method, which is the Inception V3 model.
The image that is captured is compared to a collection of
predefined images to measure accuracy. Therefore, iMOLAP
can classify Aedes and larvae species by imaging, and detecting
the affected area of the site. This application can be a very
important tool to assist in the surveillance and combat of
mosquitoes. Lee et al. (108)’s, on the other hand, focused on
developing a model to predict mosquito abundance. Thus,
they considered climatic variables such as temperature, air
humidity, wind speed, and precipitation as model predictors.
The authors evaluated different approaches in order to build
their model. They investigated using multiple linear regression
(MLR), and artificial neural networks (ANN) algorithms. The
correlation between climatic variables was assessed using the
cross-correlation function. The metrics used were the correlation
coefficients, the RMSE, and the agreement index. The results
of models made with ANN were better than the MLR in all
metrics. The approach brought by this study is interesting and
can be very useful in mosquito monitoring. However, the authors
did not describe well the apparatus necessary for collecting data
on the number of mosquitoes. They did not describe the ANN
configurations evaluated. In addition to not being described the
number of tests to obtain a result with statistical significance.

In the study of (109), the authors developed a mosquito
washing prediction system for Aedes in Recife, Brazil. The
authors evaluated several types of regressors to build models to
predict the number of properties with the presence of mosquitoes
in Recife. Among the regressors, Extreme Learning Machines
are Single Layer Feedforward Networks (SLFNs), Fuzzy Extreme
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LearningMachine, Bayesian Extreme LearningMachine, Interval
Type-2 Radial Basis Function, Neural Network (IT2-RBFNN),
and Online Extreme Learning Machine (OLEM). First, the
spatial distribution of the number of properties that contained
water containers contaminated with Aedes mosquito larvae was
performed. Then, the spatial distribution of properties with
mosquito larvae was performed and stratified by the type of
water reservoir. Finally, the models are implemented on the real-
time surveillance data. Asmetrics, percentage RMSE and training
time were used. In this way, the prediction system shows the
mosquito’s hotspots. This study takes a spatiotemporal approach,
so research can help managers by giving direction to location-
based mosquito population control policies, helping to limit
transmission to humans.

Bennett et al. (110) brought a mosquito classification to detect
A. aegypti. The database was created by the authors themselves.
They collected samples of larvae present in garages that traded
used tires in Panama. Additionally, with mass spectrometry,
the types of larvae are identified. Finally, using the Supervised
Neural Network (SNN) a classifier is built to identify the type of
mosquito present. The model created had a very high capacity for
recognizing and classifying training data. This study brings a look
at the garages, which can be a strategic point for epidemiological
surveillance policies.

Considering the statistical models, we highlight the study of
(111). Their group has developed time prediction models for A.
aegypti oviposition. Both model validation and application were
applied in the dengue outbreak in 2016. For this purpose, time
series of MODIS (moderate resolution image spectroradiometer
sensor) products of normalized difference vegetation index
and daytime surface temperature were created. The MODIS
model consists of: (1) linear regression modeling and (2) the
creation of two models, one with and one without lag times
on the independent environmental variables. The environmental
variables were standardized and the developed models were
compared using the Akaike Information Criteria (AIC) to
determine the ideal model in terms of goodness of fit and
number of parameters. The model without latency was the
best. Both models developed in this article showed that MODIS
environmental variables (NDVI and LST) are good predictors
because both environmental variables are present in both
models, providing acceptable fit and validation results. We can
understand that the NDVI increment may be due to precipitation
in the near past followed by an increment in the vector activity
which is verified by the increments of the oviposition activity.
Furthermore, a model based on MODIS has the possibility to
envision an operational forecast program at national level.

Estallo et al. (112) created a prediction model evaluating the
weather variability associated with the seasonal fluctuation of the
oviposition dynamics of A. aegypti in a City of Orán, Argentina.
To create themodel, precipitation data, photoperiod, water vapor
pressure, temperature and relative humidity (maximum and
minimum) and ovitrap sampling were used. A multiple linear
regression analysis was performed with the set of meteorological
variables considering the time lag that correlates with oviposition.
And the model is validated. The prediction model created allows
the prediction of the growth or decrease of the ovitraps activities

of A. aegypti based on meteorological data. The prediction of
these activities can be predicted three or 4 weeks in advance.
Because this model brings a more localized and comprehensive
assessment with site-specific data that can be used in disease
prevention policies.

Hettiarachchige et al. (113) built a data transmission risk
prediction model based on high resolution meteorological data.
Additionally, this risk is predicted through vector prediction.
Routine entomological surveillance data for dengue and
meteorological data from a prediction system with high spatial
and temporal resolution were used. The risk prediction system
was divided into two stages to assess dengue transmission via A.
aegypti. In the first, logistic regression was used to determine the
presence or absence of larvae in the sites of interest using climatic
attributes as explanatory variables, and then used a bootstrap
approach in an administrative division. In the second, with the
negative binomial model inflated to zero, an estimate of the larvae
count of the positive division predicted in the first stage is made,
and then positive larvae sites are identified and the number of
larvae is predicted. Splitting the model into two stages increases
the accuracy of identifying positive larval locations. A benefit for
risk prediction in non-homogeneous regions.

da Cruz Ferreira et al. (19) developed a temporal prediction
of mosquito infestation based on climatic data and monitoring
data from Aedes. The climatic variables used were daily rain,
temperature (minimum, average, and maximum), and relative
humidity, and dengue data were obtained from the Health
Department of Porto Alegre. The Generalized Additive Model
(GAM) and Logistic Regression methods were used. The first
method was used for two models, one was fitted with climatic
variables, and the other with climatic variables and mosquito
abundance as an explanatory variable. Additionally, the second
method was used to assess the effect of adult mosquito infestation
on the probability of dengue incidence. The second GAM model
predicted the data better than the first. The researchers stated
that if the population of Aedes is continuously monitored the
predictions of the infestation rate will be more reliable. And
monitoring this population is important for dengue control in
Brazilian cities.

The studies presented here brought several different
perspectives to control the A. albopictus and A. aegypti
mosquitoes. Some of the variables considered in these studies
were: stratification by type of water reservoir; neglected
environments, such as garages that contain tires and other
potential breeding sites; local and comprehensive assessment
of breeding sites; evaluation of mosquito larvae stages; and the
seasonality of the mosquito cycle dynamics. Furthermore, in the
construction of the predictionmodels, differentmachine learning
techniques and statistical methods were used. The models with a
broad and more restricted evaluation of the study regions proved
to be good and robust in terms of evaluation metrics. Many of
these works present scalability and reproducibility for prediction
at the national level, relating the magnitude of the population
of Aedes mosquitoes, the incidence of arboviruses, and the
monitoring of this vector. Thus, these approaches can be used
to support the implementation of epidemiological surveillance
policies. However, some of these studies had limitations, the lack
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of clarity and uniformity regarding the evaluation metrics and
the number of tests, in order to obtain results with statistical
significance. Some of these studies also omitted the complete
description of the configurations of the adopted classifiers.

3.5. Clustering, Spatiotemporal Modeling
Prediction models involving clustering and spatiotemporal
prediction presented relatively few studies when compared to the
other approaches presented in this systematic review (Table 2).
For studies with only these types of approaches, the year with the
highest production was 2015, when 5 articles were published on
the theme (Figure 2). An important point to highlight is the fact
that, in the studies included in this group, the authors achieved
the highest scores regarding the quality criterion involving
the discussion about the limitations presented by the models
(Figure 3).

Mathur et al. (114) brought a spatiotemporal prediction of
dengue. This study also discussed and implemented dengue
modeling with clustered incidence map visualization in Selangor,
Malaysia. The spatiotemporal mapping was performed using
the clustering technique with the k-mean algorithm. Thus were
generated the incidence clusters. Then, the Gaussian mixture
model was applied, finding the incidence density of dengue. Next,
the K-means (K-NN algorithm) was used to find the centroid of
the incidence. The Expectation-Maximization (EM) Algorithm
was used to relate the clusters. The Bayesian Information
Criteria (BIC) is then used to optimize the EM. Finally, with
the Geographic Information System (GIS) technique, it is
possible to accurately visualize the mapping of dengue incidence
vulnerability in Selangor. The latter was used in the prediction.
To create the proposed model, the R studio software was used,
and to measure the vulnerability index, the K-means grouping
was used. This study brings a spatiotemporal approach that
can be used to implement health promotion policies. Another
study that brought the spatiotemporal approach was the work
of (115). In his study, Andersson et al. (115) made use of street
images (Google Street) to implement a model to predict dengue
hemorrhagic rates in the city of Rio de Janeiro, Brazil. In order
to create this model, a siamese convolutional neural network
technique was used. First, to create the models, dengue data in
Rio de Janeiro were obtained and normalized. Next, street images
were labeled according to latitude and longitude. The capacity of
convolutional neural networks was analyzed with two approaches
Simple-4CSCNN and ResNet-4CSCNN. The proposed models
were implemented in the PyTorch framework. Simple-4CSCNN
proved faster, with better loss of rating, but exhibited worse
results in the validation test set. ResNet-4CSCNN generalized
the training data well and reasonable results in the test set. The
advantage of this approach is the use of street images to predict
dengue cases, and the lack of work on the same line makes
comparisons difficult.

The study of (116) was aimed at mapping the probability
of an epidemic outbreak of Zika in the world. For this,
three models were implemented, reverse propagation neural
network (BPNN) (with sigmoid activation function), gradient
increase machine (GBM), and random forest (RF). High-
dimensional multidisciplinary covariate layers were combined

with comprehensive localization data on Zika virus infection
in humans. In addition to the demographic distribution data
of the Aedes mosquitoes, global climate data, socioeconomic
data, night light data, and human movement data were used.
To create the models, the R language (version 3.3.3) was used.
Models were trained with cross-validation 10 times. To assess
the performance of the prediction models, the ROC curve was
used. The models created were robust and capable of simulating
the global probability of transmission risk of ZIKV and also
quantified the uncertainty of the accuracy of the prediction
models. The models created provided reference information
for model selection in the area of epidemiological cartography.
However, the study only uses the AUC as a metric for evaluating
the models.

In the study of (117), the authors developed a model
for clustering and mapping dengue risk susceptibility. In his
model, Ghosh et al. (117) used as variables epidemiological
data, temperature (maximum and minimum), precipitation,
relative humidity and Earth Surface Temperature (LST) images,
demographic, socioeconomic, vegetation, and water index data.
Two statistical methods were used to create the models: Poisson
Models (to form the clusters) and Multiple Logistic Regression.
This first was used to estimate the incidence of dengue. Moran
location and weighting function I based on the specific spatial
distance of the outlier were also used. This second function
was used to estimate the probability of dengue occurrence using
climatic variables as attributes. The researchers observed a strong
association between monthly dengue cases and monthly mean
rainfall and an association between monthly mean air humidity
and disease cases. The model takes into account a spatiotemporal
approach for predicting dengue risk. In addition, it considers the
social and demographic aspects of predicting dengue.

In (118)’s approach, the authors created spatiotemporal
prediction models for dengue cases taking into account
population density. As variables, dengue cases in the city
of Khyber Pakhtunkhwa, transmission vector records (A.
aegypti and A. albopictus), population density and distance
to roads and rivers were considered. As methods, logistic
regression, variogram function, and binomial kriging with a
binary logistic drift were used. Logistic regression was used to
assess the correlation between dengue cases and other variables
(covariants). Then the variogram function (spherical, Gaussian,
circular, and Matém) is calculated for the city under study and
its subregions. Additionally, at the end, the estimation of the
weights of the kriging equations is done using the weights of
the variogram model. The researchers claim that the “presence”
of the mosquito and population density affect the dynamics of
the disease. And the models performed well in cities with high
population density. However, the study did not make clear the
databases used as well as the periods chosen formodeling, testing,
and validation.

Phanitchat et al. (119) developed an identification of sub-
district level dengue clusters in Thailand. For this purpose,
data on weekly dengue cases (by gender), population density
per Km2 temperature, and rain in the same period for Khon
Kaem province were used. The models used were Bayesian
Poisson Regression and Local Indicators of Spatial Association
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(LISA). The first was to assess the relationship between the
number of monthly dengue cases in the 199 sub-districts. The
metric for evaluating the fit of the model was the Wantabe-
Akaike Information Criterion (WAIC). Finally, LISA was used
to identify hot and cold spots and outliers in the incidence of
dengue. The article concludes that dengue outbreaks are more
frequent in the rainy season. With the analysis by hotposts, it is
observed that there is a cluster of cases around the urban areas
of Khon Kaem and in rural areas in the southwest of the region.
The spatiotemporal approach is useful for application in health
promotion strategies. However, there is an inherent limitation
regarding the collection of public data, such as underreporting
of cases, errors in reporting symptomatic cases, and absence of
asymptomatic cases. In addition, the use of data is a little out
of date.

Chen et al. (120) developed a new framework for producing
spatiotemporal prediction at the neighborhood level. Various
data were used, such as dengue incidence data (with home
address data and start date), movement patterns, construction
age of buildings in a neighborhood, meteorological data
(maximum and minimum temperature and average relative
humidity), number of national weekly cases, index by
Normalized Difference (NDVI) among others. The separate
prediction models and submodels created were based on LASSO
for each prediction window. Climatic variables and their effects
have a greater effect when analyzing longer time intervals.
The fact of having less vegetation, older buildings, greater
connectivity to other areas, and more travelers arriving in the
area causes the number of cases to increase. The proposed model
brings a spatiotemporal approach at the neighborhood level
up to 3 months in advance. The system proved to be robust to
changes in baseline incidence over time.

Jat and Mala (121), in turn, brought an approach to the use
of digital geospatial technologies to identify potential sources of
dengue incidence. For this purpose, the spatiotemporal grouping
of dengue incidences was performed using the Kulldorff scanning
method. With the help of Getis-OrdGi statistics, high-risk areas
were identified and then implemented in the GIS. And the data
obtained was correlated with meteorological parameters, such as
wind speed, humidity and demographic factors, such as age and
gender. This work shows that the occurrence of dengue is not
random, it is directly linked to meteorological phenomena. Thus,
this study serves as a warning and to use actions to group regions
that may be focuses on dengue spread.

The studies cited here brought interesting approaches
to dengue and Zika, considering both epidemiological and
climatic data (such as precipitation and temperature), as
well as population density, age of construction of buildings,
socioeconomic and demographic data, and cases of the disease
by patient gender. One of the works is the first, as far as is known,
to use street view images to predict dengue cases, something quite
innovative. The models created had good results regarding their
evaluation metrics. Both machine learning models and statistical
models were used. These surveys also rely on algorithms that do
not have a great computational weight, which makes their use by
the public service viable. The models made were both at the sub-
district level and the global level. The spatio-temporal approach

brought by the studies in this section helps health managers in
directing public resources to areas that need more attention.

3.6. Other Approaches
The articles included in group 6 are articles that combined
more than one approach in their predictions, or that had a very
different approach from the rest of the articles evaluated in this
review. According to Figure 2, three of the studies were published
in the year 2019. In the years 2016, 2017, and 2020, 1, 1, and
2 studies were published, respectively (Figure 2). Analyzing the
scores referring to the quality criteria, the average scores in most
QC were above 0.7, except QC5 and QC6 (Figure 3).

Among the seven articles, three of them simultaneously
addressed numerical prediction models of arboviruses cases and
also prediction of the risk of epidemiological outbreaks (122–
124). In the study of (125), the authors addressed risk production
models as well as clustering models to identify regions with
similar patterns of disease transmission. Harumy et al. (126), on
the other hand, the authors investigated prediction models of the
area as the greatest potential to suspend arboviruses and case
prediction. Yamamoto et al. (127), in turn, brought an approach
to detecting the importation of arboviruses into a country. As for
arboviruses groups, the publications were mostly concentrated
on dengue (122, 124, 125). Only Yamamoto et al. (127) brought a
study considering Zika virus disease cases.

It is important to highlight the variety of models that were
covered. Among them, we can mention Random Forest, RF-
USA, Logistic Regression (124), and Naïve Bayes (125) for
the classification steps. Both (123) and (122) considered a
threshold value for identifying an epidemic or outbreak. In the
steps involving regression, probabilistic models (127), LASSO,
ARIMA, SARIMA (124), Generalized Linear Regression (123),
Artificial Neural Network (122, 126), SEIR model (122), and
multiple variate regression (125) models were used.

For studies that presented a mixed approach, models for the
numerical prediction of cases are essential for the analysis of
the epidemiological curve of the disease. In this way, health
authorities may have indications that combat policies are or
are not effective in combating arboviruses. On the other hand,
predictions with spatial approaches can indicate regions with
more or less intensity of cases, which can help the distribution
of financial and human resources to the most critical regions.
Therefore, a mixed approach to the prediction of arboviruses is
shown to be robust to assist in decision-making on arbovirus
prevention policies.

4. CONCLUSION

Arboviruses have a major impact on populations affected
by seasonal outbreaks of these diseases. In addition to the
impact caused by the number of deaths and infections, the
socioeconomic impacts tend to remain until the next outbreak.
The prevention and control of the occurrence of these diseases
are directly associated with the monitoring/control of their
transmitting vector.

In this sense, this systematic review aimed to identify
predictive models of diseases transmitted by A. aegypti, as well as
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identify existing models for modeling vector dynamics. For this,
we defined a review protocol that was followed throughout the
process. We obtained 429 publications retrieved from scientific
databases using a predefined search string. After filtering through
the exclusion and inclusion criteria, 139 studies remained in the
review for analysis and evaluation of quality criteria.

The remaining studies after the entire analysis process were
grouped according to their similar characteristics. Arboviruses’
prediction studies are mostly linked to the numerical prediction
of cases. According to the results obtained, we observed that
among the arboviruses transmitted by A. aegypti, most of the
studies are aimed at predicting dengue. Both in numerical
prediction models, as a prediction of outbreaks, epidemics,
and disease diagnosis. Studies regarding predictions with a
spatiotemporal approach are also more focused on dengue rather
than on Zika and chikungunya. An important point to highlight
is the fact that few studies were focused on the spatiotemporal
prediction of diseases, as well as the prediction of models related
to mosquito dynamics.

Another point that can be highlighted in the studies in this
review is in relation to the variables selected for the generation of
arbovirus models. In the case of modeling taking into account
numerical prediction, prediction of outbreaks and epidemics,
and spatiotemporal prediction, we observed that most studies
consider climatic variables as model parameters. Among them,
the most common are the historical series temperature, rain
and relative humidity. However, parameters related to natural
phenomena and also variables obtained by remote sensing also
gained prominence, as well as data from social networks and
search queries. Furthermore, data related to vector monitoring
have also been included both in numerical prediction models
of arboviruses and in models related to the dynamics of the
A. aegypti itself. On the other hand, in arbovirus models that
prioritize the detection of infection in the individual, we note that
the most used parameters are symptomatological parameters.
The use of models based only on symptomatological parameters
can cause fever-like diseases to be confused with dengue, Zika,
and chikungunya. However, we also found studies that use
hematological parameters to detect infection.

In this study, we analyzed that, for prediction problems
involving arboviruses and also involving mosquito dynamics,
a large part of the data is obtained through local health and
climatology agencies. Missing data and cases of underreporting
by health agencies are one of the most reported problems in the
studies evaluated.

Furthermore, this systematic review also demonstrated that
there is a range of models that are widely used in prediction
problems. Poisson models and moving average models (ARIMA,
SARIMA) are widely used to predict historical series. However,
we observe that artificial neural networks, support vector

machines, and decision tree-based models are widely explored by
the studies in this review. It is important to highlight that inmany
of the works that use Artificial Intelligence models, the authors
often do not describe the configurations of the evaluated models
and how the models were validated. In other words, although
the models have good evaluation metrics, there is no way to
guarantee their statistical relevance.

Finally, the arboviruses dynamics is a very heterogeneous
problem that involves the interaction of various factors
such as climatic and environmental factors, mosquitoes, and
human beings. The heterogeneity of arbovirus dynamics is
precisely what makes the prediction problem a very complex
problem. Therefore, from this systematic review, we hope
to provide a theoretical foundation regarding the state-of-
the-art of dengue, Zika, and chikungunya prediction models,
as well as the breeding sites of its main urban transmitter
vector. Hence, we believe that there is great potential for
exploring models with a spatiotemporal approach. These
models can be an important tool in the fight against
arbovirus-borne diseases, as they contain spatial information
of epidemiological interest that will be able to more effectively
direct human and financial resources, especially in more
vulnerable countries.
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