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A B S T R A C T   

Recent findings suggest conceptual relationships hold across modalities. For instance, if two concepts occur in 
similar linguistic contexts, they also likely occur in similar visual contexts. These similarity structures may 
provide a valuable signal for alignment when learning to map between domains, such as when learning the 
names of objects. To assess this possibility, we conducted a paired-associate learning experiment in which 
participants mapped objects that varied on two visual features to locations that varied along two spatial di
mensions. We manipulated whether the featural and spatial systems were aligned or misaligned. Although system 
alignment was not required to complete this supervised learning task, we found that participants learned more 
efficiently when systems aligned and that aligned systems facilitated zero-shot generalisation. We fit a variety of 
models to individuals' responses and found that models which included an offline unsupervised alignment 
mechanism best accounted for human performance. Our results provide empirical evidence that people align 
entire representation systems to accelerate learning, even when learning seemingly arbitrary associations be
tween two domains.   

1. Introduction 

Learning is often viewed as event-based. For example, pairing a face 
with a label provides a means to learn a stranger's name. A comple
mentary possibility is that humans learn by establishing correspon
dences between entire systems (Goldstone & Rogosky, 2002). 

Imagine you are abroad with your partner who is watching a 
basketball game on television in an unknown language. You are facing 
away from the television unpacking your luggage. You frequently hear 
cheering followed by the announcer saying various utterances contain
ing “Michael”. Your partner, noticing your disinterest in the game, plugs 
their headphones into the television. Turning toward the muted televi
sion, you notice the same star player from the home team keeps scoring. 
Despite being limited to asynchronous cross-modal input, a reasonable 
inference based on aligning systems is that the star player's name is 
Michael. 

Mappings like this are possible far beyond simple features like fre
quency. For instance, similarity relations across visual and linguistic 
systems may mirror one another: cups and mugs appear in related lin
guistic contexts concerning drinking and also are visually similar. The 

semantic similarity of cups and mugs is a latent factor here, causing 
them to be both (a) discussed in similar ways and (b) similar in 
appearance. Any pair of systems possessing common structure like this 
could enable the use of similarity relationships to perform accurate 
cross-system mappings. 

It has been shown that information exists in the environment to 
support aligning conceptual systems based on similarity relations. Roads 
and Love (2020) conducted an information analysis on different unim
odal embeddings, which found that similarity relations remain consis
tent across modalities. That is, if “cat” and “dog” occur in similar 
linguistic contexts, their corresponding referents are likely to occur in 
similar visual contexts. We henceforth refer to the use of similarity re
lations to perform cross-system mappings as system alignment (Fig. 1). 

We define a system as a set of items organised within a domain, where 
a domain is the set of possible inputs to a mapping function F(X) for a 
given task (see Fig. 1). In learning to label visual objects, we learn 
correspondences between systems of representations in visual and lin
guistic modalities. In this case, the modalities are the relevant domains.1 

Although our study will focus on perceptual and spatial domains, we 
intend our contribution to be general and predict that it will apply to 
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1 Multiple domains can also be contained within a single modality, such as when translating (i.e., mapping) between two natural languages. 
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other cases in which humans could capitalize on cross-system structure 
to facilitate learning. 

Research in analogy seeks alignments between representations 
(Doumas, Puebla, Martin, & Hummel, 2020; Gentner, 1983; Holyoak & 
Thagard, 1989; Lu, Chen, & Holyoak, 2012), but whereas analogical 
alignment is between two analogs, such as an atom and the solar system, 
we suggest that entire conceptual systems could be aligned. System 
alignment also diverges from alignment work in category learning 
(Lassaline & Murphy, 1998) and in similarity perception (Goldstone & 
Medin, 1994), as it does not require features to be shared across systems 
for mapping, and depends instead on the similarity relationships within 
systems. 

System alignment offers a possible explanation for humans' 
remarkable success in acquiring multimodal concepts, despite this being 
a famously challenging and underconstrained task. Infants can acquire 
an understanding of more than 300 concepts by 16 months of age 
(Fenson et al., 1994). Yet even the most supervised learning epi
sodes—such as pointing at an object while naming it aloud—are 
ambiguous. This problem of referential ambiguity is demonstrated by 
Quine's famous thought experiment (Quine, 1960); if a teacher points at 
a rabbit hopping through a field and says “gavagai” aloud to a naive 
learner, how does the learner know what “gavagai” refers to? It could 
mean hopping, rabbit, fur, field - the list of possibilities goes on. 

A number of constraints on direct word learning are known, 
including the whole-object assumption, the mutual exclusivity 
assumption and the taxonomic assumption (Golinkoff, Hirsh-Pasek, 
Bailey, & Wenger, 1992; Markman, 1994; Markman & Hutchinson, 
1984; Merriman, Bowman, & MacWhinney, 1989). System alignment 
could offer an additional constraint, and could even facilitate cross- 
modal learning offline (that is, in the absence of synchronous input 
across systems) by capitalising on common structural relationships. For 
example, the systems in Fig. 1 could be mapped by matching the simi
larity relationships between concepts across domains, requiring no 
synchronous input across modalities. As such, system alignment can 
explain learning from ambiguously supervised events (such as those 
discussed in the “gavagai” problem), and even in the absence of explicit 
instruction (Cartmill et al., 2013; Lieven, 1994; Samuelson, Smith, 
Perry, & Spencer, 2011). While many informative learning episodes will 
be online (i.e., synchronous input across systems, such as in direct in
struction where items mapped across systems are presented together), 
system alignment opens up an additional raft of offline learning 

opportunities. 
While system alignment enables purely unsupervised learning, sig

nals about the strength of alignment may also enhance learning in the 
presence of supervised examples, as memory of individual item map
pings is reinforced by the alignment of systems. In this study, we aimed 
to investigate whether participants were better able to learn associations 
between aligned systems compared to misaligned ones in a supervised 
learning task (Fig. 2). Aligned systems are those for which the correct 
pairing of objects between systems is dictated by their second-order 
isomorphism. This means paired items share a pattern of relationships 
within their respective systems, while sharing no physical properties 
(Shepard & Chipman, 1970). In a misaligned set of systems, paired items 
share neither physical properties nor patterns of relationships. 

Our primary hypothesis is that learning will be facilitated when 
systems align, even in cases where feedback is provided and synchro
nous. That is, even when system alignment is optional for success in the 
learning task, people will engage in it. In the current experiment, this 
yields the prediction that participants will show improved learning for 
cross-system associations when systems are aligned than when they are 
misaligned. A default system alignment strategy might produce idio
syncratic error patterns for misaligned scenarios. 

System alignment should create expectations for how an unseen 
example maps from domain X to Y based on its relationships to other 
items in X (Fig. 1). This form of generalisation can be described as zero- 
shot generalisation (Xian, Schiele, & Akata, 2017), because the items in 
domain X and Y are both novel and their pairing can only be inferred 
through their relationships to experienced items within their system. 
Notice this form of generalisation differs from forms of generalisation 
commonly considered, such as in category learning where the item is 
novel but the category label is not. We predict that participants who 
align systems should be able to perform zero-shot generalisation to a 
novel stimulus in X to Y, which would be like knowing the name of vi
sual object one has never encountered before. Finally, we predict that a 
computational model including an offline alignment mechanism would 
be the best fit for participants in the aligned condition, compared to 
models simulating (i) rote-memorisation and (ii) cross-system mapping 
with no distributional alignment. 

2. Experiment 

We tested our hypotheses using a paired-associate learning (PAL) 

YX

cat

dog

cow
horse

F(X) = Y

G(Y) = X

sheep

Fig. 1. Visualisation of system alignment. 
Notice that the similarity relationships in 
the visual and linguistic domhains mirror 
one another. This shared structure is a 
requirement for systems to be alignable. 
Functions F and G learn correspondences 
between entire domains X and Y. Dashed 
lines represent known mappings for indi
vidual items. In this example, no mapping 
is known for “horse” or “dog”, but the 
correct mapping for these items could be 
inferred in an unsupervised fashion based 
on the alignment of systems via F and G. 
This demonstrates how system alignment 
may facilitate generalisation.   
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paradigm, presented as a memory game. We conducted an online 
experiment via Amazon Mechanical Turk (AMT), in which participants 
learned to associate cartoon monsters with their homes on a map. 

Monsters were presented one at a time, and the underlying structure 
of the correct answers assigned to a given participant was either aligned 
or misaligned (cf. Tompary & Thompson-Schill, 2021). For generality, 
we varied the rotation of the neighbourhood map between subjects. 
Details of the rotation condition are included in Appendix B. 

2.1. Methods 

2.1.1. Participants 
AMT participants (N = 493) limited to the US and Canada completed 

the experiment. We required participants to have completed ≥ 1000 
prior tasks with an acceptance rate ≥ 95%. All participants provided 
their informed consent prior to participation. The task took approxi
mately 15 minutes to complete and participants were paid $2.00 for 
their participation. 

One participant was excluded from analysis for submitting inaccu
rate demographic responses. 49 further participants were excluded for 
poor engagement (details in Appendix D). This resulted in N = 443 
participants whose responses were analysed. The sample was 39.5% 
female and age ranged from 20 to 72 years (M = 38.5, SD = 10.7). 

2.1.2. Materials and design 
The study had a 2 × 2 (system alignment × rotation) design, where 

alignment and rotation were both between-subject factors. Each 
participant completed 5 blocks of trials. One further trial tested 

generalisation to an unseen stimulus. Participant assignments across the 
four experimental conditions were counterbalanced. 

House stimuli varied in their x and y positions on the neighbourhood 
map. Monster stimuli varied on two dimensions: body colour and eye 
orientation, where their eye was an orientation grating. Eye orientation 
took values between 5◦ and 85◦ from the horizontal, and body colour 
took values along a perceptually uniform trajectory from blue to green.2 

Details of stimulus features are provided in Appendix B. 
Monster stimuli were selected from positions in the 2D feature space 

which corresponded with the six house positions on the neighbourhood 
map. For participants in the misaligned condition, the stimuli in this 
constructed set were randomly assigned to houses in the neighbourhood 
(see Fig. 3). 

2.1.3. Procedure 

2.1.3.1. Pre-exposure. After being briefed, participants were shown two 
animations which cycled through the full range of feature values for 
monster colour and eye orientation respectively. Six feature values were 
shown for 1000ms each on a loop. This aimed to familiarise participants 
with the monster stimulus space. Accordingly, the instructions on the 
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Fig. 2. Examples of aligned and misaligned systems. In aligned systems, similarity relations are recapitulated across systems, which is not true for mis
aligned systems. 

2 The mapping of stimulus features onto spatial dimensions (e.g. whether 
colour or orientation varied in the vertical direction) was randomised by 
participant. The direction of variation along each spatial axis (e.g. whether a 
green or blue monster was at the top of the map when colour was mapped onto 
the vertical) was also randomised independently for each feature dimension. 
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Fig. 3. Examples of the correct mappings in 
each alignment condition. Monsters vary in 
colour and eye orientation; houses vary in their 
x and y coordinates on the neighbourhood map. 
In the aligned condition (left), the relationships 
between monsters' features (e.g. two steps more 
blue) were mirrored in the spatial relationships 
between their assigned homes (e.g. two steps 
horizontally). The red houses and the corre
sponding monsters were only shown at the end 
of learning to evaluate zero-shot generalisation 
based on system alignment. Grid lines are 
shown for reference only, and were not visible 
on the neighbourhood maps during the experi
ment. Note that participants never saw all 
monsters in their correct homes: monsters were 
only ever shown in their correct homes one at a 
time. (For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this article.)   

Click on the home in which you think the monster in the holding pen belongs.
Press the ‘Submit’ button once you are happy with your choice.

Holding pen

Other monsters

Submit

Fig. 4. Example of a choice trial display during paired-associate learning. On each choice trial, participants were presented with one monster in the “Holding Pen” on 
the left of the screen. Participants were instructed to click the house in which they thought the monster lived. They could amend their choice as desired, and all clicks 
were recorded. Participants were instructed to click “Submit” once they were happy with their choice. The remaining five stimuli were visible under the heading 
“Other monsters” in the bottom left-hand corner of the screen. Their arrangement was randomised on each page load. Once the response was submitted, participants 
received feedback on the trial and were shown the monster in its correct home on the map. 
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page drew participant attention to the two dimensions of monster 
stimulus variation. 

2.1.3.2. PAL task. The main PAL phase consisted of two trial types: 
observational trials, in which participants were shown each monster's 
correct home one by one, and choice trials, in which participants were 
presented with one monster and submitted the house in which they 
thought it lived, providing us with data to analyse. An example choice 
trial display is shown in Fig. 4. 

Observational trials and choice trials were presented in separate 
blocks, wherein every block contained one trial for each of the 6 stimuli 
in the set. The order of stimuli was randomised within each block. In 
total, there were 5 blocks of choice trials, each preceded by two blocks of 
observational trials. Throughout the PAL task, the neighbourhood map 
was visible on-screen.In each observational trial, the home whose resi
dent was about to be revealed was cued with a grey border for 1000 ms. 
The resident monster was then shown in the home for 3000 ms before 
disappearing. The next home was cued after a 1000 ms break. 

After submitting their response on each choice trial, participants 
received corrective feedback, and were shown the monster in its correct 
home. Further details on PAL task procedure are provided in Appendix 
C. 

2.1.3.3. Generalisation task. After completing the PAL task, participants 
completed a single generalisation trial. They were told a new monster 
had moved to the neighbourhood, and had to choose where it should live 
on the map. The new monster was shown in the holding pen and there 
were two new homes to choose from in the locations indicated by red 
houses in Fig. 3. The monster's colour and eye orientation were both as- 
yet unseen values. 

In the aligned condition, the monster's position within feature space 
corresponded to the position of one of the presented houses. Details on 
the generalisation task are provided in Appendix C. 

3. Results 

To evaluate how each condition impacts learning we examine two 
different measures across PAL blocks: proportion correct and mean dis
tance error. Proportion correct is the proportion of trials in a block on 
which a participant mapped the monster correctly. Distance error 
measures the distance between the chosen home and the correct home. If 
the monster is placed in the correct home, the response is correct and 
distance error is 0. 

Analyses revealed significant main effects of alignment condition on 
both proportion correct and distance error. Results for both measures 
are shown in Fig. 5. These support our hypotheses that (i) learning is 
more successful in the PAL task when spaces are alignable than when 
they are not, and (ii) participants in the aligned condition place the 
monster in homes with smaller distance error than participants in the 
misaligned condition. It is worth noting that misaligned participants 
take 5 blocks of trials to perform at the same standard reached in block 2 
by those in the aligned condition— that is more than double the number 
of trials. 

Results for both dependent variables were analysed using mixed- 
design ANOVAs. In each case, block was included as a within-subjects 
factor, and alignment and rotation conditions were included as 
between-subjects factors. Analyses were conducted using the package ez 
in R (Lawrence & Lawrence, 2016). 

In the ANOVA model fitted for block-wise mean proportion correct, 
significant main effects of alignment condition (F(1, 439) = 7.08, p =
.008, ηp

2 = 0.016) and block (F(3.32, 1455.99) = 134.90, p < .001, ηp
2 =

0.235) were found. 
The ANOVA model for block-wise mean distance error also found 

significant main effects of alignment condition (F(1, 425) = 15.43, p =< 
.001, ηp

2 = .034) and block (F(3.30, 1450.57) = 118.59, p < .001, ηp
2 =

.213). 
No other terms had significant effects. Full results for both ANOVAs 

are provided in Appendix E.1. 
Our findings in the generalisation trial support the prediction that 

participants who learn to align across systems are able to generalise to 
unseen mappings between the alignable structures. 131 of the 222 
participants in the aligned condition (59.0%) selected the correct house 
for the unseen monster.3 This result is significantly above chance for α =
0.05 (χ2(1) = 7.21, p = .007). No significant difference was found be
tween the rotated and unrotated aligned subconditions (χ2(1) = 0.01, p 
= .911). 

3.1. Model-based analyses 

There are a range of cognitive strategies participants may use to learn 
the mapping, each motivating a model in our analysis. We identify the 
best-fit model for each participant, and compare the winning model 
counts within aligned and misaligned learning conditions. This allows us 
to better understand the distributions of learning strategies used in each 
condition. The strategy and implementation of each model is briefly 
summarised below, with further details provided in Appendix F.  

• Classifier The Classifier model makes no use of the 2D space and 
simply rote-learns an associated house for each monster. The Clas
sifier is a multilayer perceptron (MLP) that takes as input a monster's 
feature coordinates and outputs a categorical distribution of the 
probability of selecting each house.  

• Regression The Regression model maps monsters into the 2D space 
of the neighbourhood, demonstrating an appreciation of the 
continuous nature of the feature spaces. The Regression model is a 
MLP that takes as input a monster's feature coordinates and outputs 
the predicted 2D coordinates. The probability of selecting a house is 
determined by its proximity to the model output; the closer the 
house, the higher the probability of selection.  

• Regression þ Aligner model The Regression + Aligner model also 
maps monsters into the neighbourhood, with an added assumption 
that the systems of houses and monsters should be aligned. This in
volves a bidirectional mapping between systems, visualised in Fig. 1, 
and additional loss terms which encourage the alignment of distri
butions between entire systems once mapped into the same domain. 
Thus, it updates its internal representations on each trial based on 
trial feedback, as the Regression model does, and is additionally 
guided by its efforts to map the structural relationships within entire 
systems.  

• Random A Random model was included as a control. The probability 
of selection was randomly distributed across house options. It did not 
learn, and no hyperparameters were tuned to the data. 

Each model type was fitted for every participant, to see how well it 
could replicate their behaviour in the PAL task. Models' hyper
parameters were selected to minimise the total negative log likelihood 
(NLL) of the participant's submitted responses across all trials. The 
sequence of inputs in model training was matched to that seen by the 
participant during the experiment. This stimulus sequence included 
choice and observational trials. Observational trials were masked from 
the NLL calculation in hyperparameter optimisation. The best fitting 
model for each participant was the one with the lowest AIC model se
lection statistic, which accounts for both fit and the number of hyper
parameters. Details of hyperparameter optimisation and model training 
are provided in Appendix G. 

3 Generalisation analyses are performed on the aligned condition only, as 
there was no correct response for the misaligned participants. As expected, 
generalisation results in the misaligned condition were statistically indistin
guishable from chance (see Appendix E3). 
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We find that the majority of participants are best fitted by the 
Regression. 

+ Aligner model (Fig. 6a), both in aligned (84.2%, χ2(3) = 417.46, p 
< .001) and misaligned (54.3%, χ2(3) = 130.29, p < .001) conditions. 
This supports the hypothesis that participant responses are guided by 
system alignment, even in the misaligned condition where this strategy 
is not helpful. However, among participants best fit by the Regression +
Aligner model, improvement over the random model for aligned par
ticipants was greater than for misaligned participants (Fig. 6b). 

4. Discussion 

The contributions of this study are two-fold: first, the behavioural 
experiment provides evidence that humans benefit from system align
ability when learning to map between spaces, both in terms of the ef
ficiency of learning and the ability to generalise to unseen examples. 
Secondly, modelling results demonstrate that a system alignment 
mechanism best accounts for human learning in this task. 

The experimental results suggest that aligned spaces facilitate more 

efficient cross-system learning than misaligned spaces. In the context of 
Roads and Love (2020)’s finding that spaces derived from unimodal 
distributional semantics are alignable across modalities, this suggests 
that system alignment could support cross-modal learning in the real- 
world. Our significant result for the generalisation task suggests that 
alignable spaces could facilitate asynchronous integration of multi- 
modal information in human concept learning (Fourtassi & Dupoux, 
2016; Samuelson et al., 2011; Socher et al., 2013). Future work could 
explore how alignment applies to different domains and types of 
relations. 

The model-fitting results suggest that an offline system alignment 
mechanism may be recruited in learning associations between systems. 
Models which performed alignment via an unsupervised loss term were 
superior on AIC for the majority of participants. In the context of inde
terminacy of reference (Quine, 1960) and often infrequent supervised 
learning episodes (Lieven, 1994), the incremental benefit of an unsu
pervised alignment loss term suggests a place for alignment in expla
nations of human concept acquisition. The relative success of the 
Regression + Aligner model in fitting participant responses in the 

(a) (b)

Fig. 5. Results by alignment condi
tion for proportion correct and mean 
distance error by experiment block. 
Dark blue lines show mean perfor
mance for participants in the aligned 
condition; pale green lines show mean 
performance for participants in the 
misaligned condition. Shaded areas 
show the 95% CI about group means. 
Dashed lines represent chance perfor
mance. (For interpretation of the ref
erences to colour in this figure legend, 
the reader is referred to the web 
version of this article.)   

Fig. 6. Results of participant-wise model fitting. (a) The count of the number of participants for whom each model type best fitted their trial responses, according to 
the AIC model selection statistic. (b) The improvement of each participant's best-fitting model AIC on the random model. The majority of participants in both 
conditions were best fitted by the model which included a system alignment mechanism. AIC performance of the Regression + Aligner model was superior for 
participants in the aligned condition than those in the misaligned condition, as misaligned participants had to abandon this strategy to learn the task. 
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misaligned condition suggests that learners may default to alignment 
mechanisms even when systems are not alignable, making errors 
consistent with this approach. In the context of concept learning, system 
alignment mechanisms could provide an account of how amodal concept 
representations incorporate information from different modalities 
(Patterson, Nestor, & Rogers, 2007; Popham et al., 2021; Ralph, Jeff
eries, Patterson, & Rogers, 2017). 

This study explored the role of alignment signals in supervised 
learning. Future work may investigate how alignment is used in more 
ecological multimodal learning contexts, where signals are noisier. 
Cross-situational learning, for example, provides participants with weak 
supervision across multiple training episodes (Smith & Yu, 2008; Yu & 
Smith, 2007), and has been found to be enhanced by semantically 
themed encoding contexts (Chen & Yu, 2017). Investigating the impact 
of alignability in a weakly-supervised context would develop our un
derstanding of system alignment's utility the real-world. 

The scale of ecological alignment problems is much larger than those 
tested here, but the possibility remains that established learning pro
cesses are supplemented by system alignment. Indeed, larger systems 
have richer signals for alignment (Goldstone & Rogosky, 2002; Roads & 
Love, 2020). The relatively small effect size here may be attributed to 
the task's low difficulty: with only 6 items, the task was intended to be 
learnable for most participants even in the misaligned case. The benefits 
of system alignment may increase with problem size, as well as with 
time to consolidate system mappings in offline replay such as during 

sleep (cf. Barry & Love, 2021). 
In summary, our findings provide evidence for system alignment in 

accelerating human learning. Together with prior work demonstrating 
that real-world multimodal spaces are alignable, this opens an avenue to 
exploring how humans tackle referential ambiguity in concept learning, 
and how we learn from the statistics of our noisy environments more 
broadly. 
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Appendix A. Data and code 

Data from this study are available at https://osf.io/95md4. Code for data analysis and modelling are available on GitHub at https://github.com/ 
kaarinaaho/learning_alignment. 

Appendix B. Stimulus details 

B.1. Neighbourhood stimuli 

The rotation condition was included to control for the possibility that participants could align privileged axes instead of whole spaces. The relative 
positions of houses on the map were kept constant across all participants and conditions. House positions were rotated 45◦clockwise about the centre 
of the map for the rotated condition (see Fig. B.7).

Fig. B.7. The unrotated (left) and rotated (right) neighbourhood maps. Participants were assigned to a rotation condition at the beginning of the experiment, and 
learned where each monster lived on their assigned map through paired-associate learning. The map of grey houses was visible to participants throughout the 
experiment. The red houses were only shown at the end of the experiment, to evaluate zero-shot generalisation based on system alignment. Grid lines are shown for 
reference only, and were not visible during the experiment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Aligned and misaligned conditions in the rotated subcondition are visualised in Fig. B.8. 
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Fig. B.8. Visualisation of mappings for the aligned and misaligned conditions in the rotated subcondition. In the aligned condition, similarity relationships are still 
upheld between mapped monster-house pairs; the houses' positions in the neighbourhood map are simply rotated about the map's centre. Monster-house mappings in 
the misaligned condition remain random. 

B.2. Monster stimuli 

Monster stimuli were generated in the free and open-source graphics editor Krita (version 4.2.2). All monsters had identical body shapes and 
details 

B.2.1. Eye orientation 
Sinusoidal orientation gratings (or Gabor patches) with a fixed spatial frequency of 5Hz were used as the monsters' eyes. The minimum rotation 

from horizontal was 5◦, and the maximum was 85◦. Prior studies have demonstrated that just noticeable differences (JND) in orientation are smaller 
than 1◦ (Vogels & Orban, 1985). The minimum difference between Gabor patch angles sampled for our stimuli was 32◦for main trial stimuli and 8◦for 
generalisation stimuli. 

B.2.2. Body colour 
This study required that stimuli could be generated at perceptually uniform intervals in the colour dimension, and that the colour values for 

neighbouring stimuli were perceptually distinct. To meet these criteria, we sampled colours along a linear trajectory in CIECAM02 Uniform Colour 
Space (CAM02-UCS) (Moroney et al., 2002). CAM02-UCS is a state-of-the-art uniform colour space, which outperforms previous spaces in modelling 
perceptual distances (Luo, Cui, & Li, 2006). The linear path in CAM02-UCS and corresponding colour scheme were generated using the viscm tool (Van 
der & Smith, 2015). 

For the main trials, we took 6 equally spaced values from this linear trajectory in CAM02-UCS. The CAM02-UCS and its predecessors were designed 
such that 1 unit distance in the space corresponds to a JND in perception (Mokrzycki & Tatol, 2011). Kuehni (2016) investigated the relationship 
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between JND in colour and the distances in CIECAM02-UCS experimentally, finding that 0.5 units in CAM02-UCS on average corresponded to a JND. 
Luo et al. (2006) demonstrates colour difference perceptibility in CAM02-UCS by plotting chromatic discrimination ellipses in the space, demon
strating that no difference thresholds perception distances in this space exceed 5 (Luo & Rigg, 1986; Melgosa, Hita, Poza, Alman, & Berns, 1997). The 
ΔE between our colours in CAM02-UCS, calculated as the Euclidean distance in the space (Luo et al., 2006), is 12.3 - greater than even the most 
conservative JND values. 

Appendix C. Procedure details 

C.1. PAL task 

Prior to each set of observational blocks, participants landed on a break screen which prompted them to click a “Continue” button to play the 
observational blocks. 

Once a participant submitted their response for a choice trial, a feedback screen indicated whether their response had been correct or incorrect. If 
correct, participants advanced to the next trial automatically after 3000ms. If incorrect, participants were prompted to click on the correct home which 
was highlighted with a grey box. Once they had clicked the correct home, they advanced to the next trial. 

C.2. Generalisation task 

The instructions stated that the homes that they had been using in the previous trials would be visible on the map, but were not options for the new 
monster as they were already occupied. The trial screen was almost identical to the PAL trial screen, but the “Other monsters” grid was removed and 
the homes that were used for the PAL task were greyed out and unclickable. The monster-house pair was randomly selected from the two possibilities 
for each participant. Participants clicked on their choice of home for the monster, and submitted their answer. They received no feedback for this trial, 
and were taken straight to the debriefing page. 

Appendix D. Identifying poor engagement 

If a participant was making an earnest attempt at the task, we would expect their responses to be distributed near-uniformly across the house 
options. Participants whose responses were poorly distributed across the space might have repeatedly submitted the same house or alternated between 
a small number of houses, indicating poor engagement with the task. We sought to exclude poorly engaged participants from the analysis. Our 
exclusion criterion was based on the average entropy of a participant's responses across blocks, Hb, which is maximised by a uniform distribution of 
responses across house options. We excluded the 10% of participants with the lowest Hb. 

For each participant on each block of trials b, we calculated the entropy of the response distribution across options using Hb =
∑6

i=1P(Xi)log2(P(Xi)) 

where P(Xi) was the probability of the participant selecting house i in block b, calculated as P(Xi) =

∑6
t=1

[Xt=i]
6 for trial t = (1, .., 6) in block b. Hb for each 

participant was the mean of Hb taken across all the experimental blocks. To assess Hbas a criterion for participant engagement, we examined the 
relationship between Hband performance in the final block of trials. If Hbwere a sensible measure of engagement, we would expect a relationship 
between low values of Hb and poor performance on the final block of trials, indicating that participants whose responses were not evenly distributed 
across the space of house options were not learning the task as well as others. This investigation was performed blindly with respect to experimental 
condition. The plot in Fig. D.9 demonstrates that there is a strong positive correlation between Hband proportion correct in the final block of responses 
(rp = 0.748, p < .001). Excluding the bottom 10% of participants yielded an exclusion threshold Hb < 1.31, visualised in Fig. D.9. 

The distribution of participants across conditions pre- and post-application of the entropy threshold is shown in Table D.1. A χ2 test comparing the 
proportions of participants by condition in the pre- and post-criterion samples reveals no significant difference in the impact of the entropy filter 
between conditions (χ2(3) = 0.135, p = .987).  

Table D.1 
Distribution of participants across conditions pre- and post-application of exclusion criterion. Pro
portions of each condition in the total pre- and post-criterion samples respectively are shown in 
parentheses.   

Pre-criterion Post-criterion 

Aligned Unrotated 123 (0.249) 110 (0.248) 
124 (0.252) 112 (0.251) 

Misaligned Rotated 123 (0.249) 106 (0.239) 
123 (0.249) 115 (0.262)  

Total N 493 443  

Following the random assignment of participants to conditions, a one- way ANOVA after exclusions are applied finds no significant difference in 
participant ages between conditions (F(3, 439) = 0.523, p = .666). A χ2 test also finds no significant difference in the proportions of females between 
conditions (χ2(2) = 0.025, p = .987). 
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Fig. D.9. Relationship between final block proportion correct and mean block-wise response entropy for all participants. Grey points represent excluded participants; 
blue points represent remaining sample after entropy threshold is applied. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Appendix E. Results 

E.1. ANOVA results  

Table E.2 
Repeated-measures ANOVA for block-wise proportion correct. df = degrees of freedom; ϵ = Huynh-Feldt correction factor for df, required by the violation of the 
sphericity assumption as indicated by Mauchly's test of sphericity, ηp

2= partial η2 effect size.  

Predictor df ϵ F p ηp
2 

Alignment condition (1, 439)  7.08 0.008 * 0.016 
Rotation condition (1, 439)  0.38 0.536 0.001 
Alignment x Rotation (1, 439)  0.19 0.661 < 0.001 
Block (3.32, 1455.99) 0.83 134.90 < 0.001 * 0.235 
Alignment x Block (3.32, 1455.99) 0.83 1.44 0.227 0.003 
Rotation x Block (3.32, 1455.99) 0.83 1.04 0.376 0.002 
Alignment x Rotation x Block (3.32, 1455.99) 0.83 2.07 0.095 0.004   

Table E.3 
Results for repeated-measures ANOVA for block-wise mean distance error. df = degrees of freedom; ϵ = Huynh-Feldt correction factor for df as required by the violation 
of sphericity assumption according to Mauchly's test of sphericity; ηp

2 = partial η2 effect size.  

Predictor df ϵ F p ηp
2 

Alignment condition (1, 439)  15.43 < 0.001 * 0.034 
Rotation condition (1, 439)  0.32 0.570 0.001 
Alignment x Rotation (1, 439)  0.06 0.805 < 0.001 
Block (3.30, 1450.57) 0.83 118.59 < 0.001 * 0.213 
Alignment x Block (3.30, 1450.57) 0.83 1.33 0.262 0.003 
Rotation x Block (3.30, 1450.57) 0.83 0.84 0.479 0.002 
Alignment x Rotation x Block (3.29, 1450.57) 0.83 2.39 0.061 0.005  
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E.2. Tabular results for mean group performance  

Table E.4 
Results for block-wise accuracy, all given as percentages.  

Block Aligned (N = 222) Misaligned (N = 221) 

M SD 95% CI M SD 95% CI 

1 56.6 49.6 [50.1, 63.1] 52.0 50.0 [45.3, 58.6] 
2 72.1 44.8 [66.2, 78.0] 65.2 47.7 [58.9, 71.4] 
3 78.1 41.4 [72.6, 83.5] 69.8 45.9 [63.8, 75.9] 
4 80.6 39.6 [75.3, 85.7] 72.5 44.6 [66.7, 78.4] 
5 81.6 39.1 [76.0, 86.3] 77.5 41.8 [71.9, 83.0]   

Table E.5 
Results for block-wise mean distance error, all quoted as Euclidean distances on the neighbourhood map grid, scaled such that the maximum possible distance error 
was 

̅̅̅
2

√
.  

Block Aligned (N = 222) Misaligned (N = 221) 

M SD 95% CI M SD 95% CI 

1 0.315 0.407 [0.261, 0.368] 0.391 0.460 [0.331, 0.452] 
2 0.197 0.351 [0.151, 0.243] 0.282 0.429 [0.226, 0.340] 
3 0.161 0.333 [0.117, 0.205] 0.237 0.401 [0.183, 0.290] 
4 0.136 0.304 [0.096, 0.176] 0.222 0.399 [0.170, 0.275] 
5 0.134 0.305 [0.094, 0.175] 0.181 0.366 [0.132, 0.229]  

E.3. Tabular results for generalisation performance 

Appendix F. Model details 

F.1. Classifier 

The classifier was a multi-layer perceptron (MLP), comprised of an input layer, ReLU activation function, one fully-connected hidden layer of size 
100 and output layer of size 6, corresponding to the n = 6 homes in which a stimulus could be placed on each trial. The input to the classifier was the 
2D coordinate vector of the stimulus in feature space, x, normalised such that xd ∈ (0,1) for d ∈ {1,2}. The output vector was fed into a softmax 
function with temperature parameter T to produce a probability distribution across classes. 

Table E.6 
Results for generalisation performance of participants in aligned and misaligned conditions on the generalisation trial. The “correct” house is the one in which the 
monster would reside if the monster set were aligned with the house set. Aligned participants perform significantly better than chance in a Chi-square goodness of fit 
test, as quoted in the main paper body (χ2(1) = 7.21, p = .007). Misaligned participants, for whom the correct mapping is not aligned in this way, and who therefore 
have no way of knowing which house is arbitrarily assigned as the correct one, perform no differently from chance in a Chi-square goodness of fit test, as expected 
(χ2(1) = 0.005, p = .946).   

Aligned Misaligned 

Correct 131 (0.590) 111 (0.502) 
Incorrect 91 (0.410) 110 (0.498) 
Total N 222 221  
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F.2. Regression model 

The regression model was an MLP, F(.), comprised of an input layer, ReLU activation function, one fully-connected layer of size 100 and output 
layer of size 2. The input to the model was the coordinate vector of the stimulus in feature space, x, normalised such that xd ∈ (0,1) for d ∈ {1,2}. A 
sigmoid activation function was applied to model outputs to constrain output values such that yd ∈ (0,1) for d ∈ {1,2}. In other words, the MLP 
performed a mapping F: X → Y from stimulus space X to house space Y. To generate a probability distribution across house options, the Euclidean 
distance between the model output and each house option was subtracted from 

̅̅̅
2

√
, (the maximum distance between points in the normalised space), 

yielding a measure of similarity which took values in range (0, 
̅̅̅
2

√
,). If the model had mapped a stimulus perfectly onto a house, this transformation 

would return its maximum value of 
̅̅̅
2

√
, and conversely if a stimulus was mapped as far as possible from a house the value would be 0. The resultant 

distributions were fed into a softmax function with temperature parameter T to generate a probability distribution across houses for the stimulus 
according to the model. 

F.3. Regression + aligner model 

While the Regression model consisted of one MLP F(.), which mapped from stimulus domain X to neighbourhood Y, the Regression + Aligner 
model consisted of two MLPs: F(.) and G(.). These perform mappings F: X → Y and G: Y → X respectively. This is visualised in the leftmost panel of 
Fig. F.10. F(.) and G(.) had the same structure as the MLP F(.) described above for the Regression model.

Fig. F.10. Illustration of cycle consistency loss L cyc, adapted from Zhu, Park, Isola, and Efros (2017). The Aligner model is comprised of two MLPs F(.) and G(.), 
visualised in the leftmost panel. L cyc measures the average distance between each point in its original space, x, and its reconstruction in the same space x 

′ ′

generated 
by the mapping x 

′ ′

= F(G(x)). 

The aligner also minimised two additional unsupervised loss components: a cycle consistency loss term (L cyc) and a distribution loss term (L dist). 
Inspired by the work of Zhu et al. (2017), L cyc is defined as the mean Euclidean distance between input stimuli X and the recovered estimates X 

′ ′

, 
generated by mapping via both MLPs: X 

′ ′

= G(F(X )). This is visualised in Fig. F.10. 
L cyc included the parallel loss term for the mapping of all Y to Y 

′ ′

. This makes the total cycle consistency loss: 

L cyc =
1
2

(

Ex

[

‖X − X′ ′‖+ Ey[‖Y − Y ′ ′‖]

)

L dist is visualised in Fig. F.11. In space Y, it is defined as the mean negative log likelihood (NLL) of all F(X) as samples from a Gaussian mixture 
model comprised of 2D Gaussian kernels placed on Y (GMMY ). L dist is minimised when all F(X) are mapped directly onto Y. The Gaussian mixture 
model is defined as follows: 

GMMY =
1
6
∑6

j=1
N

(
y; yj, σI2

)
,

where σ=0.1. The total distribution loss is the mean of the NLL of Y 
′ ′

as a sample from GMMY and the NLL of X 
′ ′

as a sample from GMMX. As both L cyc 

and L distrequired exposure to the whole space of stimuli, the unsupervised loss terms were not introduced until after the first block of observational 
trials in model training, where t > 6. λcyc and λdist specified the weights of the cycle consistency and distribution loss terms respectively, relative to the 
supervised loss term. On each trial in model training, the total loss term was: 

L =
1
2
(
NLLyt

(
x'

t

)
+ NLLxt

(
y'

t

) )
+ λcycL cyc + λdistL dist  

where: 

λcyc =

{
λcyc, if t > 6
0, otherwise  

λdist =

{
λdist, if t > 6
0, otherwise   
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Fig. F.11. Visualisation of distribution loss L dist for a low (left) and high (right) loss mapping. Red points represent X′, overlaid on a heatmap representing the 
probability density of GMMY. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Appendix G. Hyperparameter optimisation 

All models were built and trained using pytorch. Model weights in all cases were initialised with Xavier uniform initialisation. On each trial, 
models performed 30 update steps using stochastic gradient descent (SGD) with constant lr. Multiple steps were required to balance the need for fast 
learning (owing to the small number of trials) with the instability of high learning rates. Preliminary tests found that 10 gradient steps per trial was the 
maximum value required for any model to reach optimal performance. 

To prevent any probabilities from reaching zero and causing computational issues, we took the maximum of each resultant probability and a small 
ϵ (ϵ = 10− 30), and re-normalised the distribution. In model training, the loss term on each trial was the negative log-likelihood (NLL) of the correct 
response according to this distribution. 

Hyperparameter optimisation was performed using the hyperopt package in python. Optimisation was performed over 150 evaluations for each 
model of each participant, using the Tree Parzen Estimator (TPE) method. Preliminary testing found that the success of the Classifier model in learning 
the task was particularly sensitive to initialisation, while the Regression and Regression + Aligner models were more stable. As such, the classifier was 
trained three times with each set of hyperparameters tested, and the minimum NLL across the three iterations was taken as the score for those 
hyperparameters. 

In all three models described above, the softmax temperature parameter T and learning rate lr were hyperparameters. One final hyperparameter, α, 
described each participant's probability of choosing according to the model on any given trial. The probability of choosing a random house was 
therefore (1 − α). Where random variable Yt is the model's house choice on trial t, the probability of a participant choosing house y on trial t was 
modelled as: 

P(y) = αP(Yt = y)+ (1 − α)
(

1
6

)

The Regression + Aligner model had two additional hyperparameters, λcyc and λdist. This yielded a total number of hyperparameters k = 3 for the 
Classifier and Regression models, and k = 5 for the Regression + Aligner model. 
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