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Abstract 

Psychometricians working on International Large Scale Assessments (ILSAs) typically specify latent ability fac- 

tors with distinct and correlated constructs for test domains, such as reading, mathematics and science. A construct 

for general ability is not specified. However, several country-specific studies conclude that ILSAs largely reflect 

general ability. We extend such studies and examine the dimensionality of the 2018 PISA assessment in 33 OECD 

countries examining three models: three-dimensional IRT model, the bifactor IRT model and the bifactor (S-1) IRT 

model. A four-tiered approach was adopted. First, models were compared using an information criterion (AIC). 

Second, the correlations from the multidimensional model were estimated to assess in which countries the three 

dimensions are sufficient discriminant validity. Third, a variety of bifactor indices were utilized to establish the 

explanatory power and reliabilities of the latent dimensions generated by the three models. Finally, the statistical 

relationships between the latent factors derived from the three models and educationally relevant covariates were 

estimated. The bifactor model fits the data better than standard multi- dimensional model or S-1 model in every 

country investigated. The correlations in the correlated factor model are above 0.8 in all 33 countries. The 

symmetrical bifactor general ability model shows that 80%, or more, of the common variance in student responses 

to the PISA instruments is accounted for by a general ability factor. On average, 27% of variance in the mathematics 

items is independent of the general factor and can be attributed to a specific mathematics ability factor. The 

respective estimates for reading are 12% and science is 17%. Re- lationships for selected covariates with the PISA 

domains follow the same pattern as general ability in the bifactor model. 

 

 

1. Introduction 

 

There is an ongoing debate whether prominent achievement and aptitude instruments measure knowledge and skills 

for specific subject domains or general ability. Some studies conclude that achievement tests mostly measure general 

ability rather than domain-specific abilities that they purport to measure, such as the Scholastic Assessment Test 

(SAT), American College Testing (ACT), the OECD's Programme for International Student Assessment (PISA), 

Trends in International Mathematics and Science Study (TIMSS), Progress in International Reading Literacy Study 

(PIRLS) studies (Frey & Detterman, 2004; Koenig, Frey, & Detterman, 2008; see also Luo, Thompson, & Detterman, 

2003).  In this paper we focus on PISA, the most prominent International Large-Scale Assessment of Student 

Achievement (ILSA). PISA has two main goals. The first is to assess how well students can apply their knowledge and 

skills to solve problems in real-life situations. PISA assessments are informed but are not constrained, by the national 
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curricula of participating countries (OECD, 2019a, p. 9). The second goal of PISA is the accountability of educational 

systems: the extent that students meet expected standards, the performance of disadvantaged demographic and 

socioeconomic groups, and school and teacher differences (Caro, Lenkeit, & Kyriakides, 2016; Jakubowski & 

Pokropek, 2015). 

PISA is important to educational policy. For example, the European Union's strategic framework for co-operation in 

education and training includes indicators from PISA (European Union, 2009). Similarly, the framework for 

monitoring progress towards the United Nations' Sustainable Development Goals includes PISA, together with 

indicators from other international assessments (UNESCO, 2019). PISA has been used to justify educational reforms 

in several countries (Ertl, 2006; Grek, 2009; Breakspear, 2012; Takayama, 2008; Dobbins & Martens, 2012) PISA 

assesses three core domains: mathematics, reading, and science. Occasionally, additional domains are included, for 

example problem solving, financial literacy and creative thinking. The results for each dimension are reported 

separately consistent with the study's fundamental assumptions that PISA measures the subject domains reli- ably and 

that they are largely independent. 

This paper examines to what extent the instruments in the PISA 2018 study met these assumptions by examining the 

role of general ability in shaping individual variation in response patterns in the PISA test. The general ability factor is 

generally referred to as 'general academic ability' by education specialists and 'intelligence' by psychologists. The 

primary purpose of the paper is to investigate to what extent the PISA 2018 assessment  measured general  ability  vis-à-

vis  domain-specific  knowledge and skills, analysing data from 33 OECD countries. This research question is 

important to educational research, policy and the design of assessment instruments, not just for PISA but for student 

achievement studies in general. 

ILSAs typically conceptualise domain-specific abilities in multidimensional models as single latent variables, such 

as reading, mathematics and science (as in PISA). Each assessment domain corresponds to a single latent factor which 

supposedly fully represents capability in the specific domain (OECD, 2019b). The latent constructs are specified as 

correlated. In this approach, general cognitive ability is not modelled and as an important omitted variable is likely to 

be confounded with domain-specific factors. 

In contrast, a bifactor model for ILSAs specifies that variation in student responses is accounted for by general 

ability, together with in- dependent domain-specific abilities. In such models, each item loads on general ability, and 

domain specific items (e.g., math) also load on their respective specific ability factor. Studies on data from German 

and Polish students find that the bifactor model fits student achievement data better than the multidimensional 

model and yields more plausible relations with socio-economic and demographic characteristics, and 

educational inputs (Baumert, Lüdtke, Trautwein, & Brunner, 2009; Saß, Kampa, & Köller, 2017; Pokropek, Marks, & 
Borgonovi, 2021). In those 

studies, domain-specific abilities exhibited some small additional explanatory power, suggesting that ILSAs mainly 

measure general ability together with less reliably measured scholastic abilities. How- ever, bifactor models possess a 

strong tendency to fit any possible data due to their inherent ability to capture random noise in the data (Bonifay & Cai, 

2017). 

Alternatively, student responses could be governed largely by their reading ability rather than their general ability. 

In the PISA mathematics and science assessments, students are presented with textual material which they must 

comprehend and interpret to be able to answer the associated questions correctly (OECD, 2019a). Given the 

importance of reading for PISA, an appropriate model may be the S-1 bifactor model in which reading is assumed to be 

the general ability that influences the responses to PISA items in all domains, together with independent domain-

specific abilities in mathematics and science (Eid, Krumm, Koch, & Schulze, 2018; Heinrich, Zagorscak, Eid, & 

Knaevelsrud, 2020). Previous studies of this issue have been limited to two countries: Germany and Poland. 

Primarily two types of models were compared: the multidimensional and symmetrical bifactor models which includes a 

general ability factor. The present study substantially increases the scope of previous studies by investigating the 

dimensionality of students' responses to PISA in 33 OECD countries (listed in the tables) and adds the non-symmetrical 

bifactor S-1 bifactor reading model, which replaces the general ability factor with a general reading factor. The first 

group of analyses compare the fit of three measurement models: the standard multidimensional model typically 

used in national and international assessments, the symmetrical bifactor model, and the bifactor reading model. 

The second group of analyses evaluates the extent that relationships of the latent factors isolated with several 
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demographic, socioeconomic and educational variables are consistent with theoretical expectations. 

This study analyses the nomological network of PISA, that is, representations of the concepts (constructs), their 

observable manifestations, and their interrelationships. Like any statistical model, the models used in this study are 

used simplify the relationships between variables, ultimately, the individual test items in the PISA study. Such models 

cannot fully reflect the complex relationships between students' abilities and test items. They are used instrumentally, 

following the well-known adage that all models are wrong but some of them are useful(Box, 1976). Investigating this 

set of models, addresses the central questions posed in this paper: does PISA largely measure general ability or the 

purported domain-specific abilities of reading, mathematics and science, and are their relationships with exogenous 

variables consistent with theoretical expectations? 

1.1. Evidence that cognitive ability is relevant to student achievement 

 

There are five research literatures that suggest that much of the variation in student responses to ILSAs, such as 

PISA can be accounted for by general cognitive: 

(1) Conceptualizations of literacy in PISA and general ability. 

(2) Correlations between student achievement and intelligence tests. 

(3) Inter-domain correlations in student achievement. 

(4) Behavioural Genetics 

(5) Psychometric modelling. 

 

1.1.1. Conceptualization of  ‘literacy’  in PISA  and general ability 

Formally, PISA is designed to measure students' capacity to apply knowledge and skills in key subject areas and to 

analyse, reason and communicate effectively as they pose, solve and interpret problems in a variety of situations that 

can take place in a mathematics, reading, or science context (OECD, 2007, p.16). This definition is almost identical to 

prominent definitions of intelligence, i.e., the ‘ability to understand complex ideas, to adapt effectively to the 

environment, to learn from experience, to engage in various forms of reasoning, to overcome ob- 

stacles by taking thought’ (Neisser et al., 1996, p. 77).Armor (2003, p. 
19) noted that both achievement tests and intelligence tests include similar subsets of items, for example assessing 

vocabulary, reading comprehension, mathematical concepts, numerical skills. He suggests that the substantial overlap 

between IQ and achievement tests indicates they are measuring something in common: general reasoning skills. 

General ability is likely to be more important in PISA, compared to other system-wide international student 

assessments, such as the Trends in Mathematics and Science Study (TIMSS) and the Progress in Inter- national 

Reading Literacy Study (PIRLS). These assessments are based on curricular content, whereas PISA aims to assess the 

extent to which education systems as well as the social and economic context children experience up to age 15 equip 

young people with general life skills rather than specific knowledge and skills taught at school (Egelund, 2008; 

Schleicher, 2007). Rindermann and Baumeister (2015) used 67 expert raters to assess the abilities required to correctly 

answer PISA and TIMSS items and found that general intelligence and general knowledge were rated as important 

components, more so for PISA than TIMSS. 

1.1.2. Correlations between student achievement and intelligence tests 

On country-level relations, Rindermann (2007) concluded that assessments of student achievement and intelligence 

tests both measure general cognitive ability highlighting the role of social and economic context in shaping general 

ability. Rindermann found strong correlations between 20 country-level student achievement measures and country-

level intelligence measured by Lynn and Vanhanen (2012). However, correlations at the country-level do not 

necessarily individual- level correlations and vice versa (Robinson, 1950). 

The individual-level correlations between standardised achievement tests and intelligence range from about 0.50 to 

over 0.80, varying by subject domain, students' age or grade-level, test reliability and educational and social context. 

In a meta study of close to 3000 empirical studies of school learning in the Unites States, Walberg (1984) computed an 

average correlation of 0.71 between various IQ measures and academic achievement. For the US, Duckworth, Quinn, 

and Tsukayama (2012) reported correlations between 0.70 and 0.80 for IQ measured in grade 4, and grade 5 and 9 

achievement tests. For Australia, the correlations of early cognitive ability with numeracy and reading were around 
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0.60 for Year 3 students (Marks, 2016). For New Zealand, the correlation between IQ measured at ages 8 and 9 with 

academic per- formance at age 13 was 0.83 (Fergusson, Horwood, & Boden, 2008). For Ireland, the correlations 

between cognitive ability measured at age 13 and numeracy and vocabulary at age 17 were around 0.60 (O'Connell & 

Marks, 2021). For Germany, Baumert, Nagy and Lehmann (2012, Table S1) reported correlations around 0.50 for IQ 

with both reading and mathematics. For the Netherlands, Bartels, Rietveld, Van Baal, and Boomsma (2002) reported 

correlations of 0.41, 0.50, 0.60, and 0.63 between IQ assessed at age 5, 7, 10, and 12 respectively performance in 

the CITO tests (which influences school track placement) taken at 12 years of age. For Sweden, the correlation 

between cognitive ability measured at age 13 and grades is around 0.60 among cohorts born from 1967 to 1982 (Erikson 

& Rudolphi, 2010). 

Structural equation models (SEM), which account for measurement error, almost invariably produce higher 

correlations than correlations between manifest variables. In a study of 178,599 pupils attending En- glish state 

schools, the correlation between latent factors derived from a cognitive ability test and attainment scores on national 

Key Stage 2 tests in English, mathematics and science of 11-year-olds was 0.83 (Calvin, Fernandes, Smith, Visscher, 

& Deary, 2010). In a study of over 80,000 16-year-old students, Deary, Strand, Smith, and Fernandes (2007) 

calculated a correlation of 0.81 between a latent intelligence trait measured at 11 years of age with a latent trait of 

subject performance in the General Certificate of School Education taken around age 16. Zaboski, Kranzler, and 

Gage's (2018) metastudy estimated correlations of between 0.70 and 0.80 between g and basic reading skills, reading 

comprehension and basic math. General intelligence g extracted from the Armed Services Vocational Aptitude Battery 

correlated at around 

0.80 with the Scholastic Assessment Test and the American College Readiness Assessment (Baker et al., 2004; Frey, 

2019; Koenig et al., 2008). 

According to Hopfenbeck et al. (2018, pg. 342) 54 articles have investigated the relationship between intelligence 

and PISA. They offer an overall correlation of 0.88 implying that, on average, about 80% of the variation is the PISA 

can be attributed to cognitive ability. Other estimates have been lower. For Poland, the latent correlations between 

Raven's progressive matrices, a measure of fluid intelligence, and PISA test scores in Poland were around 0.73 

(Pokropek et al., 2021). 

1.1.3. High inter-domain correlations in student achievement 

The origin of concept general ability is attributed to Spearman's (1904) identification a general intelligence (or 

general ability) factor from students' performance in different subject areas using factor anal- ysis. The general 

intelligence factor, now known as g, is a latent variable that explained the correlations, among a diverse set of school 

subjects. All cognitive tasks measure g to some degree (Warne, 2020, p. 32) and, ideally, the goal of education systems 

is to develop students' general ability to solve cognitive tasks in real world settings. 

For student performance in achievement tests, reading scores tend to be highly correlated with student performance 

in other domains. In a French-Canadian study of school readiness, the correlation between grade 2 reading and math 

was 0.75 (Pagani, Fitzpatrick, Archambault, & Janosz, 2010). In 2011, over 4000 grade 4 Italian students were tested in 

reading in PIRLS, and in math and science in TIMSS. Reading scores were highly correlated with math (0.76) and 

science (0.85) score com- parable with the correlation (0.81) between science and math scores in TIMSS (Grilli, 

Pennoni, Rampichini, & Romeo, 2016). For Australia, Marks (2021) reported interdomain correlations of numeracy 

with 4 English literacy domains between 0.5 and 0.8. The most plausible explanation for the common variance in these 

studies is general cognitive ability. 

For PISA, correlations between the PISA factors derived from the multidimensional model are very high, 

typically between 0.80 and 0.90 (Bond & Fox, 2001; Cromley, 2009). According to the OECD's PISA (2019a, 

Table 12.14) technical report on the 2018 PISA assessments the inter-domain correlations were also very high. 

Across countries with computer-based assessments, the average correlation between mathematics and reading was 

0.80, 0.82 between mathematics and science and 0.86 between reading and science. According to Brown (2015), 

highly correlated dimensions (i.e., above 0.80) is indicative of poor discriminant validity. The separate 

dimensions cease to be meaningful measures of separate domains, but imperfect measures of the same general 

latent construct. Again, general ability is the most obvious explanation for the high correlations between 

students' scores in different achievement domains derived from the standard multidimensional model. The very 
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high inter-domain correlations means that analyses of the separate domains will produce very similar results because of 

the highly correlated latent dimensions, with the notable exception of gender differences. 

1.1.4. Behavioural genetics 

Within homogeneous populations, the literature indicates that the genetic component of student achievement is 

comparable to, or greater than, that for cognitive ability (Kovas et al., 2013). The heritabilities, that is the proportions 

of variation in traits among homogeneous populations that can be attributed to genes, are generally between 0.5 and 

0.8, averaging about 0.7, with much lower estimates for the shared environment (see Plomin, DeFries, Knopik, & 

Neiderhiser, 2013, pp. 222–228; Pokropek & Sikora, 2015; Grasby, Coventry, Byrne, Olson, & Medland, 2016). The 

shared environment encompasses factors such as family background and schools. A meta-analysis of 61 twin studies 

from 11 cohorts of primary school children reported heritabilites ranging from 0.4 to 0.7, whereas the contributions of 

the shared environment were mostly around 0.10 (de Zeeuw, de Geus, & Boomsma, 2015). Asbury and Plomin 

(2014, pp. 39, 45) cited heritability estimates of around 0.6 for reading, and between 0.6 and 0.7 for math. It is critical 

however to consider that the low variation attributed to environmental factors pertains estimates of highly 

homogeneous populations, as in the example of twin studies, and therefore should not be extrapolated to indicate the 

role of environmental factors when comparing heterogeneous populations, such as students in different countries (Paige 

Harden, 2021). 

Empirical studies estimated sizable genetic correlations between achievement domains and cognitive ability (Hart, 

Petrill, Thompson, & Plomin, 2009; Petrill, 2016; Wainwright, Wright, Luciano, Geffen, & Martin, 2005). The 

Generalist Genes Hypothesis posits that the same set of genes largely shape a wide range of cognitive and learning 

abilities. Kovas, Harlaar, Petrill, and Plomin (2005) estimated an average genetic correlation between achievement 

domains of 0.79 and genetic correlations within homogeneous populations between 0.47 and 0.76 for g and the 

achievement domains. 

1.1.5. Psychometric modelling 

The psychometric structures of student responses to assessments suggest general ability factors. Reise, Bonifay, and 

Haviland (2013) note that in many educational assessments, subscale scores are highly intercorrelated despite earnest 

attempts by administrators to assess examinee competencies on distinct content domains. Moreover, the total score, 

which is usually based on many items, is reliable, whereas sub- scale scores often are much less reliable. Bifactor 

models which include a general ability factor tend to fit student achievement data better than the conventional 

multidimensional models and the g-factors are usually highly reliable whereas the domain specific constructs are 

much less reliable (Brunner, 2008; Baumert et al., 2009; Saß et al., 2017; Pokropek et al., 2021). These studies are 

further evidence that the constructs isolated in conventional multi- dimensional models contain a considerable amount 

of variance attributable to general ability. 

 

1.2. Relationships of factors with covariates 

The literature suggests that there are no or only small gender differences among adolescents in general ability 

(Aluja-Fabregat, Colom, Abad, & Juan-Espinosa, 2000; Colom, Juan-Espinosa, Abad, & Garcia, 2000; Lemos, Abad, 

Almeida, & Colom, 2013) so gender differences in general ability are not expected. By contrast, the literature suggests 

that there are stronger gender differences in specific scholastic abilities. In system-wide and international achievement 

studies, boys typically exhibit higher average test scores in mathematics and girls higher average test scores in reading 

(Nowell & Hedges, 1998; Harris et al., 2005; Marks, 2008; OECD, 2015). This is also true of estimates of gender gaps in 

the PISA reading and mathematics tests, albeit with much variation between countries (OECD, 2015; Stoet & Geary, 

2015). 

In numerous studies, children from lower socioeconomic status (SES) exhibit lower average scores on intelligence 

tests than their higher SES peers (Bradley & Corwyn, 2002; Schoon, Jones, & Cheng, 2012; Strenze, 2007) a reflection 

of the importance of social and economic conditions on the development of general ability. A large body of research 

focuses on the relationship between SES and specific scholastic abilities. The relationship between SES and g features 

in the early childhood development literature but not in the literature on high school students, despite the fact that 

lower quality educational inputs, both at school and at home, and poorer socio-economic conditions are likely to 
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reduce children’s opportunity to develop general cognitive abilities. Theories contend that SES effects on specific 

abilities are large because of lower SES students attend lower quality schools, they lack cultural capital, their parents 

are less interested in their education and provide less support and the effect of these factors weighs more on specific 

academic abilities. There are many other explanations for SES differences in stu- dent's test scores (see Marks & 

O'Connell, 2021a, 2021b). 

The OECD's ESCS measure incorporates many aspects of the students' environment household possessions, books in the 

home, home educational resources and the home's cultural resources, it is expected to impact more strongly with 

general ability and reading than with mathematics and science in which knowledge and skills are taught at school. 

Alternatively, SES is strongly associated with general ability among students since parents' cognitive abilities 

influence their socioeconomic attainments (e.g., education, occupational attainment, income) and their abilities are also 

transmitted to their children through concerted cultivation efforts which, in turn, influences their performance in 

ILSAs and other assessments. 

Learning time is a key educational resource. According to OECD (2020), learning time has the potential to improve 

the quality and equity of education outcomes. It is reasonable to expect that the specific learning time students at age 

15 spend in the respective domains is positively related to the specific ability factors measured at age 15, for example 

learning time in mathematics with the mathematics factor, more than it is related to the accumulated general ability 

factor. The effects of learning time on specific abilities are expected to be stronger than that for general ability. 

2. Research questions and analytical strategy 

 

The review of the literature and previous empirical research suggest that, to a considerable extent, PISA might 

measure general cognitive rather than the domain-specific abilities of reading, mathematics and science. The 

overarching research question of the present study is to what extent the PISA assessment instruments measures 

general cognitive ability and domain-specific abilities. This broad research question generates six specific research 

questions. 

(1) Are student responses to the PISA test instruments better represented by the bifactor models than the 

multidimensional IRT model routinely used in ILSAs? 

(2) Are the three dimensions isolated from the multidimensional model conceptually valid or are they simply 

proxies for general ability? 

(3) If bifactor models better represent student responses to PISA test items, which bifactor more closely 

approximates students' responses: the model with a general ability factor or the model with a general reading 

factor? 

(4) To what extent are PISA scores derived from current scaling procedures are contaminated by a general ability 

factor? 

(5) Are the specific abilities factors generated in the two bifactor models reliable enough to generate student scores? 

(6) Are the relationships of gender, learning time and socioeconomic background with the latent ability constructs 

consistent with theoretical expectations? 

To address these research questions, a four-tiered approach is adopted. First, the ability of the three psychometric 
models discussed— three-dimensional IRT model, the bifactor IRT model and the bifactor (S- 

1) IRT model—to fit the PISA data are compared using an information criterion (AIC) to compare model fit. 
Second, the correlations from the multidimensional model are estimated, following Brown (2015) to assess in 
which countries the three dimensions are sufficient discriminant validity. A variety of bifactor indices are utilized 
to establish the explanatory power and reliabilities of the latent dimensions generated by the three models. Finally, 
the statistical relationships between the latent factors derived from the three models and educationally relevant 
covariates are estimated. 

We use this four-tiered approach to provide robust set of evidences that will allow us to answering our questions 

and minimize the risk of incorrect inferences based on only one approach (cf. Bonifay & Cai, 2017). 

3. Materials and methods 

 

3.1. Data 
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PISA is a low-stake international large-scale assessment administered in both OECD and non-OECD countries. It has 

been administered to representative samples of 15-year-old students every three years since 2000. The core PISA 

instruments are the cognitive tests, a student background questionnaire and a school principal questionnaire. In each 

cycle, there is a major domain for which there are a larger number of items than for the minor domains. 

The data analysed in this study are public use files from the 2018 cycle of PISA (downloadable from: 

http://www.oecd.org/pisa/data). With the application of appropriate weights, the PISA samples are representative of 

students aged between 15 years and 3 months and 16 years and 2 months at the time of the assessment (generally 

referred to as 15-year-olds). In each cycle, PISA participants are selected from the population in participating 

countries through a two-stage random sampling procedure. In the first stage, a stratified sample of schools is drawn, 

then students are randomly selected from each sampled school. This study is limited to OECD countries because 

OECD countries make decisions about the development of the PISA instruments and therefore the PISA instruments 

are primarily, although not solely, designed to respond to the needs of this relatively homogeneous group of countries. 

Furthermore, in many non-OECD countries student proficiency is considerably lower than in OECD countries and 

different item sets were administered to better capture the lower proficiency distribution (Rutkowski, Rutkowski, & 

Liaw, 2018, 2019). Finally, this study is limited to countries that collected achievement data using the computer-

based assessment tool because of potential comparability is- sues with the pen and paper approach (Robitzsch, Lüdtke, 

Goldhammer, Kroehne, & Köller, 2020). All OECD countries implemented the test on computer. 

Spain was excluded because of problems with the administration of the reading assessment in 2018 (OECD, 2019c, 

Annex A9). For Canada, a random sample of 12,994 students was drawn because the full sample (22,653) was too large 

to perform the computations necessary for this paper using standard hardware. 

The data set analysed comprised 226,434 students from 33 OECD countries. The list of countries is presented in the 

results tables. This sample size applies to the major domain, reading. The sample sizes were considerably smaller for the 

two minor domains, mathematics and science. 

 

3.2. Measures 

In 2018, the PISA test was administered by computer and as in previous cycles a rotation design was used which 

assigns a subset of items to each student. As in previous PISA cycles, each 2018 PISA assessment was composed of 

four clusters of domain specific items, with each cluster designed to take around 30 min to complete. Until the 2012 

cycle, PISA test items had a fixed position within each cluster and only clusters were rotated across the different 

assessment forms (OECD, 2012, pp. 29–32). Since 2015, items have been rotated within each cluster. 

For the 2018 cycle an adaptive design was implemented for the major domain – reading. This means that the items 
students are asked to respond to depends on their responses to previous items. Adaptive designs were not implemented 
for the minor domains. In all domains, the item pool comprised both multiple-choice and constructed response (or 
open) questions and items varied by format and level of difficulty (OECD, 2019b, Chapter 2). 

After completing the assessments, students were administered the background questionnaire which collects data on 

the education and occupations of their parents, the household's educational and cultural resources and the presence of, 

and in some instances the number of, a variety of consumer durables. These data are used to create the OECD's standard 

composite index of socio-economic status, the PISA Index of Education, Social and Cultural Status (ESCS) which has 

been widely used in the policy and academic literatures (see OECD, 2012; Avvisati, 2020 for an extensive review and 

Marks & O'Connell, 2021a, 2021b for an extensive critique). The ESCS index is standardised to a mean of zero and a 

standard deviation of one, across OECD countries. The student questionnaire also collects student demographic data, 

including gender which is included in these analyses. 

The PISA technical report presents, details of data collections, all data cleaning procedures including information 

on the psychometric characteristics of the items, reliability of scales, and other statistical properties (OECD, 2019b). 

 

3.3. Measurement models 

This study analyses the three psychometric models described in Fig. 1 Each model assumes a different latent 

structure to account for the variation in students' responses to the test items: 

http://www.oecd.org/pisa/data
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— 

3.3.1. Model 1: three-dimensional IRT model 

This model assumes that three different and correlated latent traits describe students' responses to the test items. The 

model specifies three specific factors corresponding to the three test domains: reading, math and science. General 

ability is not included, and the three factors are specified as not independent of each other. This model represents the 

standard model used in ILSAs. 

3.3.2. Model 2: bifactor IRT model 

The fully symmetrical bifactor model specifies a general ability fac- tor and three specific ability factors. In this 

model, the domain-specific factors are uncorrelated with the general ability factor and with each other; they comprise 

only specific factor variance. 

3.3.3. Model 3: bifactor (S-1) IRT model 

Bifactor-(S 1) is a reconfiguration of model 2, where one domain- specific factor (reading) replaces the general 

factor. In this model, a general reading factor and two domain-specific factors account for variation in item responses. 

Fig. 1 presents the three models schematically. 

All models were estimated using item level data and confirmatory factor analysis (CFA) for categorical data. These 

models are often referred to as IRT models. IRT and CFA models for categorical data are essentially the same with 

minor differences in parametrization. The models were estimated by logit link function (or ordered logit link function 

for partial credit items) and maximum likelihood using the EM algorithm with numerical integration with 15 

quadrature points and default convergence criteria settings. Further technical details are available from the first author. 

All measurement models were estimated using the Mplus version 8 software. 
 

 

Fig. 1. Alternative models describing response patterns to the PISA test. 

3.3.4. Model fit comparison using an information criterion (AIC) 

The Akaike information criterion (AIC) is used to compare models. This likelihood fit measure penalises free 

parameters to combat overfitting:  

𝐴𝐼𝐶 = −2 ∗𝑙𝑛  (𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚  

AIC is the preferred fit measure because it is appropriate for PISA data. In contrast, other commonly used 

measures of model fit—comparative fit index (CFI), Tucker-Lewis index (TLI), root mean square error of 

approximation (RMSEA), or chi-square based indices—cannot be used because PISA uses an incomplete balanced 

matrix design in which students answer some, but not all test, questions (as described above). These indices cannot be 

used to compare models because of the large amount of structured missing data for the cognitive items (Xia and 

Yang, 2019; Zhang Savalei, 2020; Fitzgerald et al. 2021). Furthermore, the number of students in the assessment 

(required for BIC) is not known, because in the balanced matrix design, different students answer different numbers 

of questions. Finally, there is no straightforward way of defining the effective sample size. The complex stratified 

sampling in PISA means the effective sample size is smaller than simply the number of students tested.  

Although there are no strict rules for comparing models, Burnham, Anderson and Huyvaert (2011, p. 25) suggest 

that differences in AIC around 10 units a strong indication of superior fit. Differences in AIC of around 20 provide 
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stronger evidence over of a better model. Models with the smallest AIC value are designated as the “better” model, 

i.e., models whose parameters generates data that more closely approximate the observed data, taking into account 

differences in the number of free parameters. 

3.3.5. Bifactor Model Indices 

Various bifactor model indices can assess the validity and reliability of the bifactor model factors (Bonifay, 2020): 

factor strength, internal consistency reliability, and construct replicability indices. These indices are the Explained 

Common Variance (ECV) for the general and group factors together with the proportion of uncontaminated 

correlations (PUP), and the omega family coefficients. 

3.3.6. Explained Common Variance (ECV) 

The Explained Common Variance (ECV) quantifies the amount of common variance attributable to the general 

factor and group factors (Rodriguez, Reise, & Haviland, 2016). The ECV is the ratio of the common variance 

explained by the general factor to the common variance accounted for by the general factor and group factors (Reise, 

Moore, & Haviland, 2010):  

 𝐸𝐶𝑉 =  
(∑ 𝜆𝐺𝑒𝑛 

2 )

(∑ 𝜆𝐺𝑒𝑛 
2 ) + (∑ 𝜆𝐺𝑟1

2 ) + (∑ 𝜆𝐺𝑟2
2 ) + ⋯ + (∑ 𝜆𝐺𝑟𝑘

2 )
 

(1

) 

 

where 𝜆𝐺𝑒𝑛, 𝜆𝐺𝑟1, 𝜆𝐺𝑟2, and 𝜆𝐺𝑟𝑘 are vectors of standardised factor loadings, with the first term representing the 

vector of general factor loadings and the other terms – vectors of group factor loadings. Values of ECV range from 0, 

which indicates no unidimensionality, to 1, indicating a completely unidimensional data structure (Quinn, 2014). 

High values of ECV suggest that data are essentially unidimensional.  

ECV values are largely dependent on the proportion of uncontaminated (by multidimensionality) correlations 

(PUC), defined as: 

 𝑃𝑈𝐶 =  
𝑛𝑖𝑡𝑒𝑚𝑠(𝑛𝑖𝑡𝑒𝑚𝑠 − 1)/2 − 𝛴𝑔𝑟𝑜𝑢𝑝=1

𝑔𝑟𝑜𝑢𝑝=𝑘
 𝑛𝑖𝑝𝑔(𝑛𝑖𝑝𝑔 − 1)/2

𝑛𝑖𝑡𝑒𝑚𝑠(𝑛𝑖𝑡𝑒𝑚𝑠 − 1)/2
 

(2

) 

 

Where 𝑛𝑖𝑡𝑒𝑚𝑠is the number of items, and 𝑛𝑖𝑝𝑔 is the number of items per group for k groups. (Bonifay, Reise, 

Scheines, & Meijer, 2015:507).  

Rodriguez, Reise, and Haviland (2015) suggests that a predominantly unidimensional structure is indicated by 

ECV values above 0.70 and for PUCs less than 0.70. For these PISA data, the average PUC for the symmetrical 

bifactor model is 0.64 and 0.90 for the non-symmetrical S-1 bifactor model.  

ECV can be computed for group factors, using only a subset of items loading on the specific factor of interest 

(𝐸𝐶𝑉𝑆𝑆). 𝐸𝐶𝑉𝑆𝑆 is the proportion of common variance in a subset of items explained by the respective latent specific 

factor of the common variance accounted for by the general and specific factors: 

 𝐸𝐶𝑉𝑆𝑆 =  
(∑ 𝜆𝐺𝑟𝑘 

2 )

 (∑ 𝜆𝐺𝑒𝑛
2𝑗

𝑖 =1 ) + (∑ 𝜆𝐺𝑟𝑘
2 )

 
(3

) 

 

where j denotes the last item for the subset of items loading on the specific factor k. Note that the 𝐸𝐶𝑉s do not sum 

to 1. 

Dueber and Toland (2021) show that 𝐸𝐶𝑉𝑆𝑆 for group factors is useful to determine the strength of a specific 

factor, that is does it contribute the explained variance for the subset’s items beyond that provided by the general 

factor. 

3.3.7. Omega coefficients (ω) 

The omega coefficients (ω) measure the amount of reliable variance in unit-weighted composite scores explained 

by each factor. Coefficient omega is a factor analytic model-based reliability estimate (McDonald, 1999).Coefficient 

omega is analogous to coefficient alpha in classical measurement theory (Reise, Bonifay, & Haviland, 2013b). 

Coefficient omega can be calculated for all items, as in equation 4, or for a set of items for a subscale.   
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 𝜔 =  
(∑ 𝜆𝐺𝑒𝑛)2 + (∑ 𝜆𝐺𝑟1)2 + (∑ 𝜆𝐺𝑟2)2 + ⋯ + (∑ 𝜆𝐺𝑟𝑘)2

(∑ 𝜆𝐺𝑒𝑛)2 + (∑ 𝜆𝐺𝑟1)2 + (∑ 𝜆𝐺𝑟2)2 + ⋯ + (∑ 𝜆𝐺𝑟𝑘)2 + Σ(1 − ℎ)2
 

(

4

) 

 

Omega hierarchical (ωH) quantifies the proportion of reliable variance in students’ responses due to the general 

factor: 

 𝜔𝐻 =  
(∑ 𝜆𝐺𝑒𝑛)2

(∑ 𝜆𝐺𝑒𝑛)2 + (∑ 𝜆𝐺𝑟1)2 + (∑ 𝜆𝐺𝑟2)2 + ⋯ + (∑ 𝜆𝐺𝑟𝑘)2 + Σ(1 − ℎ)2
 

(

3

) 

 

where 𝜆𝑠 represent vectors of standardised factor loadings and 𝛴(1 − ℎ)2 is the sum of the items’ unique 

variances. Values of ωH  above 0.8 indicate that the unit-weighted total scores are essentially unidimensional 

(Rodriguez et al., 2015).  

OmegaS is an estimate of composite reliability of subscores and can be computed for each specific factor: 

𝜔𝑆 =  
(∑ 𝜆𝐺𝑒𝑛

𝑗
𝑖 =1 )2 + (∑ 𝜆𝐺𝑟𝑘)2

 (∑ 𝜆𝐺𝑒𝑛
𝑗
𝑖 =1 )2  + (∑ 𝜆𝐺𝑟𝑘)2 + Σ(1 − ℎ)2

 (4) 

Note that the general factor contributes to the reliability of the specific factor. 

Omega hierarchical subscale (ωHS) quantifies the degree that subscale scores (for reading, mathematics, and 

science) are (not) confounded by the general factor (Reise, Bonifay, & Haviland, 2013b). It is calculated similarly to 

omega hierarchical, but just for a subset of items: 

𝜔𝐻𝑆 =  
(∑ 𝜆𝐺𝑟𝑘)2

 (∑ 𝜆𝐺𝑒𝑛
𝑗
𝑖 =1 )2  + (∑ 𝜆𝐺𝑟𝑘)2 + Σ(1 − ℎ)2

 (5) 

 

Dueber and Toland (2021) show that for a subset of items, Omega hierarchical (𝜔𝐻𝑆) and omega subscale (𝜔𝑆) can 

be used to determine if subscores were generated, would they add value beyond that provided by the total score? 

However, Dueber and Toland (2021) stress that once a specific factor is identified as adding value it does not 

automatically mean that scores generated from the specific factor can be usefully interpreted. If subscores are to be 

interpreted, a high omega subscale “can be considered as evidence that such an interpretation is statistically 

appropriate” (Dueber & Toland, 2021, p.15). In other words, a signal is observable but the signal to noise ratio is too 

low for it to be reliably measured. The cut-off values proposed by Dueber and Toland (2021) for assessing if specific 

factors in the SEM framework and the subscales add value are utilized in the results section and can be found in the 

Supplementary online Annex.  

3.4. Nomological Network (Covariate Analyses with Structural Equation Modelling) 

Structural Equation Models (SEM) comprising of measurement and structural models are used to estimate the 

relationships between the set of covariates and the latent abilities. The measurement models are the three factor 

analytic models discussed above. The covariates are learning time in language of the test, learning time in 

mathematics and science, gender and socio-economic status. Standardised coefficients were estimated for 32 

countries and summarised by boxplots. The coefficients are standardised regression coefficients: the predicted 

average change in the dependent variable (here, always latent abilities) for a one-standard increase in the respective 

predictor variable with all other variables held constant. Missing data was handled through full information maximum 

likelihood estimation. Japan is not included in the analyses of the relationships between latent dimensions of 

covariates because many of the measures were not available. 

 

4. Results 

 

4.1. Model fit comparison using an information criterion (AIC) 
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Table 1 presents AIC values for the three-dimensional model, the symmetrical bifactor model, and the S-1 reading 

model. The table in- cludes differences in AIC values between the three models and the correlations between factors 

in the conventional three-dimensional model. The AIC values indicate that the symmetrical bifactor model 

outperforms the two other models in all countries and by a considerable margin in the great majority of countries. 

Differences in AIC between the symmetrical bifactor and the three-dimensional model are larger than 100 in 30 out of 

the 33 countries (Iceland, the Netherlands and the United States are the exceptions). 

AIC differences between the symmetrical bifactor and the S-1 reading models are larger than 150 in 32 out of the 

33 countries (the United States, the sole exception with a difference of 110). If for technical reasons, bifactor models 

fit the data better, then the reading model would produce similar fits as the general ability bifactor model. The results 

are unequivocable, the bifactor provides the best fit to the data in all 33 countries, this is despite AIC penalizing models 

with more degrees of freedom. 

 

Model Comparisons using AIC criterion and correlations of latent variables from 3D model.  
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Note: 3D – model with three dimensions correlated, Bif – symmetric bifactor model, S-1 – bifactor (S-1) model; ΔAIC – differences in AIC values between respective 
models. Smallest AIC value is selected as the “best” model. 

4.2. Factor correlations from the correlated-factor model 

 

Table 1 presents the correlations between the reading, mathematics and science factors generated by the 

multidimensional model. The correlations between the reading and mathematics factors are above 0.8 in all 33 

countries. For mathematics and science, the correlations are generally higher sometimes greater than 0.90. For 

reading and science the within country correlations are generally between the other two correlations. Since all but 

one of the between-factor correlations are above 0.8, the three factors in the multidimensional model exhibit poor 

discriminant validity, so are not viable as measures of distinct concepts. 

4.3. Bifactor model indices 

 

Table 2 presents four indices for the symmetrical bifactor model: the ECVs, omega coefficient for the general and 

specific factors, omega hierarchical for the general factor, and the omega subscale coefficients for the specific ability 

 AIC    ΔAIC    Correlations 3D Model   

 Country  N  3D Bif S-1  3D -Bif 3D -S-1 Bif - S-1  Math with Reading Math with Science Reading with Science 

 Australia  14,273  933,042 932,109 932,962  933 81 —852  0.834 0.916 0.899  

 Austria  6801  444,978 444,507 444,845  471 133 —338  0.867 0.932 0.917  

 Belgium  8474  536,879 536,641 536,902  239 —22 —261  0.867 0.943 0.919  

 Canada  12,994  747,032 746,084 746,799  948 233 —715  0.812 0.898 0.900  

 Czech Rep.  7019  453,258 452,734 453,196  524 62 —462  0.857 0.892 0.906  

 Denmark  7655  491,267 490,919 491,248  349 20 —329  0.832 0.903 0.884  

 Estonia  5316  353,299 353,100 353,281  200 18 —182  0.829 0.894 0.900  

 Finland  5648  356,282 356,017 356,296  266 —13 —279  0.835 0.899 0.901  

 France  6306  394,678 394,348 394,691  330 —13 —343  0.883 0.904 0.92  

 Germany  5451  340,869 340,721 340,923  148 —54 —202  0.873 0.921 0.911  

 Greece 

Hungary 

 6398 

5130 

 366,448 

337,300 

365,863 

337,005 

366,491 

337,299 

 585 

296 

—43 

1 

—628 

—295 

 0.827 

0.876 

0.794 

0.912 

0.894  

 Iceland 

Ireland 

 3296 

5577 

 207,205 

369,314 

207,173 

369,179 

207,348 

369,341 

 32 

135 

—143 

—27 

—175 

—162 

 0.803 

0.852 

0.935 

0.901 

0.889  

 Israel  6618  352,652 352,246 352,675  406 —23 —429  0.862 0.905 0.921  

 Italy 

Japan 

Korea 

 11,784 

6108 

6648 

 765,571 

394,920 

385,136 

764,239 

394,612 

384,963 

765,417 

395,022 

385,223 

 1332 

308 

173 

153 

—102 

—87 

—1178 

—409 

—260 

 0.817 

0.822 

0.843 

0.891 

0.915 

0.927 

0.879 

 
0.888 

 

 Latvia  5298  319,269 319,089 319,336  180 —67 —247  0.825 0.898 0.881  

 Lithuania  6883  405,659 405,423 405,693  236 —34 —270  0.848 0.853 0.909  

 Luxembourg  5230  327,757 327,491 327,782  267 —24 —291  0.862 0.851 0.920  

 Netherlands 

New Zealand 

 4765 

6173 

 293,172 

401,084 

293,115 

400,847 

293,298 

401,039 

 57 

238 

—126 

46 

—184 

—192 

 0.864 

0.821 

0.93 

0.846 

0.905  

 Norway  5810  364,799 364,560 364,830  239 —31 —270  0.835 0.92 0.877  

 Poland  5624  372,516 371,966 372,535  550 —18 —568  0.822 0.845 0.887  

 Portugal  5932  383,314 383,202 383,380  112 —67 —178  0.854 0.896 0.890  

 Slovak Rep.  5962  346,204 345,684 346,259  519 —55 —575  0.853 0.859 0.895  

 Slovenia 

Sweden 

 6401 

5503 

 425,931 

332,130 

425,743 

331,898 

426,037 

332,140 

 188 

232 

—106 

—10 

—294 

—242 

 0.812 

0.84 

0.952 

0.952 

0.873  

 Switzerland  5822  380,886 380,617 380,922  269 —37 —305  0.85 0.914 0.897  

 Turkey  6890  460,086 459,703 460,152  383 —66 —449  0.856 0.918 0.931  

 UK  13,807  900,534 899,671 900,554  863 —20 —882  0.837 0.904 0.894  

 United States  4838  316,430 316,377 316,487  53 —57 —110  0.872 0.927 0.911  
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factors. 

For the symmetric bifactor model, the ECV values are high, around 0.8 or more. This means that the general factor 

accounts for 80% or more of the common variance in item responses. Therefore, a simpler unidimensional model 

would fit the data nearly as well the symmetric bifactor model. The amount of common variance in the subdomain 

items explained by its respective specific factor varies, with an average of 0.27 for mathematics, 0.17 for science and 

to 0.12 for reading. So most of the common variance in the subdomain items is accounted for by the gen- eral factor, 

not the respective specific factors. According to Dueber and Toland (2021) cut-offs, there is no added value in 

specifying an additional specific ability in the SEM framework: for mathematics in Korea and Slovenia; for reading 

in Australia, Canada, Czech Republic, Finland, France, Germany, Israel, Lithuania, Luxembourg, the Netherlands, 

New Zealand, Norway, Sweden, and the United Kingdom; for science in Belgium, Denmark, Korea, Slovenia, the 

United States, and Turkey. 

For the rest of the countries, the subdomain specific ECVs for reading and science, even though they are above the 

cut-off values proposed by Dueber and Toland (2021), are still very low, often below 0.2, that is they account for less 

than 20% of common variance in the subdomains. In other words, more than 80% of the common variance for the 

reading and science items is attributable to the general factor. 

The omega coefficients suggest that a large part of the unit-weighted total score variance is due to the general ability 

factor and the subscale scores are highly confounded by this factor in all countries. All the ωH values exceed 0.8 which 

indicates that the unit-weighted total scores are essentially unidimensional (Rodriguez et al., 2015). 

For reading, on average, only 5% of the reliable unit-weighted variance is due to the specific factor (0.044/0.982). 

The remainder is due to the general factor. For mathematics, on average 24% of unit- weighted reliable variance in 

the mathematics items can be attributed a specific mathematics factor (0.221/0.938). For Belgium, Denmark, Korea, 

Portugal, Slovenia, and the United States proportions are considerably lower. For science, on average 14% of unit-

weighted reliable variance in the science items can be attributed a specific science factor (0. 135/0.952). For 

Belgium, Denmark, Korea, Portugal, Slovenia, Turkey, and the United States the specific science factors account for 6. 

Overall results presented in Table 2 indicate that subscale scores for reading and science would not add value beyond 

scores generated from 
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Table 2 

Bifactor indices for general and specific factors (symmetric bifactor model). 

ECV Omega Omega hierarchical & subscale 

 Country  g Read Math Science  g Read Math Science  g Read Math Science  

Australia 0.858 0.080 0.314 0.182 0.989 0.984 0.939 0.956 0.962 0.012 0.264 0.171 

Austria 0.855 0.100 0.272 0.166 0.988 0.982 0.939 0.954 0.965 0.013 0.208 0.146 

Belgium 0.855 0.175 0.164 0.062 0.988 0.981 0.941 0.954 0.932 0.143 0.119 0.002 

Canada 0.846 0.085 0.350 0.190 0.987 0.982 0.939 0.951 0.961 0.010 0.293 0.170 

Czech Republic 0.858 0.089 0.274 0.184 0.988 0.982 0.944 0.956 0.964 0.006 0.237 0.153 

Denmark 0.811 0.232 0.198 0.089 0.987 0.980 0.932 0.952 0.911 0.201 0.123 0.016 

Estonia 0.834 0.115 0.306 0.192 0.985 0.979 0.934 0.946 0.953 0.023 0.258 0.151 

Finland 0.847 0.096 0.315 0.195 0.987 0.982 0.933 0.953 0.962 0.005 0.275 0.173 

France 0.870 0.088 0.235 0.162 0.989 0.984 0.946 0.955 0.973 0.000 0.187 0.143 

Germany 0.859 0.099 0.246 0.171 0.989 0.983 0.943 0.958 0.965 0.014 0.203 0.153 

Greece 0.814 0.130 0.361 0.209 0.986 0.981 0.930 0.941 0.964 0.003 0.286 0.173 

Hungary 0.861 0.101 0.244 0.159 0.988 0.981 0.936 0.952 0.965 0.015 0.202 0.117 

Iceland 0.821 0.120 0.345 0.222 0.988 0.983 0.936 0.951 0.960 0.012 0.307 0.191 

Ireland 0.839 0.116 0.294 0.185 0.985 0.979 0.920 0.948 0.961 0.017 0.220 0.155 

Israel 0.870 0.070 0.295 0.166 0.991 0.987 0.951 0.962 0.971 0.005 0.236 0.148 

Italy 0.820 0.114 0.338 0.229 0.986 0.980 0.934 0.947 0.951 0.025 0.287 0.202 

Japan 0.825 0.126 0.320 0.196 0.986 0.980 0.937 0.951 0.959 0.016 0.280 0.163 

Korea 0.803 0.278 0.099 0.080 0.988 0.982 0.943 0.955 0.906 0.239 0.025 0.012 

Latvia 0.815 0.124 0.342 0.221 0.985 0.978 0.926 0.943 0.956 0.014 0.271 0.182 

Lithuania 0.854 0.084 0.298 0.189 0.987 0.981 0.937 0.949 0.964 0.007 0.258 0.163 

Luxembourg 0.862 0.093 0.269 0.165 0.989 0.985 0.942 0.956 0.967 0.016 0.218 0.145 

Netherlands 0.860 0.098 0.242 0.178 0.989 0.984 0.943 0.960 0.963 0.023 0.205 0.159 

New Zealand 0.851 0.089 0.340 0.169 0.989 0.984 0.941 0.957 0.960 0.022 0.286 0.154 

Norway 0.842 0.090 0.305 0.235 0.988 0.983 0.937 0.954 0.962 0.000 0.271 0.208 

Poland 0.823 0.118 0.328 0.220 0.986 0.980 0.939 0.952 0.957 0.006 0.278 0.196 

Portugal 0.833 0.174 0.206 0.119 0.988 0.982 0.943 0.953 0.932 0.127 0.162 0.060 

Slovak Republic 0.836 0.117 0.284 0.197 0.988 0.983 0.942 0.957 0.962 0.015 0.234 0.170 

Slovenia 0.794 0.282 0.139 0.076 0.987 0.981 0.933 0.949 0.893 0.250 0.046 0.006 

Sweden 0.843 0.097 0.312 0.206 0.988 0.983 0.939 0.953 0.962 0.011 0.260 0.178 

Switzerland 0.844 0.109 0.273 0.191 0.988 0.982 0.940 0.954 0.960 0.019 0.231 0.167 

Turkey 0.855 0.109 0.280 0.118 0.986 0.978 0.937 0.934 0.971 0.014 0.233 0.026 

United Kingdom 0.850 0.092 0.292 0.194 0.987 0.981 0.936 0.951 0.957 0.020 0.258 0.178 

United States 0.843 0.185 0.173 0.074 0.990 0.985 0.943 0.958 0.926 0.158 0.084 0.011 

Average 0.841 0.124 0.274 0.169 0.988 0.982 0.938 0.952 0.954 0.044 0.221 0.135 

the general factor because in most countries, the signal to noise ratio is too low. Although the psychometric properties 

of the mathematics factors are somewhat better, a reliable variance of between 20 and 30% of is not sufficient to 

provide valid inferences about science scores generated from the latent mathematics factor. However, because there is 

some value-added information beyond what is conveyed by the general ability factor a psychometric model applied to 

other data could be developed to generate viable mathematics subscores that are independent of scores generated from 

the general factor. 

Table 3 presents bifactor indices for the S-1 reading model where reading is the general factor. The ECV values 

are very high, higher than those for the symmetrical bifactor model. The indices indicate that in almost all 

countries a latent reading factor explains around 90% of common variance, is responsible for almost all of the 

reliable variance in unit-weighted total scores, and that the remaining group factors (math and science) are much 

weaker. Note that reading factor incorporated much of the variance attributed to general cognitive ability in the 

pre- vious bifactor model. 

On average, the domain specific ECV for mathematics is 0.31, and 0.20 for science. The omega subscale 

estimates are 0.26 for mathematics and 0.19 for science. The mathematics and science factors are slightly more 

reliable in the S-1 reading model than the previous bifactor model, but not reliable enough to generate valid 

subset scores. 

 

4.4. Nomological network (covariate analyses with structural equation modelling) 

Fig. 2 presents results from structural equation models which estimate the relationships between the covariates 

(gender, socio-economic characteristics and learning time) and the latent variables isolated 

 

Table 3 

Bifactor indices for general and specific factors (bifactor S-1 model). from the three models. 
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The box and whisker plots summarise country specific associations and illustrate the variability in associations across 

countries. The width of the box is the interquartile range bounded by the upper and lower quartiles. The median is the 

vertical line inside the box. The value that the whisker begins is the lower quartile minus 1.5 times the interquartile 

range. The value that whisker ends is the upper quartile plus 1.5 times the interquartile range. The dots represent outlier 

countries outside the range of the whiskers. All coefficients in Fig. 2 and in the more detailed tables in the 

Supplementary online Annex are standardised. 

In the bifactor model, girls score, on average, higher than boys on the general ability factor, although there is much 

variation between countries (Fig. 2). In the two bifactor models, boys, on average, score higher than girls in 

mathematics and science. These gender differences are considerably larger than those from the multidimensional 

model. Similarly, gender differences in the multidimensional model favouring girls in reading are smaller than in 

the bifactor models. A plausible interpretation of these results is that the multidimensional model un- derestimates 

gender gaps in reading (favouring girls), and in mathematics and science (favouring boys). 

The multidimensional model shows plausible relationships with ESCS. Contrary, to expectations, ESCS effects 

are not stronger for reading than for mathematics and science; the average estimate is around 0.26. In the bifactor 

general ability model, the ESCS effect is also around 0.25. According to the general ability bifactor model, ESCS is not 

significantly associated with the reading and science factors in most countries and only weakly associated with 

mathematics. According to the bifactor reading model, ESCS is moderately correlated with reading, again at around 

0.26, but only weakly with mathematics and science. This pattern is contrary to theoretical expectations but is 

explicable if it 
 

 

 ECV    Omega    Omega hierarchical & subscale  

 Country  Read Math Science  Read Math Science  Read Math Science 

Australia 0.900 0.324 0.195 0.989 0.939 0.956 0.965 0.276 0.184 

Austria 0.908 0.282 0.176 0.988 0.939 0.954 0.968 0.219 0.157 

Belgium 0.913 0.259 0.161 0.988 0.942 0.953 0.968 0.216 0.141 

Canada 0.890 0.361 0.200 0.987 0.938 0.951 0.962 0.304 0.180 

Czech Republic 0.906 0.279 0.190 0.988 0.944 0.956 0.966 0.242 0.167 

Denmark 0.887 0.327 0.220 0.987 0.932 0.952 0.962 0.272 0.197 

Estonia 0.893 0.322 0.204 0.985 0.934 0.944 0.960 0.275 0.168 

Finland 0.899 0.316 0.202 0.987 0.933 0.953 0.963 0.277 0.181 

France 0.916 0.243 0.171 0.989 0.946 0.955 0.972 0.195 0.154 

Germany 0.910 0.258 0.181 0.989 0.943 0.958 0.968 0.216 0.165 

Greece 0.887 0.367 0.217 0.986 0.930 0.941 0.965 0.296 0.185 

Hungary 0.910 0.256 0.177 0.987 0.936 0.952 0.969 0.216 0.141 

Iceland 0.888 0.354 0.223 0.988 0.937 0.951 0.964 0.317 0.193 

Ireland 0.899 0.306 0.201 0.985 0.920 0.946 0.963 0.235 0.174 

Israel 0.909 0.297 0.167 0.991 0.950 0.962 0.973 0.239 0.149 

Italy 0.879 0.349 0.239 0.986 0.935 0.947 0.958 0.298 0.213 

Japan 0.892 0.329 0.202 0.986 0.937 0.951 0.962 0.290 0.171 

Korea 0.896 0.297 0.215 0.988 0.945 0.955 0.961 0.262 0.186 

Latvia 0.879 0.356 0.232 0.985 0.926 0.943 0.959 0.288 0.197 

Lithuania 0.899 0.301 0.192 0.987 0.937 0.949 0.966 0.261 0.166 

Luxembourg 0.913 0.277 0.169 0.989 0.942 0.956 0.971 0.227 0.149 

Netherlands 0.909 0.262 0.187 0.989 0.942 0.960 0.969 0.216 0.170 

New Zealand 0.896 0.352 0.181 0.989 0.941 0.957 0.965 0.298 0.168 

Norway 0.890 0.308 0.238 0.988 0.937 0.954 0.962 0.273 0.212 

Poland 0.885 0.332 0.226 0.986 0.939 0.952 0.958 0.283 0.202 

Portugal 0.898 0.278 0.220 0.988 0.944 0.953 0.964 0.237 0.196 

Slovak Republic 0.895 0.298 0.209 0.988 0.942 0.957 0.965 0.249 0.185 

Slovenia 0.883 0.340 0.239 0.986 0.933 0.950 0.959 0.297 0.219 

Sweden 0.896 0.315 0.210 0.988 0.939 0.953 0.965 0.265 0.184 

Switzerland 0.900 0.285 0.205 0.988 0.940 0.954 0.965 0.244 0.183 

Turkey 0.908 0.284 0.144 0.985 0.937 0.936 0.968 0.239 0.107 

United Kingdom 0.897 0.305 0.205 0.987 0.936 0.951 0.962 0.271 0.190 

United States 0.908 0.283 0.182 0.990 0.942 0.959 0.970 0.225 0.164 

Average 0.898 0.306 0.199 0.988 0.938 0.952 0.965 0.258 0.176 
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Fig. 2. Standardised regression coefficients from SEM models where abilities were predicted by a set of explanatory variables.  

Note: SMINS - science learning time; MMINS - mathematics learning time; LMINS - language learning time; FEMALE – effect for females (boys as reference); ESCS - 
PISA measure of socioeconomic status. 

is assumed that the reading factor in the S1 bifactor model incorporates general cognitive ability. 

The bifactor general ability model provides most plausible explana- tion for these associations. The estimates are 

much the same for the three domains because they are proxy measures of cognitive ability. ESCS is associated with 

general cognitive ability because parents' socioeconomic attainments are associated with their general ability which is 

trans- mitted to their children. 

The estimates from the analyses of learning time do not conform to theoretical expectations. Learning time in the 

test-language lessons has mostly negative relationships with the reading factor in the multi- dimensional and reading 

bifactor models. In the bifactor model, its effects are generally positive but very small. Contrary to expectations, in the 

three dimensional and the S-1 reading models, learning time in 
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science is more strongly associated with reading than learning time in the language-of-test. In the bifactor model, 

learning time in science has no relationship with reading. 

In most countries, learning time in mathematics is only very weakly associated with the mathematics factors 

according to all three models. The average effect for learning time in mathematics with the mathematics factor is 

close to zero. Similarly learning time in science is weakly associated with the science factor. Learning time for science 

has similar effects for science and mathematics factors. 

The lack of correspond between learning time in a domain and the respective may be because learning time is a 

poor measure of students' knowledge and skills. In addition, learning time may have non-linear relationships with 

student performance, both high and low performers have more learning time but for different reasons. 

5. Conclusions and discussion 

 

This study compared the standard multidimensional model typically used in ILSAs studies, with the bifactor 

model specifying a general ability factor, and the S-1 reading bifactor model where the general factor is reading 

rather than general ability. The data analysed were students' responses to the 2018 PISA instruments tests in 33 

OECD countries. Model fits were appropriately compared by the Akaike in- formation criterion which adjusts for 

the number of free parameters. For the multidimensional model, the extent that the three dimensions exhibited 

discriminant validity was assessed by the correlations of the three factors. The explanatory power and reliabilities 

of the latent factors isolated from the two bifactor models were assessed by a range of bifactor indices. Finally, 

gender and socioeconomic differences in the latent factors isolated from the models were compared as well the 

impact of learning time. 

The overall conclusion of this study is that the bifactor model incorporating a general ability factor yields 

the best representation of students' responses in the PISA 2018 test. Education specialists might refer to this factor 

as general academic ability whereas psychologists might refer to this factor as intelligence. Our work simply 

allows us to identify a general factor that explains, to a large extent, individual variations in achievement tasks 

in different domains but, in the absence of a pre-defined framework incorporating such construct, does not allow us to 

define it. The interpretation of this common factor differs depending on the level at which it is considered. At the 

individual level, this general factor reflects personal experiences and innate potential. At the population level it 

reflects the cumulate effects of the social and economic context children encounter as well as the overall quality of 

the education systems in which they grow and develop. The bifactor model. Considerably outperforms the multi-

dimensional model. In most countries considered, the differences in the AIC fit index are very large. The bifactor 

general ability model also exhibits superior fit indices to the bifactor reading model indicating that the superior fit is 

substantively important and is not a statistical artefact. These results were consistent across the 33 countries. The 

symmetrical bifactor general ability model shows that 80%, or more, of the common variance in student responses to 

the PISA 2018 instruments is accounted for by a general ability factor. This percentage is remarkably consistent 

across countries. Only the mathematics factor makes a non-trivial contribution to the explained variance, beyond 

that of the general cognitive ability. On average, 27% of variance in the mathematics items is independent of the 

general factor and can be attributed to a specific mathematics ability factor. The respective estimates for reading 

and science are 12% and 17%. How- ever, the reliabilities of the mathematics factor (when considering g) are 
too low to generate interpretable mathematics scale scores. 

Results indicating that the relationship between learning time and abilities measures derived using the bifactor 

models are weak could be an indication that the currently PISA test instruments may not contain enough information 

to measure specific educational abilities. One would in fact expect learning time in a specific subject, for example 

mathematics, to be associated with how well a student achieves in mathematics, net of general and other abilities. At 

the same time, although at the theoretical level the relationship between domain specific abilities and learning time 

should reveal meaningful associations, it might be difficult to observe such associations empirically. Factors such as 

varying quality of teachers' instructional practices, differences in the organisation of the curriculum, in the timetable 

and the school year, and students' motivation to learn could all mean that the intended time devoted to learning is not 

effectively translated in effective time used to learn (Scheerens & Hendriks, 2014). Moreover, even countries' level of 

economic development can mediate or condition how effectively learning time translates into the acquisition of 



  

1
7 

 

 

domain specific abilities (Baker et al., 2004). Future studies could try to overcome these short- comings by linking the 

PISA specific-domain factors to external measures of student performance (grades, marks, test scores) in the 

respective subject areas to establish differential predictive validity. In fact, this would be an important extension 

to our study. 

This work suggests that the relationships between PISA scores generated from the multidimensional model with 

explanatory variables such as gender and socio-economic status reflect to a large extent gen- eral ability rather than 

domain specific abilities. In light of this work, analysts should be mindful about the possible contamination of the 

specific domains with general ability when considering relationships between PISA test scores referring to specific 

domains and socioeconomic, demographic, school, and teacher variables. 

PISA is complex, ambitious and innovative assessment that, over the years, has evolved greatly to reflect advances 

in assessment methodologies, analytical techniques, administration possibilities, and computing power. Research and 

development is a key component of the PISA programme and investments in research and development have allowed 

PISA to evolve and experiment over the years. Examples include the rotation of background questionnaire materials in 

PISA 2012, the shift to computer-based administration from 2015, the use of adaptive testing since 2018. While 

several innovations have been incorporated in successive editions of PISA, thus far, item development and selection 

in PISA have not considered theoretical models that reflect the relevance of general ability and domain specific abilities 

and, as such, the domain specific factors estimated with the bifactor model have low reliability. 

Our work suggests that analyses conducted ex post can identify problems and inconsistencies in estimates when 

different scaling models are used. At the same time, analyses conducted ex post cannot alter the nature of the data. By 

contrast, alternative measurement frameworks could allow to better characterise the respective roles of general and 

specific abilities and to guide policy. On top of the core domains of reading, mathematics and science, since 2012, 

PISA has pioneered the development of new assessment domains. These include domain general problem solving and 

financial literacy in PISA 2012, collaborative problem solving in PISA 2015, global competence in PISA 2018 and 

creativity in PISA 2022. Our work, indicating the importance of considering the role of general ability in determining 

students' results on the PISA test appears to be even more critical given these developments in the nature of the PISA 

test. In response to our work, investments in the development of assessment frameworks that reflect a theoretical model 

that incorporates the role of general ability should be considered. Such a framework could then guide the development 

of assessment items that allow to measure domain specific abilities after considering the role of general ability with 

greater reliability and possibly derive sounder pol- icy implications. The bifactor model should be incorporated into 

both item selection and analysis of LSAs. Such an approach would allow re- searchers to disentangle general abilities 

from subject specific abilities and enable the testing hypotheses of influences on specific abilities. 
The results reported in this work do not advocate for a generalised 

endorsement of one model across all large-scale assessments but, rather, that when developing assessments, careful 

consideration should be given to the potential role of general ability and that appropriate items should be selected to 

account for the role of general ability in shaping test results. The aim of such exercise would be to ensure that 

domain- specific abilities that assessments intend to measure can be effectively measured, given the instruments 

being developed and fielded. In other words, it is recognised that the importance of general ability may and should 

vary across ILSAs. In assessments such as TIMSS where students are asked to demonstrate their ability to apply their 

skills learnt at school to specific problems, general ability should be less important than in problem-based assessments 

such as PISA. Correctly answering questions on trigonometry, solving quadratic equations, calculus, physics and 

chemistry, requires using specific skills learnt at school taught by mathematics or science teachers rather than general 

ability throughout one. 

Proponents of the bifactor S-1 reading model stress that this model is easier to interpret than the bifactor model since 

the general factor in the S-1 reading model is defined by the omitted (reference) factor (Eid et al., 2018). However, the 

S-1 reading model may be an example of the naming fallacy (Kline, 2016). It cannot be assumed that the name of 

factor defines what it actually is. A more accurate designation would be the general ability-plus-reading factor model, 

since the model combines general cognitive ability with reading, which accounts for its very high reliabilities. As 

mentioned above, the general ability-plus-reading factor model fits the data less well than the symmetrical bifactor in 

all 33 countries examined. 
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The five research literatures discussed in the introduction are a reminder for researchers and education policy 

makers that the empirical findings presented in this work are not merely a statistical exercise but, rather, support prior 

theoretical work on the importance of general ability for student performance in ILSAs and other achievement tests. In 

the past, social science research in general, and education policy research in particular, may have neglected the 

importance of general ability in explaining student outcomes because of the widespread - yet wrong notion - that 

recognising and emphasising the role of differences in general ability would weaken policy commitments to ensure 

social justice and equality in and through education. Despite considerable in- vestments, educational outcomes remain 

highly unequal throughout the world. Ignoring the role of general ability in shaping the variation in student outcomes 

will not help create a fair society, because it will not contribute to derive sound policy implications and the best 

evidence- based policy interventions. 
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