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Abstract 

Background: Influenza causes substantial morbidity and mortality.  Novel strains from 

animals can infect humans, but such transmission is poorly understood.  Serosurveillance 

estimates levels of influenza population immunity and infection but obtaining 

representative sera is challenging. Health-related quality of life (HRQoL) and absenteeism 

inform cost-effectiveness models of influenza interventions but these parameters are poorly 

understood.  The National Pandemic Flu Service (NPFS) aimed to treat community cases.  

Little is known about the scheme’s coverage or effectiveness. 

Objectives: 1) Investigate whether occupational exposure to pigs increases risk of 

seasonal, pandemic and zoonotic influenza infection. 2) Describe population-level patterns 

of influenza infection and immunity in England during 2012/13. 3) Quantify work and 

school absences and HRQoL from community influenza illnesses. 4) Evaluate the success 

of the NPFS and propose algorithm changes to improve antiviral targeting. 

Methods: Flu Watch is a prospective community cohort of influenza and included 

recruitment of pig workers during the 2009 pandemic.   The Pandemic Immunity and 

Population Spread study (PIPS) is a novel, population-level, cross-sectional, pandemic 

serosurveillance system utilizing the Health Survey for England. 

Results: Pig workers had increased odds of seropositivity to seasonal, pandemic, and 

zoonotic influenza compared to the general population.  A(H1N1)pdm09 and A(H3N2) 

infected 40% and 25% of the population in 2012/13.  HRQoL loss and absenteeism is low 

for individual community-level influenza cases. NPFS consultation was low and the case 

definition specificity was 51%. 

Conclusions: Influenza spreads readily from pigs to pig workers, posing risks for novel 

virus emergence and pandemics. Representative, population-level serology show that, 

before COVID-19, a large proportion of the population was infected each winter. Most 

community influenza cases take little time off work and school and this has implications 

for transmission. The coverage and impact of NPFS was low.  Community-based surveys 

are needed to inform the control of seasonal and pandemic respiratory infections.    

  



 

 3 

Impact Statement 

My PhD research has impacted UK pandemic influenza response and planning 

assumptions, the UK response to COVID-19 and the WHO’s COVID adaptations to its 

sentinel influenza surveillance case definition.   

During my work on the National Pandemic Flu Service (NPFS), I recommended changes 

that were subsequently incorporated into the underlying algorithm related to the use of 

clinical case definitions to determine antiviral prescriptions.  My research on absenteeism 

due to community influenza infection was requested by and informed the review of the UK 

government’s planning assumptions relevant to workforce absenteeism during an influenza 

pandemic.   

The STATA scripts to generate and analyse daily data on Flu Watch illnesses that I 

developed became instrumental in some of my early COVID-19 rapid response work.  My 

and my colleagues’ work more generally on the Flu Watch study and the subsequent spin-

off study which I led (Bug Watch) were also critical to the development of our current 

Virus Watch community cohort study of SARS-CoV-2 infection and illnesses.   

My supervisor and I built on my NPFS case definition work and used my illness dataset to 

compare non-COVID illnesses from Flu Watch with the earliest known UK cases of 

COVID-19 from PHE’s First Few Hundred Study.  We rapidly developed a symptomatic 

case definition for suspected COVID-19 infection for the purposes of community contact 

tracing.  This work was presented to the New and Emerging Respiratory Virus Threats 

Advisory Group (NERVTAG), the UK Government’s Scientific Advisory Group for 

Emergencies (SAGE) and the UK Senior Clinicians Group which consists of the Chief 

Medical Officers (CMOs) and deputy CMOs from the four nations.  The work was 

influential in shaping the case definition used for the UK Test, Trace and Isolate (TTI) 

system.   I later expanded on this work as part of a PHE roundtable on the potential updating 

of the TTI case definition.  This entailed the evaluation and comparison of the performance 

of various case definitions using data from four major UK community studies (ONS 

infection survey, Zoe App and REACT).  I conducted and presented the Virus Watch 

estimates at the PHE roundtable, contributed to the harmonization of estimates from the 

four studies and then led the comparison of estimates that were presented to the UK Chief 
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Medical Officers.  In related work, I also evaluated the performance of various case 

definitions for identification of Influenza and COVID-19 to inform WHO’s e-Consultation 

to Adapt Influenza Sentinel Surveillance Systems for Including COVID-19 and their 

subsequent case definition recommendations.  

Another example of COVID-related impact was the direct and rapid adaptation of my Flu 

Watch protocols, STATA scripts and analytical frameworks which generated and analysed 

Flu Watch illness data.  Building on this work I converted Virus Watch follow-up data 

rapidly into the core illness dataset which has since fed into a number of influential 

analyses.  I conducted rapid and regularly updated analyses of the symptom profiles and 

case definition performance for COVID-19 and non-COVID-19 illnesses and compared 

illnesses caused by Wild-type SARS-CoV-2 and the Alpha and Delta variants of concern 

when they began circulating in the UK.  My findings were presented to NERVTAG and 

SAGE, were incorporated into an official NERVTAG report on the severity of the B.1.1.7 

strain. 

My work developing methodologies of conducting representative population-based 

community studies of serology through PIPS as part of the NIHR pandemic preparedness 

portfolio highlighted the need for large scale population studies that were subsequently 

commissioned through the COVID-19 Infection Survey and the REACT studies.  The UK 

Health Security Agency took over the PIPS study after it went untriggered during the 

COVID-19 pandemic and now may be a good time to restart it given concerns over waning 

influenza immunity in the community after unprecedently low levels of influenza during 

the COVID-19 pandemic.   

  



 

 5 

Contribution/Attribution 

This PhD thesis presents work I have conducted on two epidemiological studies, The Flu 

Watch Study and the PIPS study.  I began working as a statistical epidemiologist on the Flu 

Watch study in November 2008, at the start of its third year.  In the first six months of my 

role, I led the data management of the study and began conducting preliminary statistical 

analyses. My main contribution was the design of data management protocols and 

automated scripts that combined and processed Flu Watch data from multiple sources and 

formats, into final topic-specific and analysis-specific datasets.   

When the 2009 influenza pandemic arose, the study was extended and expanded from one 

cohort of approximately 650 participants to three separate cohorts (with differing follow-

up) which aimed to recruit a total of 10,000 participants.  To cope with the dramatic 

increase in participant numbers, the study surveys needed to move from nurse-assisted 

interviews (a rate-limiting step in terms of time and cost) to primarily self-completed online 

surveys.  I led this transition, working in collaboration with AMT, the company that built 

the Flu Watch website and web-based surveys.  Recognising the problems of the current 

data collection methods and the additional issues that would arise with multiple cohorts 

going forward, I adapted the surveys and data collection methods to be as simple, efficient 

and comparable as possible in the new online system.  I extensively tested surveys and the 

subsequent data downloads during the system development. In addition to leading the move 

to online data collection, I continued to lead the study’s overall data management and the 

production of final topic-specific and analysis-specific datasets.  I also contributed to new 

survey questions including the addition of the Quality of Life questions in the final year of 

the study which I have analysed as part of this PhD.  I contributed to the development of 

the overarching analytical strategies for the Flu Watch study.  I led the Flu Watch analyses 

presented in this thesis, some of which are already published. I also contributed to other 

Flu Watch analyses and publications either used as background in this thesis or not included 

at all.     

My work on the PIPS study began in 2011 when I co-designed the project with my 

supervisor for a grant application.  I later led the revision of the grant application to respond 

to funder requests and led the study once it was funded.  I was the project manager, data 

manager and statistician.  The study had four phases:  Phase one was a data analysis from 
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HSE 2010; phase two was the pre-pandemic research phase from HSE 2012/13 data and 

specimens; phase three was the hibernation phase where the study awaits re-activation; 

phase four was a reactivation of the phase two research in the event of a pandemic.  In the 

summer of 2018, during the hibernation phase, I led the week-long mock re-activation of 

the study. Although we knew this exercise would take place, we did not know the exact 

dates of the exercise.  I contributed to the evolution of study design for the hibernation and 

pandemic phase (phases 3 and 4) by suggesting data items and analyses that could be 

dropped and some that could be added.  I conducted and published the phase one analysis, 

part of which is presented in the thesis.  The serology data from phase two were not 

finalised before I went on maternity leave in September 2015.  Before I went on leave, I 

contributed to the development of the analytical plans and developed “do files” in 

preparation for the serological analysis.  Ruth Blackburn, my maternity leave cover, in 

conjunction with my supervisor conducted the initial analysis.  They also wrote a 33-page 

report to the funder outlining the results of the phase two.  When I returned from maternity 

leave, I conducted additional literature review on the topic, added additional 

methodological explanation and discussion points and rewrote their analysis in the format 

of a journal article which I present in this thesis.   

I led (and unless otherwise stated) conducted all the analyses in this thesis, and I did so in 

consultation with my PhD supervisor and wider co-authors.  In this PhD thesis I have 

included work which I have done in collaboration with others.  In chapter 7.1, I include a 

piece of modelling work that I co-designed to complement my analysis of quality of life 

lost and absenteeism, which was executed by a modelling colleague.  In order to attribute 

the work accordingly, prior to each section of primary research, I present a description of 

the work undertaken and what my specific contributions were. 

Just prior to the completion of this thesis in late 2019, the SARS-CoV-2 virus emerged in 

China and shortly afterwards initiated the first severe pandemic since the 1918 Spanish flu.  

As a result, I put all work on this thesis on hold until 2021 as I pivoted my work to respond 

to the COVID-19 pandemic.  As the PhD thesis was largely written before the current 

pandemic – I have kept the scope of the thesis on influenza.   However, because so much 

of my work is applicable to the COVID-19 pandemic and because my research group and 

I built on this work in our subsequent COVID-19 research, I have included brief sections, 
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usually at the end of chapters, to discuss how the work presented in the thesis relates to 

COVID-19. 
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 Background 

1.1 Influenza overview 

Influenza is a common, highly contagious acute respiratory virus which infects all age 

groups, causing a range of outcomes from asymptomatic infection and mild respiratory 

disease to severe respiratory disease and death 1.   Annually, it is estimated to cause 3 to 5 

million severe cases and between 250,000 and 500,000 deaths globally 2. 

 Virology and Immunology 

 Virus 

Influenza viruses are single-stranded, negative-sense RNA viruses belonging to the 

Orthomyxoviridae family 3.  They are divided into four genera: influenzavirus A, B, C and 

D 4.  Influenza A viruses infect multiple species including humans, are associated with 

regular epidemics and are the only influenza genus that causes pandemics 1,3,5.  Their 

natural reservoir is thought to be aquatic birds although other reservoirs may exist 6.  

Influenza B viruses also cause regular epidemics but do not cause pandemics and generally 

do not infect other species although there have been reported infections in seals 3,5.  

Influenza C viruses are one of the many viruses causing the ‘common cold’ and can infect 

pigs and dogs7.  The newly discovered influenza D virus has a primary reservoir in cattle 

but can spill over and infect swine and other mammalian species including potentially 

humans 3,8,9.  Influenza A in humans is the focus of this thesis given its severity and 

pandemic potential.   

Influenza A viruses are sub-typed on the basis of antigenic and genetic differences in the 

two surface proteins haemagglutinin (HA) and neuraminidase (NA) 1.  As of early 2019 

there were 18 known HA subtypes (H1-H18) and 11 known NA subtypes (N1-N11) 10,11.   

In the last century HA subtypes H1, H2 and H3 and NA subtypes N1 and N2 have been 

found in seasonal and pandemic influenza viruses circulating in humans 1. 

 Immune response 

When exposed to this virus, the body’s adaptive immune system produces an humoral 

(antibody) response targeting the HA and NA viral proteins in an effort to neutralise the 

infection3.  At the same time it also generates an immunological memory, facilitating a 
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more rapid antibody response following re-exposure which protects the individual against 

reinfection3.  Current influenza vaccines use humoral immunity (the priming of rapid 

antibody response) to protect against infection, although live attenuated influenza vaccines 

may additionally provide protection through cellular immunity 12.  

 Antigenic variation 

Influenza A surface proteins exhibit a great deal of antigenic variation, allowing the virus 

to evade the host immune response.  Antigenic variation occurs in two ways.  Influenza 

viral replication is prone to errors resulting in the build-up of mutations over time in a 

process known as antigenic drift 5.  This gradual evolutionary process produces slightly 

different ‘seasonal’ or more accurately ‘interpandemic’ strains circulating each year.  These 

strains give rise to regular seasonal epidemics. Population level antibody immunity to 

recent seasonal strains builds up over time and provides individuals some protection against 

antigenically similar strains.  This build-up, however, exerts an immunological selective 

pressure on the circulating viruses and this gives antigenically ‘drifted’ viruses an 

evolutionary advantage 5. Occasionally, influenza A viruses evolve rapidly through a 

process known as antigenic shift by exchanging genes (a process known as reassortment) 

with an influenza strain or subtype (usually those circulating in animals) that has different 

antigenic properties to the subtypes currently in circulation among humans 5.  This process 

creates an immunologically distinct virus to which the population may have little to no 

antibody immunity.  The virus can cause a pandemic if a large portion of the global 

population is susceptible and the virus is easily spread from person to person 1.   

 Epidemiology 

 Transmission and natural history 

Influenza viruses spread from person to person though contract transmission, droplets and 

aerosols 13.  Influenza infections are often asymptomatic (subclinical) but can lead to acute 

respiratory illness, often with sudden onset, following a 1 to 2 day incubation period.  

Illnesses are usually self-limiting and mild but can be severe 3,5,14,15.  Clinical presentation 

is indistinguishable from many other respiratory viral infections, making it difficult to 

determine aetiology on the basis of symptoms alone 5,16.    
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 Age and risk groups 

Influenza infects all age groups but rates of infection and disease are typically highest in 

children 15.  Age-specific mortality typically follows a ‘U-shaped’ curve with the highest 

mortality rates in the very young and the very old.   Other groups at higher risk of severe 

disease and death include the immunocompromised, pregnant women, and individuals who 

are morbidly obese or have underlying chronic illnesses 5,15,17.   

 Seasonality 

In the temperate zones of the northern and southern hemispheres, influenza causes a single 

seasonal epidemic in winter months.  In contrast, influenza seasonality in the tropics and 

equatorial zones can have multiple annual peaks and is highly variable 18.   

 Prevention and control 

 Pharmaceutical interventions 

There are two types of influenza-specific pharmaceutical interventions to prevent infection 

and/or treat disease: vaccination and antivirals.  Vaccination protects individuals by 

reducing their risk of infection (and thus disease). Antivirals, if given early enough, 

modestly reduce the duration of symptoms and severity of disease 5.  They may also help 

prevent severe outcomes and death even if given later in the course of disease 19,20.  

Antivirals are also used to prevent illness in people recently exposed to influenza 21.  This 

is known as post-exposure prophylaxis (PEP).  Some people with influenza disease go on 

to develop secondary bacterial co-infections which can lead to complications and poorer 

outcomes 11.  Therefore, antibiotic treatment may also be appropriate for some influenza 

cases even though antibiotics do not target influenza per se.    

In addition to the direct benefit antivirals and vaccines in particular confer to individuals 

who receive them, they can also provide indirect benefit to non-vaccinated/treated 

individuals by reducing transmission.  For example, randomised controlled trials provide 

evidence that vaccinating school-aged children reduces influenza in communities, 

vaccinating mothers protects infants and vaccinating health care worker protects nursing 

home residents 22–25.  
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 Non-pharmaceutical interventions 

In addition to vaccines and drugs, there are a number of non-pharmaceutical interventions 

aimed at reducing influenza transmission in the community.  These include travel 

restrictions (advice, screening, restrictions and border closure), personal protective 

measures (i.e. hand hygiene, face masks, self-isolation and quarantine), and social 

distancing measures (school and workplace closures, cancellation of public gatherings and 

working from home) 26. 

 Choice of public health measures 

By far, the most effective public health measure is vaccination and accordingly it is the 

mainstay of seasonal influenza prevention and control.  In a pandemic, vaccination would 

almost certainly be the most effective public health measure but with current technology it 

takes 6 months or so to develop and deploy a pandemic-specific influenza vaccine.  In those 

early months of a pandemic before vaccination begins, the available pharmaceutical and 

non-pharmaceutical interventions would not be expected to stop or prevent spread of 

infection. Recent modelling efforts have, however, suggested that if a number of 

interventions could be effectively applied at the same time, a strategy known as ‘defence 

in depth’, their combined effects could be enough to slow community transmission down, 

thus delaying and flattening the peak of the epidemic 27,28.  This would have two main 

benefits.  Firstly, it would reduce the maximum burden on medical services during the peak 

of the epidemic by distributing cases (and subsequent burden on medical services) over a 

longer period of time.  Secondly, it would ‘buy time’ for the development and distribution 

of pandemic vaccine.   

1.2 Influenza circulation in humans 

Influenza in humans not a new phenomenon, but most of what we know about it comes 

from the last century when modern laboratory techniques have been able to identify 

influenza as the causative agent.  A summary of influenza A subtype circulation in humans 

since the late 1800s is presented in Figure 1-1.   
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Figure 1-1: Timeline of Influenza A subtype circulation in humans since 1889 

 

 

 Pandemic influenza in the late 1800s 

The first well documented pandemic was the so-called ‘Russian Flu’ in 1889-1892 and 

although the pandemic virus was never isolated, there is serological evidence that it was 

caused by an H2 virus 5,29.  There is also historical and serological evidence to suggest that 

there may have been a relatively mild pandemic in 1898-1901, probably caused by an H3 

virus 5,29.   

 1918 Spanish Flu Pandemic (H1N1) 

The 1918 Spanish Flu was most devastating pandemic in modern times and caused an 

estimated 50 million deaths and infected a third of the global population 30.  A unique and 

defining characteristic of the 1918 pandemic was its unusually high mortality in the young 

adult age group which transformed the traditional ‘U-shaped’ mortality by age curve into 

a ‘W-shaped’ curve 31,32.  The virus itself was highly virulent but the high mortality is 

thought to have been primarily driven by the unusually high incidence of secondary 

bacterial pneumonia which, in the pre-antibiotic era, could often lead to death 30,33,34.  The 

pandemic occurred in 3 distinct and rapid waves and lasted approximately a year 35.   

The full legacy of the 1918 H1N1 virus however goes well beyond the pandemic itself and 

some have even described the subsequent century as the ongoing 1918 ‘pandemic era’ 36,37. 
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The 1918 avian-like virus is believed to have been completely novel to humans, a new viral 

introduction rather than a reassortant strain evolved from viruses already circulating in 

humans 35,37.  It completely displaced whatever subtypes were circulating prior to 1918 

(presumably H3 and/or H2 viruses) and has continued to circulate and evolve ever since.  

All major influenza viruses circulating in humans since 1918, and most of the major 

influenza lineages circulating in domestic pigs have been evolutionary descendants of the 

1918 virus 35,37,38.  The H1N1 subtype continued to circulate and evolve through antigenic 

drift until one or more reassortant events led to an antigenic shift to H2N2 in 1957 37.  

 1957 Asian Flu Pandemic (H2N2) 

The 1957 Asian Flu (H2N2) pandemic virus was a descendant of the 1918 H1N1 virus but 

had acquired 3 new avian gene segments through viral reassortment including the H2 HA 

and N2 NA 37.  The antigenic shift to H2N2 precipitated a pandemic which was less severe 

than the 1918 pandemic although it was an estimated 10 times more severe than the recent 

2009 ‘swine flu’ pandemic 39.  Mortality was highest in the very young and very old 5,40.  

Deaths were often due bacterial pneumonia (particularly Staphylococcus aureus) however 

primary influenza viral pneumonia (pneumonia caused by influenza rather than a secondary 

bacterial infection) was also feature of this pandemic and those with underlying chronic 

lung or heart disease and pregnant women in their third trimester appeared to be at greater 

risk 5,40,41. Rates of illness in the elderly were lower than in other age groups, perhaps as a 

result to exposure to previously circulating H2 strains in the late 1800s 5.  Although 

influenza vaccines had been developed in the early 1940s, this was the first time a vaccine 

for a pandemic virus was produced 3.  In the United States 49 million doses had been made 

available by the peak of the pandemic in early November 1957 3,42.  After the pandemic the 

H2N2 subtype continued to circulate and drift until another antigenic shift occurred in 

1968.     

 1968 Hong Kong Flu Pandemic (H3N2) 

The 1968 H3N2 pandemic virus was a descendant of the 1957 H2N2 virus and while it 

retained the N2 NA gene segment it had acquired 2 new avian gene segments including the 

H3 HA gene 37.  The 1968 pandemic was slightly less severe than the 1957 pandemic 3,5.  

Again the elderly were relatively protected, perhaps from previous exposure to an H3 virus 
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in the late 1800s 5,29.  The 1968 pandemic occurred over two years and has been described 

by some as ‘smouldering’ because the most severe wave of disease occurred in the first 

year for the United States followed by a less severe second season, whereas in Europe and 

Asia the opposite occurred 43 .  There is evidence that the delayed mortality in Europe and 

Asia may have been due to high levels of pre-existing immunity to the N2 following a 

particularly severe pre-pandemic H2N2 season compared to North America as well as 

antigenic drift in the N2 gene between the first and second year of circulation 43.    

 1976 Swine Flu Outbreak (H1N1) 

In January 1957 there was an outbreak of influenza at a military training camp at Fort Dix, 

New Jersey, USA 44.   The outbreak lasted less than a month but during that time an 

estimated 230 people became infected resulting in 13 hospitalisations and one death 5,44.  

Initial outbreak investigations yielded H3N2 and an unknown virus, determined later in the 

outbreak to be a swine-origin H1N1 virus 44.  The identification of human-to-human 

transmission of a swine H1N1 virus (a decedent of the 1918 virus) among humans caused 

a great deal of concern that another pandemic was beginning.  This was because it was 

understood at the time that pandemic influenzas viruses were derived from animal influenza 

viruses that had acquired the ability to transmit between humans 3.  Additionally, the 

Haemagglutinin recycling theory (which hypothesised that haemagglutinin subtypes are 

cyclically and sequentially reintroduced back into the population once population-level 

immunity to those haemagglutinin has lowered sufficiently with time) predicted that the 

next pandemic would occur relatively soon and be caused by an H1N1 virus 3,5,29.  As a 

result of these concerns, the United States quickly developed a vaccine and initiated a mass 

vaccination programme in October that year despite not having identified any further cases 

after the outbreak ended 3,5,44.  After vaccinating 43 million people, the programme was 

terminated early when cases of Guillain-Barre syndrome were associated with the vaccine 

5,41,44.  

 1977 Reintroduction of H1N1 

The H1N1 subtype returned to circulation in 1977 and has co-circulated with H3N2 viruses 

until 2009 5.  Due to the high level of genetic similarity between the 1977 H1N1 viruses 

and H1N1 viruses that circulated in the early 1950s, it is generally believed that the 1977 
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re-emergence of H1N1 was not a natural event, but an accidental release from a laboratory 

or a live-vaccine trial escape virus 45,46.  The reintroduction of the virus caused what could 

be considered an age-restricted pandemic among those aged 25 and under, most of whom 

has not been exposed to the H1N1 viruses which disappeared from circulation in 1957 41. 

 1997 and 2003 H5N1 Avian Influenza 

In 1997 Hong Kong experienced an outbreak of H5N1 in poultry at farms and live bird 

markets 47,48.  The strain caused severe disease and death in poultry and was thus classified 

as a highly pathogenic avian influenza virus (HPAIV).  Zoonotic transmission 

(transmission between animals and humans) led to 18 human cases, six of which were fatal 

48.  In response to the outbreak, all poultry in Hong Kong were culled and the live bird trade 

was halted for 7 weeks 48.  When trade in live birds recommenced new policies were 

introduced to lower the risk of H5N1 reintroduction 48.  These efforts appeared to have 

eradicated the virus from Hong Kong but it reappeared in poultry across South-East Asia 

in 2003 with human cases in China and Vietnam 49.  By the end of 2005, there were 148 

laboratory confirmed cases resulting in 79 deaths 50. Infections were caused by exposure to 

animals or contaminated environments (such as live bird markets) and although there were 

a few potential instances of human-to-human transmission, the virus had not evolved the 

capacity for sustained transmission among humans 51.  Nevertheless, there was 

international concern that this novel avian virus would acquire the ability to transmit more 

efficiently among humans and spark a 1918-like pandemic 52.   The increasing number of 

human H5N1 cases coupled with the international outbreak of Severe Acute Respiratory 

Syndrome (SARS) in 2003 prompted national and international organisations and agencies 

to revisit and expand their pandemic planning and preparedness activities 5,53.  Since 2003, 

H5N1 has continued to spread and as of the 27th of September 2017, there were 860 

laboratory-confirmed cases causing 454 deaths in 16 different countries across 3 continents 

50.  Fortunately the virus still has not evolved the ability to transmit efficiently among 

humans 51. 

 2009 H1N1pdm09 (‘Swine Flu’) Pandemic 

In April 2009 the US Centers for Disease Control (CDC) identified a novel H1N1 virus in 

two children in California, a virus which would go on to produce the first influenza 
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pandemic of the twenty-first Century 54,55.  The triple reassortant virus, containing gene 

segments from avian, swine and human influenzas was sufficiently novel that a large 

section of the population was immunologically naïve (i.e. susceptible) to the new strain 56.  

Individuals born before 1957 were less susceptible to the virus as result of their previous 

exposure to, and long-term immunological memory from, previous H1N1 viruses 

circulating between 1918 – 1957 5,56.  In general the pandemic virus was relatively mild 

and had a similar severity to seasonal influenza apart from specific groups, including 

children and pregnant women, which experienced higher mortality than would be expected 

with seasonal influenza 15,57.  Although overall mortality rates were similar to seasonal 

influenza, most deaths occurred in the younger age groups (in contrast to seasonal influenza 

where most deaths occur in the oldest age groups), leading to a substantial number of years 

of life lost 57,58.  The virus replaced the previously circulating H1N1 strain and has 

continued to co-circulate in humans with seasonal H3N2 5,59. 

 Post 2009 Zoonotic Influenza 

In recent years the number of influenza subtypes crossing the species barrier from animals 

into humans has increased 60.  Of the 20 known influenza A reassortant viruses that have 

crossed over from animals into humans since 1918, eight of them  have crossed over since 

the 2009 pandemic, three from swine and six from avian sources 60,61.  None of these newly 

crossed over reassortants have been able to transmit efficiently between humans and most 

only cause sporadic human cases with the exception of two viruses 51,60.    In the US, 

outbreaks of human cases of swine origin H3N2v started to appear in 2011 and have since 

caused 425 cases, 26 hospitalisations and one death 62.   Although infections are usually 

traced back to exposure to pigs, often at agricultural fairs, there have been a few instances 

of probable limited human-to-human transmission 63.  In China, human infections with 

avian H7N9 were first identified in 2013 and since then there have been regular waves of 

cases resulting in 1564 reported cases and at least 612 deaths 51,64,65.  Infections in humans 

are often severe and most can be traced back to exposure to live poultry or contaminated 

environments such as live bird markets 66.   
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1.3 Influenza Severity 

 Iceberg of infection and disease 

International influenza surveillance and research is typically based upon cases seeking 

medical care 67–69. However this focus greatly underestimates the true community burden 

of seasonal (and pandemic) influenza: the majority of cases are mild and self-limiting with 

asymptomatic infections accounting for 25% to 77% of all infections 14,15,70.  The wide 

range of influenza outcomes and how visible those outcomes are to surveillance systems 

and research studies can be conceptualised as an iceberg (Figure 1-2).  The tip of the iceberg 

represents the more severe cases who have contact with medical services and thus lie above 

the water line, ‘visible’ to surveillance systems.  The majority of influenza cases however 

are mild or asymptomatic and do not seek medical attention and are thus underwater and 

‘invisible’ to most surveillance systems and research studies.   

 

The fact that the majority of influenza infections and illnesses are not captured by 

surveillance or research studies is a serious problem.  In order to prepare for and respond 

 

Figure 1-2: Influenza Iceberg of Infection and Disease 
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effectively to a seasonal or pandemic influenza virus, it is essential to have an early (and 

regularly revised) assessment of the virus’s overall severity.  Unfortunately, many of the 

parameters used to assess severity are prone to bias because they are derived from data 

sources that are not representative of the overall population, the overall population of 

infections (regardless of disease status) and/or the overall population of illnesses 

(regardless of how serious they are).  In the next section I will describe the factors affecting 

influenza severity and how it can be assessed, how this information is used for public health 

response, and how the lack of representative, community-level data can bias crucial 

estimates and negatively impact that response. 

 Assessing Severity 

The term ‘severity’ has different meanings in different contexts. In this thesis I will discuss 

severity in terms of ‘clinical severity’ and ‘population-level severity’.  Clinical severity 

refers to how severe the disease is (e.g. the proportion of infected individuals who die).  

Population-level severity refers to the disease burden (i.e. total number of cases) and the 

wider impacts of influenza on a population (e.g. the number of individuals who die, the 

strain on essential services and economic costs).  Population-level severity is influenced by 

the clinical severity of a strain, but it is also influenced by other characteristics of the virus, 

the population and the environment, so a strain that is clinically severe is not necessarily 

severe on a population-level.  For example, A(H5N1) infection is clinically very severe. 

However, as the virus strain cannot easily transmit between people, only sporadic infections 

occur and the total number of deaths on a population-level remains low.  In contrast, 

seasonal A(H1N1) is clinically much less severe than A(H5N1); however, because it infects 

such a large proportion of the population, the total number of deaths is much higher.   

This thesis focuses on assessing population-level severity of influenza viruses that exhibit 

sustained human-to-human transmission.  In contrast, population-level severity 

assessments for zoonotic influenza viruses that do not transmit easily between people are 

usually incorporated into a virus-specific risk assessment.  These risk assessments compare 

the likelihood that a virus will become transmissible between humans against the impact of 

that transmission.  The methodological details of zoonotic influenza risk assessments are 

outside the scope of this thesis.  Figure 1-3  gives an example of recent CDC risk 

assessments of the pandemic potential for zoonotic influenza viruses using their Influenza 

Risk Assessment Tool (IRAT) 71. 
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Figure 1-3:  CDC risk assessments of zoonotic influenza viruses, figure taken from the CDC*71  

 

 

*Materials developed by the CDC.  IRAT material is otherwise available on the agency website for 
no charge (https://www.cdc.gov/flu/pandemic-resources/monitoring/irat-virus-summaries.htm). 
Reference to specific commercial products, manufacturers, companies, or trademarks does not 
constitute its endorsement or recommendation by the U.S. Government, Department of Health and 
Human Services, or Centers for Disease Control and Prevention.   
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 Conceptual frameworks for assessing population-level severity 

The population-level severity of an influenza virus is determined to a large extent by the 

combination of how easily the virus spreads between people (transmissibility) and the 

clinical severity of the virus.  Traditionally, population-level severity of an influenza virus 

has been primarily measured with the overall case fatality risk or ‘CFR’ (proportion of 

cases that die).  Whilst this is an important measure of clinical severity, it is a crude measure 

that does not fully capture the range of severity (such as cases who consult their general 

practitioner or are hospitalised), nor the variation felt within and between populations 72.  

Additionally, it can be challenging to measure, especially during the initial spread of a 

novel virus73.  The over-reliance on the CFR and the challenges in measuring it were 

acutely felt during the 2009 pandemic.  A WHO review on the response to the pandemic 

with respect to the International Health Regulations (IHR), described the “absence of a 

consistent, measurable and understandable depiction of severity of the pandemic” as a 

major problem 74 (p.15).  It recommended that the WHO and member states develop and 

apply measures to assess population-level influenza severity and then apply those measures 

routinely to seasonal influenza.  This would inform the response to current influenza 

activity (seasonal or pandemic) and also put the data into context through comparison with 

historical data from the same system.  Additionally, if the necessary data collection and 

assessments are routine, then they would already be in place when a pandemic arises, 

enabling early estimates of severity 74.   

As a result of this recommendation the WHO developed the Pandemic Influenza Severity 

Assessment (PISA) guidance, which developed a framework for assessing population-level 

severity using three broad indicators: transmission, seriousness of disease (i.e., clinical 

severity), and impact.  Each indicator is assessed using a combination of key parameters.  

These parameters are measured against a series of thresholds (e.g. baseline, low, moderate, 

high, extraordinary) which were set using historical data from the same data collection 

systems 75.  The moving epidemic method (MEM), used by the European Centres for 

Disease Control (ECDC) is one approach for setting thresholds 76.   Figure 1-4, taken from 

Vega et al 77 provides an example of the MEM threshold approach applied to a transmission 

parameter of ILI incidence. 
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Figure 1-4: MEM graph model with epidemic and intensity thresholds, intensity levels, and the 

weekly ILI/ARI rate, taken from Vega et al77 

 

The US CDC developed a similar conceptual framework where the population-level 

severity of an influenza virus is measured using two of the three PISA indicators: clinical 

severity and transmissibility 72.  Similar to the PISA framework, the transmissibility and 

clinical severity indicators are measured using a number of parameters which are measured 

against either an initial assessment scale (low, medium high) or a refined scale once more 

data becomes available (1-5 for transmissibility and 1-7 for clinical severity).  Figure 1-5, 

taken from Reed et al, shows the framework for the refined assessment with examples of 

past influenza seasons and pandemics 72  
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Figure 1-5: CDC Framework for the refined assessment of the effects of an 

influenza pandemic, taken from Reed et al72   

 

Common themes in the PISA and CDC frameworks include identification of overarching 

severity indicators (transmissibility, clinical severity and (for PISA) impact) that are 

measured using multiple parameters, each of which are scaled against historical data to 

provide context.  For the purposes of this discussion, I will focus on the CDC indicators 

(transmissibility and clinical severity) as umbrellas with which to group key parameters 

that drive population-level severity (e.g. disease burden and wider impact) although I will 

include a brief discussion of some of the wider societal and economic impacts.   

 Transmissibility  

The transmissibility indicator describes how easily and quickly a virus is transmitted 

between people in a population.  There are many interacting factors which affect the way 

influenza viruses spread through human populations, but three overarching factors stand 

out in their ability to help us simplify and describe this complex system: the immunity 

profile of a population, the transmissibility of the virus and contact patterns within the 

population.  
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1.3.2.2.1 Immunity profile of population 

The immunity profile of the population is ideally measured by the age-stratified estimates 

of the number and proportion of susceptible individuals, individuals with pre-existing 

immunity (from previous exposure to one or more similar viruses), individuals who have 

been or are currently infected (irrespective of whether they became ill) and when a 

pandemic-vaccine becomes available, individuals with vaccine-derived immunity.     

1.3.2.2.2 Virus transmissibility 

A critical summary parameter of a virus’ ability to transmit between people is known as 

the ‘Basic Reproduction Number’ (R0).  It is the average number of secondary cases arising 

from a primary case in an entirely susceptible population.  If a virus has an R0 greater than 

one it has the ability to spread, but if the R0 is less than one then it will not lead to sustained 

transmission.  As the epidemic moves on and the population is no longer fully susceptible 

this parameter becomes known as simply the ‘Reproduction Number’ (R).   Reproduction 

numbers can be measured using secondary attack rates, the exponential growth rate and by 

averaging transmission chains 78.   An R greater than one indicates the spread of the virus 

is increasing and the epidemic curve is rising whereas an R less than one denotes a slowing 

in the spread and a downward epidemic curve.   

The serial interval is another important parameter which measures the mean time between 

homologous stages of infection in successive cases.  The homologous stages could be the 

moment of infection or symptom onset, but the resulting mean interval would be the same 

regardless.  Modelers sometimes use the term ‘generation interval’ or ‘generation time’ to 

specifically denote mean interval between successive infections.  The serial interval is used 

widely for the purposes of modelling, contract tracing and determination of transmission 

trees. 

The climate, particularly temperature and humidity also affect transmission.  This is one of 

the reasons that seasonal influenza epidemics occur during winter months in non-tropical 

areas.  As a result, a novel virus entering a population just before or during winter months 

is likely to transmit more efficiently than the same virus introduced in the same population 

during summer months. 
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1.3.2.2.3 Contact Patterns 

The third major factor which impacts a virus’ spread through a population is the behaviour 

of the population, particularly the contact patterns among individuals within that 

population.  Influenza is spread via respiratory or close contact and therefore a population’s 

contact patterns will to an extent drive transmission patterns 79–81.   One of the ways contact 

patterns have been measured is through the use of community-level surveys which ask 

participants to record the number, age group, nature and duration of contacts throughout 

the day.  The resulting data can be summarised into a contact matrix which plots the number 

and age group of contacts by participant age group 79.  Measures of contact patterns, 

including the aforementioned contact matrices are used to parameterise influenza 

transmission models 81. 

1.3.2.2.4 Summary measures 

The interplay between population susceptibility, the transmissibility of the virus and the 

contact patterns that facilitate transmission determines to a large extent the transmissibility 

of a virus in a population and more specifically, the timing, scale, speed and geographic 

spread of the epidemic.  Summary transmission measures (disease burden measures) of the 

epidemic include the total numbers and the incidence rates of infection and disease.  These 

could be measured in a variety of settings such as schools, communities and in GP practices.  

The spatial distribution of a virus (both macro and micro scale) is an important parameter 

in its own right but may provide insights into modes and routes of transmission (e.g. public 

transportation routes, building ventilation systems).  These types of summary parameter 

measures can be estimated from surveillance and/or epidemiological studies.  They can also 

be thought of as summary measures of clinical severity and measures of impact in their 

own right. 

 Clinical Severity 

The clinical severity indicator describes the extent to which an infected individual becomes 

ill75. This concept is also referred to as the ‘seriousness of disease’ or the ‘severity of 

infection’75.  Influenza infection has the widest possible spectrum of outcomes ranging 

from no symptoms to death. The clinical severity of an influenza strain is measured by the 

distribution of these outcomes in a population of infections.  Knowledge of the overall 

distribution among all infections is an important summary parameter but equally important 

is how clinical severity varies by subgroup.  The identification of groups at higher risk of 
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severe outcomes compared to the general population (i.e ‘high risk’ or ‘at risk’ groups) is 

of particular importance.  As described previously, clinical severity varies most notably by 

factors related to the virus (e.g. subtype) by host factors (primarily age group, pregnancy, 

and underlying health status) and by environmental factors (e.g. health seeking behaviour, 

access to and availability of health care).   

1.3.2.3.1 Case Fatality risk and similar measures 

A common way to assess clinical severity is to calculate the proportion of cases with a 

specific outcome, usually the more severe outcomes like hospitalisation or death. One of 

the most important and widely used measurements is the case fatality risk (proportion of 

cases who die).  The case fatality risk (CFR) is also referred to as the case fatality rate or 

the case fatality ratio although it is neither a rate nor a ratio.  In its purest form, the CFR 

would define cases (i.e. the denominator) as the total number of infections in the population.  

The underlying number or rate of infections is often unknown, however, so many estimate 

the CFR using alternative denominators that are easier to assess such as laboratory-

confirmed and/or hospitalised cases, which as I will explain later, can be a highly biased 

denominator.  Another important measure of the severity of infection, and one that requires 

infections as the denominator, is the proportion of infections that are asymptomatic.  This 

measure is known as the asymptomatic proportion. 

1.3.2.3.2 Summary measures of clinical severity 

Population-level burden estimates of the severe cases and deaths are common summary 

measures of clinical severity.  Direct measures of influenza hospitalisation and mortality 

(although likely to be underestimates) include the total number and rates of lab-confirmed 

influenza hospitalisations and deaths.  Indirect methods includes statistical modelling of 

influenza-attributable hospitalisation and mortality as well as excess all-cause mortality 

82,83.  Population-level measures of absenteeism and quality of life lost due to influenza 

could also be considered summary measures of clinical severity. 

 Impact  

The impact of an epidemic or pandemic on a population is multidimensional and is 

determined in part by the combination of the transmissibility and severity of the epidemic 

as well as the public and public health response to that epidemic.  Impact can be measured 

in terms the overall number of illnesses and deaths in a population (i.e. disease burden) and 
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the strain on health care systems and health care workers (e.g. increased rates of GP 

consultation, hospitalisation and ICU admissions and resulting bed pressures, and increased 

staff absenteeism due to influenza illness).  The impact of an epidemic can also be measured 

in terms of its wider societal and economic impact.  For example, the public health response 

to an epidemic has direct and indirect costs; public health interventions can cause disruption 

(e.g. school closures); increased absenteeism has productivity and economic costs and, in 

the worse-case scenario, can lead to disruption of critical services and infrastructure.  The 

impact of an epidemic on a population can be modified by implementation of public health 

interventions and by public concern and behaviours such as propensity to consult, uptake 

of vaccination, compliance with interventions, and contact and travel patterns. 

 Putting it all together with dynamic transmission modelling 

An increasingly common and important method of combining many of the parameters 

described above in order to estimate past, current and to some extent, forecast the future 

trajectory of an epidemic is through the use of dynamic transmission models.  The basic 

forms of these models are built using a few key transmission parameters (immunity profile 

of the population, R0, serial interval and contact patterns).  Measures of clinical severity 

can be incorporated into these models, enabling estimates of the scale and timing of specific 

types of outcomes such as GP consultations, hospitalisations and deaths.  This can inform 

planning and allocation of public health resources.  These basic transmission models can 

also be modified to investigate the potential effectiveness and cost-effectiveness of public 

health interventions such as vaccination and the use of layered non-pharmaceutical 

interventions. 

 Severity assessments and public health response 

Ideally, Population-level severity assessments should inform, either on their own or in 

combination with modelling, decisions around the initiation, implementation, targeting and 

scaling and communication of public health actions in a way that balances the effectiveness 

of those actions with economic and societal costs as well as political considerations.  

Good examples of how severity assessments can inform public health response comes from 

seasonal and pandemic influenza vaccination.  For seasonal influenza, modellers have used 

severity assessments (in particular assessments of transmissibility and clinical severity by 

age group) along with economic costings to develop novel vaccination strategies.  One such 
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strategy, recently implemented in some countries including the UK, is universal childhood 

vaccination84–86.  These programmes are based on the theory that by routinely vaccinating 

children (who have high rates of infection and are thought to be the primary drivers of 

transmission in the community) you not only provide direct benefits to the vaccinated 

children but also indirect benefits to the wider community through reduced transmission 

from children 87–90.  This in turn results in fewer hospitalisations and deaths in the older age 

groups who not only at higher risk of severe outcomes but are also harder to protect through 

vaccination given the low vaccine efficacy in those age groups.    Severity assessments 

were also used to inform the purchase of pandemic influenza vaccine in 2009.  In the 

following section I will describe the main severity assessments used in the run up to the 

UK’s vaccine purchase decisions and how the lack of community data biased these 

assessments.  

 Clinical severity during the 2009 pandemic 

During the 2009 pandemic, early measures of clinical severity were worryingly high.  As 

the number of underlying infections or symptomatic illnesses was unknown, severity 

measures typically relied on hospitalised laboratory confirmed cases as a denominator to 

estimate risk of various outcomes such as critical illness, intensive care unit (ICU) 

admission and death 91.  According to data that the UK government had access to on 27 

April 2009 (a mere 4 days after outbreaks in Mexico had been identified), the case count 

in Mexico was 878 of which 149 had died (although only 18 deaths were confirmed as 

H1N1 at this point).  This leads to a rough CFR estimate of 17% among cases identified 

primarily in hospital 91,92.  Two days later, on 29 April 2009, the UK announced it would 

enlarge its stockpile of antiviral doses from 35.5 million to 50 million and a day after that 

the US followed suit with the purchase of an additional 13 million to add to its already 73 

million dose stockpile 92,93.  In the following days, as more was learned about the virus and 

updates from outbreaks in Mexico and the US became available, it was becoming clearer 

that 1) severity assessments from outside of Mexico were lower than initial estimates from 

Mexico (where case finding was focused on people seeking hospital care) and 2)  

epidemiological and laboratory data suggested that the virus was not as severe as 1918-like 

virus but the population-level severity could be worse than the 1957 and 1968 pandemics 

91–95.  The virus began circulating in the UK in early May and on 11 May 2009 the UK 

government triggered its advance-purchase agreements for pandemic vaccine, buying 

enough to cover 45% of the UK population 92.  



 

 35 

A 2013 systematic review of CFR estimates from the 2009 pandemic demonstrated a 

number of important observations surrounding these calculations 73.  They found a great 

deal of variation in estimates, a large part of which was due to the choice of denominators 

and numerators.  CFR estimates that had been based on laboratory-confirmed cases were 

more severe (and available earlier) than estimates based on different denominators, with 

most CFR estimates falling between 0.1% to 5%.  CFRs based on symptomatic cases 

typically had a CFR between 0.005% and 0.05% and those based on estimated numbers of 

infections (generally published much later) were even smaller with most CFRs falling 

between 0.001% and 0.01%.  Choice of numerators was also important.  Most estimates 

were based on laboratory confirmed deaths, despite the fact that many pandemic deaths 

would not have been laboratory-confirmed.  The studies that used excess deaths as a 

numerator generated more severe estimates. Additionally, the choice of laboratory-

confirmed denominators made them not directly comparable to seasonal influenza 

mortality estimates as these are typically calculated using excess mortality methods in an 

effort to estimate total influenza mortality, not just the proportion that are laboratory 

confirmed 73.   

The situation described above highlights two major issues that affect the accuracy of 

population-level severity assessments and how impactful those assessments are in terms of 

informing policy decisions.   Those issues are 1) the choice of numerators and denominators 

and 2) the timeliness of the severity assessments. 

1.3.3.1.1 Choice of numerators and denominators 

Firstly, estimates using different combinations of denominators (lab-confirmed cases, 

symptomatic case definition or infections) and numerators (lab-confirmed deaths, excess 

deaths, etc) are calculating different quantities and are not directly comparable.  Secondly, 

even estimates using the same denominator and numerator combination may not be directly 

comparable.  A case fatality estimate using the total number of infections as the 

denominator would provide the most direct and unbiased way of comparing severity of 

infection within and between populations, influenza seasons and strains 73,96.  Alternate 

denominators such as laboratory confirmed cases or hospitalised cases (i.e. cases that are 

higher up in the clinical iceberg) are less comparable and prone to biases because of  

differences between populations in factors such as how these cases are identified, health 

seeking behaviours, symptomatic case definitions, laboratory testing regimes and health 
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service capacity 73.   Unfortunately, in 2009 many important public health decisions such 

as the initial purchase of antivirals and vaccine were made at a time when the available 

estimates were based on cases and deaths primarily identified in hospitals.  This leads to 

the second cross-cutting theme:  timelines of public health actions and severity 

assessments. 

1.3.3.1.2 Timelines of public health actions and severity assessments 

The timelines for some public health decisions and robust severity estimates are not always 

aligned.  For example, the long lead in times for pandemic influenza vaccine production 

and the potential for international competition over a limited supply of vaccines and 

antivirals can force early decisions on the purchase of these products based on incomplete 

data.  During the 2009 pandemic, the UK decided within 3 weeks of the novel virus being 

identified to purchase vaccine for 45% of the population and increase the national antiviral 

stockpile by 16.5 million doses 92.  Those decisions were made when the available severity 

assessments were largely based on cases identified in hospitals and thus biased towards 

those with the most severe disease.  The more robust estimates which followed shortly 

thereafter were largely based on laboratory-confirmed cases and although they were 

generally less severe than those first estimates, they were still more severe than later 

estimates which used less bias denominators 73,97.   There are a few reasons why the least 

biased estimates only became available much later.  Firstly, community level data, needed 

for more encompassing denominators (i.e. denominators from lower down the iceberg), is 

not routinely collected and initiating that type of data collection at short notice in the wake 

of the pandemic is challenging and time consuming 98.  Secondly, it takes time to develop 

a serological assay needed to identify underlying influenza infections (regardless of 

symptoms).  Therefore, any estimates with serological infections as the denominator will 

be delayed until an assay is developed and the testing of a large number of samples can be 

completed.   

It is now generally recognised that prior to 2009 pandemic influenza preparedness plans 

were geared toward a severe pandemic and were not suitably flexible to deal with a more 

mild pandemic or to adapt easily as the epidemic progresses and new information is 

available 92.     
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 Clinical severity estimates of less severe outcomes 

Other estimates of severity measuring the less severe spectrum of disease such as the 

proportion of infections with mild disease and the proportion of infections that consult also 

inform public health actions.  For example, the proportion of cases that have only mild 

disease (particularly afebrile cases) will influence how effective some of the non-

pharmaceutical interventions would be at reducing transmission.  For example, border 

screening relying on fever measurements to identify cases will not be effective if most cases 

are mild and do not develop fever.  Similarly, cases that have only mild disease will 

probably not feel ill enough to stay home from work or school. Even if the public health 

advice advocates self-quarantine, these mildly symptomatic individuals are unlikely to 

realise that they are infected and thus unlikely to stay at home.   If a large proportion of 

cases are only mildly symptomatic then self-quarantine advice is unlikely to reduce 

community transmission.  Finally, cases with only mild disease are unlikely to seek medical 

advice.  In such a scenario, even universal treatment of all those with symptoms who seek 

medical care is unlikely to reach most of the cases and thus will have little impact on 

community transmission.   

 Transmission  

Transmission and economic models heavily influence key government decisions on public 

health response such as the purchase, targeting and use of vaccines and antivirals.  These 

models rely on age-specific measurements of susceptibility and immunity which can only 

be reliably obtained from population-level serological studies 99.  Other population-level 

data such as age-specific contact patterns, risk of infection and R0 are used to parameterise 

these models and can have large effects on model output 80,100.   Given the importance and 

potential impact of these models on public health action, it is crucial that accurate, 

population-level estimates are used to parameterise them.  Unfortunately, generating such 

estimates is challenging for both typical surveillance systems and research studies. In the 

absence of reliable population-based estimates models may need to rely on surveillance 

data that do not fully capture the underlying community burden of infection and disease. 

Such models are likely to be biased toward more severe cases and may produce misleading 

results.   
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In the following sections I will describe from where data on the community burden of 

influenza could be derived, identify information gaps, and explain how modern community 

studies can fill this gap. 

1.4 Overview of available data and information gaps 

Community-level data on influenza infection and disease can come from surveillance, 

routinely collected data such as electronic health records and death certificates and from 

research studies.  Section 1.4 will give an overview of the available data, identify 

information gaps and describe how new community-level studies such as those used in this 

thesis are needed to fill those gaps. 

 Influenza Surveillance 

Health surveillance: the ongoing systematic collection, analysis and 

interpretation of data essential for planning, implementing and 

evaluating public health activities” 101 (p.127)     

Influenza surveillance is designed to collect the information necessary to inform public 

health responses to influenza.  It has a number of functions which can be broadly 

characterised into  1) providing an early warning system for influenza activity and novel 

virus variants, 2) generating estimates of the severity and spread of influenza and 

communicating the findings to relevant stakeholders (primarily medical professionals and 

public) and 3) informing prevention, treatment and control activities 5.   

Comprehensive influenza surveillance systems integrate a number of different surveillance 

activities (both epidemiological and virological) as no single activity can provide all the 

necessary data.  Surveillance can be described as active, passive or sentinel.  Influenza 

surveillance differs across countries ranging from no surveillance to sophisticated systems 

like ones that have been developed in the UK.  Data and viral isolates generated from 

national influenza surveillance systems often feed into regional and global surveillance 

systems such as the European Centres for Disease Control (ECDC) and the World Health 

Organization’s Global Influenza Surveillance and Response System (GISRS).  

 



 

 39 

 UK Surveillance systems 

In the UK, influenza surveillance is coordinated and collated by Respiratory Disease 

Department of Public Health England (PHE) and activities can be categorised as clinical 

surveillance, virological surveillance or both. 

1.4.1.1.1 Clinical Surveillance 

1.4.1.1.1.1 Syndromic Surveillance 

In England, there are a number of real-time syndromic surveillance systems which include 

GP consultations (both in hours and out-of hours), emergency department visits and NHS 

111 calls102,103.  These systems monitor various indicators of influenza (i.e. NHS 111 calls 

for cold/flu or GP consultations for ILI)102,103.   

1.4.1.1.1.2 Internet-based Surveillance 

Since the 2009 pandemic the UK has run an internet-based participatory surveillance 

system known as FluSurvey which estimates community-level incidence rates of influenza-

like illnesses104,105.  Currently the system does not collect respiratory specimens to confirm 

the aetiology of reported illnesses.  There is no sampling frame used to recruit participants.  

Instead recruitment is achieved through advertising, media coverage and word-of-mouth. 

Basic demographic, socio-economic, postcode, health, vaccination and risk factor 

information collected from participants enables analysis of ILI incidence and risk factors106.  

Flu survey utilizes the influenzanet surveillance platform which runs in 10 different 

European countries105.  Adaptations of influenza net and similar, but independent systems 

run in a number of other countries around the world.  FluSurvey community ILI rates feed 

into seasonal and (if relevant) pandemic modelling107. 

The UK also recently introduced a web-based syndromic surveillance system based on  

google search queries103.  The system estimates real-time rates of ILI using natural language 

processing and machine learning techniques103,108,109. 

1.4.1.1.1.3 National Pandemic Flu Service 

The UK’s National Pandemic Flu Service (NPFS) is a programme designed to supplement 

GP services during an influenza pandemic.  The service was rolled out during the 2009 

pandemic and remains a component of national pandemic response plans.  The programme 

was comprised of both a phone-based and web-based service that enabled ill individuals to 
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do a self-assessment that would lead, depending on their reported symptoms, to self-care 

advice, an automated antiviral prescription, or referral to other services (e.g. to the GP or 

emergency services)  92,110.  The programme also included a self-swabbing component for 

virological surveillance but limited it to illnesses with met the influenza-like-illness case 

definition use in the NPFS algorithm 110.  In 2009/10 the service helped reduce pressure on 

primary care and enabled timely collection of antivirals 92.    

1.4.1.1.1.4 Primary Care 

In addition to the syndromic surveillance at the GP level described above (also referred to 

as Q-Research), the UK has an additional embedded sentinel surveillance scheme within a 

networks of general practitioners’ (GP) surgeries111.  In England, the scheme is operated 

by the Royal College of General Practitioners (RCGP) which collects consultation data and 

virological specimens from approximately 200 GP practices.  Their weekly returns service 

provides nationally representative ILI consultation rates, using the number registered 

patients in these practices as the denominator103,111. 

The ILI consultation rates are presented using the Moving Epidemic Method (MEM) which 

uses data from the previous 10 years to characterise levels of influenza activity as either 

baseline, low, medium, high and very high 76.  Other data sources and countries using the 

MEM method of reporting and will have their own thresholds for each level due to 

variations in consultation and recording practices.  In the 2017/18 winter season, the RCGP 

rates of ILI consultation (per 100,000 people) were considered to be ‘baseline’ if <13.1, 

‘low’ between 13.1 to 24.1, ‘moderate’ between 24.2 to 68.6, ‘high’ between 68.7 to 108.7 

and ‘very high’ at 108.9 and above 111   

1.4.1.1.1.5 Institutions 

Certain boarding schools send information on student numbers and the number of ILI cases 

to PHE where ILI incidence rates are then calculated.   

PHE also investigates outbreaks of acute respiratory illness in institutions such as schools, 

care homes and hospitals which are reported to them.  If sampling is done then 

microbiological investigations can take place.    
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1.4.1.1.1.6 Secondary Care 

Information on influenza in secondary care is collected through The UK Severe Influenza 

Surveillance Scheme (USISS).  USISS has two components: mandatory and sentinel. The 

mandatory scheme requires all UK hospitals to report laboratory-confirmed influenza cases 

and laboratory-confirmed influenza deaths among patients admitted to intensive care units 

(ICU) and high dependency units (HDU).  The sentinel scheme is comprised of selected 

NHS trusts in England which report all laboratory-confirmed influenza cases admitted to 

hospital (not just those in ICU or HDU). 

The MEM method has recently been applied to both of the USISS data streams to establish 

baseline, low, moderate, high and very high influenza activity levels in hospitals.   

1.4.1.1.1.7 Mortality 

Apart from the USISS scheme described above, the only information on influenza-

associated deaths is from death certificates.  Influenza can lead to death indirectly through 

secondary infections, cardiovascular events and exacerbation of underlying disease.  If 

influenza is not the obvious cause of hospitalisation or death, it is unlikely that the 

individual was tested for it and as a result, influenza is systematically under-reported on 

death certificates.  As a result, the UK estimates influenza-associated deaths indirectly from 

all-cause mortality data.  This is done in collaboration with the European Mortality 

Monitoring Project (EuroMoMo) which collates data from 26 European countries to 

estimate weekly excess mortality (i.e. mortality above the levels expected for a given time 

of year) by age group and country. 

1.4.1.1.2 Virological Surveillance 

Virological surveillance informs and prompts a number of public health actions.  For 

example, in the UK, influenza antiviral prescribing in primary care is only triggered when 

the influenza is confirmed (through virological surveillance) to be circulating in the 

community112.  On a global level, genetic and antigenic data collected in the UK through 

virological surveillance is submitted to the WHO to help guide annual influenza vaccine 

formulation 113.   

The main virological surveillance systems in the UK are described below.  However, one-

off virological surveillance in the community was also conducted as part of the NPFS 
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service during the 2009 pandemic and piloted in the FluSurvey community cohort in the 

2014/15 winter season114,115.  

1.4.1.1.2.1 Primary Care 

In England, Influenza isolates are collected in primary care through two schemes:  The 

RCGP scheme described above in the clinical surveillance section and the Specialist 

Microbiological Network scheme (SMN).  For both schemes, participating GP practices 

obtain clinical specimens from patients presenting with ILI.  These specimens are tested 

for influenza and respiratory syncytial virus (RSV) using reverse-transcription polymerase 

chain reaction (RT-PCR).  The proportion of specimens testing positive for influenza 

provides an estimate of influenza activity.  Similar schemes are run in Scotland, Wales and 

Northern Ireland. 

1.4.1.1.2.2 Respiratory DataMart System 

The Respiratory DataMart System (RDMS) is a virological sentinel surveillance scheme 

run by PHE and the National Health Service (NHS) laboratories in England113,116.  It was 

initiated during the 2009 pandemic to collate influenza RT-PCR testing results (both 

positive and negative) for routinely collected clinical specimens from a network of 

laboratories serving primary and secondary care. In addition to influenza it also collates 

data on other common respiratory viruses including respiratory syncytial virus (RSV), 

human metapneumo virus (hMPV), adenovirus (AdV), parainfluenza virus (PIV), 

rhinovirus (hRhV)116.  The systems runs throughout the year and electronic data (including 

patient’s name, date of birth, sex, specimen date and test results) are transmitted on a 

weekly basis to PHE116.  The proportion of specimens testing positive for each virus 

indicates what viruses are in circulation as well as their seasonality and impact.  The MEM 

method described above has been recently applied to proportion testing positive for the 

2017-18 season.  The baseline threshold was 8.6%103.  A limitation of the DataMart system 

is the lack of clinical data and case definitions.  Additionally, the majority of laboratories 

do not report the source of the sample (primary versus secondary care)116.  In the few 

laboratories that report this information, the majority of the specimens come from 

secondary care116. 
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1.4.1.1.3 Serological Surveillance 

Serological assays can identify infections and baseline immunity to various influenza 

strains.  There is currently no UK-based serological surveillance system for influenza.  

During the 2009 pandemic however, PHE conducted a rapid one-off cross-sectional 

serological study to estimates age-specific prevalence of immunity to and infection with 

the pandemic virus for the purposes of parameterising disease transmission models 56. 

 International Surveillance 

The Global Influenza Surveillance and Response System (GISRS)117 is virological 

surveillance network which monitors the evolution of influenza viruses for the purposes of 

providing recommendations on diagnosis, vaccine composition, antiviral use and risk 

assessments. It also functions as an early warning system for identifying viruses with 

pandemic potential.   

 Electronic Health Records 

Large and representative databases of electronic health records from both primary care 

(CPRD, THIN) and secondary care (hospital episodes statistics – HES) settings in the UK 

are available for analysis.  They have several advantages, particularly representativeness, 

statistical power and information on influenza vaccination and risk factors disease and/or 

complications, in particular pregnancy and various co-morbidities.  The systems however 

were not designed primarily for research and therefore the data contained in these systems 

are not always ideal for answering research questions.  

 Primary Care  

The primary care databases have relevant information on vaccination, consultation, 

diagnosis, testing and treatment as well as patient characteristics such as age, sex and 

chronic illness.   Identifying consultations that either were or may have been attributable to 

influenza is challenging.  Apart from RCGP practices, primary care patients consulting for 

a respiratory illness are rarely tested for respiratory viruses so virological confirmation of 

influenza would be rare.  Identifying consultations meeting a specific symptomatic case 

definition is also difficult as there are many codes used to record respiratory illnesses but 

no systematic collection of individual symptoms with which to verify case definitions.  



 

 44 

Finally, a diagnosis of respiratory illnesses may not even be recorded in the medical records 

at all 15. 

 Hospital Episodes Statistics 

Hospital Episodes Statistics (HES) contains ICD-10 coded information on all hospital 

admissions, A&E attendances and outpatient appointments to NHS hospitals in England.  

Despite the dataset’s completeness on all patients, it does not identify all patients with 

influenza for the same reasons that it is difficult to count influenza deaths in death 

certificates.  Hospitalised influenza patients will be classified by a range of ICD-10 codes 

and most will not have been tested (and thus not recorded) for influenza specifically, 

particularly when their admission is related to secondary infections, cardiovascular events 

or exacerbation of underlying disease118.  As a result of this under-ascertainment, a range 

of modelling and statistical methods have been used to estimate influenza-attributable 

hospitalisation using a combination of HES and non-HES data sources118
. 

 Research Studies 

Surveillance is not the only source of data on influenza burden and specific parameters 

necessary to measure influenza severity.  Research studies on influenza both in the UK and 

worldwide has provided a great deal of information. Below is a description of the various 

study designs that generate relevant data.   

 Household based cohort studies 

Until recently, most of the information on the community burden of influenza was 

generated from household-based cohort studies, primarily in the United States, from the 

1940s through the early 1980s 119.  These studies followed up entire households during 

periods of influenza circulation to prospectively identify episodes of respiratory illnesses, 

collect specimens during those illnesses for virus confirmation and determine infection 

through serological analysis of paired pre- and post-season blood samples.  This study 

design is considered the ‘gold standard’ for measuring community burden for a number of 

reasons.  The active prospective follow-up of households limits recall bias and enables 

accurate incidence rates of community illness to be calculated across age groups.  

Serological analysis allows calculation of the proportion infected each season and the 

proportion of those infections which remain asymptomatic.  By identifying respiratory 
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illnesses regardless of consultation, these studies are not biased towards the more severe, 

medically-attended illnesses.  Additionally, the timing, duration, symptoms and other 

characteristics of these illnesses can be determined and inferences about secondary spread 

of infection within households can be made.     

Although the household-based cohort study design is considered the gold standard, few 

such studies are conducted as they are highly resource intensive.  After the early 1980s it 

wasn’t until the mid-2000s that new household-based cohort studies started.   

 Trials 

An alternative method of collecting comparable data to the household-based community 

cohort study is through the placebo arm of household and/or community randomized 

control trial of influenza interventions such as vaccination.  These studies are even more 

resource intensive and have different aims than a cohort study, but there are examples of 

household and community based trials which have provided information on community 

burden 22,120. 

 Case ascertained studies 

A variation on the household-based community cohort design is the case-ascertained study 

whereby households are enrolled and followed up once an ‘index’ case is identified, 

typically through medical services 121,122.  This design is aimed at estimating within-

household transmission but does not directly measure incidence of infection or disease in 

the community.  It is also possible the secondary cases identified may be biased towards 

more severe disease given that the household index case was severe-enough to consult for 

their illness. 

 Online Cohort 

Another recent variation on the household cohort approach is the online cohort, also 

referred to as participatory surveillance 123–126.  These studies prospectively follow up 

individual participants and sometimes their household members with a baseline survey 

followed by subsequent weekly illness surveys in order to identify episodes of respiratory 

illnesses and potential risk factors.  They aim to generate near real-time estimates of the 

incidence and distribution influenza-like illness (ILI) in the community at high geographic 

resolution, and thus complement traditional surveillance systems.  Some participatory 
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surveillance systems also aim to estimate risk factors of ILI, track vaccine effectiveness 

and assess health-seeking behaviour in the same way as a traditional cohort study 123,124,127.  

These studies have many advantages over traditional surveillance systems and cohort 

studies in that they detect changes in rates of illness more quickly and at greater spatial 

resolution than typical surveillance systems and can flexibly monitor a much larger 

population at far less cost than a traditional cohort study 124,127,128.  One of the main 

limitations of these studies is specificity.  Their lack of specimen collection to confirm 

influenza infection or disease limits their outcomes to all-cause respiratory illness. Other 

limitations include potential participation bias resulting from crowdsourcing participants, 

difficulties in adjusting for confounders and maintaining consistent participation which 

makes it difficult to determine cohort size at any given time and also leads to attrition 128.   

 Serosurveillance 

Serological analysis of single, cross-sectional blood samples cannot confirm recent 

infection that paired blood samples can confirm (except when dealing with novel or 

pandemic strains) but they can provide a snapshot of individuals’ past strain-specific 

influenza exposures and current stain-specific susceptibility/immunity 3.  Population-level, 

cross-sectional serological surveys (serosurveys) typically rely on blood samples taken for 

other purposes such as blood banks or residual samples from clinical investigations 129,130.  

Such samples are more convenient and inexpensive to obtain compared to samples from 

prospective studies, but conversely they can be biased towards individuals that are more or 

less healthy than the general public making them unrepresentative 129,130.  Additionally, 

they often do not have corresponding vaccination data which is needed for interpretation 

of past exposure/infection 129,130.  

 Human Challenge Studies 

Studies in which researchers experimentally infect healthy volunteers with influenza virus 

and then monitor the results of those infections are known as human challenge studies.   

These studies can provide detailed data on the proportion of experimental infections which 

lead to disease as well as the timeline, natural history and severity of infection and disease 

but cannot estimate incidence of influenza infection and disease in the population.  How 

well these artificial infections mimic natural infections can be hard to determine and will 

depend on pathogenicity of the viruses (challenge viruses may be less virulent than 

commonly circulating wild-type viruses), host status (challenge study participants are all 
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healthy and also typically seronegative/susceptible to infection and thus not representative 

of the population) and how well experimental exposure to the virus (droplet/mucus induced 

infections) reflects natural exposure which includes infection acquired through aerosol 

transmission 14,131. 

 Internet and Social Media 

In recent years researchers have developed a number of novel approaches to monitor 

influenza activity in the community using non-traditional data sources such as internet 

search queries, social media and Wikipedia 132,133.  These ‘Big Data’ sources share many 

of the same advantages as participatory surveillance systems such as timeliness, temporal 

and geographical resolution 133.  They also have the added advantage of leveraging existing 

data streams and thus do not need to recruit and follow-up participants.  They have a 

number of important limitations however including lack of specificity (there is no 

biological sampling to confirm influenza infection or disease) and changing user behaviour 

which can distort results 132,133.  Without data on individuals, it is also difficult to investigate 

individual risk factors for illness as would be possible in a cohort study.  Many of the 

advantages and challenges for Big Data surveillance were highlighted by Google Flu 

Trends (GFT) which analysed Google search query data in the United States to estimate 

influenza-like illness (ILI) in the community 134.  GFT was initially quite successful and 

provided estimates of ILI a full week before traditional CDC surveillance could and at a 

finer geographical level 132,134.  However, the original GFT algorithm was found lacking in 

2009 when it missed the first wave of pandemic influenza in the United States.  Later, an 

updated algorithm overestimated the severity of the 2012-13 influenza season.  These 

issues were largely due to changes in internet search behaviour as well as changes in the 

seasonality, age distribution and geographical heterogeneity of seasonal and pandemic 

influenza 132,135.  

In an effort to generate more accurate surveillance of influenza activity and forecasting, 

novel systems have been developed that combine and analyse a combination of data 

streams such as Big Data, participatory surveillance, meteorological data, electronic health 

records and traditional clinical and laboratory based surveillance 132,136–138.  While these 

methods may enable a more robust assessment of influenza-like-illness in the community 

using big data, they do not solve the issue of specificity.  Without laboratory-confirmed 

cases of influenza infection and illness in the community, they are unable to assess 1) the 
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levels of infection and immunity in the community, 2) the levels of influenza illnesses in 

the community (not just all-cause ILI), 3) the individual-level risk factors for infection and 

disease and 4) the symptom profiles and economic impact of influenza illnesses in the 

community.   

 Information Gaps  

Prior to 2006 when the first epidemiological study used in this thesis was initiated, there 

were two major information gaps on the community level.  Firstly, there were few data 

from modern times on underlying influenza infections (both symptomatic and 

asymptomatic) in the community (i.e. regardless of whether or not patients sought medical 

attention). It was not well understood what proportion of the population was susceptible 

each season, what proportion were infected each season and what the risk factors for those 

infections were.  Even after the Flu Watch study shed light on some of these information 

gaps there were still challenges for ongoing collection of similar data, particularly during a 

pandemic, due to the timelines, complexity, and cost of setting up community cohort 

studies and a new need arose to design studies that could be quickly and efficiently initiated 

in a pandemic.  The second major information gap was on community cases of influenza 

illness.  Almost all data on laboratory-confirmed influenza illness came from (and 

continues to come from) cases with more moderate or severe disease who sought medical 

attention.  In 2009 community data on influenza-like-illnesses were obtained from 

FluSurvey but without virological confirmation it was difficult to tease out the effect of 

influenza versus other causes of ILI.  The community-level burden, consultation and 

treatment patterns, and the impact of influenza illnesses were not well understood.  How 

these community influenza cases compared to cases of other acute respiratory viruses was 

also not well understood.  The two studies I used for this PhD (Flu Watch Community 

Cohort study and the Health Survey for England Pandemic Influenza study) were designed 

to answer these questions by collecting prospective, representative, community-level data 

on influenza infection and illness regardless of whether they led to medical consultation. 

1.5 The Research Question 

The aim of this PhD is to inform control of seasonal and pandemic influenza through 

analysis of data from community surveys of influenza immunity, infection, and disease.   
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Specific objectives are to: 

1. Investigate whether occupational exposure to pigs increases risk of 

seasonal, pandemic and zoonotic influenza infection  

2. Describe the population-level patterns of influenza infection and 

immunity in England during the 2012/13 winter season  

3. Quantify the work and school absences and health-related quality of 

life loss due to community influenza illnesses 

4. Evaluate the success of the 2009 National Pandemic Flu Service 

Algorithm against its two primary aims and propose changes to the 

algorithm to better target community-level antiviral treatment 

The four objectives reflect research questions based at different levels (primarily the lower 

levels) of the influenza iceberg of infection and disease.  They can also be viewed as 

representing different chronological points along the pandemic path – beginning with 

sporadic zoonotic infections that can lead to the introduction and spread of a novel infection 

in the community at which point initial assessments of disease severity and impact will be 

made and pharmaceutical interventions will be initiated and then evaluated in hopes to 

improve them for the next pandemic. 

1.6 Thesis structure 

The remainder of this thesis is divided into 7 chapters (2-8).  The next chapter (Chapter 2) 

describes the epidemiological studies that provided the data for this PhD. Chapter 3 

describes the tools needed to measure influenza infection and immunity.  These methods 

are then used in analytical chapters 4 and 5 concerning zoonotic influenza transmission 

(objective 1) and monitoring the spread of influenza during an epidemic or pandemic 

(objective 2) respectively.  Chapter 6 describes the tools needed to measure influenza 

disease which prepare the reader for the two analyses in chapter 7 which focus on assessing 

the severity and impact of influenza disease (objective 3) and on the evaluation of a 

pharmaceutical intervention (objective 4).   Chapter 8 concludes the thesis.  It provides a 

summary of the main findings, outlines the strengths and weaknesses of the research, 

discusses the significance, implications and contributions of the work and provides 
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recommendations for further research and applications. Table 1-1 lists each objective, 

where it can be found in the thesis and the main methodologies used.   
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Table 1-1:  Objectives, their location within the thesis and the main methodologies used 

Thesis 

Chapter 

Objective Methods 

Chapter 4 1. Investigate whether occupational exposure to 

pigs increases risk of seasonal, pandemic, and 

zoonotic influenza infection 

• Serological analysis of a selection of human and swine Influenza A 
viruses in pig industry workers, a sample of pigs those workers were in 
contact with and a general population sample 

• Multivariable logistic regression models for each virus strain to 
estimate the association of occupational exposure to pigs and infection. 
Series of sub-analyses exploring pig farm workers sero-positivity to 
positivity status of their farms pig herd 

Chapter 5  2. Describe the population-level patterns of 

influenza infection and immunity in England 

during the 2012/13 winter season 

• Nationally representative cross-sectional serological surveys of 
currently circulating Influenza A strains in winter of 2012/13. 

• Descriptive analyses of the proportions of individuals with detectable 
and protective levels of antibodies and how they vary by demographics, 
vaccination status, over time and place and by virus strain 

Chapter 7 3. Quantify the work and school absences and 

health-related quality of life loss due to 

community influenza illnesses 

• Descriptive analyses of influenza A and B illness duration, percent of 
illnesses with reported time off work or education and mean time off 

• Mean and median quality-adjusted life days lost during influenza illness 
calculated by illness outcome and stratified by age group and whether 
or not cases were medically attended. 

• Total quality-adjusted life years lost and total number of days off work 
or education due to influenza A and B in England during 2010/11 
influenza season estimated using Monte Carlo samples from the 
distributions of incidence of illness and QALD losses, or days off work, 
as appropriate, for each age-group 
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Chapter 7 4. Evaluate the success of the 2009 National 

Pandemic Flu Service Algorithm against its two 

primary aims and propose changes to the 

algorithm to better target community-level 

antiviral treatment 

• Respiratory illnesses from Flu Watch classified according to the 
national pandemic flu service’s (NPFS) clinical case definition and an 
alternative case definition. 

• Descriptive analyses of the percent of illnesses consulting medical 
services, and the percentage taking antibiotics or antivirals. 

• Subject all respiratory illnesses to the NPFS algorithm using the main 
and alternate case definition to assess performance. 

• Test characteristics (sensitivity and specificity) of clinical case 
definitions calculated among illnesses with PCR results. 
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 Data sources 

The PhD uses data from two main sources: The Flu Watch study and the Health Survey for 

England Pandemic Influenza Study (PIPS study).   The Flu Watch study was a modern 

version of the classic, gold-standard, household-based community cohort study 139,140.  The 

recruitment and follow up of participants was similar to the original community cohort 

studies done in the 1940s – 1970s 140, but the study utilized modern technology to collect 

illness data and modern laboratory methods to explore both humoral and (for the first time) 

cellular immunity on a large, population-based sample.  The study was designed with both 

seasonal and pandemic influenza data collection in mind and the timing was such that it 

collected 5 consecutive years’ worth of data (2006-2011) including pre-pandemic, 

pandemic and post-pandemic periods.  Even though the study was running when the 

pandemic arose, there were substantial delays in the necessary pandemic scale-up because 

of delays in funding and the need to recruit, train and obtain relevant approvals for each 

practice before participants could be recruited.   

The PIPS study was specifically designed to overcome the challenges experienced by the 

Flu Watch study by piggybacking on existing infrastructure provided by the Health Survey 

for England (HSE), an annual, nationally representative, household survey which collects 

health information and blood specimens throughout the year 98.  By adding questions and 

an additional blood sample to the HSE survey, the study established a streamlined system 

of conducting population-level serological surveys.  It also benefits from having a pre-

agreed pandemic reactivation mechanism, ethical approval and budget. 

2.1  The Flu Watch Study 

 Attribution 

The following work has been adapted from my first-author paper published in the 

International Journal of Epidemiology 139.  I wrote the paper with my colleague Dr 

Charlotte Warren-Gash and we did so in consultation with my PhD supervisor (PI of the 

Flu Watch Study) and the wider co-authors.  I conducted the analysis and developed the 

tables and figures presented in section 2.1.     
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The Flu Watch study was a community-level, household-based cohort study of influenza 

infection and disease in England from 2006 to 2011.   

 Participants 

Households were recruited from registers of 146 volunteer general practices (GP) across 

England who formed part of the MRC GPRF or (from the 2009 pandemic onwards) the 

Primary Care Research Network.  Participants were selected from GP lists by computer-

based random number generation.  GPs sent invitation letters inviting the randomly selected 

person and their household to participate.  Although it was recognised that this would bias 

invitations towards larger households, such as those with children, this was accepted as the 

role of children in influenza transmission was an important research question.  Weighting 

by the inverse of household size in analyses was planned to account for this sampling 

design. 

To be eligible to participate, the whole household had to agree to take part in follow-up 

over the coming winter with adults aged ≥16 years agreeing to have blood samples. 

Exclusion criteria included household size >6 people, individuals with terminal illness, 

severe mental illness or incapacity, and heavy involvement in other on-going research.  GPs 

reviewed invitation lists and removed anyone meeting these criteria prior to sending letters.  

Cohorts were recruited to allow follow-up of participants over six influenza seasons – the 

2006/07, 2007/08, 2008/09 periods of seasonal (interpandemic) influenza circulation and 

the first three waves of 2009 pandemic (summer 2009, autumn-winter 2009/10, and winter 

2010/11).  The Winter 2010/11 season could also be considered a return to the 

interpandemic circulation.  From season 3 (2008/09) onwards, previous participants were 

invited to take part again.   

In season 1 invitation letters were sent to 2300 households from 42 practices and 602 

individuals from 243 households agreed to participate.  In subsequent seasons the response 

rate was not monitored as practices (rather than the university study team) sent the 

invitation letters and not all returned data on numbers sent.  Compared to the English 

population, young adults, non-white ethnic groups, people living in socially deprived areas 

and those living in the North of England, West Midlands and London were under-

represented in the Flu Watch cohort, as reported in Table 2-1. 
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Table 2-1: Characteristics of responders by season compared to national averages 

 

Figure adapted from Fragaszy et al, 2016 139. 

 

National

No. GP 

practices/Households

/

Persons

% n % 95% CI n % 95% CI n % 95% CI n % 95% CI n % 95% CI n % 95% CI

Age group          0 to 4 6% 38 6.3 ( 4.5- 8.6) 42 5.4 ( 3.9- 7.2) 37 5.1 ( 3.6- 6.9) 36 4.5 ( 3.2- 6.2) 179 5 ( 4.3- 5.8) 45 5 ( 3.7- 6.6)

5 to 15 11% 87 14.5 (11.7-17.5) 110 14.1 (11.8-16.8) 99 13.6 (11.2-16.3) 109 13.7 (11.4-16.3) 501 14.1 (13.0-15.3) 131 14.5 (12.3-17.0)

16 to 44 42% 151 25.1 (21.7-28.7) 258 33.1 (29.8-36.5) 172 23.6 (20.6-26.8) 192 24.1 (21.2-27.2) 848 23.9 (22.5-25.3) 206 22.9 (20.2-25.7)

45 to 64 25% 203 33.7 (29.9-37.7) 272 34.9 (31.6-38.4) 267 36.6 (33.1-40.2) 293 36.8 (33.4-40.2) 1225 34.5 (32.9-36.1) 344 38.2 (35.0-41.4)

65+ 16% 123 20.4 (17.3-23.9) 97 12.5 (10.2-15.0) 154 21.1 (18.2-24.3) 167 21 (18.2-23.9) 799 22.5 (21.1-23.9) 175 19.4 (16.9-22.2)

Gender                 Male 49% 281 46.7 (42.6-50.8) 366 47 (43.4-50.6) 340 46.6 (43.0-50.3) 377 47.3 (43.8-50.8) 1740 49 (47.3-50.6) 455 50.5 (47.2-53.8)

Female 51% 321 53.3 (49.2-57.4) 413 53 (49.4-56.6) 389 53.4 (49.7-57.0) 420 52.7 (49.2-56.2) 1812 51 (49.4-52.7) 446 49.5 (46.2-52.8)

Region                North 28% 99 16.4 (13.6-19.7) 89 11.4 ( 9.3-13.9) 100 13.7 (11.3-16.4) 106 13.3 (11.0-15.9) 320 9 ( 8.1-10.0) 115 12.8 (10.7-15.1)

West Midlands 11% 42 7 ( 5.1- 9.3) 96 12.3 (10.1-14.8) 46 6.3 ( 4.7- 8.3) 53 6.6 ( 5.0- 8.6) 179 5 ( 4.3- 5.8) 53 5.9 ( 4.4- 7.6)

East & East Midlands 20% 122 20.3 (17.1-23.7) 120 15.4 (12.9-18.1) 124 17 (14.4-19.9) 118 14.8 (12.4-17.5) 1456 41 (39.4-42.6) 321 35.6 (32.5-38.9)

London 15% 28 4.7 ( 3.1- 6.7) 77 9.9 ( 7.9-12.2) 26 3.6 ( 2.3- 5.2) 28 3.5 ( 2.3- 5.0) 270 7.6 ( 6.7- 8.5) 65 7.2 ( 5.6- 9.1)

South East 16% 100 16.6 (13.7-19.8) 117 15 (12.6-17.7) 107 14.7 (12.2-17.5) 155 19.4 (16.8-22.4) 319 9 ( 8.1-10.0) 110 12.2 (10.1-14.5)

South West 10% 211 35 (31.2-39.0) 280 35.9 (32.6-39.4) 326 44.7 (41.1-48.4) 337 42.3 (38.8-45.8) 1008 28.4 (26.9-29.9) 237 26.3 (23.5-29.3)

Vaccine   Vaccinated* -- 115 19.1 (16.0-22.5) 130 16.7 (14.1-19.5) 169 23.2 (20.2-26.4) 0 0 ( 0.0- 0.5) 157 4.4 ( 3.8- 5.1) 186 20.6 (18.0-23.4)

Unvaccinated -- 462 76.7 (73.2-80.1) 632 81.1 (78.2-83.8) 527 72.3 (68.9-75.5) 797 100 (99.5-100.0) 3159 88.9 (87.9-89.9) 715 79.4 (76.6-82.0)

Unknown -- 25 4.2 ( 2.7- 6.1) 17 2.2 ( 1.3- 3.5) 33 4.5 ( 3.1- 6.3) 18 2.3 ( 1.3- 3.5) 236 6.6 ( 5.8- 7.5) 0 0 ( 0.0- 0.4)

IMD quintile* 

          1 (most deprived)
20%

37 6.1 ( 4.4- 8.4) 39 5 ( 3.6- 6.8) 28 3.5 ( 2.3- 5.0) 18 2.3 ( 1.3- 3.6) 98 2.8 ( 2.2- 3.4) 29 3.2 ( 2.2- 4.6)

2 20% 88 14.6 (11.9-17.7) 126 16.2 (13.7-19.0) 91 12.5 (10.2-15.1) 62 7.8 ( 6.0- 9.9) 310 8.7 ( 7.8- 9.7) 82 9.1 ( 7.3-11.2)

3 20% 164 27.2 (23.7-31.0) 235 30.2 (27.0-33.5) 238 32.6 (29.3-36.2) 146 18.3 (15.7-21.2) 915 25.8 (24.3-27.2) 221 24.5 (21.8-27.5)

4 20% 162 26.9 (23.4-30.6) 250 32.1 (28.8-35.5) 187 25.7 (22.5-29.0) 146 18.3 (15.7-21.2) 938 26.4 (25.0-27.9) 280 31.1 (28.1-34.2)

5 (least deprived) 20% 151 25.1 (21.7-28.7) 129 16.6 (14.0-19.4) 185 25.4 (22.3-28.7) 425 53.3 (49.8-56.8) 1291 56.4 (54.3-58.4) 289 32.1 (29.0-35.2)

Ethnicity           White 75% 553 97.9 (96.3-98.9) 733 95.4 (93.7-96.8) 666 99.1 (98.1-99.7) 730 99.1 (98.1-99.6) 3306 97.7 (97.1-98.2) 846 97.8 (96.6-98.7)

Non White 25% 12 2.1 ( 1.1- 3.7) 35 4.6 ( 3.2- 6.3) 6 0.9 ( 0.3- 1.9) 7 0.9 ( 0.4- 1.9) 78 2.3 ( 1.8- 2.9) 19 2.2 ( 1.3- 3.4)

** Index of Multiple Deprivation (IMD)

*Vaccinated for that influenza season (before or during follow-up)

41/332/797 127/1460/3552 51/361/901

Nov 10 - Mar 11Oct 09 - Feb 10May 09 - Sep 09Nov 06 - Mar 07

42/243/602

Nov 07 - Mar 08

43/310/779 37/309/729

Nov 08 - Mar 09
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 The Basic Cohort Design  

 Baseline/pre-season phase 

A baseline visit was made to the household at enrolment, during which a research nurse 

collected blood samples for serological and T cell analysis from all adults 16 years or older.  

Blood sampling was optional for those aged 5-15 years and not done in those under 5 years 

of age.  Visits occurred in the evenings as blood specimens had to be couriered overnight 

to Oxford for early morning analysis of T cells.  The serum samples collected were 

centrifuged, frozen and later batch-tested for influenza antibodies by the HPA.  Nurses 

assisted families with a series of laptop-based surveys collecting information on basic 

demographics, health and chronic illness, respiratory hygiene, household structure and 

relationships, accommodation, contacts and activities.  Households received participant 

packs containing paper illness diaries, thermometers and nasal swab kits including 

instructions on their use and viral transport medium to be stored in the refrigerator.   

 Active Follow-up during influenza season 

In order to obtain reliable measures of the number of illnesses we actively contacted 

participants every week with automated telephone calls to assess the presence or absence 

of respiratory illness in each household member.  For each respiratory illness, participants 

were reminded to fill in a prospective paper illness diary.  These collected the following 

information: illness onset date, temperature, presence and severity of symptoms such as 

feeling feverish, headache, muscle aches, cough and sore throat.  Diaries also collected data 

on contact patterns and activities before and during illness.  Participants took a nasal swab 

on day two of any respiratory illness for RT-PCR analysis of influenza, respiratory 

syncytial virus (RSV), human metapneumovirus (hMPV), rhinovirus, coronavirus, 

adenovirus and parainfluenza virus.  During the first season, swabbing was limited to 

periods of influenza circulation.  The Sanger Institute genetically sequenced some of the 

viral isolates from the summer and winter waves of the pandemic (seasons 4-5).   

In addition, all participants completed one-off activity and contact paper diaries on at least 

one pre-determined weekday and one weekend day during the active follow-up period.   

These diaries collected information on where participants were (i.e. at home, at work, etc.), 

whether they had contact with crowds and the number, duration and age groups of personal 

contacts throughout the day. 
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 Post-season phase 

At the end of follow-up, nurses made a final household visit to take a follow-up blood 

sample (for paired serology) and assist participants with an exit survey.  Nurses also 

checked participants’ medical records for information on chronic illnesses, influenza and 

pneumococcal vaccinations, prescriptions, GP consultations, hospitalisations and deaths. 

 Evolution of data collection 

The cohort evolved over time to maximise system reliability, minimise the number of data 

sources and allow increased recruitment during the pandemic.  In season 3 we offered 

participants the option of moving from paper illness diaries with weekly automated phone 

calls to weekly emailed surveys, with or without optional SMS reminders.  For the 

pandemic and post-pandemic cohort most surveys moved to a custom-built website for self-

completion.   In order to achieve real time monitoring of illnesses during the pandemic, 

participants were emailed a link to a retrospective online weekly survey and provided with 

laminated wipe-clean charts at home to record daily symptoms as a memory aid.  

In season 3 there were additional one-off surveys collecting data on indoor and outdoor 

temperature and humidity, travel patterns and non-response to weekly surveys.  During 

seasons 5 and 6 we added questions to existing surveys on attitudes towards influenza 

vaccination and antivirals. In season 6 we included quality of life questions 141. 

 Evolution of Cohort Design 

The cohort design evolved with the emergence of the novel H1N1 pandemic strain during 

season 3.  We continued active follow-up through the UK summer wave of the pandemic 

(season 4).  For the UK winter wave of the pandemic (season 5) the study split into 3 

separate cohorts:  T cell (comprising both previous and newly recruited participants), 

Serology and Virology (both comprising new participants).  For the T cell cohort 

continuing participants used the spring blood sample from season 3 as a baseline sample. 

They also gave a pre-vaccination blood sample to allow distinction of antibody rises caused 

by infection rather than vaccination.  This was particularly important for the winter wave 

of the pandemic as we anticipated widespread vaccination.  The Serology cohort was 

identical but lacked T cell samples. For the Virology cohort, no blood samples were taken. 

This allowed for rapid recruitment of a large number of participants (n=1,778) to increase 
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the accuracy of weekly estimates of illness rates during the pandemic with minimal nurse 

time required.  While all nasal swabs were tested for Influenza A and B, RSV and hMPV, 

due to the large number of samples generated during the pandemic, only a selection of 

swabs seasons 5 and 6 were tested for other viruses.  

 Loss to follow-up and missing data                                

Retention of enrolled participants throughout the cohorts was good.  Figure 2-1 displays 

the number of enrolled participants each week with arrows pointing out the staggered starts 

and exits of the cohorts along with other important dates.  Loss to follow-up came in two 

main varieties; non-response to weekly contact and loss to follow-up for paired blood 

samples.   

Figure 2-1: Number of enrolled participants, baseline/pre-season bleed periods and different cohorts 

and data collection methods over time. 

 

* T cell cohorts included T cell, serological and virological (RT-PCR) measurements. 

** Serology cohorts included serological and virological (RT-PCR) measurements. 

*** Virology cohort only included virological (RT-PCR) measurements. 

Figure adapted from Fragaszy et al, 2016 139. 
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We obtained weekly responses from 87.3% (95% CI: 86.5% - 88.8%) of follow-up weeks 

overall, which increased to 88.4% if we exclude periods when there were technical 

difficulties with our automated phone calls (one week in season 1 and four weeks in season 

2).  Response completeness generally increased after the introduction of email and online 

surveys in season 4 (Table 2-2). Only 12.4% (95% CI: 11.2% – 13.5%) of households were 

classified as poor responders (responding to <70% of follow up weeks). Poor response 

appeared to be more common as deprivation increased. 

 Data Collected and Outcomes 

The three main clinical outcomes were 1) influenza-like illness (ILI), defined as a 

respiratory illness with cough and/or sore throat and fever >37.8°C, 2) RT-PCR-confirmed 

influenza illness and 3) influenza seroconversion, defined as a four-fold titre rise in strain 

specific antibody titres in unvaccinated individuals.   

Table 2-3 summarises the data and biological samples collected during baseline, active 

follow-up and post-season phases.  We additionally linked participants’ data to small area 

statistics such as the Index of Multiple Deprivation (IMD) and rural/urban indicators 142,143. 

Details of the T cell methodology have been described previously 144–146. 
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Table 2-2: Characteristics of Non-responding Households (≥30% missing weeks) 

 

Figure adapted from Fragaszy et al, 2016 139.  

Total

n % 95% CI n % 95%  CI N

Overall 2640 87.6 (86.5-88.8) 372 12.4 (11.2-13.5) 3012

Season                                 Nov 2006 – Mar 2007 (1) 199 81.9 (77.1-86.7) 44 18.1 (13.3-22.9) 243

Nov 2007 – Mar 2008 (2) 202 65.8 (60.5-71.1) 105 34.2 (28.9-39.5) 307

Nov 2008 – Mar 2009 (3) 287 92.9 (90.0-95.7) 22 7.1 (4.3-10.0) 309

May 2009 – Sep 2010 (4) 246 74.1 (69.4-78.8) 86 25.9 (21.2-30.6) 332

Oct 2009 – Feb 2010 (5) 1370 93.8 (92.6-95.1) 90 6.2 (4.9-7.4) 1460

Nov 2010 – Mar 2011 (6) 336 93.1 (90.5-95.7) 25 6.9 (4.3-9.5) 361

Social Class                      Managerial & Professionals 712 87.6 (85.3-89.8) 101 12.4 (10.2-14.7) 813

Intermediate Occupations 362 87.9 (84.7-91.0) 50 12.1 (9.0-15.3) 412

Small Employers & Own Account Workers 209 85.3 (80.9-89.7) 36 14.7 (10.3-19.1) 245

Lower Supervisory and Technical Occupations 111 84.1 (77.9-90.3) 21 15.9 (9.7-22.1) 132

Semi-routine and Routine Occupations 441 86.5 (83.5-89.4) 69 13.5 (10.6-16.5) 510

Retired 497 94 (91.9-96.0) 32 6 (4.0-8.1) 529

Student 109 84.5 (78.3-90.7) 20 15.5 (9.3-21.7) 129

missing 199 82.2 (77.4-87.0) 43 17.8 (13.0-22.6) 242

IMD quintile                                       1 (most deprived) 85 81 (73.4-88.5) 20 19 (11.5-26.6) 105

2 255 84.7 (80.7-88.8) 46 15.3 (11.2-19.3) 301

3 704 86.9 (84.6-89.2) 106 13.1 (10.8-15.4) 810

4 732 89.6 (87.5-91.7) 85 10.4 (8.3-12.5) 817

5 (least deprived) 864 88.3 (86.2-90.3) 115 11.7 (9.7-13.8) 979

Rural/Urban                                               Urban >10k 1505 86.7 (85.1-88.3) 230 13.3 (11.7-14.9) 1735

Town & Fringe 373 90.3 (87.5-93.2) 40 9.7 (6.8-12.5) 413

Village, Hamlet & Isolated Dwellings 643 89.9 (87.7-92.1) 72 10.1 (7.9-12.3) 715

missing 119 79.9 (73.4-86.3) 30 20.1 (13.7-26.6) 149

Household size                                                             1 354 84.5 (81.0-88.0) 65 15.5 (12.0-19.0) 419

2 1405 89.7 (88.2-91.2) 162 10.3 (8.8-11.8) 1567

3 344 85.1 (81.7-88.6) 60 14.9 (11.4-18.3) 404

4 407 87.3 (84.3-90.4) 59 12.7 (9.6-15.7) 466

5 109 84.5 (78.3-90.7) 20 15.5 (9.3-21.7) 129

6 21 77.8 (62.1-93.5) 6 22.2 (6.5-3.9) 27

Number of Children in the Household                       0 1932 89.1 (87.8-90.4) 236 10.9 (9.6-12.2) 2168

1 247 81.8 (77.4-86.1) 55 18.2 (11.5-18.3) 302

2 360 85.1 (81.7-88.5) 63 14.9 (11.5-18.3) 423

3 83 86.5 (79.6-93.3) 13 13.5 (6.7-20.4) 96

4 18 78.3 (61.4-95.1) 5 21.7 (4.9-38.6) 23

Region                                                                    North 305 87.9 (84.5-91.3) 42 12.1 (8.7-15.5) 347

West Midlands 164 84.1 (79.0-89.2) 31 15.9 (10.8-21.0) 195

East & East Midlands 828 90.5 (88.6-92.4) 87 9.5 (7.6-11.4) 915

London 164 84.5 (79.4-89.6) 30 15.5 (10.4-20.6) 194

South East 314 83.5 (79.8-87.3) 62 16.5 (12.7-20.2) 376

South West 865 87.8 (85.8-89.9) 120 12.2 (10.1-14.2) 985

Household Characteristics

Good Responders 

(<30%  missing wks)
(≥30%  missing wks)



 

 62 

Table 2-3: Questionnaire data and biological samples collected in three data collection periods. 

Phase Data Type Data and Samples 
Season 

1 2 3 4 5 6 

Baseline 

/ 

 Pre-

season 

Self- 

reported 

surveys 

Basic demographic, socioeconomic, health, 

vaccination and potential risk factors for influenza 
X X X X X X 

Quality of life (EQ5D)           X 

Blood 

samples 

H1N1, H3N2 and Flu B Serology* X X X       

H1N1pdm09 Serological Serology*       X X X 

T cell analysis** X X X   X   

Active 

Follow-

up 

Self-

reported 

surveys 

Respiratory illness timing and characteristics (if ill) X X X X X X 

Risk Factors in previous week (if ill) X X X       

Time off work/education (if ill) X X X X     

Health seeking behaviour and medicines taken (if ill)        X X 

Full Contact and activity diaries (if ill)  X X         

Basic contact and activities (if ill)      X     

Influenza vaccination that week       X X X 

Full Contact and activity diaries (one-off survey) X X X X X X 

Indoor/outdoor temperature & humidity (one-off 

surveys) 
X X X       

Detailed travel survey (one off survey)     X       

Self-

administe

red nasal 

swabs 

RT-PCR Influenza A (H1 & H3 subtypes), Influenza B, 

RSV and human metapneumovirus 
X X X X X X 

RT-PCR Influenza A H1N1pdm09      X X X 

RT-PCR Rhinovirus, Coronavirus, Adenovirus and 

Para-influenza virus*** 
X X X X X X 

Selected viral samples genetically sequenced X X X X X X 

Bloods† H1N1pdm09 Serological Serology         X   

Post- 

Season 

Self-

reported 

surveys 

Changed household composition, pregnancy, 

vaccination, hospitalisation, death & flights 
X X X X X X 

illness reporting behavior during follow-up     X   X X 

Attitudes towards vaccination and antivirals         X X 

Medical 

records†† 

chronic illness, vaccination, prescriptions, GP & 

hospital consultations and death   
X X X X X X 

Bloods 

H1N1, H3N2 and Flu B Serology* X X X       

H1N1pdm09 Serological Serology*         X X 

T cell analysis** X   X       

Saliva 

Samples†

††  

Genetic analysis X X X X X X 

* Haemagglutination-inhibition assay  

**Peripheral blood mononuclear cells (PBMC) separated, part of the sample was immediately tested against 

pools of peptides representing each of the virus proteins in an exvivo IFN-  elispot assay 144,145 and the rest 

of the sample was frozen for more detailed peptide mapping studies using IFN-  elispots and/or in vitro 

culture and testing by intracellular cytokine staining to determine CD8/4 restriction.  Post-season T cell 

analysis was only conducted in seasons 1 and 3. 

***Only a selection of nasal swab samples were tested for these viruses in seasons 5 & 6. 

† Only taken from participants in T cell and Serology Cohorts prior to influenza vaccination.   

†† Medical record checks were requested for all participants except those in the Virology Cohort. 

††† Saliva samples were collected in 2011 -2012 from selected participants participating from all seasons 

and cohorts.   

Figure taken from Fragaszy et al, 2016 139.  
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 Strength and Weaknesses 

Flu watch is a large community cohort study broadly representative of the population of 

England.  It is the first modern-day household study of influenza transmission in a 

temperate climate comparable to the landmark Tecumseh studies of the 1960’s and 70’s 

147.  A major strength is the inclusion of different household types (rather than just 

households with children as in earlier studies) which allows influenza infections to be 

explored across the whole of society.  We actively followed up cohorts for influenza and 

other respiratory viruses, utilising a range of IT-based technologies including automated 

telephone surveys, email, internet, and text messages. Broadly similar methods of follow-

up were used across six influenza seasons, allowing accurate comparisons of disease 

burden estimates between pandemic and interpandemic periods despite external factors 

(such as media reporting during the pandemic) that may have affected consultation 

behaviour. Robust definitions of influenza were based on a range of diagnostic methods 

including real-time symptom reporting, RT-PCR and serology, allowing the emergence of 

the A(H1N1)pdm09 pandemic strain to be tracked.  Serological and virological data from 

previous pandemics are either unavailable (1918 H1N1 pandemic), from small samples 

sizes (1957 H2N2 pandemic) 148, or from populations with high vaccination rates which 

greatly limits interpretation (1968 H3N2 pandemic) 147. Historical data on laboratory-

confirmed rates of seasonal influenza mainly come from historical community studies of 

families in the United States between 1948 and 1981 140,147,149,150.  Flu Watch is a good 

example of collaboration between disciplines (epidemiology, immunology, virology and 

primary care) and partners.  The study provides a rich source of data on social, behavioural 

and biological factors affecting influenza transmission enabling exploration of many 

research questions.   

Limitations include major delays in obtaining funding, ethics and R&D approval across 

multiple sites, resulting in delayed recruitment during the pandemic and fewer participants 

overall. Although the initial response to invitation letters was low, it is unclear if this would 

bias results.  Ideally, cohorts would have had pre- and post-influenza season bleeds but 

recruitment periods were not perfectly streamlined with influenza seasons so adjustments 

for bleed timings were made during analysis.  The study design and data collection methods 

evolved in response to experience and changing questions.  While this optimised and 

streamlined methods, it also increased complexity of data management.   
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2.2 The Health Survey for England Serosurvey (Pandemic Immunity and 

Population Spread – PIPS study) 

 Attribution 

The following work has been adapted from my first author paper published in Public Health 

Research 98.  I led the overall implementation and analysis study of the PIPS study.  For the 

work presented in section 2.2, I conducted the analysis, developed the tables and wrote the 

published paper.   

 History of the PIPS project 

In 2009, before the PIPS project was funded, Dr Andrew Hayward worked with colleagues 

at the Health Survey for England to include pandemic related questions into the upcoming 

2010 HSE.  This collaboration fostered the idea for using the HSE for real-time 

serosurveillance and when the NIHR commissioned research projects to pilot pandemic 

influenza research, the PIPS project was developed.  The core objective of the PIPS project 

was to develop the HSE as a means of conducting real-time population-level serological 

surveys.  However the project also utilised the questionnaire data previously collected in 

the 2010 HSE survey.   

 Background 

Assessing the severity and spread of a novel influenza strain at the start of a pandemic is 

critical for informing a targeted and proportional response. It requires understanding of the 

community burden of infection and disease which can be determined only through 

community level studies. However, rapidly initiating such studies at the start of a pandemic 

is difficult. 

Our experience from running the Flu Watch study during the 2009 pandemic demonstrated 

that recruiting community cohorts through primary care introduced substantial delays. 

These delays related to the need to recruit and train multiple GP practices and the need to 

obtain appropriate ethical and research & development approvals for each of these sites. 

The research project described here was specifically designed to overcome these barriers 

so that we could measure the key parameters rapidly in the event of a pandemic. 
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 Aims & Objectives 

The study aimed to establish an efficient system allowing real-time assessment of 

population susceptibility, spread of infection and clinical attack rates in the event of a 

pandemic.   Specific objectives were to:  

• Develop the Health Survey for England (HSE) as a tool for rapid population-based 

surveys of influenza infection and influenza-like illness rates.   

• Provide monthly measures of numbers of cases infected and weekly updates on 

numbers of influenza-like illnesses during the first two infection waves of a 

pandemic, to act as denominators for national estimates of case fatality and 

hospitalisation rates.  

• To assess spread of the novel influenza strain geographically, by age, and through 

time.  

 Methods 

 Project overview 

This research project had two components: a pre-pandemic component designed to develop 

and assess a system to monitor population susceptibility, severity and spread of pandemic 

influenza and a pandemic component designed to be triggered rapidly in the event of an 

influenza pandemic. 

The monitoring system was designed as a series of cross-sectional serological prevalence 

studies with retrospective ascertainment of vaccination and respiratory illness history in 

conjunction with the HSE.   

 HSE study design 

The HSE is a series of annual surveys which have monitored the nation’s health since 1991.   

All HSE surveys involve a stratified random probability sample of private households in 

England.  There are two parts to the HSE surveys:  a household interview visit where a 

trained interviewer collects information on participants’ health and health-related 

behaviours and measures height and weight, and later a nurse visit where additional 
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information, measurements and biological samples (including blood for those aged  16) 

are collected.  The HSE is a rolling survey meaning that the household interviews are spread 

throughout the calendar year.  The main interview schedule is designed so that each quarter 

is nationally-representative of all private households in England151.   

HSE Blood specimens and data are made available for analysis only after the end of each 

annual survey, meaning that, without the adaptation agreed for this project, the survey could 

not normally be used for real-time research. 

 PIPS project phases and HSE adaptations 

The serological surveillance system we have designed simply adds a small number of 

additional pandemic-related questions for all participants to answer and an extra blood 

sample (for those aged 16 years and over) for serological testing to the nurse visit.   

The project phases and analyses are broken down into four phases: 

• Phase 1 (HSE 2010) - Retrospective validation of population-level influenza-

like illness rates derived from the 2010 HSE survey by comparison with illness 

rates from the concurrently running Flu Watch study. 

• Phase 2 (HSE 2012/2013) - Pilot of specimen and data collection alongside the 

2012/13 HSE surveys and development of automated analysis and reporting 

of real-time, monthly measures of the immunity profile (proportion 

susceptible, immune and vaccinated) and vaccine uptake in the population.  

• Phase 3 (ongoing since HSE 2014) - Holding or ‘hibernation’ phase during 

which the project is prepared for and ethically approved each year but only 

triggered in the event of a pandemic.  

• Phase 4 (future pandemic) - Real time monitoring through first two infection 

waves of a pandemic using the methods developed in phase 2 in order to 
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provide rapid estimates of severity and spread and to monitor any changes to 

these estimates through the pandemic. 

 Phase 1 

The main details of the HSE survey methodology are described above and details specific 

to the 2010 HSE survey methodology have been published previously152. An important 

aspect of the 2010 HSE is that it included a child boost sample in order to increase the 

number of participants in the age group, thereby increasing accuracy of estimates for this 

age group.  In response to the 2009 pandemic, we included a special “swine flu” section in 

the 2010 HSE survey main interview where participants were asked about influenza 

vaccination uptake and timing, and influenza-like illness including timing, duration of sick 

leave, and treatment.  Specifically, participants were asked if they had experienced a ‘flu-

like illness, where you felt feverish and had a cough or sore throat?’ since May 2009. If 

they had, then the month and year of that illness was also recorded. Since the interviews 

for the 2010 HSE took place over the 2010 calendar year, the participants would have been 

recalling illnesses and/or vaccinations anywhere from the past 9 months (those interviewed 

in January 2010) to the past 21 months (those interviewed in the December 2010). If the 

participant had more than one illness during the time period, they chose which one to report. 

 Phase 2 

The only changes made to the 2012/2013 surveys were at the nurse interview stage (not the 

main interview) and these changes were only in place during a six-month period (Oct 2012 

through March 2013).   For the purposes of this project, the HSE nurses added an additional 

5ml blood sample (one extra bottle) to the existing HSE blood collection process.  These 

specimens were transferred along with the rest of the HSE specimens to the Newcastle 

General Hospital Microbiological laboratory where they were centrifuged and frozen.  The 

serum samples were later transferred to University College London Hospital (UCLH) 

microbiology laboratory for serological analysis. We also collected basic demographic data 

(age and sex) and information on recent influenza vaccination and ILI from all HSE 

participants at the nurse interview stage, not just those contributing blood samples.  These 

data were collected on a separate form which accompanied the project blood samples to 

UCLH. This enabled real-time access to these data which otherwise would not be possible. 
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Serological protocols and assays were developed by the laboratory team for phase two and 

adapted as a template for use in the pandemic phase.  Automated analysis and reporting of 

age–specific rates of influenza-like illness and monthly estimates of the age-specific 

proportion of the population with protective antibodies accounting for vaccination (for 

those aged 16 years and over) and the proportion vaccinated.  Using these data we can 

estimate the number of infections nationally which can be used as a denominator by Public 

Health England and the research community in calculations of the case fatality proportion 

and rates of hospitalisation (both measures of severity).  

 Phase 3 

Included within each annual HSE planning round and ethics application is the ability to 

trigger, in the event of a pandemic threat, the collection of an additional 5ml blood 

specimen and data on vaccination and recent respiratory illness history.  This enabled, 

should the study be triggered, the rapid roll out of the system previously described.   

 Phase 4 

In the event of a pandemic, the collection and transfer of specimens and data could be 

triggered within one working week.  We would use the automated analytical routines 

developed in phase 2 to continually either directly estimate or provide the denominators 

necessary to estimate pandemic severity, susceptibility and spread throughout the course 

of the pandemic.  Reports would be sent fortnightly to Public Health England and findings 

would be presented to key decision makers through the researchers’ positions on 

government advisory committees and links with key policy makers. 
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 Tools to measure Infection and Immunity 

This chapter will describe the methods used to identify and evaluate influenza infection and 

antibody-mediated immunity.  The methods described in this chapter are utilized in the 

analyses presented in chapters 4 and 5.  This chapter will cover the main laboratory assays 

and how they are incorporated into epidemiological studies.  It concludes with a brief 

overview of the burden of infection in the community. 

3.1 Introduction to Serology 

Serological methods are used to quantify influenza antibodies that are produced by the 

immune system in response to natural infection and/or influenza vaccination3,153.  

Depending on the context, strain-specific serological assays can retrospectively identify 

infections (including those that were asymptomatic), assess an individual’s past exposure 

and response to influenza viruses and vaccines and, if an assay has an immunological 

correlate of protection, results can help predict the likelihood that that individual is 

protected against infection with that strain in the future154,155.  Serological methods are used 

in a variety of settings including surveillance, epidemiological studies, vaccine evaluation 

and occasionally for the purpose of diagnosis154.  The strain-specific serological assays 

most commonly used are the Hemagglutination inhibition (HI), virus neutralization (now 

commonly conducted as microneutralization (MN)) and single radial hemolysis (SRH)156.   

The three assays detect different, but overlapping groups of antibodies, primarily against 

the HA protein, and their results are strongly correlated156,157.    

3.2 Laboratory Methods 

 Hemagglutination Inhibition 

The most widely used serological assay used for the detection of strain-specific influenza 

antibodies is the Hemagglutination Inhibition (HI) assay154.   

The HI assay measures the ability of an individual’s serum antibodies to block (i.e. inhibit) 

influenza’s HA surface protein from binding to the sialic acid on red blood cells, which has 

the effect of clumping (i.e. agglutinating) the red blood cells together.  This is meant to 

mirror the more relevant process of the influenza HA binding to the sialic acid on target 

cells in the respiratory track in order to initiate infection158.  In the HI assay, twofold serial 
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dilutions of an individual’s sera are mixed with a standard concentration of virus.  The 

dilutions are left to react for a certain amount of time, allowing the anti-HA serum 

antibodies time to bind to the viruses’ HA surface proteins.  This is followed by the addition 

of a standard concentration of red blood cells5,154.  If there are sufficient anti-HA antibodies 

in the dilution, these antibodies will inhibit agglutination.  Conversely, if there are no anti-

HA antibodies or too few of them, the virus will agglutinate the red blood cells.  The 

outcome of the assay is the strain-specific HI titre, measured as the reciprocal of the highest 

dilution which fully inhibits agglutination154.   

The HI assay is inexpensive and relatively easy to perform155.  Disadvantages include the 

need to remove non-specific inhibitors, a low sensitivity to influenza B and avian influenza 

strains and issues with variability between laboratories154,155.  The HI assay is currently 

considered to be the best immunological correlate of protection (i.e. the best parameter for 

predicting whether an individual is protected against infection)155.  As HI titre increases, so 

does protection against infection, although there appears to be diminishing returns for 

increases in tires above 150 or so159.  An HI titre of 40 is generally considered to be 

‘protective’ in that it corresponding to a 50% reduction of risk of infection in a susceptible 

population, although some have argued that a higher cut-off would be more appropriate in 

certain populations such as children and the elderly154,160,161.   

 Virus Neutralization 

Virus neutralization is an assay that identifies predominantly strain-specific functional 

antibodies against both HA and NA proteins that neutralize the viruses’ ability to infect, 

and be released from mammalian cells in vitro 154,155.  The assay begins by mixing virus 

with dilutions of serum for a specified period of time.  The virus and serum mixture is then 

inoculated into a host system for a period of time after which levels of virus or viral antigens 

are measured.  Modern virus neutralization assays are commonly done in the 

microneutralization (MN) format.  The MN titre outcome is measured as the reciprocal 

serum dilution which inhibits at least 50% of cytopathic effect in mammalian cell culture156. 

Results from virus neutralization assays show a high degree of correlation with HI 

assays156.  They identify a wider range of antibodies involved in protection against 

infection, including some cross-reactive antibodies.  However, this also means they can be 

less strain-specific than HI assays154,155.  In contrast they are more sensitive than HI assays, 

particularly for influenza B and for seroconversions occurring at low titres154,155.  The 
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assays require live virus which in the case of wild-type highly pathogenic viruses, require 

the use of high-level biocontainment laboratories.  Other disadvantages include variation 

between laboratories and the lack of an established correlate of protection155. 

 Single radial hemolysis 

The single radial hemolysis (SRH) assay detects mainly complement activating antibodies 

which target HA and NA proteins and internal antigens155.  The assay is performed using 

red blood cells bound with virus and complement in an agarose gel.  Undiluted serum is 

added to wells in the agarose which diffuses overnight.  In the presence of anti-influenza 

antibodies, the overnight diffusion will leave zones of complement-mediated hemolysis of 

the red blood cells which will be proportional to the amount of antibodies present 154–156.  

The assay has an established correlate of protection (hemolysis area of 25mm corresponds 

to 50% protection).  In comparison to HI, it is more sensitive to influenza B, better able to 

distinguish between similar strains and better able to detect small differences in the levels 

of antibodies. It also has the additional advantages of being rapid, simple, reliable, 

reproducible, scalable and unbiased.  

3.3 Identifying infections 

Influenza viruses are constantly evolving, and individuals are likely to be infected with- 

and potentially vaccinated against multiple influenza strains during their lifetime.  As a 

result, individuals build up a collection of antibodies reflecting those previous exposures 

to different strains154.   

In the context of seasonal influenza, even the strain-specific serological assays described 

here may detect cross-reactive antibodies produced from previous infection or vaccination 

against a closely related strain154.  Therefore, in order to identify recent infection with a 

specific seasonal strain, one needs to evaluate the change in strain-specific antibody titres 

between consecutive (also known as ‘paired’ or ‘bracketed’) serological samples from the 

same individual.  A four-fold rise in strain-specific antibody titre between the paired 

samples is considered a seroconversion and is taken as evidence that the individual was 

infected (either symptomatically or asymptomatically) with that strain between the two 

blood samples154.  Two-fold titre rises have not traditionally been considered robust 

evidence of infection given the possibility of measurement error.  However recent work 
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suggests that some infections may only lead to a two-fold titre rise, particularly in those 

with already high baseline antibody titres154,162.  In order to rule out the possibility that a 

titre rise was due to vaccination and not natural infection, the recent influenza vaccination 

history of the participant must also be known.   

In the context of a virus with which has not widely circulated in the population such as a 

zoonotic or new pandemic virus, it may be possible to identify infection through a high titre 

result from a single serological sample provided that the prevalence of pre-existing, cross-

reactive antibodies to that virus is very low in the population.  Once vaccination to that 

virus has been introduced, the vaccination status of the individual must be known to 

confirm that a high titre is the result of natural infection and not vaccination. 

3.4 Serology in Epidemiological Studies 

Serological methods can be incorporated into cohort or cross-sectional studies in order to 

measure cumulative incidence (i.e risk) or incidence rates of infection.   

In cohort studies, participants are prospectively followed up over time and provide 

individually paired serum samples at given time points, typically pre- and post- influenza 

season or epidemic.  By assessing participants’ seroconversion status, it is possible to 

directly calculate cumulative incidence and/or incidence rates of influenza infection.   

In serial-cross sectional studies, serum specimens are collected at two or more time points 

(ideally before and just after an outbreak or epidemic) from different samples of people.  

The cumulative incidence is then indirectly calculated by comparing the proportion of 

sampled individuals with antibody titres above a specified threshold between the two time 

points. In the context of an emerging pandemic where there is little to no pre-existing 

immunity to a strain, post-epidemic serum samples alone can be used to calculate 

cumulative incidence.   

Alternatively, in the context of identifying sporadic zoonotic influenza infections in an 

individual, a single serum sample can be used to identify previous exposure and/or infection 

with strains that do not circulate among humans. 
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3.5 Burden of Infection in the community 

Influenza infection is relatively common.  In the Flu Watch study (based on 4 fold rises in 

antibody titres) we found that around 18% (95% CI: 16% - 22%) of the unvaccinated 

population became infected each winter season with the highest rates in children15.  The 

estimates were similar in the pre-pandemic, pandemic and post-pandemic periods covered 

by the Flu Watch study.  This finding is similar to those found in historical and other 

contemporary community cohort studies140,147,163.   
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 Infection at the Human/Animal Interface 

This work focuses on a population sub-group at the human/animal interface, UK pig 

industry workers.   It investigates whether pig industry workers have greater odds of 

infection for several human- and swine-adapted influenza strains compared to a general 

population cohort (the cohort studied in Flu Watch).  

4.1 Attribution 

The work presented in Chapter 4 has been adapted from my first author paper published in 

Influenza and Other Respiratory Viruses 164.  I co-led this work with Dr Ishoa.  He led the 

literature review and wrote the first draft of the introduction and conclusions.  I developed 

the overall analytical strategy, managed and collated the data, conducted the analyses and 

produced the tables.  I wrote the methods and results section and contributed to the editing 

of the other sections.  I, along with my co-authors, contributed to the overall interpretation 

of findings.  More information on attribution can be found in the original paper.  For the 

purposes of this thesis, I have modified the original manuscript to flow logically within this 

thesis.  

4.2 Abstract 

Background: Pigs are mixing vessels for influenza viral reassortment, but the extent of 

influenza transmission between swine and humans is not well understood.  

Objectives: To assess whether occupational exposure to pigs is a risk factor for human 

infection with human and swine-adapted influenza viruses. 

Methods: UK pig industry workers were frequency-matched on age, region, sampling 

month, and gender with a community-based comparison group from the Flu Watch study. 

HI assays quantified antibodies for swine and human A(H1) and A(H3) influenza viruses 

(titres ≥ 40 considered seropositive and indicative of infection). Virus-specific associations 

between seropositivity and occupational pig exposure were examined using multivariable 

regression models adjusted for vaccination. Pigs on the same farms were also tested for 

seropositivity. 
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Results: Forty-two percent of pigs were seropositive to A(H1N1)pdm09. Pig industry 

workers showed evidence of increased odds of A(H1N1)pdm09 seropositivity compared to 

the comparison group, albeit with wide confidence intervals (CIs), adjusted odds ratio after 

accounting for possible cross-reactivity with other swine A(H1) viruses (aOR) 20.44, 95% 

CI: 2.24–186.4), p=0.007. 

Conclusion:  The results indicate that A(H1N1)pdm09 virus was common in UK pigs 

during the pandemic and subsequent period of human A(H1N1)pdm09 circulation, and 

occupational exposure to pigs was a risk factor for human infection. Influenza 

immunisation of pig industry workers may reduce transmission and the potential for virus 

reassortment. 

4.3 Introduction  

Influenza A viruses can cause significant morbidity and mortality in humans and other 

animal species and show a high degree of genomic variability and adaptability.  They are 

categorised by subtype based on their main surface glycoproteins, haemagglutinin (HA) 

and neuraminidase (NA), which determine a range of key properties including antigenicity. 

Human-adapted viruses in the past century have been those expressing HA subtypes 1, 2, 

and 3 and NA subtypes 1 and 2.  Since 1968, only the A(H1N1) and A(H3N2) subtypes 

have circulated widely in humans 165.  Observations over the past 40 to 50 years have 

documented subtypes of viruses A(H1N1), A(H1N2) and A(H3N2) circulating in pigs 

worldwide and strain variations between Europe, North America and Asia have been noted 

166.  In the UK, A(H1N2) was the most commonly observed swine subtype in a large pig 

serosurvey conducted between 2008-2009 167.  Between 1998 and 2009, an avian-like 

H1N1 strain most commonly and an H1N2 strain were regularly detected in UK pigs 168,169. 

The A(H1N1)pdm09 virus was detected in pig herds from autumn 2009, 170 although it may 

have been first transmitted to pigs from humans several months earlier 171. 

Influenza viruses bind to host cell surface receptors with a terminal sialic acid (SA), 

different versions of which are present in different animal species forming the basis of host-

strain specificity 172,173.  Avian strains preferentially bind to SA α2,3-Gal (prevalent in avian 

species) while human virus strains require SA α2,6-Gal receptors (dominant in humans). 

The relatively poor fit of avian viruses to human and other non-avian hosts is thought to 

limit the potential emergence of novel strains 174.   Pigs (and many other species) express 
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both types of receptors such that could be potentially susceptible to both avian and human 

viruses.   

Co-infection of a single host with two different strains of the influenza virus provides an 

opportunity for genetic reassortment (rearrangements and altered combinations of genome 

segments), which could lead to sudden and marked changes (antigenic shift) and the 

emergence of novel strains or subtypes expressing new surface antigen proteins that the 

host might have little or no immunity against. Should the newly acquired properties of such 

a novel strain make it transmissible in humans, then it would have the potential to start a 

pandemic. Pigs are a particularly important species in this regard as the occurrence of both 

types of SA receptors permits binding of human and avian influenza viruses making them 

an efficient “mixing vessel” 175–178.  Inter-species transmission (in both directions) of swine 

and human influenza viruses is well recognised, evidenced by the isolation of human 

influenza virus in swine 179,180 and evidence of swine influenza virus (SIV) infection in 

people with close occupational 181–183 and/or residential proximity to pigs 184,185 or 

prolonged exposure at an agricultural fair 186.  Transmission between pigs and bird species 

is exemplified by various reports of isolation of SIV from turkeys 187–189.  The 2009 

pandemic virus A(H1N1)pdm09 comprised genetic components from the swine-adapted 

North American triple reassortant H3N2 viruses and a Eurasian swine virus 190. 

There is an increasing need for monitoring transmission between pigs and humans, but data 

on the extent of such transmission events remains limited. Previous studies attempting to 

assess serological evidence of swine influenza in people with occupational exposure to pigs 

all recruited their non-pig-exposed comparison groups from restricted groups such as blood 

donors 182,191–193, students, teachers, or university or hospital personnel, 194–196 or in some 

cases, they used serum bank samples 181,197.  This study focused on assessing SIV infection 

in pig industry workers in England during the emergence of A(H1N1)pdm09 virus. 

Serological data on SIV infection in pig veterinarians and pig farm workers was compared 

with a sample from the general population and related to serology from sampled pigs in 

contact with the pig farm workers. 
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4.4 Methods 

 Recruitment and specimen collection 

We recruited pig industry workers including pig farm workers and specialist pig 

veterinarians (each veterinarian typically attended a number of different farms across an 

area, and some also worked in other settings such as abattoirs). Pig veterinarians were 

recruited at November 2009 and May 2010 meetings of the Pig Veterinary Society, a 

species-specialist group of the British Veterinary Association.  Pig farm workers were 

recruited from 17 farms in September-December 2010 from a large group of farrow-to-

finish pig farms that participated in a related study of SIV infection in English pigs 167.  

Farms came from two main clusters in North Yorkshire and East Anglia, both regions with 

higher densities of the pig population 198.  Farm owners were first asked for permission to 

approach their staff, including everyone with direct pig contact such as farm hands, on-site 

managers, and field maintenance workers. At the farms where owners granted permission, 

pig farm workers were invited to join the study. At the same time blood samples were 

collected from pigs from each of the worker’s farms. 

Participants from the concurrent Flu Watch study - a community-level, household-based 

cohort study of influenza in England 15 - formed the population comparison group. Flu 

Watch participants were frequency-matched to pig industry workers on age group, 

geographic region, calendar month of blood sample, and gender (in decreasing priority 

order).  

All participants gave individual written informed consent and completed a questionnaire 

including information on demographic characteristics and their history of influenza 

vaccination for that season (2009 for pig veterinarians or 2010 for pig farm workers).  

Blood samples were collected from all participants for serological analysis. 

In order to examine the association between SIV infection among pig farm workers and 

SIV infection among the pigs they worked with, blood specimens were obtained from a 

sample of pigs on their farms as part of the aforementioned SIV infection study 167.  Blood 

specimens were taken from pigs during the same season as the pig farm workers (autumn 

2010). 
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 Influenza Virus Panel and laboratory methods 

Serum samples from pig industry workers and the Flu Watch population comparison group 

were tested for the presence of antibodies using an AHVLA standard panel of SIVs 

representative of contemporary viruses detected through routine SIV surveillance in UK 

pigs, and known human viruses 168 (See Table 4-1).  The SIVs in the panel were 

A/sw/England/117316/86 classical H1N1 [classical swine H1N1]; 

A/sw/England/195852/92 avian-like H1N1 [swine avian-like H1N1]; 

A/sw/England/163266/87 H3N2 [swine H3N2 87]; and A/sw/England/438207/94 H1N2 

[swine H1N2]. The human viruses were A/England/195/09 pH1N1 [A(H1N1)pdm09]); 

A/Brisbane/59/07 H1N1 [H1N1 07]; and A/Perth/16/09 H3N2 [H3N2 Perth]). Standard 

haemagglutination inhibition (HI) assays 199 were used. A reciprocal antibody titre of 

greater than or equal to 40 (1:40 from serial dilution) was considered seropositive and taken 

as indicative of putative previous infection with the corresponding virus in humans.   

Table 4-1: Description of influenza Strain names, typical host and whether antibodies were tested in 

humans and pigs 

Typical Host Virus Abbreviated 

name 

Antibodies tested 

Humans Pigs 

Swine A/sw/England/117316/86 classical 

H1N1 

classical swine 

H1N1 

x x 

Swine A/sw/England/195852/92 avian-like 

H1N1 

swine avian-like 

H1N1 

x x 

Swine A/sw/England/163266/87 H3N2 swine H3N2 87 x x 

Swine A/sw/England/438207/94 H1N2 swine H1N2 x  

Swine & 

Human 

A/England/195/09 pH1N1 A(H1N1)pdm09 x x 

Human A/Brisbane/59/07 H1N1 H1N1 07 x  

Human A/Perth/16/09 H3N2 H3N2 Perth x  

Sera from unvaccinated pigs were tested for a smaller subset of viruses (classical swine 

H1N1, swine H1N2, swine H3N2 87, swine avian-like H1N1, and A(H1N1)pdm09). It is 

recognised that in HAI tests with pig sera, the profile against the range of viruses used 

needs to be analysed and interpreted with care, since homosubtypic cross-reactive 

antibodies to the HA may be detected without inferring exposure to a particular strain. 

Difficulties in swine HI serology interpretation can be compounded further by anti NA 

(especially N2) antibodies interfering in the HI test.  Our approach was to evaluate the titres 

to determine those of the greatest magnitude correlating with the most probable virus 

subtype to which an individual animal had been exposed to.  Within a subtype, if the highest 

titre was greater or equal to 40 then the pig was considered seropositive for that strain.   If 
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two strains within a subtype shared the highest titre (greater or equal to 40) then the pig 

was considered seropositive for both.  It should also be noted that a single animal may have 

been exposed to more than one influenza virus.  

Most farms had 12-16 pigs tested.  We considered a farm positive for a given strain if it 

had at least three pigs seropositive for that strain. 

 Statistical Analysis 

We explored whether occupational exposure to pigs was associated with infection with 

each virus strain through univariable analysis using Chi-squared (Χ2) and Fisher’s exact 

tests. We then built separate multivariable logistic regression models for each virus strain 

to estimate the association of occupational exposure to pigs and infection. These models 

accounted for clustering for repeated measurements as some participants contributed more 

than one sample from different time periods. In each model we investigated the potential 

confounding effects of vaccination status, age, season (winter 2009, spring 2010, 

autumn/winter 2010), geographic region and gender. A variable was retained in the model 

if it was associated with occupational pig exposure, associated with infection, and either 

independently predicted the outcome or else made an appreciable difference on the effect 

of occupational pig exposure on infection. We hypothesised, a priori, that the season of the 

blood sample may modify the effect of occupational pig exposure on infection, and this 

was explored by testing for interaction terms in the models.  

Where an influenza strain was found to be associated with occupational pig exposure, we 

investigated the possibility of cross-reactivity between that strain and other swine viruses 

sharing the same haemagglutinin using cross tabulations with X2 or Fisher’s exact test as 

appropriate.  Where there was evidence of association, these strains were forced into 

regression models to account for possible cross reactivity.  

We conducted sub-analyses among pig veterinarians providing more than one blood sample 

(November 2009 and May 2010) to calculate the risk of seroconversion to each virus strain, 

as determined by a four-fold rise in antibody titre.  
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In a series of sub-analyses (one for each strain of SIV tested in both pigs and humans), we 

explored whether pig farm workers’ SIV seropositivity status was associated with the 

positivity status of their farm’s pig herd using Χ2 and Fisher’s exact tests. 

 Ethics 

This study was approved by the Cambridgeshire-1 Research Ethics Committee (REC) 

Reference 10/H0304/4. The Flu Watch study, from which the population comparison group 

was drawn, was approved by the Oxfordshire REC Reference 06/Q104/103. Participants 

received full information about the study and if interested and eligible, they were enrolled 

after providing fully informed written consent. 

4.5 Results 

 Participants and blood samples 

The characteristics of participants and number of blood samples are described in Table 4-2.  

A total of 26 pig veterinarians participated in the study, providing 42 separate blood 

samples, with 16 veterinarians contributing 2 samples (one from November 2009 and one 

from May 2010). An additional 29 pig farmers from 17 different pig farms participated in 

the study, each contributing one blood sample. A total of 68 Flu Watch participants 

provided 71 blood samples which were frequency matched to the samples from the pig 

industry workers as described in the methods. Sixty-five of the Flu Watch participants 

contributed only one blood sample but three contributed two blood samples from two of 

the three possible seasons (winter 2009, spring 2010 or winter 2010).  Most pig industry 

workers were male. The median age for pig industry workers and the frequency matched 

Flu Watch participants was 44 and 47 respectively. At the time the blood sample was taken, 

93% of participants were unvaccinated. Only five Flu Watch participants and four pig 

farmers had received the currently available pandemic vaccine. 
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Table 4-2: Participant Characteristics and number of samples 

 

 

  Risk of Infection in relation to occupational exposure to pigs 

In the univariable analysis (Table 4-3) there was evidence that antibodies to three out of 

the eight influenza strains were more common in pig industry workers than the population 

comparison group: A(H1N1)pdm09 (23% versus 4%, Fisher’s exact test p=0.002); swine 

H1N2 (24% versus 11%, Chi2 p=0.047) and H3N2 Perth (37% versus 20%, Chi2 p=0.025).  

There was no evidence of swine avian-like H1N1 antibodies in the population comparison 

group in contrast to three seropositive pig industry workers (4%, 95% CI [0.9% – 11.9%]).  

Although 10% (95% CI [4.0% – 19.3%]) of pig industry workers and 4% (95% CI [0.0% - 

11.9%]) of the comparison group had antibodies to classical swine H1N1, these reactions 

were most probably due to cross reactive antibodies from an A(H1N1)pdm09 infection as 

the classical swine H1N1 strain had not circulated in the UK for decades and 70% (95% CI 

[34.8% – 93.3%]) of those seropositive for the virus were also seropositive for 

A(H1N1)pdm09.  Antibodies to swine A(H1N2 or H3N2) strains were relatively common 

in both groups (range 11-64%).  

In the multivariable analysis (Table 4-3) after adjusting for confounders, there was strong 

evidence that pig industry workers had elevated odds of A(H1N1)pdm09 seropositivity 

(Adjusted Odd Ratio (aOR)=20.4, 95% CI [2.2-186.4], Wald test p=0.007) compared to 

the Flu watch comparator population. We found strong evidence that A(H1N1)pdm09 

Number 

(N=68)*
% 95% CI

Number 

(N=71 )*
% 95% CI

Number 

(N=55)*
% 95% CI

Number 

(N=71 )*
% 95% CI

<45 29 43% (31-54) 30 42% (31-54) 28 51% (38-64) 36 51% (39-62)

45-64 34 50% (38-62) 36 51% (39-62) 23 42% (29-55) 31 44% (32-55)

65+ 5 7% (1-14) 5 7% (1-13) 4 7% (0-14) 4 6% (0-11)

male 55 81% (72-90) 57 80% (71-90) 45 82% (72-92) 57 80% (71-90)

female 13 19% (10-28) 14 20% (10-29) 10 18% (8-28) 14 20% (10-29)

East Midlands 30 44% (32-56) 31 44% (32-55) 21 38% (25-51) 31 44% (32-55)

North East 17 25% (15-35) 18 25% (15-35) 16 29% (17-41) 18 25% (15-35)

London & SE 14 21% (11-30) 14 20% (10-29) 11 20% (9-31) 14 20% (10-29)

West 7 10% (3-18) 8 11% (4-19) 7 13% (4-22) 8 11% (4-19)

no 63 93% (86-99) 65 92% (85-98) 51 93% (86-100) 67 94% (89-100)

yes 5 7% (1-14) 6 8% (2-15) 4 7% (0-14) 4 6% (0-11)

Veterinarian N/A - - N/A - - 26 47% (34-60) 42 59% (48-71)

Farmer** N/A - - N/A - - 29 53% (40-66) 29 41% (29-52)

** farmers come from 21 pig farms

flu vaccination season 

of blood sample

pig worker type

*number of people differ from number of blood samples as individuals would occassionally provide blood sample for more than one 

age group

gender

region

Flu watch Pig Worker

Participants Blood Specimens Participants Blood Specimens
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seropositivity in humans was associated with seropositivity to swine H1N2 (Chi2 p=0.003), 

classical swine H1N1 (Fisher’s exact test p<0.001) and swine avian-like H1N1 (Fisher’s 

exact test p=0.002).  The association between A(H1N1)pdm09 seropositivity and 

occupational swine exposure remained strong after controlling for the possible effect of 

cross-reactivity with these strains (aOR=15.11, 95% CI [1.64-139.75], Wald test p=0.017).  

Pig industry workers had an increased odds of swine H1N2 seropositivity (aOR = 4.3 [95% 

CI 1.4-13.5], Wald test p=0.012) compared to the population group.  There was strong 

evidence that seropositivity was associated with A(H1N1)pdm09 (Chi2 p=0.003) and 

classical swine H1N1 (Fisher’s exact test p<0.001) but less evidence of an association with 

avian-like swine H1N1 (Fisher’s exact test p=0.080).  The odds ratio remained elevated 

after controlling for the possible effect of cross-reactivity with classical swine H1N1, swine 

avian-like H1N1 and A(H1N1)pdm09 (aOR=3.91, 95% CI [1.19-12.87), Wald test p= 

0.025).  

Pig industry workers also had an increased odds of H3N2 Perth seropositivity (aOR =3.77, 

95% CI [1.52-9.35], Wald test p=0.004) compared to Flu Watch participants.  We found 

limited evidence of an association between the Perth and the swine H3N2 87 strain (Chi2 

test p=0.087). After controlling for possible cross-reactivity with the swine H3N2 87 strain 

the odds ratio remained elevated (aOR = 4.75, 95% CI [1.48-15.32], Wald test p=0.009).  

There was no evidence to suggest that occupational pig exposure increased the odds of 

seropositivity to the other influenza strains tested.  

There was no evidence that season modified the association between occupational exposure 

to pigs and seropositivity to any of the remaining viruses tested. 
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Table 4-3: Crude Risk and adjusted odds of influenza infection comparing pig industry workers to a sample from a general population cohort (Flu Watch) 

 

P-value

Adjusted OR (95% CI) Model

pig industry worker 

vs Flu Watch
covariates***

A/sw/England/117316/86 classical H1N1 4.7

[classical swine H1N1] (0.81-27.90)

A/sw/England/195852/92 avian-like H1N1

[swine avian-like H1N1]

A/sw/England/163266/87 H3N2* 0.76

[swine H3N2 87] (0.33-1.77)

A/sw/England/438207/94 H1N2 4.32

[swine H1N2] (1.39-13.46)

3.91

(1.19-12.87)

A/England/195/09 pH1N1 20.44

[A(H1N1)pdm09] (2.24-186.40)

15.11

(1.64-139.75)

A/Brisbane/59/07 H1N1 1.11

[H1N1 07] (0.45-2.74)

A/Perth/16/09 H3N2

[H3N2 Perth]

4.22

(1.28-13.94) 

ŧ Wald test

*** Possible covariates include age group, gender, region, season and vaccination status

† Controlled for seropositivity to for classical swine H1N1, swine avian-like H1N1, A(H1N1)pdm09

†† Controlled for seropositivity to classical swine H1N1, swine avian-like H1N1 and swine H1N2

††† Controlled for seropositivity to H3N2 87 and swine H1N1

0.443 0.018 As above + †††

*Limited to 106 samples with H3N2 87 readings 

**Fishers exact test p-value

30 5 (0) 17 (5.6-34.7)

0.025               3.77 (1.52-9.35) 0.004 vaccination, season

Controlled for possible cross-reactivity††† 37 9 (2) 24 (11.8-41.1)

71 26 (4) 37 (25.5-48.9)

1 0.22 vaccination

71 14 (3) 20 (11.2-30.9)

71 15 (3) 21 (12.3-32.4)

0.017 As above +††

Human

71 15 (4) 21 (12.3-32.4)

0.002** 0.007 vaccination

Controlled for possible cross-reactivity††

71 16 (4) 23 (13.4-34.0)

0.025 As above +†

Swine & 

Human

71 3 (2) 4 (0.9-11.9)

0.012 vaccination, season

Controlled for possible cross-reactivity†

0.04717 (4) 24 (14.6-35.5)71

0.237 0.522 sex, season, age group

71 8 (2) 11 (5.0-21.0)

53 28 (4) 53 (38.6-66.7)

0.245** ---

53 34 (3) 64 (49.8-76.9)

71 3 (1) 4 (0.9-11.9)

0.326** 0.085 vaccination

71 0 (0) 0 (0.0 -5.1)

71 7 (3) 10 (4.0-19.3)

Swine

71 3 (2) 4 (0.9-11.9)

N

No. positive (No. 

of these who were   

vaccinated)

% 

pos
95% CI Chi

2 p-value ŧ

Typical 

Host
Strain

Univariable Analysis
Multivariable Regression Analysis

Flu watch Pig Industry Worker

N

No. positive (No. of 

these who were 

vaccinated)

% 

pos
95% CI
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 Seroconversion among pig veterinarians 

Five of the 16 pig veterinarians with repeat samples seroconverted to one or more strains 

tested and none had received influenza vaccination between blood samples. One 

veterinarian seroconverted to four different viruses (human H1N1 07, A(H1N1)pdm09 and 

swine H3N2 87) while another veterinarian seroconverted to both human H1N1 07 and 

A(H1N1)pdm09. The other three veterinarians either converted to human H3N2 Perth or 

swine H1N2. 

 Pig Serology and Farm-level Seroprevalence 

Serology results for pigs were linked for 14 of 17 farms (corresponding to 214 pigs in 

contact with 25 pig farm workers).  Pig- and Farm-level seroprevalence is reported in Table 

4-4.  Farm-level positivity for a strain meant at least three seropositive pigs for that strain 

on the farm. After accounting for possible homosubtypic cross-reactive antibodies in the 

three A(H1) strains tested in pigs, we found that 41% (95% CI [34% - 48%]) of pigs were 

seropositive to A(H1N1)pdm09 and 79% (95% CI [49% - 95%]) of farms were considered 

positive for the strain. In contrast, only 3-5% of pigs were positive for classical swine 

H1N1, swine avian-like H1N1 and swine H3N2 87.  No farms were positive for either 

swine H1N1 strains and only one farm was positive for swine H3N2 87. 
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Table 4-4: Seroprevalence of SIV infection among pigs on farms linked to one or more pig farmers 

 

* Farms were considered positive if 3 or more animals in that herd tested positive (titres ≥40 and highest titre within HA subtype). 

 

No. 

positive 

pigs

% 

positive 

pigs

95% CI

Farm 

considered 

positive

No. 

positive 

pigs

% 

positive 

pigs

95% CI

Farm 

considered 

positive

No. 

positive 

pigs

% 

positive 

pigs

95% CI

Farm 

considered 

positive

No. 

positive 

pigs

% 

positive 

pigs

95% CI

Farm 

considered 

positive

1 16 0 0 ( 0.0-20.6) No 0 0 ( 0.0-20.6) No 0 0 ( 0.0-20.6) No 8 50 (24.7-75.3) Yes

2 12 2 16.7 ( 2.1-48.4) No 0 0 ( 0.0-26.5) No 1 8.3 ( 0.2-38.5) No 3 25 ( 5.5-57.2) Yes

3 16 0 0 ( 0.0-20.6) No 0 0 ( 0.0-20.6) No 0 0 ( 0.0-20.6) No 8 50 (24.7-75.3) Yes

4 12 0 0 ( 0.0-26.5) No 0 0 ( 0.0-26.5) No 0 0 ( 0.0-26.5) No 5 41.7 (15.2-72.3) Yes

5 12 0 0 ( 0.0-26.5) No 8 66.7 (34.9-90.1) Yes 0 0 ( 0.0-26.5) No 7 58.3 (27.7-84.8) Yes

6 16 0 0 ( 0.0-20.6) No 0 0 ( 0.0-20.6) No 0 0 ( 0.0-20.6) No 15 93.8 (69.8-99.8) Yes

7 10 0 0 ( 0.0-30.8) No 0 0 ( 0.0-30.8) No 0 0 ( 0.0-30.8) No 0 0 ( 0.0-30.8) No

8 16 0 0 ( 0.0-20.6) No 1 6.3 ( 0.2-30.2) No 2 12.5 ( 1.6-38.3) No 4 25 ( 7.3-52.4) Yes

9 12 2 16.7 ( 2.1-48.4) No 0 0 ( 0.0-26.5) No 0 0 ( 0.0-26.5) No 0 0 ( 0.0-26.5) No

10 16 1 6.3 ( 0.2-30.2) No 0 0 ( 0.0-20.6) No 2 12.5 ( 1.6-38.3) No 3 18.8 ( 4.0-45.6) Yes

11 12 0 0 ( 0.0-26.5) No 0 0 ( 0.0-26.5) No 1 8.3 ( 0.2-38.5) No 1 8.3 ( 0.2-38.5) No

12 16 2 12.5 ( 1.6-38.3) No 0 0 ( 0.0-20.6) No 0 0 ( 0.0-20.6) No 10 62.5 (35.4-84.8) Yes

13 16 0 0 ( 0.0-20.6) No 0 0 ( 0.0-20.6) No 0 0 ( 0.0-20.6) No 8 50 (24.7-75.3) Yes

14 32 2 6.3 ( 0.8-20.8) No 1 3.1 ( 0.1-16.2) No 0 0 ( 0.0-10.9) No 15 46.9 (29.1-65.3) Yes

total 214 9 4.2 ( 1.9- 7.8) 0 of 14 10 4.7 ( 2.3- 8.4) 1 of 14 6 2.8 ( 1.0- 6.0) 0 of 14 87 40.7 (34.0-47.6) 11 of 14

Farm

A(H1N1)pdm09Swine Avian-like H1N1Swine H3N2 87Classical swine H1N1
No. 

pigs 

tested



 

 86 

 Farm-level Seroprevalence and human infection 

There was no evidence of an association between farm positivity and risk of infection 

among pig farm workers for any of the strains tested.   All pig farm workers infected with 

the pandemic virus worked on a farm positive for the same strain. No pig farm workers 

were infected with swine avian-like H1N1 (Table 4-5). 

Table 4-5: Association between pig farm workers’ infection status and the positivity status of the pig 

herd they work with 

 

 

4.6 Discussion 

This study improves our understanding of swine influenza transmission to humans by 

comparing the serological evidence of SIV seropositivity in pig industry workers in 

England with a general population-based comparison group at the time of the 

A(H1N1)pdm09 influenza pandemic. 

The key finding is that, in the period of this study, pig industry workers had increased odds 

of influenza A(H1N1)pdm09 seropositivity compared to the general population. Evidence 

of the association remained after controlling for seropositivity to other swine H1 viruses 

and is thus unlikely to be the result of cross-reactivity.  We also found evidence that pig 

industry workers had elevated odds of swine H1N2 and H3N2 Perth seropositivity which 

remained after controlling for sero-positivity to other measured, potentially cross-reactive 

strains. 

N Column % 95% CI N Column % 95% CI

No 23 100% (85.2 - 1) 2 100% (15.8 - 1)

Yes 0 0% (0 - 14.8) 0 0% (0 - 84.2)

No 12 100% (73.5 - 1) 10 77% (46.2 - 95.0)

Yes 0 0% (0 - 26.5) 3 23% (5.0 - 53.8)

No 25 100% (86.3 - 1) 0 n/a n/a

Yes 0 0% (0 - 13.7) 0 n/a n/a

No 6 29% (11.3 - 52.2) 0 0% (0 - 60.2)

Yes 15 71% (47.8 - 88.7) 4 100% (39.8 - 1)

*Fisher's Exact test

swine H3N2 87 0.22

swine avian-like H1N1 n/a

A(H1N1)pdm09 0.54

classical swine H1N1 n/a

Strain

Pig Farm workers

p-value*
SeropositiveSeronegative

Pig farmers 

working on 

positive farm
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The increased risk of A(H1N1)pdm09 in pig industry workers is compatible with the 

concurrent emergence of infection with A(H1N1)pdm09 in pigs in England, which was 

first observed in November 2009 170 and confirmed by the serological results in our study.  

As there was minimal trade of live pigs between North America and Europe during the 

period of the study and no reports of the pandemic strain in European pigs prior to human 

cases, 200 it is likely that pigs were initially infected by humans during the early stages of 

the 2009 pandemic, and infection then transmitted efficiently within and between pig herds 

but also through reverse zoonoses events following contact of pigs with infected humans.  

Phylogenetic analysis has subsequently demonstrated that H1N1pdm2009 has been 

repeatedly transmitted from humans to swine since the pandemic 201.  Pig industry workers 

naïve to A(H1N1)pdm09 would be susceptible to zoonotic infection from pig herds 

undergoing active infection, with exposure to sometimes large groups of pigs 

simultaneously undergoing acute infection and shedding virus favouring transmission from 

pigs to pig industry workers.   Further bi-directional transmission may have led to an 

amplification effect leading to high levels of infection in both pigs and pig industry 

workers.  This is important in that it shows that dense populations of pigs can serve as an 

amplifying reservoir for influenza virus, increasing the risk of novel virus transmission to 

both pigs and to humans.  This has been illustrated during an outbreak of H1N1pdm2009 

on a research farm in Canada 202 and explored in mathematical models of the potential 

amplifying impact of such bi-directional transmission 203. 

Our findings overall are consistent with other work identifying increased risk of influenza 

A(H1N1)pdm09 in pig industry workers compared to others with no occupational pig 

exposure. However, they could not exclude cross reactivity between other SIVs and 

influenza A(H1N1)pdm09 as the cause 193,197; and others have reported no increased risk 

194,204.  We found evidence of an increased risk of the A(H1N1)pdm09 strain which is 

known to affect both pigs and humans in pig industry workers even after controlling for 

potential cross-reactivity and the effect was not due to confounding by age, region, and 

time of sample or vaccination status. 

With regard to other SIV strains other than A(H1N1)pdm09, previous studies found an 

increased risk of seropositivity to at least one SIV in pig workers, including H1N1 
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181,182,191,193,195–197,205,206, H1N2 182,192,195, and H3N2 192–194 strains. In our study, we found 

increased risk of seropositivity both to swine H1N2 and H3N2 Perth.  This increased risk 

remained after controlling for potential cross reactivity with measured strains. The 

increased risk of seropositivity to swine H1N2 is consistent with occupational exposure. 

The increased risk of H3N2 Perth (a human strain) was not explained by cross reactivity to 

swine H3N2 87. Others have found H3N2 Perth strain assays to cross react strongly with 

swine H3N2 207.  Thus, it is plausible that the increased risk of H3N2 seropositivity in pig 

workers in our study was due to cross-reactivity with an unmeasured H3N2 swine strain.   

Similarly, the high levels of the historical swine H3N2 87 in the general population in our 

study could be due to cross reactivity with unmeasured human H3N2 strains. 

In contrast to all the previous studies which compared pig workers to highly selective 

groups, our work has the advantage of using a general population comparison group, 

frequency matched for age, region, month of bleed and gender.  Although we could not 

exclude pig exposure in the control group, such exposure is likely to be rare in the general 

UK population.  The work is challenged by limited ability of laboratory tests to exclude 

cross-reactivity between all viral strains, a common issue with studies of this nature.  Future 

work using micro-neutralisation assays would reduce concerns over cross-reactivity. 

It is generally considered that influenza virus reassortment with significant pandemic 

potential is most likely to occur in developing country “hotspots”208, where the 

demographic, cultural and economic circumstances and animal husbandry practices 

together result in settings of dense overlaps between humans and animal populations and 

opportunities for cross-species transmission. However, given my findings, and 

observations of new reassortant strains elsewhere in Europe209,210, there should be no 

assumption that reassortment with possible zoonotic risk does not occur in industrialised 

settings. 

The study was unable to examine whether there was also an increased risk of clinical 

disease in pig industry workers, but the work suggests the need for coordinated enhanced 

surveillance in both pigs and pig industry workers.   Observations from this study also offer 

strong supporting evidence that pig industry workers should be among the occupational 

groups offered annual seasonal influenza vaccination. Preventing influenza infection in 

people who work with pigs would seem to be a logical option to minimise the risk of 
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transmission of human variants into pigs, and by extension to reduce the possibilities for 

reassortment in pigs. 

4.7 Relevance to COVID-19 

Despite being entirely different species of respiratory viruses there are many similarities 

between SARS-CoV-2 (the virus which causes COVID-19) and influenza viruses.  

Focusing on the broad similarities at the human/animal interface, the zoonotic origins of 

the SARS-CoV-2 virus, the fact that the initial outbreak was linked to a live wet market 

and even its geographic location are all reminiscent of avian influenza outbreaks in birds 

and subsequent sporadic zoonotic cases in humans.   

The research I describe above highlights two cross-cutting issues.  Firstly, sporadic 

zoonotic human infections with (in this case) swine-adapted influenza viruses are common.  

Secondly, animals (in this case pigs) can become reservoirs of human-adapted viruses 

which not only increases opportunities for viral evolution but also increases the likelihood 

of human infections from that reservoir.  These same issues (frequent zoonotic infection 

and animal populations maintaining viral strains which can infect humans and drive the 

evolution of new, potentially dangerous strains) are also relevant to SARS-CoV-2. 

The SARS-COV-2 virus comes from the Coronaviridae family of RNA viruses which, like 

influenza viruses, have a wide range of host species including humans and other mammals 

and birds211,212.  Coronaviruses have a number of molecular mechanisms that can lead to 

changes in the viruses’ ability to infect various types of cells, tissues and species.  Two 

important mechanisms include mutation, and homologus recombination which are 

analogous to influenza viruses’ genetic drift and viral reassortment, respectively213.  As a 

result of these and other mechanisms, coronaviruses frequently host-shift and these shifts 

have resulted in the establishment of novel animal and human diseases211,213. A great deal 

of work has been done to identify species that are known to be or are likely to be susceptible 

to the SARS-CoV-2 and related viruses214–219. This has been in the service of identifying 

the existence of an assumed primary and intermediary reservoir host species for SARS-

CoV-2 as well as other species which have the potential to become new reservoir hosts.   

There is also work being done to predict species that can host multiple coronaviruses and 

thus enable homologous recombination events211. Such events are a concern as they could 

introduce new phenotypes into the SARS-CoV-2 virus infecting humans and lead to 
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generation of new strains that could then become a threat to humans.  It is believed that 

homologous recombination events lead to the emergence of not only SARS-CoV-2 but also 

previous SARS-CoV and MERS-CoV, two virulent coronaviruses that have recently 

emerged in humans220. 

Although modelling has suggested there are many potential species that are susceptible to 

SARS-CoV-2 and related viruses, natural infections have mostly been limited to  carnivores 

including domesticated dogs and cats, large cat species (lions, tigers, pumas and leopards), 

gorillas and mustelids (mink and ferret)211,216.  Among the species susceptible to human-

transmitted SARS-C0V-2, only mink has demonstrated the ability to infect humans215,219.  

Similar to the dynamics we described with pandemic H1N1 and pigs in the UK, the 

Netherlands and Denmark saw explosive outbreaks of SARS-CoV-2 on mink farms caused 

by multiple introductions of the virus from humans to mink as well as transmission from 

mink to human 215,219,221–223.   Even more concerningly, once the virus was circulating 

among mink, new mink-related variants evolved which not only readily spread among 

mink, but also spilled over into mink workers who then spread the mink-variant within the 

community219,221,223.  Some of the mutations in the mink-related variants were on the spike, 

the protein that enables entry into cells and is the primary target for antibodies221.  Concerns 

that transmission between mink and humans could lead to changes in viral fitness, 

transmissibility, antigenicity and virulence, prompted a number of control measures 

including the nation-wide culling of all mink in Denmark and the Netherlands 219,222,222.   

In general, options for response to mink infections as suggested by the European Centres 

for Disease Control (ECDC) include221: 

1) human testing, sequencing and characterisation of antigenic properties and 

virus infectivity 

2) infection prevention and control measures for mink farm workers and 

visitors 

3) animal testing and prevention of spread from animals 

4) development of One Health preparedness and response strategies (e.g. co-

ordination and between human, animal and environmental health sectors) 
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Although influenza and SARS-CoV-2 are different viruses, the underlying epidemiology 

and response to infection and transmission of the viruses in farmed animals and the people 

who work with them are very similar. The list of response options above for infections with 

mink are similar to what you might expect, for example, in the UK to avian influenza 224,225 

although perhaps to a lesser degree as cases in animals are relatively uncommon, zoonotic 

human cases even less so and currently no human-to-human transmission.  In the swine 

influenza research presented in this chapter, I advocated for both increased and coordinated 

surveillance in animals and the people that work with them.  I also suggested that we 

consider those occupationally exposed to pigs as a high-risk group who should be offered 

vaccination in order to prevent transmission to or from pigs.  These recommendations are 

in line with the broad response options listed above for SARS-CoV-2.   

While the culling of millions of minks is tragic, we are lucky that common livestock 

animals such as poultry, pigs and cattle do not appear to be susceptible to SARS-CoV-2 

infection and at the moment appear unlikely to play a role in the epidemiology of the virus, 

apart from outbreaks of Covid-19 in meat-packing facilities which is due to the 

environment and lack of social distancing within those facilities rather than the meat itself 

218,226,227.  It seems sensible however to try to limit interactions between infected and/or 

humans and animals (and visa-versa) and potentially consider SARS-CoV-2 as one 

possible source of infection in investigations of disease outbreaks in livestock in order to 

confirm the virus has not jumped species.  More generally, I would also recommend 

increased surveillance as well as epidemiological and evolutionary research on viruses at 

the human/animal interface as I believe there is underappreciation of the scale of the 

problem and there is still much to learn about it.   
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 Measuring Infection and Immunity during a pandemic 

using serial, cross-sectional seroprevalence surveys 

This analysis describes the serological results of the PIPS serological survey.  Sections of 

this chapter have been adapted from my first author paper published in Public Health 

Research 98. It presents the population-level immunity and infection (as determined by 

strain-specific seroprevalence at particular antibody titres) to pandemic H1N1 and H3N2 

strains over time and by other characteristics such as age group, sex and vaccination status.   

5.1 Attribution 

I managed the PIPS study, data collection and data management.  I developed the overall 

analytical strategy as well as the initial statistical programmes for this analysis which was 

then built on by Dr Ruth Blackburn (my maternity leave cover) and my supervisor Prof 

Hayward.  They finished the analysis and wrote the initial report of findings for the funder 

(which focused on results and discussion) while I was on maternity leave. I have since 

rewritten the report in the format of a journal article for the purposes of publishing and for 

inclusion in this thesis. More specifically, I conducted the literature review and wrote the 

introduction and methods section and restructured and expanded the discussion and 

conclusion sections to a large extent. 

5.2 Abstract 

Background: Assessing severity and spread of a novel influenza strain at the start of a 

pandemic is critical for informing a targeted and proportional response. It requires 

community-level studies to estimate the burden of infection and disease. We developed and 

piloted an efficient, real-time, serosurveillance system that could theoretically be rolled out 

quickly by linking with the Health Survey for England (HSE), a large, annual, nationally 

representative rolling survey.   

Objectives: To estimate the proportion of the population with detectable and protective 

(titres ≥1:40) levels of antibodies against A(H1N1)pdm09 and A(H3N2) and how these 

levels vary by age group, sex, vaccination status and calendar month.  

Methods: We added additional questions and blood specimen collection for adults aged 16 

and over to HSE between October 2012 and March 2013. Data and sera samples were sent 
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to University College London Hospital and tested using Haemagluttinin Inhibition Assays 

to A(H1N1)pdm09 and A(H3N2). 

Results: There were 1870 participants, 577 of whom were vaccinated that season. Over the 

course of the 2012/13 influenza season, the proportion of the unvaccinated population who 

had detectable antibodies to A(H1N1)pdm09 rose by 42% (95% CI [33% - 51%]).  The 

corresponding figure for A(H3N2) was 24% (95% CI [12%-37%]). Using a higher 

threshold titre of 1:40 the cumulative increase was 38% (95% CI [29% - 46%] for 

H1N1pdm2009 and 27% (95% CI [16%-37%]) for A(H3N2).  Prior to the A(H1N1)pdm09 

epidemic wave, approximately 50% of adults have detectable and 30% protective 

antibodies against A(H1N1)pdm09.  For A(H3N2) these figures were 50% detectable and 

35% protective.  Immediately following the epidemic peak, levels of detectable antibodies 

against A(H1N1)pdm09 were approximately 80% and protective levels 50-60%.  For 

A(H3N2) these figures were 60-70% and approximately 55% respectively. 

Conclusion: A high proportion of the population are infected over the course of a few 

months. This estimate is much higher than estimates based on virologically confirmed cases 

and also higher than the number of serologically confirmed cases in community studies 

which rely on 4-fold titre rises.  Our results may also shed light on the level of strain-

specific antibodies in the English population that permit and curtail epidemic spread of 

influenza. 

5.3 Introduction 

At the beginning and throughout an influenza pandemic it is critical to have accurate and 

regularly updated estimates of the proportion of the population that is likely to be 

susceptible to the pandemic virus and the frequency and distribution of infections that have 

already occurred92.  These estimates are essential for many public health decisions as they 

provide insight into the potential and actual spread of infection, denominators for severity 

estimates and parameters for transmission models which can estimate the current and near-

future trajectory of the epidemic curve as well as the likely impact and cost-effectiveness 

of public health interventions5.  Assessing population-level immunity, incidence and spread 

of infection requires representative serological surveys which quantify individuals’ cross-

reactive antibody titres.  
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Prior to the COVID-19 pandemic most serological surveys relied on convenience serum 

samples, i.e. samples that have been previously collected for other purposes such as residual 

clinical samples or blood banks.  While these samples have their advantages in terms of 

availability and low cost, they often introduce bias and lack relevant, linked, individual-

level data such as age and sex and almost always lack vaccination history which is 

necessary for determining whether a high antibody titre was caused by natural infection or 

whether it could have been caused by influenza vaccination129.  Another challenge of 

serological surveys is the lead-time and resource needed to set up such studies.  In order to 

have the most impact on public health response to a pandemic, serological findings need to 

be available as soon as possible and the timelines during a pandemic typically do not lend 

themselves for the initiation of new research studies within the first wave of infection, 

particularly serological surveys98,228 

The PIPS study, a previously described98, cross-sectional serological survey, was designed 

to overcome the aforementioned challenges and establish an efficient system allowing the 

real-time assessment of population susceptibility, spread of infection and clinical attack 

rates in the event of a pandemic98.  It aimed to avoid the challenges presented by long lead-

times for serological studies by leveraging the data collection already being done as part of 

the Health Survey for England (HSE), an annual, nationally representative, rolling survey.  

The HSE collects health related data and serum samples from individuals throughout each 

calendar year. Our study simply adds a few extra influenza-related questions and an 

additional blood sample to their regular data collection process. The PIPS study is 

incorporated into the yearly HSE ethics and other necessary approval and maintains its 

readiness to activate within two weeks of triggering.  Another advantage of collecting data 

through the HSE is the ability to collect linked, individual-level data on age, sex and 

crucially, vaccination status.  A limitation of the study design is that it relied on the 

continuation of specimen collection during the pandemic.  Although the HSE continued as 

normal during the 2009 influenza pandemic, there is a risk that in a more severe pandemic 

the HSE would cease household visits.  As part of the PIPS project, we initiated a full-scale 

pilot of the study during the 2012-13 interpandemic winter season.   

According to national surveillance, influenza activity in England during the 2012-13 winter 

season was a relatively low but unusually long with elevated activity from week 50 to 

16229,230.  There was a mix of influenza viruses circulating with influenza B predominating, 
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followed by A(H3N2) and smaller amounts of A(H1N1)pdm09 (Figure 5-1, taken from 

national surveillance report)230.  It was also an unusual season in that influenza B peaked 

earlier in the season than influenza A, a pattern that is usually switched.  A relatively large 

influenza B wave began around week 46 and peaked in week 52.  Circulation of A(H3N2) 

and unsubtyped influenza A increased around week 48 and peaked in week 8 but continued 

to circulate for a prolonged period, with highest activity in the 45+ age group.  A smaller 

A(H1N1)pdm09 wave started later around week 52 but also peaked in week 8230.   Vaccine 

efficacy was estimated to be moderate against influenza B (51%), good against A(H1N1) 

(73%) but was poor against A(H3N2) (26%) with some evidence in intra-seasonal waning 

of vaccine efficacy for A(H3N2) over the course of the long influenza season229. Although 

influenza activity was relatively low in the 2012-13 season, it was higher than the previous 

winter season in 2011-12 which was particularly low and late230,231.  This season was 

dominated by A(H3N2) although small amounts of influenza B were also detected231.  That 

year vaccine efficacy against A(H3N2) was poor at 23% and some have argued that this 

may partly be due to intra-seasonal waning of immunity232. Prior to this the influenza 

landscape was dominated by the then-new A(H1N1)pdm09 which circulated in a summer 

wave in 2009, a larger winter wave in 2009-10 and an intense third wave in winter 2010-

11 which also included some influenza B and peaked in week 52.  Other influenza subtypes 

(A(H3N2) and the previously circulating A(H1N1)) were largely absent in those two years 

15,233. 
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Figure 5-1: Weekly number of all age influenza positive samples by subtype through the Datamart 

system and proportion positive by influenza type, England* 

 

*Figure taken from “Surveillance of influenza and other respiratory viruses, including 

novel respiratory viruses, in the United Kingdom: Winter 2012/13” 230 

 

5.4 Methods 

 Health Survey for England 

The Health Survey for England (HSE) is a series of annual surveys that have been 

documenting the health of the population since 1991.  The surveys are designed to be 

representative of private households in England and employ a stratified random probability 

sampling design.  The HSE is a rolling survey and collects data and samples throughout 

the calendar year.  Households that agree to participate are visited twice.  At the first visit, 

a trained interviewer collects information from household members about their health and 

behaviours that may affect their health.  The second visit is conducted by a nurse who 

collects additional information, body measurements and biological samples (including 

blood samples from those aged 16 years and older).   
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 PIPS adaptations and data collection 

Between the months of Oct 2012 – March 2013, the PIPS project added an extra 5ml blood 

sample (one extra vial) to the existing phlebotomy process at the nurse interview.  These 

blood specimens were sent alongside the rest of the HSE specimens to the Newcastle 

General Hospital Microbiological laboratory.  On arrival, the specimens were centrifuged, 

split into two aliquots of serum and frozen at -80C.  They were later transferred to the 

University College London Hospital (UCLH) microbiology laboratory for serological 

analysis.  The nurses additionally collected information from all household participants.  

These data included participants’ self-reported experience of a ‘respiratory illness’ in the 

last month, whether they have had an influenza vaccination and if so the month and year of 

the most recent one.   For those who contributed blood samples, this information, along 

with age, sex, region, date of blood sample and participant ID were transferred onto a 

project-specific despatch form which accompanied the associated blood samples.   

 Serological Analysis 

Frozen serum samples were thawed and tested using Haemagglutinin Inhibition Assays 

(HAI) to H1N1pdm2009 and Influenza A(H3N2) with 2-fold serial dilutions from 1:20 to 

1:1280.  Antibody titres were calculated as the reciprocal of the highest dilution which 

prevented hemagglutination. 

We had two primary serological outcomes: ‘detectable antibody’ which corresponded with 

a titre of 20 (the minimum detection level) and ‘protective antibodies’ which corresponded 

with antibodies levels at or greater than 40.   We also had two secondary outcomes; 

influenza vaccination status for the 2012/13 season (to evaluate vaccine uptake) and 

respiratory illness in the month prior to specimen.  

 Statistical Analysis 

We present simple descriptive analyses, separately for each virus.  Using the binomial 

formula, we calculated the proportion and 95% confidence intervals of the population with 

detectable and the proportion with protective antibody levels in the overall sample and 

stratified separately by age group, sex, region, month of specimen, vaccination status and 

respiratory illness in the month prior to specimen.  We explored associations among these 

factors and our serological outcomes for each virus using logistic regression.  We then 
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repeated these calculations for each virus separately among individuals vaccinated to the 

2012/13 influenza season and those not vaccinated for that season. We calculated 

seroprevalence and cumulative incidence of infection at detectable and protective threshold 

antibody levels by month and age group both overall and by vaccination status.  We also 

calculated cumulative vaccine uptake by age and month and proportion of participants with 

a respiratory illness by month and age group. 

5.5 Results 

 Overall Characteristics 

The characteristics and serological outcomes of the 1870 participants are presented in Table 

5-1.  There were 594 participants aged 16-44 (32%), 734 aged 46-64 (39%) and 542 aged 

65 and over (29%).  There were 1008 females (54%) and 845 males (46%).  The regional 

distribution of participants was close to that of the adult population of England (10% North 

East, 13% North West, 8% Yorkshire and Humber, 9% East Midlands, 10% West 

Midlands, 12% East, 29% in London and the South East, 10% South West).  Apart from 

December when only 168 specimens were collected, the number of specimens collected 

each month ranged from 299 in October to 371 in February.  1123 participants were 

unvaccinated (60%, 95% CI [58-62]), 190 had been vaccinated for previous seasons (10%, 

95% CI [9-12]) and 557 had been vaccinated for the 2012/13 season (30%, 95% CI [8-32]).  

383 participants (21%, 95% CI [19% - 23%]) reported experiencing a respiratory illness in 

the last month.  1195 samples had detectable antibody titres to H1N1pdm2009 (64%, 95% 

CI [62% - 66%]) including 731 (39%, 95% CI [37% – 41%]) with titres of greater than or 

equal to forty (the cut off commonly used to indicate protective antibody levels).  Similarly, 

1087 samples had detectable antibody titres to A(H3N2) (58%, 95% CI [56% - 60%]) 

including 797 (43%, 95% CI [40% - 45%]) with titres of greater than or equal to forty. 

 Risk factors for detectable and protective antibodies  

For both A(H1N1)pdm09 and A(H3N2), vaccine status and later month within the winter 

flu season had a marked influence on detectable and protective antibody levels (Table 5-

1).  For A(H3N2), but not A(H1N1)pdm09 the 65+ year age group had higher titres.  When 

focusing on the unvaccinated, the higher A(H3Ns) titres seen in the 65+ age group were no 

longer seen.    
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 A(H1N1)pdm09 

Individuals vaccinated for the 2012/13 influenza season had the highest levels of detectable 

antibodies (79%, 95% CI [75% - 82%]) and protective antibody titre levels (56%, 95% CI 

[52% - 60%]).  In the overall population there was no association between age and 

detectable or protective antibody levels.  In the unvaccinated population (Figure 5-2a) the 

proportion with detectable and protective antibodies declined with age group (Chi2 p=0.003 

and p=0.007, respectively) with oldest age groups having the lowest levels of detectable 

(43%, 95% CI [34-53]) and protective (22%, 95% CI [15-31]) antibodies.  The percentage 

of vaccinated participants (Figure 5-3a) with protective antibody titres declined with age 

from 64% (95% CI [53-73]) in those aged 16-44 to 48% (95% CI [43-53]) in those aged 

65+ (Chi2 p=0.003).  There was no evidence of an association between age and detectable 

antibody titres (Chi2 p=0.16).  There were no significant differences in proportions with 

detectable or protective antibodies between men and women, between those who did or did 

not report a respiratory illness in the month prior to the bleed or between regions. 

 A(H3N2) 

Individuals vaccinated for the 2012/13 influenza season had the highest levels of detectable 

antibodies (77%, 95% CI [74-81]) and protective antibody titre levels (67%, (95% CI [63-

71]). In the overall population, the oldest age group (65+) had the highest levels of both 

detectable and protective A(H3N2) antibody levels.  In the unvaccinated population (Figure 

5-2b) there was no evidence of an association between age and detectable antibody titre 

(Chi2 p=0.09).  However, protective antibody titres were less common among participants 

aged 45-64 years (24%, 95% CI [21-28]) than people aged 16-44 years (32%, 95% CI [28-

36]) (Wald test p=0.008). The percentage of vaccinated participants (Figure 5-3b) with 

protective antibody titres did not vary with age (Chi2 p=0.3).  However, a greater proportion 

of the vaccinated over 65s had detectable antibody titres (79% [95% CI: 75-3] versus 68% 

[95% CI: 58-77] in 16-44 years, Wald test p=0.02).  There were no significant differences 

in proportions with detectable or protective antibodies between men and women, or 

between those who did or did not report a respiratory illness in the month prior to the bleed. 

However, the proportion with protective antibody titres was significantly lower - amongst 

both vaccinated (54% [95% CI: 41-67] versus 65% [95% CI: 61-68]) and unvaccinated 

participants (21% [95% CI: 13-29] versus 29% [95% CI: 26-31]) - for the North East than 

other regions (Wald p=0.01 in both instances). 
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Table 5-1: Serology Results for A(H1N1)pdm09 and A(H3N2) for all participants 

All participants   All Participants A(H1N1)pdm09 A(H3N2) 

Characteristic Category 
 

N 

 
Detectable antibodies Titre >=40 

Detectable 

antibodies 
Titre >=40 

% (95% CI) N % (95% CI) N % (95% CI) N % (95% CI) N % (95% CI) 

Age (years) 

16-44 594 32 (30-34) 379 64  (60-68) 232 39  (35-43) 305 51  (47-55) 215 36  (32-40) 

45-64 734 39 (37-42) 443 60  (57-64) 266 36  (33-40) 384 52  (49-56) 270 37  (33-40) 

65+ 542 29 (27-31) 373 69  (65-73) 233 43  (39-47) 398 73  (70-77) 312 58  (53-62) 

Gender* 
Male 845 46 (43-48) 540 64  (61-67) 311 37  (34-40) 473 56  (53-59) 337 40  (37-43) 

Female 1008 54 (52-57) 641 64  (61-67) 410 41  (38-44) 603 60  (57-63) 450 45  (42-48) 

Month 

Oct 299 16 (14-18) 147 49  (43-55) 72 24  (19-29) 172 58  (52-63) 121 40  (35-46) 

Nov 361 19 (18-21) 172 48  (42-53) 102 28  (24-33) 213 59  (54-64) 146 40  (35-46) 

Dec 168 9 (8-10) 92 55  (47-62) 51 30  (23-37) 80 48  (40-55) 58 35  (27-42) 

Jan 336 18 (16-20) 215 64  (59-69) 136 40  (35-46) 165 49  (44-54) 125 37  (32-42) 

Feb 371 20 (18-22) 290 78  (74-82) 172 46  (41-51) 230 62  (57-67) 167 45  (40-50) 

Mar 335 18 (16-20) 279 83  (79-87) 198 59  (54-64) 227 68  (63-73) 180 54  (48-59) 

Vaccine 

No 1123 60 (58-62) 617 55  (52-58) 332 30  (27-32) 517 46  (43-49) 317 28  (26-31) 

Yes, not 2012 190 10 (9-12) 140 74  (67-80) 89 47  (40-54) 141 74  (68-80) 106 56  (49-63) 

Yes, 2012 season 557 30 (28-32) 438 79  (75-82) 310 56  (52-60) 429 77  (74-81) 374 67  (63-71) 

Respiratory 

illness in last 

month** 

No 1436 79 (77-81) 927 65  (62-67) 569 40  (37-42) 840 58  (56-61) 606 42  (40-45) 

Yes 383 21 (19-23) 231 60  (55-65) 141 37  (32-42) 221 58  (53-63) 174 45  (40-50) 

*missing 17 observations 

**missing 51 observations 
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Figure 5-2: Antibodies to A(H1N1)pdm09 (a) and A(H3N2) (b) in the 2012/13 influenza season in 

vaccinated participants 

a) 

 

b) 
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Figure 5-3: Antibodies to A(H1N1)pdm09 (a) and A(H3N2) (b) in the 2012/13 influenza season in 

unvaccinated participants 

a) 

 

b) 
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 Serological changes over the influenza season 

 A(H1N1)pdm09 

Overall half (49%, 95% CI [43-55]) of participants had detectable A(H1N1)pdm09 

antibodies in October rising to 83% (95% CI [79%-87%]) in March.  The proportion with 

protective titres rose from 24% (95% CI [19%-29%]) in October to 59% (95% CI [54%-

64%]) in March (Table 5-1).  In the unvaccinated, 36% (95% CI [29%-43%]) had 

detectable antibodies in October rising to 78% (95% CI [72%-84%]) in March (Chi2 

p<0.001). The proportion of unvaccinated participants with protective titres rose from 14% 

(95% CI [9%-19%]) in October to 52% (95% CI [45%-59%]) in March (Chi2 p<0.001) 

(Figure 5-2a).  Thus, compared to the beginning of the influenza season an additional 42% 

(95% CI [33% - 51%]) of the unvaccinated population had detectable H1N1pdm2009 

antibodies by the end of the season and an additional 38% (95% CI [29% - 46%] had 

protective antibody titres. 

Figure 5-4a displays the increase in the percentage of the unvaccinated population with 

detectable A(H1N1)pdm09 antibody titres compared to the previous month (monthly 

increase) and the increase since October for each month (cumulative increase). For all age 

groups combined, the greatest monthly increase in detectable titres was seen when 

comparing February to January (52%, 95% CI [45%-49%] to 75%, 95% CI [69%-80%] 

respectively).  Compared to January an additional 23% (95% CI [14%-31%], Chi2 p<0.001) 

of the unvaccinated population had detectable H1N1pdm2009 antibodies, indicating peak 

circulation in the January to February period.  The timing of this peak is the same in the 

national virological surveillance data (Figure 5-1).  Patterns were similar for all age groups 

although the numbers of unvaccinated participants per month in those aged > 65 are low, 

resulting in less clear patterns.  The cumulative increase from October through March was 

42% (95% CI [30%-55%], Chi2 p<0.001) in those aged 16-44 and 46% (95% CI [33%-

59%], p<0.001) in those aged 45-64.  In those aged 65+ the cumulative increase from 

October to February was 52% (95% CI [25%-79%], Fisher’s exact p=0.003) but then there 

was a decline in March to 32% (95% CI [6%-58%], Fishers exact p=0.045), which may 

reflect precision of estimates due to modest sample size and low incidence during this time 

period, or instability of antibody response in the elderly.   
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Figure 5-4:  Monthly and cumulative (October baseline) increases in proportion of individuals with a) 

detectable A(H1N1)pdm09 and b) A(H3N2) (December baseline) antibody titres in unvaccinated 

participants 

a) 

 

b) 
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 A(H3N2) 

In contrast to A(H1N1)pdm09, overall levels of A(H3N2) antibodies declined between 

October and December, with increased levels thereafter. Between 48% (95% CI [40%-

55%]) in December and 68% (95% CI [63%-73%]) in March of participants had detectable 

A(H3N2) antibodies.  The proportion with protective titres reported from a given month 

fluctuated between 35% (95% CI [27%-42%]) in December to 54% (95% CI [48%-59%]) 

in March (Table 5-1).  In the unvaccinated 34% (95% CI [23%-44%]) had detectable 

antibodies in December rising to 58% (95% CI [51%-65%]) in March (Chi2 p<0.001). The 

proportion of unvaccinated participants with protective titres rose from 13% (95% CI [6%-

21%]) in December to 40% (95% CI [33%-47%]) in March (Chi2 p=0.01) (Figure 5-2b).  

This finding equates to an additional 24% (95% CI [12%-37%]) of the unvaccinated 

population having detectable A(H3N2) antibodies between December and March and a 

similar proportionate increase at 27% (95% CI [16%-37%]) in protective antibody titres.  

Figure 5-4b shows the increase in the percentage of the unvaccinated population with 

detectable A(H3N2) titres compared to the previous month (monthly increase) and the 

increase relative to December for each month (cumulative increase). Across all age groups 

the greatest monthly increase in detectable titres was seen when comparing February to 

January (36%, 95% CI [30%-43%] to 53% (95% CI [46%-59%] respectively). Compared 

to January an additional 17% (95% CI [8%-26%], Chi2 p<0.001) of the population had 

detectable A(H3N2) antibodies, indicating peak circulation in the January to February 

period. Patterns were broadly similar for all age groups. This broadly corresponds with 

national surveillance data (Figure 5-1), which shows H3N2 peaking in week 8. The 

cumulative increase from December through March was 32% (95% CI [11%-52%], 

Fisher’s exact p=0.01) in those aged 16-44 and 17% (95% CI [0%-34%], Chi2 p=0.05) in 

those aged 45-64. In those aged 65+ the cumulative increase from December to February 

was 56% (95% CI [24%-87%], Fisher’s exact p=0.013) but then there was a decline in 

March to 49% (95% CI [21%-77%], Fisher’s exact p=0.019), which is similar to the pattern 

observed for A(H1N1)pdm09.   
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 Secondary outcomes 

Cumulative vaccine uptake plateaued by December, reaching 75% (95% CI; 62-84%) in 

those aged 65+, 28% (19-39%) in those aged 45-64 and 16% (7-33%) in those aged 16-44.  

The percent reporting a respiratory illness in the month prior to recruitment (Figure 5-5) 

peaked in November at 26% (95% CI; 19-35%) in those aged 15-44.  In those aged 45-64 

the peak was in March (29%; 21-32%).  In those aged 45-64 the peak was in November 

(19%; 13-28%).  Rates of respiratory illness were consistently lower in those aged 65+ than 

younger age groups (Wald p=0.001).   

Figure 5-5: Reported respiratory illness in the previous month 
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5.6 Discussion 

 Summary and relevance of key findings 

Our results show that a high proportion of the English population is infected with influenza 

over the course of a few months. Infection with A(H1N1)pdm09 was common with 42% 

(95% CI [33% - 51%]) of the unvaccinated population moving from undetectable to 

detectable H1N1pdm2009 antibodies; the equivalent figure for A(H3N2) was 24% (95% 

CI [12%-37%]). Using a higher threshold titre of 40 the cumulative increase was 38% (95% 

CI [29% - 46%] for H1N1pdm2009 and 27% for A(H3N2) (95% CI [16%-37%]).  These 

serological estimates of the cumulative incidence of infection will invariably be far higher 

than those based on virological surveillance of cases seeking medical care since the 

majority of cases are mild and self-limiting.  Additionally, asymptomatic infections account 

for 25% to 77% of all infections 14,15,70. Our cumulative incidence estimates are also higher 

than those typically estimated from community cohort studies (10-20%) which identify 

infections based on a four-fold rise in antibody titre from pre- and post-season serological 

samples 15,163,234.  Some have argued, however, that many infections have a lower than 4-

fold increase in antibody titre so cumulative incidence estimates based on 4-fold rises may 

be underestimates 162.  Regardless, both methods indicate that a substantial proportion of 

the population is infected with circulating strains each year.  We also found evidence of 

A(H3N2) antibody waning in the autumn of 2012, albeit with wide confidence intervals.  

These findings are consistent with the fact that the previous influenza season was relatively 

late in the spring and A(H3N2) was the dominant circulating strain231.     

This study may shed light on the levels of antibodies in a population that enable and curtail 

epidemic spread.  Community transmission shapes the rise and fall of epidemics.  Many 

factors related to the virus, the host and the environment influence transmission including 

host population mixing patterns and immunity, probability of infection per contact, and 

climatic factors235.  In temperate zones of the Northern and Southern hemispheres, 

influenza typically causes annual epidemics in winter months18.  This seasonal pattern is 

thought to be partly driven by climatic factors including temperature and humidity levels236.  

The seasonality patterns in temperate zones may also be driven in part by the changing 

levels of immunity in the population over the course of a year. The annual wave of 
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infections and vaccinations stimulates population-level antibodies and increases 

corresponding immunity.  As population level immunity builds, the number of susceptible 

individuals is depleted, reducing community transmission and the corresponding 

reproduction number (R).  The reproduction number is the average number of secondary 

infections arising from one infection.  When R>1 the rate of infections and the 

corresponding epidemic curve rise, when R=1 the rate of infection is stable and the 

epidemic curve is flat and when R<1 the rates of infection and the epidemic curve fall. Over 

time individuals’ antibody responses and corresponding immunity wane and this leads to a 

replenishing of the number of susceptibles in the population, allowing the cycle to begin 

again.   

In this study we found that at a time when up to approximately 50% of adults have 

detectable antibodies against A(H1N1)pdm09 and up to approximately 30% of adults have 

protective antibodies, A(H1N1)pdm09 was able to spread epidemically.  For A(H3N2) 

epidemic spread began when approximately 50% of adults had detectable antibodies 

against A(H3N2) and approximately 35% had protective levels.  These low levels may 

correspond with an immune environment whereby spread is feasible given other conditions 

that favour transmission such as colder weather.  We also found that when detectable 

antibodies against A(H1N1)pdm09 reached approximately 80% in adults and protective 

levels around 50-60%, the incidence and the epidemic curve began to fall.  Likewise, for 

A(H3N2) the epidemic began resolving when detectable titres reached 60-70% and 

protective titres reached approximately 55%. These higher levels of antibodies, captured at 

a time that represents the peak of transmission (e.g. a few weeks prior to date of specimen 

collection) may correspond with an immune environment that restrains transmission.  

These findings may give us insight into the herd immunity threshold which is the proportion 

of the population that would need to be immune for incidence to decline.  It is calculated 

as 1-1/R0, where R0 is the Basic Reproduction, a special case of R, representing the average 

number of secondary cases arising from one typical case in a fully susceptible population.  

Therefore, knowledge of herd immunity threshold would also give insights to strain-

specific R0.   
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The herd immunity threshold is often discussed in terms of vaccination programmes and 

the desire to reduce or even eliminate vaccine preventable diseases by vaccinating 

populations to the extent that they reach herd immunity237. R0 and R are important measures 

of transmissibility and are critical parameters used in dynamic transmission modelling.   

While the herd immunity threshold is a very useful concept for some well-understood 

infections in well-characterised populations, a herd immunity threshold for influenza brings 

challenges both in terms of calculation and interpretation. R0 and by extension the herd 

immunity threshold are not static values as they depend on factors affecting transmission 

which vary by population and virus strain and over time (i.e. seasonal weather patterns).  

Additionally, defining the proportion of the population immune to influenza is difficult 

because influenza serology thresholds do not produce a dichotomous outcome of immune 

or susceptible.  Although titres of 1:40 and over are often equated to immunity, in fact they 

correspond to 50% protection against infection159,238.  For this reason, methods which map 

each titre to its corresponding level of protection and then summarizing these values across 

the population234,239 may be a better approximation of the proportion that is immune.    

To further investigate whether the population-level antibody levels we found represent true 

immune environments which enable and curtail epidemic spread in England, it would be 

useful to repeat similar cross-sectional sero-surveys to see if the strain-specific antibody 

levels at the start and the peak of epidemics remain consistent over multiple seasons. 

Crucially, these surveys would also need to include children as they are thought to be key 

drivers in seasonal influenza epidemics due to higher levels of infection and contact 

patterns.  Their immune status as measured by antibody levels may be more impactful on 

the propagation of seasonal epidemics than levels in adults240. Despite these caveats 

however, it is interesting to note that many previous estimates of seasonal influenza 

epidemics place R (combinations of R0 and R) consistently around 1.28 and pandemic R 

values between 1.46 – 1.8235.  These numbers give crude herd immunity thresholds at 22% 

and 32% to 44%.   
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 Severity of influenza  

By comparing serological evidence on population incidence of infection to national 

surveillance data on ILI consultations, viral isolations, hospitalisations and deaths we can 

infer a broad assessment of the severity of influenza infections.  

The fact that there were high levels of infection with H1N1pdm2009 and A(H3N2) but 

lower levels of ILI consultations and of virological isolation of these strains (particularly 

H1N1pdm2009)230 suggests that only a very small proportion of infections result in ILI 

consultation or virological confirmation.  This confirms previous finding of the low 

pathogenicity of the H1N1pdm2009 strain 15,241 and may be related to the finding that cross 

reactive T cell based immunity can prevent illness in those infected with influenza 242, and 

that most symptomatic influenza illnesses do not lead to a consultation 15.  The high levels 

of infection found in the current study but low levels of ILI consultation are consistent with 

these findings.  The fact that A(H1N1)pdm09 and A(H3N2) accounted for almost half of 

ICU admissions with confirmed influenza230 demonstrates the A(H1N1)pdm09 strain can, 

on rare occasions, still cause severe illness.  National surveillance showed that excess 

mortality was higher in this year than in recent years and was mainly due to respiratory 

illness in the elderly.  These reports also show that excess mortality peaked in January and 

February and that excess mortality coincided with peaks of H3N2, influenza B and RSV as 

well as with a period of unusually cold weather.  Our data show that the peak of excess 

mortality also coincided with the peak of A(H1N1)pdm09 infection suggesting infection 

with A(H1N1)pdm09 may also have made a contribution to excess mortality.  

We did not conduct influenza B serology, primarily because this study was focused on 

piloting pandemic influenza sero-surveillance and influenza B does not cause pandemics.  

However, it would have been interesting to compare the cumulative incidence of influenza 

B infection relative to surveillance estimates of virological confirmed cases and 

hospitalization, particularly as influenza B was widely circulating and accounted for 

approximately half of the influenza ICU admissions230. 
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 Design considerations 

The PIPS study overcame the limitations of using convenience serum samples (which are 

typically unrepresentative of the population and lack individual-level data such as 

vaccination) by simply adding an additional blood specimen and a few additional survey 

questions to the existing data collection of an annual, rolling, nationally representative 

survey (The HSE).  Another benefit of participating with the HSE was that it collected data 

and specimens throughout the year. This enabled our PIPS study to overcome the challenge 

of specimen timing as serum collection could be initiated quickly (important in a pandemic) 

and continue throughout the influenza season, enabling the monitoring of changes over 

time.  These study design elements enabled nationally representative analyses of infection 

and immunity broken down by key characteristics such age, sex, time, and region and, 

importantly, by vaccination status.  Knowledge of vaccination status enabled us to 

distinguish antibodies generated from natural infection from antibodies generated from 

vaccination.  Knowing the source of various antibodies (from vaccination or from 

infection) leads to more interpretable serology as well as the ability to answer even more 

questions about immunity and infection through sub-group analysis of vaccinated and 

unvaccinated individuals.  In comparison, a major serological survey56 conducted in 

England during the 2009 pandemic used residual serum samples from routine 

microbiological and chemical pathology testing which lacked individual-level vaccination 

data.  As a result, interpretation of results was more difficult following the roll-out of 

pandemic vaccination in Autumn of 2009.  The PIPS study was also designed to overcome 

the challenges that our group and many others experienced when conducting pandemic 

research generally and specifically collecting serological data. Many of these challenges 

were in the realm of logistics (i.e., very short time scales, costs, resources, pre-agreed ethics 

and approvals, etc).   

A key limitation to our study is the lack of prospectively collected clinical and virological 

data.  The cross-sectional nature of the data collection only enables retrospective reporting 

of respiratory illnesses which suffers from recall bias98,243,244.  Unlike prospectively 

collected data on influenza-like illness230, our symptomatic data did not vary by month, 

making this symptomatic data an ineffective tool for approximating influenza illness.  
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Ideally study participants would be invited into a prospective cohort study of respiratory 

illness and virological confirmation.  

Another limitation of the study is the fixed sample size of approximately 300 specimens 

per month.  The monthly sample sizes enable monthly estimates of cumulative incidence. 

However, the age-specific estimates have relatively wide confidence intervals.  This is in 

contrast to the large sero-survey conducted in England during the 2009 pandemic130,56 

which, through the use of residual clinical specimens, had access to many more specimens 

and was thus better powered for monthly age-specific rates of cumulative incidence than 

our study.   

Aside from power constraints, our statistical analysis has three main limitations130,245.  

Firstly, by analysing serological data by calendar month, our analysis cannot account for 

changing incidence within a given month, and incidence can change rapidly during an 

epidemic peak130,245. Secondly, the time it takes individuals to develop antibodies following 

infection is variable and even if all samples were taken on the same day, each result would 

represent incidence at different previous time points130,245. Finally, our estimation of 

incidence based on comparison of prevalence between time points reduces precision and 

this can cause negative point estimates in groups with low levels of incidence56,130,245,246.  

The latter may be the reason we estimated negative monthly change in cumulative 

incidence of H1N1pdom09 and H3N2 between February and March in the oldest age group, 

although this could also be due in part to antibody waning.  These limitations could be 

overcome to some extent in the future using likelihood-based methods which incorporate 

information on the changing clinical incidence over the course of the epidemic (as 

measured through surveillance) and the distribution of the time to seroconversion in 

conjunction with the exact specimen dates 130,245.  

Developing assays for new strains and conducting high throughput serological assays takes 

significant expertise and time.  Failure to maintain the expertise gained through this pilot 

is a threat to our study’s ability to provide timely information in the event of a pandemic. 

PHE is the only organization in England that currently maintains influenza serological 

expertise and capacity.  Given that PHE respiratory infection teams become extremely busy 
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during the influenza season and particularly during pandemics we feel there would be 

national value in maintaining the serological expertise developed through this project to 

enable ongoing serosurveillance through HSE. 

Whilst the PIPS study design of repeated cross-sectional surveys has solved many of the 

logistical issues and ensured representative samples, collected at the right times with the 

necessary associated individual-level data, there is still the question of whether cross-

sectional serological surveys are the best study design for estimating population immunity 

and rates of infection or whether longitudinal studies with paired or repeated serological 

samples are better.   

Researchers have investigated how estimates of the cumulative incidence from cross-

sectional seroprevalence studies compare with estimates from longitudinal cohort designs 

with paired sera.  Studies from the 2009 pandemic which compared estimates from cross-

sectional and longitudinal paired sera data collected in the same city during the same period 

found that the two study designs produced similar estimates, particularly in sub-groups with 

high incidence 246 and if baseline cross-reactive antibody levels were accounted for 247.  

Further simulation studies based on existing data have concluded that background levels of 

immunity and level of antibody boosting can affect the accuracy of seroprevalence 

estimates 248.  If background immunity is high then cross-sectional studies are more prone 

to bias than longitudinal paired designs248.  If background immunity is not high however 

the two designs produce similar results248. In situations where background immunity is high 

and/or post-infection boosting is low, then the ability to detect infections with low-level 

boosting in paired longitudinal sera would substantially increase the accuracy of 

estimations 248.   Further research on identifying and classifying infections due to low-level 

boosting is warranted.  

Apart from potentially less biased estimates of incidence, longitudinal paired serological 

studies have other benefits such as the ability to investigate antibody waning directly and, 

when coupled with prospective clinical follow-up, the ability to generate other important 

estimates such as the proportion of infections that remain asymptomatic, proportion of 

illnesses meeting various case definitions (such as those used in surveillance), and the 
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proportion of illnesses that consult 247.  In longitudinal studies however, serum samples are 

typically collected at two defined points and often try to bracket epidemics which may be 

hard to predict in advance.  More frequent sampling of individuals may not be feasible due 

to cost and participant follow-up fatigue so real-time estimates are unlikely to be as easy to 

generate in a longitudinal design compared to cross-sectional studies 247.  Another 

limitation of longitudinal studies, especially if they include clinical follow-up is that they 

are heavily resource intensive, making them more difficult to fund and run generally and 

especially difficult to fund on a continuous basis. Continuing surveillance is ideal to 

provide comparable pre-pandemic baseline measurements.  

The best choice of study design will invariably depend on factors which may be known in 

advance (e.g. the aims of the study, the resources available) but also on unknown factors 

such as the background level of immunity and incidence rates of novel pandemic virus. 

Given the uncertainty of pandemics and the need to respond quickly to changing 

circumstances, it is worth considering whether scalable adaptable or hybrid study designs 

can be developed in advance and continuously run, ensuring continuity of data and 

collection of the most suitable data. 

To maximise the value and the information generated by the PIPS study, we recommend 

that the study is run as an ongoing serosurveillance programme to provide information for 

both seasonal and pandemic influenza.  Ideally, our serosurveillance would also be linked 

to Flu Survey (or similar study) for prospective illness reporting and Flu Survey would be 

enhanced to include virological surveillance (virological testing was successfully piloted 

in 2014/15). Results of such a system combining community serological, clinical and 

virological surveillance could be incorporated into regular national situation reports and 

“now casting” models to inform the national response to seasonal and pandemic influenza. 

Other future modifications could be the incorporation of likelihood-based methods and the 

extension of the methodology to other endemic or emerging infections of public health 

importance.  Additionally, the study could be used as a base to develop and assess the 

accuracy of minimally invasive serological tests allowing the incorporation of children into 

serosurveillance.   
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5.7 Relevance to COVID-19 

The key risk of the PIPS study design was its vulnerability to interruption of sample 

collection by the HSE in the event of a severe pandemic.  In the spring of 2020, this is 

exactly what happened with COVID-19.  The HSE paused its household visits and as a 

result the PIPS study was not triggered.  Just prior to the COVID-19 pandemic, the study 

team had been in the process of moving the PIPS serology to Public Health England for 

long term viability.  After it was clear the study would not be triggered, we coordinated 

with the HSE and Public Health England to hand the study over to them so that they could 

run it as part of national surveillance when the HSE resumed, should they choose to do so.    

The need for data on population antibodies and infection remained and early in the 

pandemic, three large studies were initiated in the UK – the Coronavirus (COVID-19) 

Infection Survey249, the Real-Time Assessment of Community Transmission (REACT) 

study and the Virus Watch study. 

The COVID-19 Infection Survey was designed to estimate prevalence and incidence of 

symptomatic and asymptomatic SARS-CoV-2 infection in general population and how this 

varies over time using PCR analysis of nose and throat swabs.  It also aimed to estimate 

immunity to SARS-CoV-2 in the general adult population and how this varies over time, 

as reflected by immunoglobins and neutralising antibodies.  The study is a series of repeated 

cross-sectional surveys of representative households across the UK, with nested serial 

sampling of a subset of participants.  Household members aged 2 and over were invited.  

Different levels of follow up provided from a one home visit only, weekly visits for one 

month, or weekly visits for a month plus monthly visits for a year.  Initial sample size target 

of 11,000 households.  Visits collected health and socio-economic data, self-administered 

nasal swabs, blood specimens and self-reported symptoms.   

The REACT study is divided into four main programmes of work with REACT-2 being 

the most relevant for this discussion.  The REACT-2 study aimed to measure prevalence of 

SARS-CoV-2 antibodies in the community using home testing with lateral flow 

immunoassays (LFIA). After testing various aspects of validity, feasibility, usability and 

application of LFIAs in different populations, the main study design employed repeated 
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cross-sectional surveys of age-stratified population samples of 100,000 to 200,000 adults 

in England250.  It was designed and powered to provide precise estimates of seroprevalence 

at the lower-tier local authority level for the purposes of public health response250.  Between 

June 2020 and May 2021 it collected data from over 900,000 adults251.  A sister programme 

of work, the REACT-1 study employed very similar design and methods except it collected 

self-administered nasal swabs to identify active infections (asymptomatic and 

symptomatic)250.  It recruits over 150,000 participants in England each month and has 

tested almost 2 million people252. 

The Virus Watch study was a household-based, prospective community cohort study of 

COVID-19 in England.  The study collected bracketed serological samples in autumn 2020 

and spring 2021 from a subset of 10,000 participants aged five years and over.  In the spring 

of 2021, monthly finger-prick blood specimens were collected from consenting adults from 

the wider cohort for serological testing of anti-N and anti-S antibodies.    

The PIPS study was designed and piloted during the interpandemic years following the 

relatively mild 2009 influenza pandemic.  Limited funding was available for this type of 

pandemic research and since serological surveys are expensive endeavors, the study was 

designed to maximize data on a minimal budget (less than half a million pounds was 

available for both pilot and pandemic reactivation).  The COVID-19 Infection Survey, 

REACT studies and Virus Watch were implemented at the start of a severe pandemic at 

much higher levels of funding (e.g., hundreds of millions of pounds annually for the 

COVID-19 Infection Survey253 and a few million for Virus Watch).  The enormous number 

of participants of REACT and the COVID-19 infection survey enabled very precise 

estimate of seroprevalence and transmission by fine resolutions of age, geographic location 

and over time.  The COVID-19 infection survey, REACT studies and Virus Watch also 

incorporated swabbing and antigen testing as well as varying degrees of follow up of 

individuals as part of their studies, increasing the number of research questions they could 

answer.  They also benefited from new technologies.  These included SARS-CoV-2 

serological assays that required only small amounts of capilliary blood collected from 

fingerpricks rather than traditional venous blood specimens.  This eliminated the need for 
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phlebotomists and home visits. Additionally, LFIA tests could be self-administered at 

home, eliminating the need for specialist laboratories.  

Currently, the REACT-2 study has completed data collection and Virus Watch is due to 

finish shortly.  The COVID-19 Infection Survey is ongoing, but due to its immense cost it 

is likely unsustainable in the long-term.  Ongoing community-level serosurveillance will 

be needed for SARS-CoV-2 and therefore more cost-effective studies will be needed.        

During the COVID-19 pandemic, influenza circulation has been suppressed across the 

globe to unprecedented levels, likely the result of the non-pharmaceutical interventions and 

general social distancing in response to the pandemic254–256.  Population level immunity to 

influenza is likely to be at an all-time low, prompting fears of a strong resurgence in 

influenza when it does begin circulating widely again257.  Now would be an excellent time 

to start investigating levels of influenza immunity in the population, possibly using residual 

specimens from the population-level studies of COVID-19 (specimen volume permitting).  

Additionally, the Health Security Agency could re-initiate specimen collection through the 

HSE using the PIPS study design.  Collection of such data may help us predict what the 

resurgence of influenza might look like and give us a greater understanding of influenza 

antibody dynamics in this unusual natural experiment presented by the COVID-19 

pandemic. 
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 Tools to Measure Mild Disease 

Chapters 3-5 focus on infection and immunity and more specifically the proportion of the 

population that becomes infected each season and identification of groups at greater risk of 

infection.  This chapter and the following chapter move up a level on the influenza iceberg 

to focus on the subset of infections that lead to illness.  This chapter will introduce the 

epidemiological considerations and laboratory methods used to identify acute influenza 

illness.  It will conclude with a brief overview of the burden of influenza illness in the 

community, focusing on the results from the Flu Watch study.  The methods presented here 

are used in the two Flu Watch analyses on influenza disease in chapter 7.   

6.1 Epidemiological study design 

As discussed in previous chapters, longitudinal epidemiological study designs (e.g. cohort 

studies) with active follow-up are the most appropriate for identifying acute respiratory 

illnesses.  Active follow-up not only helps ensure the estimates of the rates of acute illness 

are accurate258, but also helps remind participants to take specimens (nasal swabs in the 

case of Flu Watch) shortly after illness onset.  As influenza illnesses can be quite mild it is 

important to collect data on all respiratory illnesses, not just those of a certain severity or 

symptom profile (e.g. traditional influenza-like-illness case definition).  The two data 

analyses presented in this chapter use data from the Flu Watch study.  Previously published 

Flu Watch analyses, which I contributed to, have primarily focused on measuring the 

frequency and risk factors of infection and illness15,242.  In contrast, the analyses presented 

here focus on quantifying the severity and impact of those illnesses and therefore required 

a new Flu Watch dataset which focused on illnesses. Prior to analysis I created this dataset 

by merging daily level data on the type and severity of symptoms, PCR outcome, health 

seeking behavior, absences from work and school and health-related quality of life for each 

illness reported in the Flu Watch cohort. 

6.2 Choice of Diagnostic Assay 

Because community-level studies aim to identify all influenza illnesses in the community, 

not just those that consult, any technique used to diagnose influenza illness should ideally 
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only require information and/or specimens which can be easily obtained and/or reported by 

the participant in their own home.  If specimens are taken in the home, they need to be 

stable enough to withstand the transport to the laboratory conducting the analysis.  The 

technique additionally needs to be scalable to large cohorts or populations, particularly in 

terms of transport, laboratory infrastructure, staff requirements and costs.  Finally, an 

influenza diagnostic would ideally be capable of typing and subtyping viruses. 

Some laboratory diagnostic techniques require specific types of clinical specimens (e.g. 

nasopharyngeal swabbing or wash/aspirate procedures) but RT-PCR (which was used in 

the Flu Watch study) can use any type of respiratory specimen3.  While nasopharyngeal 

aspirates are considered the gold standard specimen, nasal swabs are the most suitable for 

self-administration as they are easier and more comfortable to collect, show similar 

sensitivity to nasopharyngeal aspirates and additionally show similar levels of viral load 

and swab positivity regardless of whether they were self-administered or collected by a 

healthcare worker110,259,260  Additionally, the positivity rate of nasal swabs stored in viral 

transport medium does not appear to be affected by length of time in post and thus hold up 

well in transport261.  Specimen collection should ideally coincide with peak viral shedding 

(day 2 of illness for seasonal influenza) although virus is often detectable for 5-7 days after 

illness onset and sometimes longer, especially in children3,14.   

The accuracy of the diagnostic assay is another critical component when it comes to 

choosing a diagnostic test, particularly if the diagnostic test is not considered a reference 

or ‘gold-standard’ test.  The accuracy of a non-gold-standard diagnostic assay can be 

determined through direct comparison with a gold standard test.  If subjects or specimens 

are tested by both assays, then a 2 x 2 contingency table can be constructed (Figure 6-1) 

from which test characteristics can be calculated.  The test characteristics used as part of 

this chapter are sensitivity, specificity, the predictive value of a positive test and the 

predictive value of a negative test.  Taking the gold standard as the truth, the sensitivity of 

the diagnostic test is the proportion of true positives (in this context - influenza illnesses) 

correctly identified by the test and the specificity is the proportion of true negatives (non-

influenza illnesses) correctly identified by the test.  The predictive value of a positive test 

is the probability that an illness classified as positive by the test truly is an influenza illness 
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and the predictive value of a negative test is the probability that an illness classified as 

negative truly is not an influenza illness.    

Figure 6-1: Test characteristics of diagnostic test compared to gold standard  

     

 
 

Gold standard test 
Totals 

 

 Positive Negative  

 
Diagnostic Test 

Positive a b a+b  

 Negative c d c+d  

 Totals a+c b+d a+b+c+d  

      

True Positives = a 
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False Positives = b 

False Negatives = c 

 

 

Using the 2 x 2 contingency table (Figure 6-1) we use the following formulas: 

𝑇𝑟𝑢𝑒 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =
𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑎

𝑎 + 𝑐
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑑

𝑏 + 𝑑
 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡 =
𝑎

𝑎 + 𝑏
 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡 =
𝑑

𝑐 + 𝑑
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The predictive values of a positive and negative test are affected by the underlying 

prevalence of disease, but the sensitivity and specificity are unaffected by prevalence.  

6.3 Determining Etiology of illness 

There are a number of techniques used to identify acute influenza illnesses ranging from 

symptomatic case definitions to laboratory diagnostics.  For the purposes of this chapter, I 

will focus on the techniques most used and/or most suited for identifying acute influenza 

illnesses in large community-level studies or surveillance.     

 Clinical Case Definitions 

Diagnosing acute influenza illness on the basis of symptoms alone is challenging.  While 

self-reported symptoms are easier to collect than are the specimens, the accuracy of 

symptomatic case definitions is low.  The specificity of clinical case definitions is generally 

quite low as influenza disease presents in the same way as many common acute respiratory 

infections 16,262,263.  The sensitivity of most clinical case definitions is also low as many 

symptomatic influenza cases do not develop the more discriminating symptoms (e.g. fever) 

that are often included in these case definitions 15.  However, if a case definition is made 

more inclusive and thus more sensitive, then the specificity of that case definition is 

reduced.  Some of the issues surrounding the use of influenza clinical case definitions are 

explored later in this chapter (section 7.2). 

 Laboratory Diagnosis 

Influenza infection can be detected using laboratory techniques during the acute phase of 

illness by identification of virus particles or components, typically found in respiratory 

secretions in seasonal influenza cases or sometimes additionally in the blood or feces in 

zoonotic cases 3.  Viral replication for seasonal influenza typically peaks in the first few 

days of illness and remains at detectable levels for 5-7 days in adults and longer in children3.  

Ideally, specimens should be collected as soon as possible during illness, to coincide with 

peak viral shedding 3.   
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There are a number of diagnostic techniques to detect, identify and characterize influenza 

virus infections, each providing different information with its own set of advantages and 

disadvantages 3.   

 Virus isolation using cell cultures 

Virus culture, a technique developed in the 1940s has, and continues to be, a gold-standard 

test for influenza.  It involves the propagation of influenza virus in mammalian cells or 

embryonated eggs followed by virus isolation using various techniques.  Depending on the 

methods, it can take anywhere from 24 hours to 10 days for propagation and confirmation 

of influenza 3,264,265.  Virus culture generates a large quantity of virus which is necessary 

for advanced antigenic and genetic characterization of the virus as well as drug 

susceptibility testing.  For these reasons virus isolation and culture are mainstays of 

advanced surveillance programmes and necessary for vaccine development.  

Disadvantages of the technique include the need for highly specialized laboratories and 

staff and the multi-day turnaround times3.   

 Immunofluorescence 

Immunofluorescent assays, including direct (DFA) and indirect fluorescent antibody (IFA) 

techniques, detect viral antigen and usually require specialized equipment. Although they 

can discriminate influenza A and B they are not able to further subtype influenza A.  

Turnaround time is 2-4 hours and although they have high specificity, they have relatively 

poor sensitivity 3,265.  

 Molecular assays and RT-PCR 

Molecular assays include rapid molecular assays, reverse-transcription polymerase chain 

reaction (RT-PCR) and other nucleic acid amplification techniques (NAATs).  RT-PCR 

methods are considered gold-standard techniques and have largely replaced virus culture 

as a diagnostic assay given their high sensitivity and specificity and faster turnaround times 

3,266–268.  In RT-PCR, viral RNA is extracted from a clinical specimen, reverse transcribed 

into single-stranded complementary DNA (cDNA) and amplified in a series of cycles 264.  

The resulting DNA fragments are then identified and in some cases quantified, depending 

on the type of RT-PCR 267,268.  RT-PCR techniques can identify influenza types, sub-types 
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and lineages 267,268.  The specimens for RT-PCR usually come from the upper respiratory 

tract.  They are typically collected from deep within nostrils using a nasal swab, from the 

throat using an oropharyngeal swab or from the nasopharynx using a nasopharyngeal swab 

267,268.   Recently rapid molecular tests have been developed with an aim to provide point 

of care testing and these are described further in rapid tests section (6.3.2.4). 

 Rapid tests 

In recent years there have been many advances in rapid diagnostic tests with the aim for 

these technologies to be used for point of care testing.  These tests, which yield results 

within 30 minutes, fall into three major categories: traditional rapid influenza diagnostic 

tests (RIDTs), automated immunochromatographic antigen detection tests (digital 

immunoassays), and rapid molecular tests 269.  Recent meta-analyses have estimated that 

traditional RIDTs have low sensitivity, digital immunoassays have much better sensitivity 

but rapid molecular tests have the highest levels of sensitivity (typically >90% ) 269,270.  

 Serological Testing 

Described in more detail in section 3.3, the diagnosis of a seasonal influenza illness using 

serological techniques requires paired sera, preferably an acute and convalescent sera taken 

two weeks apart, in order to determine seroconversion.  Given the timeframes and the need 

for a second, convalescent sample, serological techniques are not usually used to diagnose 

acute influenza illness 3. 

6.4 Burden of influenza illness in the community 

Influenza infection, as discussed in the previous chapter, is relatively common.  In the Flu 

Watch study we found that around 18% of the unvaccinated population became infected 

each winter season with the highest rates in children 15.  This finding is similar to those of 

historical and other contemporary community cohort studies 140,147,163.  We also estimated 

that around a quarter of these infections were symptomatic, which again was similar to 

estimates from other community cohort studies.  For seasonal influenza, the Tecumseh 

study estimated 15-25% of H3N2 infections and 19-34% of Influenza B infections lead to 

illness 271.  A contemporary community-level, household-based cohort study in Vietnam 

(the Ha Nam Study) found that 14% of seasonal H1N1, 16% of pandemic H1N1, 11% of 
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H3N2, and 15% of influenza B infections led to influenza-like-illness 163.  These estimates 

are lower than the Tecumseh and Flu Watch Studies but are likely to be underestimates as 

they would have missed out on the milder influenza illnesses which did not develop fever 

and therefore would not have met the Ha Nam influenza-like-illness case definition.  
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 Mild Disease  

This chapter presents two pieces of primary research using data from the Flu Watch study.  

The first is an analysis of the health-related quality of life lost and absences to work and 

school due to influenza illness.  The second piece of work is an evaluation of the UK’s 

National Pandemic Flu Service, an online and telephone service which assessed illnesses 

and distributed antivirals to symptomatic community cases during the 2009 pandemic. 

 

7.1 Health Related Quality of Life and Absenteeism 

 Attribution 

The work presented in this section has been adapted from my first author publication in 

Influenza and Other Respiratory Viruses 272.  I led this work with literature review and 

writing contributions from my colleague Dr Charlotte Warren-Gash and modelling 

contributions from Dr Peter White.  I developed the research question and the overall 

analytical framework. I conducted the main statistical analysis and developed and produced 

the figures and tables.  To complement my analysis of quality of life lost and absenteeism, 

I co-developed with Dr Peter White a modelling component to the analysis which projected 

my results to a population level.  I produced additional population-level estimates which 

Dr White used in this modelling analysis. My colleague Dr Warren-Gash conducted the 

initial literature review for the manuscript and wrote the first draft of the introduction and 

conclusions after discussions on the interpretation of the literature and my analysis findings 

with myself and my supervisor Dr Hayward.  I wrote the methods and results section apart 

from the sections on the modelling which Dr White provided.  In response to peer-review 

comments, I expanded the literature review and re-wrote the discussion. 

 Abstract 

Background: Estimates of health-related quality of life (HRQoL) and work/school 

absences for influenza are typically based on medically attended cases or those meeting 

influenza-like-illness (ILI) case definitions and thus biased towards severe disease. 
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Although community influenza cases are more common, estimates of their effects on 

HRQoL and absences are limited.  

Objectives: To measure quality-adjusted life days and years (QALDs and QALYs) lost 

and work/school absences among community cases of acute respiratory infections (ARI), 

ILI and influenza A and B and to estimate community burden of QALY loss and absences 

from influenza. 

Methods: Flu Watch was a community cohort in England from 2006 to 2011. Participants 

were followed up weekly. During respiratory illness, they prospectively recorded daily 

symptoms, work/school absences and EQ-5D-3L data and submitted nasal swabs for RT-

PCR influenza testing. 

Results: Average QALD lost was 0.26, 0.93, 1.61 and 1.84 for ARI, ILI, H1N1pdm09 and 

influenza B cases, respectively. 40% of influenza A cases and 24% of influenza B cases 

took time off work/school with an average duration of 3.6 and 2.4 days, respectively. In 

England, community influenza cases lost 24 300 QALYs in 2010/11 and had an estimated 

2.9 million absences per season based on data from 2006/07 to 2009/10. 

Conclusions: Our QALDs and QALYs lost and work and school absence estimates are 

lower than previous estimates because we focus on community cases, most of which are 

mild, may not meet ILI definitions and do not result in healthcare consultations. 

Nevertheless, they contribute a substantial loss of HRQoL on a population level.  Work 

presenteeism during periods of respiratory infection is likely to have an important influence 

on transmission dynamics. 

 

 Introduction 

Seasonal influenza has a major social and economic impact.  As well as direct healthcare 

costs, influenza may lead to other indirect effects including school absenteeism, loss of 

workplace productivity and effects on health-related quality of life (HRQoL) 273.  
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Presenteeism (i.e. going to work when ill) can lead to non-household transmission and 

outbreaks in workplaces274. The quality of life of both patients and their families may be 

affected, especially when the patient is a child 275.  Quantifying indirect effects accurately 

is essential to inform cost utility analyses (CUA) of interventions to mitigate the population 

impact of influenza, including extension of seasonal vaccination policies. 

 In the United Kingdom, the National Institute for Health and Care Excellence (NICE) 

recommends that health effects of interventions are expressed in terms of Quality-Adjusted 

Life Years (QALYs) as this generic measure of health benefits incorporates both mortality 

and HRQoL 276.  The standardised validated tool EQ-5D 277 is NICE’s preferred measure 

of HRQoL 276.  NICE use a cost utility threshold of £20,000-30,000 per QALY to judge 

whether or not interventions are deemed cost effective. 

A systematic review of HRQoL in influenza showed a paucity of studies that used 

standardised, well-validated methods to generate estimates of the Quality-Adjusted Life 

Days (QALDs) lost 278.  It identified four previous estimates of QALDs lost due to 

influenza, which varied from 1.57 to 10.69 depending on the population sampled and 

method of HRQoL measurement used 279–282.  Many of these studies did not measure 

HRQoL throughout the duration of illness.  They tended to measure HRQoL once at 

baseline and once on the worst day of illness, which required assumptions to be made about 

the shape of the QALY loss over the course of an illness 278. 

Studies that measure HRQoL and work and school absence from influenza cases seeking 

medical attention may overestimate the indirect cost per case.  A systematic review of 

studies of children’s absences from school and day care due to influenza showed a gradient 

of days lost, with the longest absences reported by cases attending hospital emergency 

departments, then those in physician office-based studies followed by community cases 283.    

Additionally, studies that estimate the population-level burden of HRQoL and absences 

from only severe cases miss the majority of influenza illnesses which, despite their mild 

nature, are likely to contribute substantially to the overall burden 278,284.  Although 

household-based studies are more likely to capture these milder illnesses that do not result 
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in a medical consultation, and therefore provide less biased estimates, their specificity is 

often limited by a lack of laboratory-confirmed outcomes.   

There is therefore a need for robust estimates of the indirect effects of influenza from 

community studies identifying illnesses through prospective follow-up of all respiratory 

illnesses with PCR-confirmation of aetiology.  In previously published work, my co-

authors and I have described the community burden of influenza, ILI and acute respiratory 

infections not meeting the definition of ILI from multiple influenza seasons from the Flu 

Watch Study, a large community-based, household-level cohort in England 15. Here I 

present the impacts of these illnesses on HRQoL and work/school absences using the same 

cohort as well as the population-level burden of these outcomes among community 

influenza illnesses. 

 Methods 

 Study Design 

As described in in Section 2.1, the Flu Watch study is a household-based, community 

cohort study of acute respiratory disease and influenza infection in England 15,139.  In brief, 

the study followed up cohorts during six influenza seasons including 3 periods of seasonal 

influenza (winters 2006-07, 2007-08 and 2008-09) and the first three waves of the 2009 

influenza pandemic (summer 2009, autumn-winter 2009/10 and winter 2010/11).  In total 

5484 participants were followed up for 118,158 person-weeks.  Individuals were randomly 

recruited through primary care practices and their households invited to participate.  

Participants gave written informed consent and parents/guardians gave proxy consent for 

children.  The Flu Watch study was approved by the Oxford MultiCentre Research Ethics 

committee (06/Q1604/103). 

Baseline surveys collected demographic, socio-economic and occupation data.  Participants 

were categorised into ‘working’ (employed full-time, part-time or self-employed), 

‘students’ (self-classified, aged 5-15) and ‘not in work/education’. Participants were 

contacted weekly and asked to record any “cough, cold, sore throat, or flu-like illness” 

which I define as an acute respiratory illness.  During these illnesses, participants reported 

daily symptoms and temperature measurements using prospective illness diaries.  
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Parents/guardians completed surveys on behalf of their children as needed. Self-

administered nasal swabs were requested on day two of any illness. Participants submitted 

the swabs by mail to be tested for circulating influenza A viruses (H1N1, H3N2 and from 

2009 onwards H1N1pdm09), and influenza B viruses using RT-PCR 285,286. 

 HRQoL Outcomes 

Between 2006/07 and 2009/10 illness diaries included daily questions on whether the ill 

individual had taken time off work/school.  In 2006/07 through 2008/09 and for a subset of 

participants in 2009/10, illness diaries also asked whether someone else took time off on 

that day to care for them.  During 2009/10 time off was quantified as ≤4 hours or >4 hours. 

In 2010/11 QALDs and QALYs were measured using the EQ-5D-3L instrument 141,287,288, 

which was completed at baseline and daily throughout illness.  Designed for self-

completion, EQ-5D-3L has two components.  The first describes health across five 

domains: mobility, self-care, usual activities, pain and anxiety. Participants rate each 

domain as ‘no problems’, ‘some problems’ or ‘extreme problems’.  Participants also record 

their overall health status on a visual analogue scale (EQ-VAS) from 0 (Worst imaginable 

health state) to 100 (Best imaginable health state). The online EQ-VAS question used in 

Flu Watch however asked participants to rate their health without the visual scale.  The 

three possible responses for each of the five EQ-5D-3L domains results in 35 possible 

health states. These health states were mapped to an index value (representing a QALD 

weight) using a validated UK value set 288.  The QALD weights range between 1 (full 

health) to 0 (dead).   

 Illness Outcomes 

All acute respiratory illnesses, regardless of swabbing or RT-PCR result, were classified 

into two symptomatic outcomes.  Those with confirmed fever (≥37.8°C) or symptoms of 

‘feeling feverish’ and either a cough or sore throat at any point were classified as Influenza-

like-illnesses (ILI).  All other acute respiratory illnesses were classified as acute respiratory 

infections (ARI).  Among the subset of illnesses that had an accompanying swab, some 

were confirmed as RT-PCR positive influenza cases and these were grouped into influenza 

A and influenza B viruses.  In 2010/11 when the EQ-5D-3L data was collected, all influenza 

A illnesses were H1N1pdm09, apart from one H3N2 case.  The individual-level results 
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report QALD loss for H1N1pdm09 cases only but the population projections include 

H3N2. 

 Statistical Analysis 

7.1.4.4.1 Time of work/education 

The duration of illness, percentages of illnesses with time off and mean number of days 

taken off were calculated for each illness outcome and stratified by age group and 

employment status.  The latter two estimates were done separately for time off taken by the 

ill person, by someone caring for the ill person and a combination of both.   

7.1.4.4.2 HRQoL 

Within each illness, the worst day of illness within each domain was identified.  The 

percentage of respondents reporting no, some or extreme problems on their worst day in 

each domain was compared to the corresponding baseline responses, stratified by illness 

outcome.   

Within each illness, the worst day for EQ-VAS and the worst day for QALD weight were 

identified.  For each illness outcome, mean and median worst day EQ-VAS scores and 

QALD weights were calculated and compared to baseline measurements.    

Total QALD loss for each illness was calculated by subtracting the daily QALD weights 

taken during illness from the participant’s baseline QALD weight and summing these 

differences up over the course of the illness.  Mean and median total QALD and QALY 

losses per illness were calculated by illness outcome and stratified by age group and 

whether or not cases were medically-attended.      

A sensitivity analysis was also conducted using the respondents’ highest reported QALD 

weight as the comparison (baseline) group, regardless of when it was measured. 

7.1.4.4.3 Missing Data 

If a participant’s baseline questionnaire was missing, then QALDs and QALYs could not 

be estimated for their subsequent illnesses.  All illnesses with daily EQ-5D-3L 
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measurements were included in the duration of illness, worst day EQ-VAS and QALD 

weight estimates.  If a participant failed to complete illness diaries throughout their illness, 

then their illness duration would be truncated after the last day of symptom reporting. I also 

investigated whether influenza cases actively reported no illness in the week following the 

last reported day of illness, or whether this weekly report was missing.    

7.1.4.4.4 Population Impact 

The total QALY loss experienced by community cases in the population and the number 

of days they took time off work/school due to influenza were calculated.  Estimates were 

obtained from Flu Watch data by taking 25,000 Monte Carlo samples from the distributions 

of incidence of illness and QALD losses, or days off work, as appropriate, for each age-

group.  The incidence of illness and HRQoL outcomes for the QALY analysis were derived 

from 2010/11 data while estimates for the absence analysis came from 2006/07-2009/10.  

The mid-2011 population size and age-distribution for England was used 289. 

 Results 

2919 participants reported 4818 illnesses (2805 ARI and 2013 ILI) (Table 5-1).  Of the 

3161 illnesses with nasal swabs, 177 tested positive for influenza A and 45 for influenza 

B.  75% (95% CI: 68%-81%) of influenza A cases meet the ILI case definition however 

only 49% (95% CI: 42%-57%) reported fever (a symptom required for many ILI 

definitions).  For influenza B, 80% (95% CI: 65%-90%) of cases met the ILI definition but 

only 62% (95% CI: 47%-76%) reported fever.  Most influenza B cases were in children 

whereas most influenza A cases were in adults.  16% (95% CI: 11% - 22%) of influenza A 

cases and 9% (95% CI: 2%-21%) of influenza B cases were medically-attended either 

through the government-run pandemic influenza web or phone service which ran during 

2009/10 (the National Pandemic Flu Service), the NHS Direct telephone service, or contact 

with a GP, accident and emergency department or hospital.   
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Table 7-1: Baseline Characteristics of ill participants 

   

n col % 95% CI n col % 95% CI n col % 95% CI n col % 95% CI n col % 95% CI n col % 95% CI

Overall 2919 100% - 4818 100% - 2805 100% - 2013 100% - 177 100% - 45 100% -

By influenza season

Winter 2006/07 270 9% ( 8-10) 399 8% ( 8- 9) 146 5% ( 4- 6) 253 13% (11-14) 14 8% ( 4-13) 0 0% ( 0- 8)

Winter 2007/08 363 12% (11-14) 539 11% (10-12) 188 7% ( 6- 8) 351 17% (16-19) 10 6% ( 3-10) 4 9% ( 2-21)

Winter 2008/09 219 8% ( 7- 9) 410 9% ( 8- 9) 123 4% ( 4- 5) 287 14% (13-16) 40 23% (17-29) 13 29% (16-44)

Summer 2009 33 1% ( 1- 2) 110 2% ( 2- 3) 42 2% ( 1- 2) 68 3% ( 3- 4) 2 1% ( 0- 4) 0 0% ( 0- 8)

Winter 2009/10 1644 56% (54-58) 2690 56% (54-57) 1893 68% (66-69) 797 40% (37-42) 75 42% (35-50) 5 11% ( 4-24)

Winter 2010/11 390 13% (12-15) 670 14% (13-15) 413 15% (13-16) 257 13% (11-14) 36 20% (15-27) 23 51% (36-66)

By age group

0-15 years 647 22% (21-24) 1203 25% (24-26) 648 23% (22-25) 555 28% (26-30) 68 39% (32-47) 26 58% (42-72)

16-65 years 1806 63% (61-64) 2892 61% (59-62) 1723 62% (60-64) 1169 59% (56-61) 99 57% (49-64) 15 33% (20-49)

65 years and over 431 15% (14-16) 679 14% (13-15) 409 15% (13-16) 270 14% (12-15) 8 5% ( 2- 9) 4 9% ( 2-21)

By IMD quartile*

1 (most deprived) 141 5% ( 4- 6) 238 5% ( 4- 6) 132 5% ( 4- 6) 106 5% ( 4- 6) 12 7% ( 4-12) 3 7% ( 1-18)

2 606 21% (20-23) 1032 22% (21-23) 544 20% (18-21) 488 25% (23-27) 49 28% (21-35) 12 27% (15-42)

3 1010 35% (34-37) 1715 36% (35-38) 1012 37% (35-39) 703 36% (33-38) 55 31% (25-39) 14 31% (18-47)

4 (least deprived) 1099 38% (37-40) 1750 37% (36-38) 1065 39% (37-41) 685 35% (32-37) 59 34% (27-41) 16 36% (22-51)

By occupation

In work 1288 51% (49-53) 2052 46% (45-48) 1267 51% (49-53) 785 47% (45-49) 62 41% (33-49) 9 22% (11-38)

Student 533 21% (19-23) 932 21% (20-22) 510 21% (19-22) 422 25% (23-27) 59 39% (31-47) 25 61% (45-76)

Not in work/school 724 28% (27-30) 1172 26% (25-28) 708 29% (27-30) 464 28% (26-30) 30 20% (14-27) 7 17% ( 7-32)

By sex

Female 1513 53% (51-55) 2574 54% (53-56) 1491 54% (52-56) 1083 55% (52-57) 89 51% (43-58) 23 51% (36-66)

Male 1343 47% (45-49) 2161 46% (44-47) 1262 46% (44-48) 899 45% (43-48) 86 49% (42-57) 22 49% (34-64)

*English Indices of Multiple Deprivations 2007

All People All Illnesses All Illnesses

(N=4818)

Illnesses tested for Flu A & B

(N=3161)

ARI ILI Influenza A PCR+ Influenza B PCR+
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 Time of work/education 

Average illness duration, percentages of illnesses with time off, and the symptom number 

of days per illness with time off were broadly comparable between influenza A and B cases 

although influenza A appeared slightly more severe (Table 7-2).  Illness duration was 9.6 

and 10.7 days for influenza A and B respectively.  Among cases where absence data were 

available for both the ill participant and those caring for them, 50% (95% CI: 37%-63%) 

of Influenza A and 41% (95% CI: 18%-67%) of Influenza B cases required at least one 

person to take time off for a combined average of 5.0 and 3.4 days respectively.  Among 

ill children, 56% (95% CI: 43%-68%) and 31% (95% CI: 14-52%) took time off school or 

childcare for an average duration of 3.5 and 2.1 days for influenza A and B respectively.  

Among the subset of data where information was available, 70% (95% CI: 46%-88%) and 

42% (95% CI: 15%-72%) of children’s illnesses required someone else to take time off to 

care for them for influenza A and B respectively.  Ill adults were less likely to take time off 

(31% [95% CI: 22%-44%] and 20% [95% CI: 4%-48%] for influenza A and B respectively) 

but took more time off (3.8 and 3.0 days for influenza A and B respectively).  Estimates 

remained similar when limited to working adults aged 16 and over.  ILI cases were broadly 

comparable with influenza cases although more severe than the ARI cases.  For the 142 

influenza illnesses where the amount of time taken off per day was measured, 83% (95% 

CI: 76%-88%) of days had more than 4 hours off.    
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Table 7-2: Illness duration and time off work, education or childcare (Autumn 2006 – Spring 2010) 

 

N Estimate N Estimate N Estimate N Estimate

Duration of symptoms, average (min, max) 2805  6.9 ( 1, 48) 2013  9.0 ( 1, 82) 177  9.6 ( 1, 82) 45 10.7 ( 1, 65)

% of illnesses where the ill person and/or someone caring for them takes time off, % (95% CI)* 458   11% (8 - 14) 897   30% (27 - 33) 64  50% ( 37 - 63) 17  41% (18 - 67)

Among illnesses with anyone's time off:  average number of days someone takes time off, (min, max)* 51  2.5 ( 1,  6) 269  3.8 ( 1, 18) 32  5.0 ( 2, 11) 7  3.4 ( 2,  6)

Percent of ill persons taking time off , % (95% CI) 2805   11% (9 - 12) 2013   27% (25 - 29) 177   40% (33 - 48) 45  24% (13 - 40)

Among ill persons taking time off: Average number of days they take time off  (min, max) 296  2.5 ( 1, 14) 545  3.2 ( 1, 18) 71  3.6 ( 1, 13) 11  2.4 ( 1,  4)

Percent of illnesses where someone else takes time off to care for ill person, % (95% CI)* 458    4% (3 - 6) 897   11% (9 - 14) 64   28% (18 - 41) 17  29% (10 - 56)Among illnesses where someone else takes time off: Average number of days they take time off to care for ill person (min, 

max)* 19  1.4 ( 1,  3) 102  2.0 ( 1,  7) 18  2.7 ( 1,  6) 5  1.6 ( 1,  2)

Percent of ill children taking time off school/childcare for their illness, % (95% CI) 648  14% (12 - 17) 555   39% (35 - 43) 68   56% (43 - 68) 26  31% (14 - 52)

Among ill children taking time off: Average number of days they take time off school/childcare (min, max) 93  2.3 ( 1, 12) 218  2.9 ( 1, 13) 38  3.5 ( 1, 13) 8  2.1 ( 1,  4)

Percent of illnesses where someone else takes time off to care for ill child, % (95% CI)* 78   10% (5 -19) 256   24% (19 - 30) 20   70% (46 - 88) 12  42% (15 - 72)Among illnesses where someone else takes time off: Average number of days they take time off to care for ill child (min, 

max)* 8  1.6 ( 1,  3) 61  2.2 ( 1,  7) 14  2.9 ( 1,  6) 5  1.6 ( 1,  2)

Percent of ill adults taking time off work/education for their illness, % (95% CI) 1723   11% (9 - 12) 1169   26% (23 - 29) 99   31% (22 - 41) 15   20% (4 - 48)

Among ill adults taking time off: Average number of days they take time off work/education(min, max) 184  2.6 ( 1, 14) 303  3.3 ( 1, 18) 31  3.8 ( 1,  9) 3  3.0 ( 2,  4)

Percent of illnesses where someone else takes time off to care for ill adult, % (95% CI)* 319    3% (2 - 6) 535    7% (5 - 9) 39   10% (3 - 24) 5    0% (0 - 52)Among illnesses where someone else takes time off: Average number of days they take time off to care for ill adult (min, 

max)* 11  1.2 ( 1,  2) 35  1.5 ( 1,  5) 4  2.0 ( 1,  3) 0 N/A

Percent of ill older adults taking time off work/education for their illness, % (95% CI) 409    5% (3 - 7) 270    9% (5 - 13) 8   13% ( 0 - 53) 4    0% (0 - 60)

Among ill older adults taking time off: Average number of days they take time off (min, max) 19  3.4 ( 1,  7) 23  5.3 ( 1, 14) 1  3.0 ( 3,  3) 0 N/A

Percent of illnesses where someone else takes time off to care for ill older adult, % (95% CI)* 61    0% (0 - 6) 105    6% (2 - 12) 4    0% ( 0 - 60) 0 N/A

Among illnesses where someone else takes time off: Average number of days they take time off to care for ill older adult 

(min, max)* 0 N/A 6  2.5 ( 1,  5) 0 N/A 0 N/A

Percent of ill working adults taking time off work/education for their illness, % (95% CI) 1267  12% (10 - 14) 785   30% (27 - 33) 62   34% (22 - 47) 9   3%3 ( 7 - 70)

Among ill working adults taking time off: Average number of days they take time off (min, max) 155  2.6 ( 1, 14) 233  3.3 ( 1, 18) 21  4.0 ( 1,  9) 3  3.0 ( 2,  4)

Percent of illnesses where someone else takes time off to care for ill working adult, % (95% CI)* 235    4% (2 -  8) 361    6% (4 - 9) 24   13% (3 - 32) 2    0% (0 - 84)
Among illnesses where someone else takes time off: Average number of days they take time off to care for ill working adult 

(min, max)* 10  1.2 ( 1,  2) 23  1.2 ( 1,  3) 3  2.3 ( 2,  3) 0 N/A

** Age group missing for 2 Influenza A cases, 7 ILI cases and 25 ARI cases

ARI ILI Flu A PCR+ Flu B PCR+

Overall

Ill Children

(0-15 yrs)**

Ill Adults

(16-64 

yrs)**

Ill Older 

Adults

(65+ yrs)**

Ill Working 

Adults

(16+ yrs)**

* Estimates limited to subset of data where  time off work/education information was collected for both ill person and anyone caring for them
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Figures 7-1 a-d: EQ-5D-3L domains comparing baseline and worst day of illness (for the respective 

domain) for (a) ARI (b) ILI, (c) H1N1pdm09 and (d) Influenza B illnesses. 
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c) 

 

d) 
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The median and mean EQ-VAS background scores were between 84-90 for H1N1pdm09, 

influenza B and ILI, but dropped to between 40-50 on the worst day of illness (Figure 7-2 

and Table 7-3). Mean QALD weights were 0.93 and 0.92 at baseline for H1N1pdmo09 and 

influenza B respectively but dropped to 0.44 and 0.36 on the worst day of illness (Table 

7-3).  Median QALD weight for H1N1pdm09 (0.73) was much higher than the 

corresponding mean (0.44) suggesting that a few severe illnesses were greatly contributing 

to the mean (Figure 7-2 and Table 7-3). 
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Figure 7-2: EQ-VAS and EQ-5D QALD weights comparing background and worst day of illness by 

illness outcome 
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Table 7-3: Impact on Health-Related Quality of Life (Winter 2010/11) 

N Estimate N Estimate N Estimate N Estimate

Duration of symptoms, mean (min-max, median) 413  7.5 ( 1-42,  6.0) 256  9.9 ( 1-65,  7.0) 35  8.8 ( 1-26,  7.0) 23 11.9 ( 1-65,  7.0)

VAS background, mean (min-max, median) 408 89.0 (50-100, 90.0) 248 85.0 (25-100, 90.0) 34 89.8 (25-100, 90.0) 22 84.1 (40-100, 90.0)

VAS worst day of illness, mean (min-max, median) 413 66 ( 4-100, 70) 256 51 ( 0-90, 50) 35 43 ( 3-90, 40) 23 43 ( 5-75, 50)

EQ-5D weight background, mean (min-max, median) 406 0.92 (0.20-1.00, 1.00) 246 0.87 (-0.02-1.00, 1.00) 34 0.93 (0.25-1.00, 1.00) 21 0.92 (0.16-1.00, 1.00)

EQ-5D weight day of illness, mean (min-max, median) 413 0.77 (-0.54-1.00, 0.80) 256 0.48 (-0.59-1.00, 0.69) 35 0.44 (-0.43-1.00, 0.73) 23 0.36 (-0.59-1.00, 0.36)

QALDs lost, mean (min-max, median) 405 0.26 (-5.32-11.47, 0.20) 246 0.93 (-25.28-14.48, 0.74) 34 1.61 (-0.92-6.66, 1.00) 21 1.84 (-2.72-10.83, 1.14)

By Age group

0-15 84 0.24 (-2.72-7.22, 0.00) 71 0.20 (-25.28-4.65, 0.66) 7 1.08 (0.00-4.27, 0.20) 10 1.82 (0.58-3.27, 1.86)

16-65 257 0.34 (-5.32-11.47, 0.20) 137 1.30 (-4.72-14.48, 0.82) 23 1.74 (-0.92-6.66, 1.15) 7 2.37 (-0.84-10.83, 1.02)

65+ 64 -0.03 (-5.02-3.37, 0.00) 38 0.99 (-3.58-7.96, 0.74) 4 1.75 (-0.78-5.47, 1.15) 4 0.95 (-2.72-3.15, 1.68)

QALYs lost, mean (min-max, median) 405 0.0007 (-0.0146-0.0314, 0.0006) 246 0.0026 (-0.0692-0.0397, 0.0020) 34 0.0044 (-0.0025-0.0182, 0.0027) 21 0.0050 (-0.0074-0.0296, 0.0031)

By Age group

0-15 84 0.0007 (-0.0075-0.0198, 0.0000) 71 0.0005 (-0.0692-0.0127, 0.0018) 7 0.0029 (0.0000-0.0117, 0.0006) 10 0.0050 (0.0016-0.0090, 0.0051)

16-65 257 0.0009 (-0.0146-0.0314, 0.0006) 137 0.0035 (-0.0129-0.0397, 0.0022) 23 0.0048 (-0.0025-0.0182, 0.0032) 7 0.0065 (-0.0023-0.0296, 0.0028)

65+ 64 -0.0001 (-0.0138-0.0092, 0.0000) 38 0.0027 (-0.0098-0.0218, 0.0020) 4 0.0048 (-0.0021-0.0150, 0.0032) 4 0.0026 (-0.0074-0.0086, 0.0046)

QALDs lost (sensitivity analysis), mean (min-max, 405 0.72 (0.00-11.47, 0.41) 246 1.97 (0.00-16.33, 1.15) 34 1.89 (0.00-7.12, 1.09) 21 2.64 (0.00-10.83, 1.46)

By Age group

0-15 84 0.54 (0.00-7.22, 0.20) 71 1.68 (0.00-7.98, 1.03) 7 1.08 (0.00-4.27, 0.20) 10 1.82 (0.58-3.27, 1.86)

16-65 257 0.77 (0.00-11.47, 0.47) 137 2.02 (0.00-14.48, 1.27) 23 1.98 (0.20-6.66, 1.22) 7 2.80 (0.00-10.83, 1.02)

65+ 64 0.74 (0.00-7.17, 0.41) 38 2.37 (0.00-16.33, 1.04) 4 2.81 (0.19-7.12, 1.97) 4 4.41 (0.84-7.17, 4.81)

QALYs lost (sensitivity analysis), mean (min-max, 405 0.0020 (0.0000-0.0314, 0.0011) 246 0.0054 (0.0000-0.0447, 0.0031) 34 0.0052 (0.0000-0.0195, 0.0030) 21 0.0072 (0.0000-0.0296, 0.0040)

By Age group

0-15 84 0.0015 (0.0000-0.0198, 0.0006) 71 0.0046 (0.0000-0.0218, 0.0028) 7 0.0029 (0.0000-0.0117, 0.0006) 10 0.0050 (0.0016-0.0090, 0.0051)

16-65 257 0.0021 (0.0000-0.0314, 0.0013) 137 0.0055 (0.0000-0.0397, 0.0035) 23 0.0054 (0.0006-0.0182, 0.0034) 7 0.0077 (0.0000-0.0296, 0.0028)

65+ 64 0.0020 (0.0000-0.0196, 0.0011) 38 0.0065 (0.0000-0.0447, 0.0028) 4 0.0077 (0.0005-0.0195, 0.0054) 4 0.0121 (0.0023-0.0196, 0.0132)

ARI ILI H1N1pdm09 PCR+ Flu B PCR+
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For H1N1pdm09 and influenza B, daily EQ-VAS and QALD weights varied throughout 

illness, with a rapid decline in the first 2 days (Figures 7-3).  The lag time between symptom 

onset and the most severe day of illness appeared longer for H1N1pdm09 than for influenza 

B.  Although the medians remain relatively low for the first week, over time these estimates 

reflected fewer illnesses, i.e. those with the longest duration (see bottom panels, Figures 

7-3). 
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Figures 7-3a-b: VAS and EQ-5D-3L QALD weight at baseline and by day of illness for (a) H1N1pdm09 

illnesses and (b) Influenza B illnesses over the number of cases reporting symptoms on that day 
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b) 
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Average illness duration for H1N1pdm09 and influenza B cases with QALD data was 8.8 

and 11.9 days respectively, with 3% (95% CI: 0%-15%) and 9% (95% CI: 1%-28%) of 

illnesses respectively lasting over three weeks.  Overall 1.61 QALDs were lost during 

H1N1pdm09 illnesses.  QALD loss increased with age from 1.08 in children, to 1.74 and 

1.75 in adults and the older adults respectively.  Influenza B illnesses lost more QALDs at 

1.84 with age-specific estimates of 1.82, 2.37 and 0.95 for children, adults and older adults 

respectively.  QALD loss during ILI and ARI illnesses were lower (0.26 and 0.93 

respectively).   Median QALD loss was typically lower than the mean for all illness 

outcomes, indicating that a small proportion of severe illnesses contributed greatly to the 

mean. 20% (95% CI: 8%-37%) of H1N1pdm09 and 17% (95% CI: 5%-39%) of influenza 

B cases with QALD/QALY data were medically-attended.  Mean QALD loss was 3.63 for 

medical-attended H1N1pmd09 cases and 1.08 for non-medically-attended cases.  

Corresponding figures for influenza B were 5.48 and 1.23.  

In sensitivity analysis, overall QALDs lost were higher at 1.89 for H1N1pdm09 and 2.64 

for influenza B.  Age-specific sensitivity estimates were similar to the main analysis except 

in the oldest age group where the sensitivity analysis reports higher QALD losses. 

 Missing Data 

One H1N1pdm09 and two influenza B illnesses were missing baseline EQ-5D-3L 

measurements. Among the 57 influenza cases with QALD data, all but two reported no 

illness in the week following their illness.   

 Population Impact 

The estimated number of QALYs lost due to influenza A and B in England was 24,300 

(95%CI: 16,600–34,700), of which two-thirds occurred in the 16-64 years age-group (Table 

7-4). The estimated number of days off school in individuals aged 5-15 years with influenza 

was 1.12 million (95% CI: 0.661–1.78 million) per winter, of which 85% was associated 

with influenza A. The estimated number of days off work or education in individuals aged 

16-64 years with influenza was 1.79 million (95%CI: 1.16 – 2.78 million), almost all of 

which (>98%) was due to influenza A. 
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Table 7-4: Population-level burden of HRQoL lost and work/education absences due to community 

cases of influenza 

 

 Discussion 

 Summary of Results 

Community cases of ARI, ILI, H1N1pdm09 and influenza B lost 0.25, 0.93, 1.61 and 1.84 

QALDs from their illnesses respectively.  The estimated QALDs lost increased with age 

which is consistent with previous findings 281.  Mean QALD loss was much greater in 

medically-attended H1N1pdm09 and influenza B cases (3.63 and 5.48 respectively) 

compared to non-medically-attended cases (1.08 and 1.23 respectively). I found 50% of 

influenza A illnesses and 41% of influenza B illness required someone (ill participant 

and/or their carer) to take time off work/education for a combined average of 5.0 and 3.4 

days. Compared with adults, children with influenza were more likely to take time off 

education/childcare and to require someone else to take time off to care for them.  Around 

a third of working adults required time off work for both influenza A and B illnesses with 

an average of 4 and 3 days off respectively.  Illness duration and time off estimates for ILI 

were comparable to influenza but higher than ARI.  In England, community influenza cases 

lost 24,300 QALYs (8.87 million QALDs) in 2010/11 and had an estimated 2.9 million 

absences per season based on data from 2006/07 – 2009/10. 

Outcome Age group Flu Type Estimate 95% CI

Overall A+B 24,300          16,600 – 34,700

By age group

0-15 A+B 6,410            3,640 – 10,900

16-64 A+B 16,200          9,710 – 25,800

65+ A+B 1,660            490 – 4,860

Overall A+B 2,910,000 2,090,000 - 3,930,000

By age group and flu type

A 949,000 528,000 - 1,580,000

B 1,760,000 1,140,000 - 2,610,000

A 170,000 52,300 - 414,000

B 27,600 4,720 - 89,100

5-15

16-65

QALY loss

Days off 

work/education
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 Comparison to other studies 

Previous studies show substantial variation in the HRQoL associated with influenza. This 

reflects differences in subjects’ ages, definitions and severity of illness as well as the 

methods used to estimate HRQoL. Several estimates have been derived from cases seeking 

medical attention. In a population-based study conducted in England during the 2009 

pandemic using EQ-5D-3L, 2.92 QALDs were lost for confirmed cases of H1N1pdm09 

and 2.74 for ILI controls 278.  Another study reported a QALD loss of 1.68 for ILI due to 

confirmed influenza and 1.57 for non-influenza ILI in adult patients 282. This was calculated 

by subtracting VAS scores presented by O’Brien et al 290 from pooled oseltamivir trial data  

in nearly 640 ILI patients who received placebo, from a baseline quality of life weight. A 

study used data from the same trials to estimate the QALD loss associated with ILI as 5.33 

in people aged 0-19 years, 6.35 in people aged 20-64 years and 10.69 for people aged 65 

years and over by combining the published QALY weights with unpublished data on 

disease duration 281. Finally, a study of patients from hospitals and primary care centres 

with confirmed H1N1pdm09 in Spain showed individual QALD losses of 3.29 for primary 

care patients and 11.3 for hospitalised in-patients 284.    

There are fewer studies of community influenza cases that may not consult healthcare 

professionals. Nevertheless, a survey in England of caregivers of children in primary school 

reporting ILI outbreaks that used EQ-5D-3L showed a mean loss of 2.1 QALDs 273. In 

Belgium, a household telephone survey including 2,250 individuals with self-reported ILI 

used SF-12 to calculate QALDs lost: for an average episode of illness in the community, 

1.83 QALDs were lost 291.   

In general, the Flu Watch estimates for individual-level QALDs lost due to influenza were 

lower than earlier findings. This is unsurprising, as the study captured mild illnesses 

including cases of confirmed influenza that neither consulted for their illness nor met the 

symptom definition of ILI.  Additionally, the Flu Watch study included children who 

typically have less severe disease as well as a large number H1N1pdm09 cases which in 

the Flu Watch cohort were generally less severe than H3N2 cases 15.  This work and 

previous studies have shown that more QALDs are lost when estimates are derived from 

medically-attended cases, and in particular hospitalised cases.  The estimates for work and 
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school absences from the Flu Watch study were also generally lower than previous 

estimates; for most illnesses, people did not take time off, although there were differences 

by age and illness definition. This study shows however, that illness in a household member 

caused a substantial proportion of people take time off work to care for unwell household 

members. A study in the US on school and parental absenteeism showed that for every 

three days a child took off school a parent missed on average one day of work 292.  

The aforementioned British and Spanish studies are not directly comparable as they 

estimated the population-level burden of QALY loss due to influenza for more severe cases 

in a different season (2009/10) 278,284.  They do however contextualise my findings as they 

report burden of QALY loss due to hospitalisations and deaths, which when combined with 

my results for community cases provides an indication of the scale of QALYs lost in a 

given season and the proportion attributable for different levels of disease severity.  For 

example, the British study estimated that 40% (approximately 11,000 QALYs) of their total 

QALYs lost came from 337 reported influenza deaths 278.  Similarly, the Spanish study 

estimated their 318 deaths lost 12,000 QALYs 284.  It also estimated burden of QALY loss 

for influenza in-patients and primary care patients, demonstrating that less severe yet more 

numerous primary care patients lost far more QALYs (6,778) than the more severe but less 

common in-patients (94 QALYs).  Given these findings it seems that at least for these two 

seasons, the biggest contributors of population-level QALY loss are community cases 

(medically- and non-medically attended) and deaths.  The true burden and contribution by 

level of severity is likely to vary substantially between seasons and populations as it 

depends on population size and age-specific rates of illness and death.  The estimated 

burden is also highly dependent on severity of cases included in the model. 

 Strengths and weaknesses 

The estimates of HRQoL and work and school absence presented here were derived from 

a large community cohort study using active molecular and symptom surveillance to 

identify episodes of influenza, ILI and ARI. They captured a broad spectrum of illnesses 

including mild cases of laboratory-confirmed influenza that did not meet the syndromic 

definition of ILI and/or did not consult a healthcare professional, which gave less biased 

estimates of the overall HRQoL and absences associated with influenza. A key strength 
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was that participants completed the EQ-5D-3L daily over the course of an illness. This 

directly measures HRQoL throughout illness, so unlike other studies that used a single 

estimate of HRQoL during illness, this analysis required no assumptions about the shape 

of the QALY loss over time.  A further strength is that the population projections were 

based on incidence estimates derived from the same data source.   

Although work and school absences were measured over multiple years, HRQoL was only 

measured in 2010/11 when influenza A H1N1pdm09 and influenza B strains circulated. I 

expect that, as H3N2 was associated with more severe symptoms than H1N1, its effects on 

HRQoL might have been greater 15.  Despite the large cohort size, the numbers with 

confirmed influenza and EQ-5D were relatively low (N=58) and not sufficient to draw 

conclusions on differences in HRQoL by strain. The uncertainty in my QALD and QALY 

estimates is reflected in the 95% confidence intervals for my population projections.  My 

colleagues and I have previously showed that the majority of influenza infections are 

asymptomatic 15. Although asymptomatic cases would have no associated QALD loss, it is 

possible the study failed to capture very mild cases that did not shed sufficient virus for 

RT-PCR detection and thus slightly overestimated individual-level QALD loss associated 

with confirmed influenza.  Conversely, my population-level estimates of both QALD loss 

and absences should be considered minimum estimates because if cases were missed (for 

example from low viral shedding due to mild illness or late swabbing) this would reduce 

the estimated disease rates and thus overall burden estimates.  The population level 

estimates of absences due to influenza only included absences of the ill individual as data 

on the absences of those caring for these cases was not consistently collected over the 

course of the study.  Therefore, the population level burden of absences is missing a 

substantial proportion of the total absences due to influenza.   

The Flu Watch study was not fully representative of the general population.  However I 

accounted for this as best I could by calculating age and region adjusted incidence of 

disease.  I found some people reported worse HRQoL at baseline than during illness and 

my sensitivity analysis showed that when I took the participants’ best reported measure of 

HRQoL as the comparison group, regardless of its timing, the oldest age group had much 

higher estimates of QALY loss.  A further limitation is that children’s HRQoL was reported 
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by their parents. Previous studies show significant differences when both parents and 

adolescent measure children’s quality of life 293. Instruments such as EQ-5D-3L have not 

been validated for use in infants and very young children, which is a challenge of assessing 

HRQoL in this age group 294.    

 Implications 

Estimates of QALDs lost and work and school absences associated with influenza differ 

depending on the setting in which cases are identified; community illnesses result in smaller 

effects but contribute substantially to the population-level burden. Accurate assessment of 

both the number of expected cases and their QALDs/QALYs is essential to inform CUAs 

for decision-making bodies such as NICE. While for some interventions, such as antiviral 

treatments of severe influenza cases, it is appropriate to use utility estimates derived from 

medically-attended cases, I believe that my estimates are more appropriate for assessing 

cost utility of community preventive interventions such as vaccines. 

Knowledge of presentism informs our understanding of non-household transmission of 

acute respiratory viruses.  These estimates also provide a useful sense check on assumptions 

in non-pharmaceutical interventions of voluntary self-isolation when ill. 

 Conclusions 

I present new estimates of individual- and population-level QALDs and QALYs lost and 

work and school absences due to community cases of influenza to inform CUAs of 

community interventions to prevent influenza. 
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7.2 Evaluation of the National Pandemic Flu Service 

 Attribution 

This work was conducted in order to inform the 2019 review and subsequent update of the 

National Pandemic Flu Service (NPFS) Algorithm.  I led all aspects of the work including 

conducting the literature review, managing the data and creating the necessary dataset, 

developing and conducting the statistical analysis, interpretation and writing up. 

 Abstract 

Background:  During the 2009 pandemic the UK’s National Pandemic Flu Service (NPFS) 

operated an internet and telephone-based service that assessed respiratory illnesses and 

authorised antiviral prescriptions to those meeting the symptomatic case definition. Its 

primary purposes were to reduce burden in primary care and to enable timely dissemination 

of stockpiled antivirals.   

Objectives: To assess the success of the NPFS in achieving its primary aims and to inform 

an NPFS algorithm update by applying it to contemporaneous UK community cases (many 

of whom did not consult the NPFS) using the original case definition and an alternative 

afebrile version. 

Methods:  Flu Watch was a UK community cohort study (2006-2011).  Participants 

completed weekly surveys on symptoms, health-seeking behaviour and treatment of 

respiratory illnesses and submitted nasal swabs for PCR analysis.  During NPFS operation, 

we calculated the proportion and timing of community illnesses that consulted NPFS and/or 

GPs, the proportion and timing treated with antivirals, and the test characteristics of the 

two case definitions among illnesses with PCR data.   

Results: Overall 2% (95% CI: 1%-3%) of illnesses consulted NPFS and 11% (95% CI: 

9%-12%) a GP.  NPFS consultations occurred earlier in illness than GP consultations 

(median day 2 versus 4 respectively).  Among consulting illnesses, 91% (95% CI: 87%-

95%) consulted a GP and 17% (95% CI: 12%-22%) consulted the NPFS, although over 

half of these also consulted a GP.  Among consulting illnesses in the not at-risk group, 6% 
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(95% CI: 2% - 12%) consulted the NPFS and not a GP.  1% (95% CI: 1% – 2%) of 

community illnesses were treated with antivirals, half within two days of onset.  The NPFS 

and afebrile case definitions classified 15% (95% CI: 13% - 17%) and 90% (95% CI: 88% 

- 92%) of all illnesses with PCR data as influenza-like-illness (ILI) respectively.  NPFS 

case definition’s sensitivity was lower than the afebrile version (51% [95% CI: 38%-63%] 

versus 96% [95% CI: 88%-99%] respectively) but the specificity was higher (87% [95% 

CI: 85%-89%] versus 10% [95% CI: 9%-12%] respectively).   

Conclusion:  Most community-level illnesses do not consult medical services and although 

it was a faster route to antivirals, low uptake of the NPFS severely limited its population-

level impact on both primary care burden and mass antiviral treatment.  Targeting antiviral 

treatment on the basis of symptoms is challenging given the trade-offs in sensitivity and 

specificity.  We recommend using different symptomatic case definitions for high-risk and 

low-risk cases to simultaneously target antiviral treatment to those who would most benefit 

from it whilst also preserving antiviral stockpiles.  

 Introduction 

During the 2009 pandemic the UK’s National Pandemic Flu Service (NPFS) operated an 

internet and telephone-based service in England that assessed respiratory illnesses 

occurring in the community 92,295,296.  The outcomes of the automated assessment were 

health advice and in some cases a referral to other medical services and/or and an antiviral 

prescription.  The NPFS had two primary purposes.  Firstly, it was designed to alleviate the 

burden of excess consultations among the ‘worried well’ on general practices, which could 

otherwise overwhelm primary care services. Secondly it enabled dissemination of the 

stockpiled antiviral treatments directly to ill patients more quickly than traditional primary 

care services would have been able to do 92.  The timeliness of influenza antiviral treatment 

is particularly important as they are more effective the earlier they are taken 19. 

A decade has now passed since the NPFS was created and a review is currently underway 

to assess and update the NPFS algorithm in order to ensure it reflects up-to-date knowledge 

and guidelines.  In order to support the algorithm update, I undertook an evaluation of the 

success of the NPFS in achieving its primary two aims through analyses of data from the 
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Flu Watch study, a contemporaneous community cohort study of influenza.  Specifically, 

I sought to describe the consultation behavior for community cases of respiratory illness 

(to put the NPFS into the wider context of the community burden) and the percent of GP 

consultations potentially diverted by the NPFS.  I also quantified how well the NPFS 

antiviral prescriptions were targeted to influenza cases.  Finally, I explored the impact of 

an alternative case definition on targeting antivirals. 

Although the details of the 2009 algorithm and the proposed 2019 update are not publicly 

available, a general description of the 2009 algorithm has been published 295.  A key aspect 

of that algorithm was the symptomatic case definition used to determine whether or not an 

individual had a ‘flu-like’ illness.  This case definition formed a critical juncture in the 

algorithm by streaming ‘flu-like’ illnesses down a path where antivirals could have been 

authorised and streaming non-flu-like illnesses down a path where antivirals would not 

have been authorised.  Symptomatic case definitions for influenza are not particularly good 

at discriminating influenza from non-influenza illnesses 297–299.  This is because influenza 

has a symptomatic presentation that is similar to many other respiratory viruses and colds.  

Given the imprecise nature of symptomatic case definitions for influenza and the 

importance of the NPFS case definition in the subsequent determination of antiviral 

authorisation, it seemed prudent to review the effects of the 2009 case definition in order 

to inform the 2019 algorithm update.     

In order to review how effectively a case definition discriminates true cases from non-

cases, it must be compared with a gold-standard test, in this case with influenza RT-PCR-

testing of illnesses.  While the NPFS had a scheme for RT-PCR-testing among a subset of 

illnesses consulting the service, these tests were only conducted on illnesses that met the 

case definition and were authorised to receive antivirals 110.  Without comparable RT-PCR-

testing among illnesses not meeting the case definition it is impossible to use the data from 

the NPFS to calculate the sensitivity and specificity of their case definition.  In contrast, 

the Flu Watch study, a community cohort study of influenza in England (2006 -2011) has 

the necessary data for this analysis among the full spectrum of respiratory illnesses in the 

community, included those that did and did not consult the NPFS.  In this paper, I have 

sought to inform the 2019 NPFS algorithm update through an analysis of Flu Watch data.  
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I evaluated the sensitivity and specificity of the 2009 NPFS case definition and an 

alternative, more inclusive hypothetical case definition among contemporaneous 

community cases of respiratory illness.  As a result of these findings, I propose an 

alternative approach to the use of case definitions in the UK’s NPFS algorithm which would 

simultaneously target antiviral treatment to those who would most benefit from it whilst 

also preserving national antiviral stockpiles. 

 Methods 

 NPFS Algorithm 

The NPFS was an internet and telephone-based service that members of the public with 

influenza-like symptoms could contact in order to have their illnesses assessed.  Outcomes 

of the service included health advice and in some cases referral to other medical services 

and/or an antiviral prescription295. When a patient contacted the service, they would answer 

a series of yes or no questions about themselves and their illness (Figure 7-4).  These 

questions followed a pre-determined algorithm with three stages. The first stage was a pre-

assessment screen aimed to identify emergency or very high-risk patients and divert them 

to emergency services or an urgent GP appointment.  The second stage assessed whether 

the patient’s symptoms met the algorithm’s case definition for a ‘flu-like’ illness. If the 

case definition was not met, the patient was reassured, no antivirals were authorised, and 

the assessment would end. If the case definition was met then the patient would continue 

to the third stage of the algorithm where information was collected on the duration of 

illness, whether antivirals had already been taken, whether the patient was at high risk of 

severe disease (i.e. member of an at-risk group) and whether the patient had symptoms of 

severe disease.   The answers to these questions determined the health advice given, 

directed patients to other medical services (if appropriate) and determined whether an 

antiviral was authorised or not 295.  Figure 7-4: Algorithm pathways to antiviral 

authorisationFigure 7-4 is a simplified depiction of the algorithm, focusing solely on the 

pathways to antiviral authorisation.    
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 Flu Watch Study Design 

The data used in this analysis was generated by the Flu Watch Study, a community-level, 

household-based cohort study of influenza conducted in England between 2006 and 2011.  

The Flu Watch study was described in detail in section 2.1.  In brief, prospective 

participants were selected at random from general practice lists and their entire households 

were invited to join the study.  Upon entry into the cohort, participants completed a baseline 

survey which collected demographic, health and chronic illness information (in order to 

determine membership of at-risk groups).  Households also received participation packs 

which included thermometers and nasal swab kits.  Participants were then prospectively 

followed up each week.  When they had symptoms of respiratory illness, they were asked 

to fill in daily diaries of symptoms, health-seeking behaviour and treatment.  They were 

Screening Questions 
Yes No 

Antiviral 

Influenza-like illness  

Case Definition 

No 

Not Met 
No 

Antiviral 

Illness Duration  7 days 

No No 

Antiviral 

Met 

Already had antivirals? 

Yes 

No 

Yes No 

Antiviral 

Antivirals 

Authorised  

 

Stage 1:  

Pre-assessment 

Screen 

Stage 2:  

Symptom 

Assessment 

Stage 3: Other 

information 

 

 

Figure 7-4: Algorithm pathways to antiviral authorisation 
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also asked to self-administer a nasal swab on day two of any respiratory illness which was 

subsequently tested for a panel of influenza viruses (seasonal H1N1 and H3N2 and 2009 

pandemic H1N1) using RT-PCR.   

When the 2009 pandemic arose, the study increased in size and newly recruited participants 

had slightly different follow-up compared to participants that were already involved in the 

study.  While all participants (existing and newly recruited) had the follow-up described 

above, the existing Flu Watch participants additionally had a medical record review at the 

end of the follow-up season.  This survey, completed by a research nurse based in the 

participant’s practice, recorded GP consultations and treatment for any respiratory illness 

occurring during study follow-up.  

 Outcomes 

I used three illness outcomes and two consultation outcomes in my analyses.  

All respiratory illnesses identified in the Flu Watch study were classified according to 

whether or not they would have met the 2009 NPFS algorithm case definition for influenza-

like illness.  The 2009 NPFS case definition, as described by Rutter and colleagues, was 

“Does the patient have a high temperature and at least two of the following symptoms?—

Widespread muscle and joint aches, a cough, headache, blocked or runny nose, sore throat, 

vomiting, watery diarrhea, cannot stop crying (only children)” 295.   Given the data collected 

by the Flu Watch study, I was able to approximate this case definition as follows: ‘high 

temperature and at least two of the following symptoms – muscle and joint aches, a cough, 

headache, blocked or runny nose, sore throat, vomiting, diarrhea’.  The Flu Watch study 

did not collect data on children’s crying.    

I also classified all illnesses by a second, more sensitive version of the 2009 case definition 

which omitted fever but was otherwise identical: ‘at least two of the following symptoms 

– muscle and joint aches, a cough, headache, blocked or runny nose, sore throat, vomiting, 

diarrhea’. 

Among the subset of illnesses which had an associated nasal swab, I created an additional 

outcome of the illness being either RT-PCR-confirmed influenza or not. 
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In addition to the illness outcomes there were also two consultation outcomes which 

classified whether illnesses had an associated GP consultation (over the phone or in person) 

and whether or not they had an associated consultation with the NPFS (via website or 

phone). 

  At Risk Groups 

Certain underlying health conditions can increase an individual’s risk of serious illness or 

death if they develop influenza illness.  At-risk groups for the 2009 pandemic strain were 

defined in June 2009 by the Scientific Advisory Group for Emergencies (SAGE).  These 

groups were: 1) people aged six months or older with specific chronic diseases, 2) People 

who had received any medical treatment for asthma in the last three years, 3) pregnant 

women, 4) children under the age of 5 years and 5) people over the age of 65 years 92.  

Using the health data collected by the baseline survey I classified individuals as members 

or non-members of an at-risk group.   

 Statistical Analysis 

I began by limiting the Flu Watch dataset to illnesses which occurred during the NPFS 

operational period.  I excluded illnesses with an end date before the launch of NPFS (23 

July 2009) or an onset date after the last day of its operation (10 Feb 2010).   

7.2.4.5.1 Consultation  

I calculated the percent of illnesses which consulted overall and stratified by age group, 

sex, whether or not they were a member of an at-risk group and by RT-PCR outcome.  

Among those who consulted I calculated the percent who consulted each type of service 

and how quickly they consulted that service.  In this group I also calculated the mean 

number of consultations per illness and the mean number of services consulted per illness.   

Among those who consulted a GP and/or the NPFS, I calculated the proportion of illnesses 

that only consulted a GP, only consulted NPFS or consulted both overall and stratified by 

at-risk group, age group, sex and RT-PCR outcome.  
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7.2.4.5.2 Treatment 

I calculated the percentage of illnesses that reported taking antivirals overall and by age 

group, sex, at-risk group and by RT-PCR-outcome.  I also calculated and the percentage of 

these illnesses which took their antivirals within the first two days of illness.   

7.2.4.5.3 Impact of NPFS algorithm streaming and Case Definitions 

In this part of the analysis I subjected all illnesses to the 2009 NPFS algorithm as 

approximated using Flu Watch data.  To mirror the algorithm as closely as possible,  

I excluded any illnesses which would have been screened out in stage 1 of the emergency 

assessment.  This included those aged under 1 year and women who reported being 

pregnant at the baseline survey or during follow-up.  Flu Watch did not have comparable 

data on the remaining NPFS screening criteria (i.e. severe illness, meningococcal like 

symptoms or travel to countries with risk of malaria) so illnesses with these characteristics, 

while rare, would not have been caught in my pre-assessment stage.  The remaining 

illnesses were then subjected to stage 2 of the algorithm, the assessment of symptoms.  

Among these illnesses I calculated the proportion meeting each symptomatic case 

definition within the first week of illness both overall and stratified whether or not they 

were a member of an at-risk group.  Among the subset of illnesses with RT-PCR outcome 

data, I repeated these calculations and additionally calculated the sensitivity, specificity, 

and positive- and negative predictive values of the two symptomatic case definitions when 

compared to the RT-PCR outcome.   

 Results 

 Baseline characteristics 

During the period that NPFS was operating, Flu Watch followed a total of 3612 

participants. Approximately 17% of these participants were already in the study when the 

NPFS was initiated but the rest were recruited over the autumn of 2009.  In total there were 

1864 illnesses reported by 1447 participants, 1244 (67%) of which were swabbed and had 

RT-PCR data (Table 7-5).  The percentage of swabbed illnesses were highly comparable 

to all illnesses in terms of age group, sex, at-risk group (data not shown).  Among illnesses 
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with RT-PCR data, 72 (5.8%, 95% CI: 5-7%) were positive for Influenza, one with 

Influenza B and the rest with the 2009 H1N1 pandemic strain.   

Table 7-5: Baseline Characteristics of ill participants and the outcome of their illnesses 

 

 Consultation Behavior 

Overall, 12% (95% CI: 10%-13%) of illnesses led to a consultation at one or more of the 

following services:  GP (in person or over the phone), NPFS, NHS direct, Accident and 

Emergency (A&E) or Hospital (Table 7-5).  When limited to those meeting the 2009 NPFS 

ILI case definition, the proportion consulting was 32% (95% CI: 26%-39%, data not 

shown).  The percent of illnesses with at least one consultation were highest among children 

under the age of five (26%, 95% CI: 19%-34%), members of at-risk groups (18%, 95% CI: 

15%-21%) and among RT-PCR-confirmed influenza cases (28%, 95% CI: 18%-40%).    

The majority (91%, 95% CI: 87%-95%) of consulting illnesses had a GP consultation, 

either over the phone or in person while only 17% (95% CI: 12%-22%) reported NPFS use 

(Table 7-6)  This equates to 11% (95% CI: 9%-12%) of all illnesses consulting a GP and 

2% (95% CI: 1%-3%) of all illnesses consulting NPFS.    Most consulting illnesses (81%, 

95% CI: 75-86%) had only one consultation although some reported multiple consultations.  

n % of illnesses 95% CI n % of illnesses 95% CI

Overall 1447 1864 217 11.6% (10.2 - 13.2) 24 1.3% (0.8 - 1.9)

By agegp5

0-4 years 106 170 44 25.9% (19.5 - 33.1) 1 0.6% (0.01 - 3.2)

5-15 years 234 319 31 9.7% (6.7 - 13.5) 6 1.9% (0.7 - 4.9)

16-44 years 393 502 44 8.8% (6.4 - 11.6) 4 0.8% (0.2- 2.0)

45-64 years 484 598 66 11.0% (8.6 - 13.8) 9 1.5% (0.7 - 2.8)

65+ years 209 248 28 11.3% (7.6 - 15.9) 4 1.6% (0.4 - 4.1)

By sex

Female 762 1001 120 12.0% (10.0 - 14.2) 11 1.1% (0.5 - 2.0)

Male 664 836 93 11.1% (9.1 - 13.4) 13 1.6% (0.8 - 2.6)

By at-risk grouping

not at-risk group 991 1250 109 8.7% (7.2 - 10.4) 18 1.4% (0.9 - 2.3)

at-risk group 456 614 108 17.6% (14.7 - 20.8) 6 1.0% (0.4 - 2.1)

By RT-PCR outcome

RT-PCR negative 1015 1172 120 10.2% (8.6 - 12.1) 12 1.0% (0.05 - 1.8)

RT-PCR positive 71 72 20 27.8% (17.9 - 39.6) 4 5.6% (1.5 - 13.6)

RT-PCR unavailable 547 620 77 12.4% (9.9 - 15.3) 8 1.3% (0.6 - 2.5)

** Some individuals reporting antiviral use do not report a consultation

Consultations* Antivirals**
Ill People Illnesses

* Consultations include GP, NPFS, NHS Direct, Accident and Emergency, and Hospitalisation
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The mean number of consultations per consulting illness was 1.6 and the mean number of 

services consulted per consulting illness was 1.3.  The median delay between illness onset 

and first consultation was 4 days overall but varied by service with a median 4-day delay 

for GP consultations but only 2 days for other types of services.   

Table 7-6: Consultation type and timing 

 

Among the 217 consulting illnesses, 211 (97%, 95% CI: 94%-99%) consulted either a GP 

and/or the NPFS (Table 7-6).  Among these consults, 83% (95% CI: 77%-88%) consulted 

their GP but not NPFS, 10% (95% CI: 7%-15%) contacted both services and 7% (95% CI: 

4%-11%) consulted the NFPS but not a GP.  This distribution between GP and NPFS 

consultations did not vary greatly by subgroup (at-risk group, age group, or sex) although 

small numbers in the subgroups limits the accuracy of these estimates.  Among illnesses 

which did not fall in an at-risk group, 6% (95% CI: 2% - 12%) of consultations were NPFS 

only, 15% (95% CI: 9%-23%) were both NPFS and GP and 79% (95% CI: 71%-87%) were 

with the GP only. 

  

Day of first consultation

n % 95% CI n % 95% CI Median (range, mean)

All Consulting Cases 203 100% 217 100%  4.0 ( 1-38,  5.7)

Type of Consultation*

GP 185 91% (86 - 95) 197 91% (87 - 95)  4.0 ( 1-38,  6.0)

NPFS 36 18% (13 - 24) 36 17% (12 - 22)  2.0 ( 1-10,  2.6)

NHS Direct 19 9% (6 - 14) 19 9% (5 - 13)  2.0 ( 1- 5,  2.4)

A&E 10 5% (2 - 9) 10 5% (2 - 8)  2.0 ( 1-16,  3.3)

Hospital Admission 11 5% (3 - 9) 11 5% (3 - 9)  2.0 ( 1-16,  4.3)

IllnessesPeople

*Some illnesses have more than one type of consult
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Table 7-7: GP and NPFS consultations by age group, sex and at-risk group 

 

 

 Treatment Outcome 

Among the 1864 illnesses, 24 (1.3%, 95% CI: 0.8% - 1.9%) were treated with antivirals, 

13 of which (54%, 95% CI: 32.8% – 74.4%) were taken on the first or second day of 

reported illness (Table 7-8).  The percent of illnesses treated with antivirals was lowest 

among the youngest age group (0.6%, 95% CI: 0.01% - 3.2%) and highest among RT-PCR-

confirmed influenza illnesses (5.6%, 95% CI: 1.5% – 13.6%).  More illnesses were treated 

with antibiotics than with antivirals (n=135, 7.2% of all illnesses, 95% CI: 6.1% – 8.5%).  

Antibiotic treatment usually occurred later in the illnesses (median first day of treatment 

was on day 4 of illness). 

  

n row % (95% CI) n row % (95% CI) n row % (95% CI)

Overall 1864 211 14 7% (4 -11) 22 10% (7 -15) 175 83% (77 -88)

By at-risk group

Not in at-risk group 1250 107 6 6% (2 -12) 16 15% (9 -23) 85 79% (71 -87)

Any at-risk group 614 104 8 8% (3 -15) 6 6% (2 -12) 90 87% (78 -92)

Chronic Illness 263 46 2    4% (1 -15) 1    2% (0 -12) 43   93% (82 -99)

Pregnancy 11 1 0    0% (0 -98) 0    0% (0 -98) 1  100% (3 -100)

By agegp5

0-4 years 170 41 2    5% (1 -17) 4   10% (3 -23) 35   85% (71 -94)

5-15 years 319 31 3   10% (2 -26) 5   16% (5 -34) 23   74% (55 -88)

16-44 years 502 44 1    2% (0 -12) 4    9% (3 -22) 39   89% (75 -96)

45-64 years 598 64 4    6% (2 -15) 8   13% (6 -23) 52   81% (70 -90)

65+ years 248 27 4   15% (4 -34) 1    4% (0 -19) 22   81% (62 -94)

By sex

Female 1001 116 10    9% (4 -15) 9    8% (4 -14) 97   84% (76 -90)

Male 836 91 4    4% (1 -11) 13   14% (8 -23) 74   81% (72 -89)

By RT-PCR outcome

RT-PCR negative 1172 118 9    8% (4 -14) 12   10% (5 -17) 97   82% (74 -89)

RT-PCR positive 72 20 2   10% (1 -32) 4   20% (6 -44) 14   70% (46 -88)

RT-PCR unavailable 620 73 3    4% (1 -12) 6    8% (3 -17) 64   88% (78 -94)

N 

illnesses
N 

Consulting 

Illnesses

* At-risk groups appear in bold italics

Among Illnesses Consulting a GP or NPFS

NPFS only NPFS & GP GP only
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Table 7-8: Antiviral and antibiotic treatment and timing 

 

 Impact of ILI Case Definitions 

The flow of illnesses through the NPFS algorithm using both case definitions and focusing 

on illnesses with PCR outcome data is summarized in Figure 7-5.  All 1864 illnesses in the 

dataset were subject to the stage 1 pre-assessment screen. During this stage I excluded 11 

illnesses occurring in pregnant or recently pregnant women and 43 illnesses occurring in 

infants under 1 year of age.   

After the stage 1 exclusions a total of 1810 illnesses from 1425 participants entered into 

the clinical assessment stage of the algorithm.  560 illnesses (30.9%, 95% CI: 28.8% - 

33.1%) were among at-risk individuals.  1208 of the illnesses (66.7%, 95% CI: 64.5%-

68.9%) had accompanying RT-PCR data, 69 (5.7%, 95% CI: 4.5-7.2%) of which were RT-

PCR-positive for influenza. 

7.2.5.4.1 2009 Case Definition 

Overall, 226 of the 1810 illnesses (12.5%, 95% CI: 11.0%-14.1%) met the 2009 ILI case 

definition within the first seven days of symptoms.  This figure was 13.4% (95% CI: 10.7% 

– 16.5%) among members of an at-risk group and 12.1% (95% CI: 10.3%-14.0%) for those 

not in an at-risk group.    

In the subset of 1208 illnesses with RT-PCR data, 15% (95% CI: 13.0% - 17.1%) met the 

2009 case definition within seven days (Table 7-9).  The sensitivity of the case definition 

(i.e. the proportion of RT-PCR+ influenza cases correctly identified by the case definition) 

First day of treatment

n % 95% CI n % 95% CI Median (range, mean)

Antivirals* 24 1.7% (1.0% - 2.5%) 24 1.3% (0.8% - 1.9%)  2.0 ( 1- 5,  2.4)

Antibiotics* 128 8.8% (7.4% - 10.4%) 135 7.2% (6.1% - 8.5%)  4.0 ( 1-37,  5.5)

*Three illnesses reported both Antiviral and Antibiotic use

IllnessesPeople
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was 50.7% (95% CI: 38.4% - 63.0%).  The specificity (i.e. the proportion of RT-PCR- 

cases, correctly identified by the case definition) was 87.2% (95% CI: 85.1% - 89.1%).   

7.2.5.4.2 Afebrile Case Definition 

For the alternative and more inclusive hypothetical case definition, 1539 of the 1810 

illnesses (85.0%, 95% CI: 83.3% - 86.6%) met the case definition, a figure that did not vary 

when stratified by at-risk group or not.   

In the subset of 1208 illnesses with RT-PCR data, the percent meeting the case definition 

was 90.0% (95% CI: 88.2% - 91.6%) (Table 7-9).  As most illnesses met the case definition, 

the sensitivity was high at 95.7% (95% CI: 87.8% - 99.1%) but that inclusivity meant the 

specificity was low (10.4%, 95% CI: 8.7% - 12.3%). 
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Figure 7-5:  NPFS algorithm assessment of Flu Watch Illnesses focusing on illnesses with PCR data 

using a) the 2009 NPFS ILI case definition and b) the afebrile case definition 

a) 2009 Case Definition 

  

b) Afebrile Case Definition 
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Table 7-9: Test Characteristics for two Case Definitions among illnesses with RT-PCR data 

  

2009 Case Definition 
(more specific) 

Afebrile Case Definition 
(more sensitive) 

%  95% CI % 95% CI 

% of illnesses meeting case 
definition in 7 days 

15.0% (13.0 - 17.1) 90.0% (88.2 - 91.6) 

Sensitivity 50.7% (38.4 - 63.0) 95.7% (87.8 - 99.1) 

Specificity 87.2% (85.1 - 89.1) 10.4% (8.7 - 12.3) 

Positive Predictive Value 19.3% (13.9 - 25.9) 6.1% (4.7 - 7.7) 

Negative Predictive Value 96.7% (95.4 - 97.7) 97.5% (92.9 - 99.5) 

 

7.2.5.4.3 Visualizing the impact of symptomatic case definitions 

The sensitivity and specificity of different symptomatic case definitions within the NPFS 

algorithm have large impacts on the population in terms of the total number of antivirals 

authorized and how well they are targeted to individuals who have influenza.  
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Figure 7-6 which was created using an freely available online application 300, visualizes the 

impact of the sensitivity and specificity each case definition in a theoretical population of 

1000 using the influenza prevalence estimated from Flu Watch during the NPFS.   The 

figures display the numbers of correctly identified influenza illnesses (true positives and 

correctly targeted antivirals), correctly identified non-influenza illnesses (true negatives 

and appropriately withheld antivirals) as well as the mis-identified true influenza illnesses 

(false negatives and a missed opportunity to treat with antivirals) and mis-identified true 

non-influenza illnesses (false positives and mis-directed antivirals).  The top panel displays 

the 2009 case definition, and the bottom displays the afebrile version of the 2009 case 

definition.  The 2009 case definition misses about half of the true influenza illnesses who 

could have benefited from antiviral treatment and but correctly identifies most true 

negatives and thus does not mis-direct too many antivirals on non-influenza illnesses.  To 

put another way, approximately 21% (95% CI: 15%-28%) of antivirals are being correctly 

offered to influenza cases although half of all influenza cases are missed.  In contrast, the 

afebrile case definition identifies almost all influenza cases for treatment but also mis-

classifies most non-influenza illnesses (which make up the vast majority of illnesses).  This 

would mean many more antivirals would be prescribed (potentially putting pressure on 

national stockpiles) and only 6.7% (95% CI: 5.1% - 8.5%) of those antivirals would be 

correctly targeted at influenza cases.  
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Figure 7-6: Impact of Sensitivity and Specificity on a theoretical population of 1,000 for the 2009 NPFS 

case definitions (top panel) and the afebrile version of that case definition (bottom panel).  
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 Discussion 

 Summary of Results 

Only a small proportion of all community cases of respiratory illness (11%) consulted a GP 

and even fewer (2%) consulted the NPFS.  NPFS consultations typically occurred earlier 

in illness than GP consultations (median 2 days versus 4 days respectively). Among all 

consulting illnesses, 91% had a GP consultation and only 17% consulted the NPFS, 

although more than half of these NPFS users also consulted a GP.  Among consulting 

illnesses in the not at-risk group (the group that includes the ‘worried well’), only 6% 

consulted the NPFS and not a GP, indicating only a small potential diversion of GP 

workload.  Approximately 1% of all community illnesses were treated with antivirals, just 

over half of which took them within two days of illness onset.  More community cases were 

treated with antibiotics (7.2%). The 2009 NPFS case definition classified 15% of all 

community illnesses as positive for an ‘influenza-like illness’ whereas the afebrile version 

of the case definition classified 90% of community illnesses as positive. The sensitivity of 

the 2009 case definition was lower than the afebrile version (51% versus 96% respectively) 

but the specificity in turn was higher (87% versus 10% respectively).   

 Comparison to other studies  

The very low proportion of community cases seeking medical attention (11%) is consistent 

with seasonal influenza estimates from FluSurvey, a UK online cohort which found that 

among a combined group of community acute respiratory illnesses (ARI) and ILI illnesses, 

9-13% consulted during periods of seasonal influenza 301.  Most other estimates of the 

proportion of community cases seeking medical care however are limited to illnesses 

meeting an ILI case definition.  When we restricted our community cases to those meeting 

the 2009 NPFS ILI case definition, we found 32% of them consulted.  This again is 

consistent with comparable estimates from the FluSurvey study during the 2009 pandemic 

(43% consulted in July 2009 and 25% between August and December 2009) 302.  It also fits 

with the broader picture of seasonal influenza estimates from other comparable online 

cohorts in Australia and across Europe 105,123,303.  The European studies show high 

variability between countries, but generally a low proportion of consultations in Northern 

Europe which typically take place 5-7 days after illness onset 105,123.   
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I was unable to find published estimates, drawn from individual data, of the overlap 

between NPFS and GP consultation.  Some researchers report the individual rates of GP 

and NPFS consultations but without individual-level data it is impossible to know what 

proportion of those consultations consulted both services 295.   The NPFS was introduced 

just after the peak of the summer wave of the pandemic (as measured by virological 

surveillance) and therefore it is difficult to directly estimate how much of the decline in GP 

consultation rates following the introduction of the NPFS was due to NPFS and how much 

was due to declining incidence 295,296.   I was also unable to find estimates from the UK of 

the proportion of all community-level illnesses that received antivirals and/or antibiotics.   

I was unable to find any estimates of the sensitivity and specificity of the NPFS clinical 

case definition either from community-level cases of respiratory illness or from the subset 

of those cases who consulted the NPFS.  My finding that the clinical case definitions were 

either sensitive or specific but not both is consistent with other studies 16,262,298,304–306.  

Estimates of sensitivity and specificity of case definitions are often limited to cases that 

consult and/or already meet a version of the ILI case definition 16,262,298,304–306.  However, 

even those that evaluate community-level illnesses still face the same trade-off in 

sensitivity or specificity 297.  

 Strengths and Weaknesses 

A key strength of the study comes from the community-level, prospective follow up of all 

respiratory illnesses coupled with RT-PCR testing for influenza. This design enables 

accurate identification and characterisation of both the denominator (all illnesses in the 

community regardless of regardless of severity or RT-PCR status) and numerators (i.e. the  

symptomatic and PCR outcomes, consultation and treatment).  This means my results are 

less likely to be biased by illness severity or by consultation.  It also shed light on the scale 

of the community burden of respiratory illness which, in a future pandemic, could 

potentially consult the NPFS system. The RT-PCR testing allows the accuracy of the 

symptomatic case definitions to be calculated against a gold-standard diagnostic.  The 

NPFS only conducted RT-PCR tests on illnesses that met their symptomatic case definition.  

By excluding the comparison group of illnesses that did not meet their case definition, they 

were unable to assess the accuracy of that case definition.  The wide range of symptom data 
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available in the Flu Watch study allowed me to evaluate the accuracy of various case 

definitions which is a critical component of the NPFS algorithm and one that could be 

revised in future iterations of the algorithm.    

The fact that the symptomatic outcomes are based on self-reported symptoms could be seen 

as a limitation but the NPFS assessment also relies on self-reported symptoms, so this 

makes Flu Watch data all the more comparable to the NPFS. A limitation of the study is 

that not all participants had the full medical record review at the end of follow-up.  In terms 

of this analysis, the medical record review collected the same information that was self-

reported in the weekly follow-up surveys, however in rare instances, the medical record 

review identified consultations and treatments which were not reported by the participants. 

The fact that the study did not have the medical records data for all participants may mean 

that some consultations and treatments were missed and this would have led to a slight 

underestimation the proportion of illness which had consultations and treatments.   

It is possible there may be misclassification bias if PCR testing did not identify all influenza 

cases (e.g. due to the timing or adequacy of the specimen).  This could affect the sensitivity 

and specificity calculations but without knowing the case definition status of those missed 

influenza cases it is impossible to say how those estimates would be biased.  

Due to the rapid increase in study size during the autumn/winter wave of the pandemic, the 

majority of data and illnesses comes from that period and there are relatively fewer data 

from the summer wave of the pandemic. There is evidence that the propensity to consult 

was higher during the summer than the winter wave, possibly due to the fear of the new 

virus and the intense media coverage in the UK during the summer wave302.  Therefore, 

my estimates of the overall proportion of illnesses consulting and the overlap between 

NPFS and GP consultations may be biased towards a time period when the general public 

were less likely to consult and possibly less concerned about the pandemic. 

 Implications 

The fact that less than 2% of community illnesses consulted the NPFS during the 2009 

pandemic highlights that this service only assessed the tip of the iceberg of all community 
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cases, an even smaller proportion of the iceberg than primary care.  In a future pandemic, 

if there was an increase in illness rates, severity of illnesses, public concern, or a 

combination of these, one might expect many more ill people consulting the service and 

thus potentially greater drawdown on the antiviral stockpiles.   

Despite the NPFS’s aim to divert the ‘worried well’ from the GP to the NPFS, I found that 

among the consulting illnesses in the not-at-risk group (the group that the ‘worried well’ 

would fall into), only 6% of GP appointments were potentially diverted to the NPFS.  It is 

plausible that diverted GP appointments may have been clustered in location and time (e.g. 

when rates of illness are highest or during a local outbreak) and therefore may have had 

meaningful effects on keeping services running at particularly busy times.  It is also worth 

considering that if the estimate of 6% of GP appointments diverted were applied to a 

scenario with much higher consultation rates, the overall impact would be greater as a much 

larger number of GP appointments would be diverted.   The other primary aim of the NPFS 

was to distribute antivirals to the public more quickly than would be achievable in primary 

care.  I found that the median day of consultation for the NPFS was day two of illness, two 

days earlier than GP consultations.  This could be due to people choosing to contact the 

NPFS service earlier than they would contact a GP.  It could also be partly due to delays in 

accessing a GP compared with the NPFS.  Even if the NPFS did not divert many GP 

appointments, it would have provided a faster route to antivirals than the traditional route 

of going through a GP. 

The NPFS has been designed to support two different population-level antiviral treatment 

strategies; a ‘treat all’ approach whereby all those meeting the case definition could 

potentially receive antivirals and a ‘targeted treatment’ approach whereby only members 

of at-risk groups would potentially receive antiviral treatment 92.  Therefore, the choice of 

the NPFS case definition not only has to balance the relative importance of correctly 

identifying and treating as many influenza cases as possible (high sensitivity) while not 

misdirecting too many treatments to non-influenza cases which could put pressure on the 

antiviral stockpiles (high specificity), but it also must consider this balance for two different 

populations: the entire population and the subset of the population belonging to an at-risk 

group.  Clinical case definitions for influenza cannot be both highly specific and sensitive 
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and therefore the best choice of case definition for the entire population under the ‘treat all’ 

policy many not be the best choice of case definition for the at-risk population under the 

‘targeted’ treatment policy. Instead of choosing one case definition which would apply in 

both policy scenarios, it may be beneficial to have a third hybrid policy option which 

streams those at higher risk of severe outcomes and those at lower risk and applied a 

different case definition to each group.  For example, for those at higher risk of severe 

outcomes (i.e. people with moderate to severe illness and / or a member of an at-risk group) 

one could apply a highly sensitive case definition since identifying and treating influenza 

cases would be the priority.  In contrast, among the non-severe illnesses who are not in an 

at-risk group (the majority of illnesses), a more specific case definition would reduce the 

number of mis-directed antiviral treatments to non-influenza cases, while still providing 

treatment to some influenza cases.  By streaming cases into high-risk and low-risk groups 

and applying different case definitions to each group, the NPFS would simultaneously 

target antiviral treatment to those who would need and benefit from it the most whilst also 

preserving antiviral stockpiles. 

 Conclusions 

Only a small proportion of community-level respiratory illness consulted medical services, 

only a small proportion of these consulted the NPFS and only a small proportion of NPFS 

consults consulted the NPFS and no other services.  Thus, in the relatively mild 2009 

pandemic a modest percent of GP consultations may have been avoided but these may have 

had a meaningful effect on keeping primary care services running during particularly busy 

times.  A hybrid population-level antiviral treatment policy which applies different 

symptomatic case definitions for high-risk and low-risk cases should be considered as it 

could simultaneously target antiviral treatment to those who would most benefit from it 

whilst also preserving national antiviral stockpiles. 

7.3 Chapter Conclusions 

The analyses in this chapter, in combination with previous FluWatch findings, demonstrate 

that most symptomatic seasonal and 2009 pandemic influenza cases are mild, do not meet 

a traditional ILI case definition, do not stay home when they are ill, do not consult medical 

services15, and are rarely treated with antivirals even when the NPFS made them directly 
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available to the public.  Understanding the spectrum of illnesses in the community and how 

people react to these illnesses is essential for designing impactful and cost-effective public 

health interventions, for it is likely that the combined effects of the mild (and far more 

numerous) illnesses have the biggest impact on the effectiveness and cost-effectiveness of 

population-level interventions.   

Vaccines and antivirals are mainstay pharmaceutical interventions for seasonal and 

pandemic influenza.  Such interventions are designed to prevent and treat influenza 

illnesses and, depending on how they are deployed, dampen wider community 

transmission.  My estimates of absences and QALYs lost due to community-level influenza 

illness can help improve the accuracy of transmission and economic modeling of 

vaccination and other interventions by more fully reflecting the full range of influenza 

outcomes in a population.  My evaluation of proportion of community respiratory illnesses 

which contacted the NPFS and met various case definitions clarifies the potential impact 

and cost effectiveness of the overall service as well as the impact of different case 

definitions and combination of case definitions on the community distribution of antivirals.  

It makes the tradeoffs associated with different case definitions more explicit, which would 

be helpful when tailoring the service to be proportionate to the threat.  My suggested use 

of multiple case definitions would increase the overall flexibility of the service.  

Proportionality and flexibility are two of the three key principles underpinning the current 

UK pandemic preparedness strategy307.  My finding that only a small fraction of community 

influenza cases consulted the NPFS during the pandemic and then only some of them would 

have been eligible for antivirals makes it unlikely that the NPFS antivirals had a wider 

impact on community transmission. 

The design of non-pharmaceutical interventions which aim to reduce community 

transmission can also be informed by some of the findings presented in this chapter.  For 

example, early self-isolation during illness is a method designed to keep infectious people 

from mixing with the wider community in an effort to reduce onward transmission.  The 

fact that 1) people may be infectious before symptoms appear, 2) most illnesses are mild 

and many will not realize they have influenza, 3) people are used to going to work and 

school even when they have symptoms and 4) even if they did take time off they may still 
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be infectious when they return – all this taken together implies it would be unrealistic to 

assume that a policy of advised early self-isolation of cases would have a substantial effect 

on reducing community transmission.  Similarly, entry screening alone is unlikely to be 

very effective in keeping cases out of a country as it would miss cases who are infectious 

but not yet displaying symptoms and miss mild cases that do not meet their case definition 

(e.g. afebrile cases).   

In summary, this chapter presents findings on the impact that influenza symptoms have on 

individuals, the reaction people have to these illnesses in terms of absenteeism, 

consultation, and treatment, and how this community-level information can be used to 

improve both our understanding and our public health responses to these illnesses.  

 

7.4 Relevance to COVID-19 

Many of the epidemiological issues discussed above that inform public health responses 

are similar for Influenza and COVID-19 (see Table 7-10 for a summary). For example, 

although COVID-19 is more severe than influenza strains circulating in the last century, 

most cases of COVID-19 are mild to moderate severity and do not require hospitalisation308 

, many symptomatic cases do not meet the government’s case definition309 and many people 

do not know what that case definition is310.  Among those meeting the case definition most 

do not request a test and despite being required by law to self-isolate, most do not fully 

adhere to the self-isolation rules310.  SARS-CoV-2 infection, like influenza, can also lead 

to asymptomatic and pre-symptomatic viral shedding311,312.    

As with pandemic influenza, when the COVID-19 pandemic arose, there was no vaccine 

but unlike influenza, there was also no generic antiviral.  In the absence of pharmaceutical 

interventions and specific treatments, societies had to turn to non-pharmaceutical 

interventions to control spread, flattening and delaying the epidemic curve in order to 

reduce mortality, prevent hospitals from becoming overwhelmed, and to buy time for 

COVID-19 vaccines and treatments to be developed and deployed.  The choice of non-

pharmaceutical interventions for acute respiratory infections like influenza and SARS-
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CoV-2 are the same, but the interventions chosen in the UK and elsewhere for the 2009 

influenza pandemic and the COVID-19 pandemic were very different.  This was due to the 

differences in severity between the two pandemics.   

In the 2009 influenza pandemic the main public health interventions in the UK were largely 

confined to two pharmaceutical interventions which were not initiated immediately and 

intended to mitigate rather than suppress the pandemic.  These interventions were: a large 

vaccination programme for children, older adults and elderly and certain clinical risk 

groups and 2) the NPFS which triaged community cases of respiratory illness in order to 

ease burden on primary care and treat community cases with stockpiled influenza 

antivirals92.  This approach aimed to prevent infection and reduce transmission through 

vaccination and to treat community-level cases with antivirals.   

In contrast, for COVID-19, the UK government aimed for early and strong suppression of 

the epidemic and employed almost all possible non-pharmaceutical interventions in their 

most restrictive forms313–315.   This was due to the severity of COVID-19, the usual 

pandemic concerns around the lack of vaccines, antivirals and other specific treatments but 

also a recognition of the importance of asymptomatic and pre-symptomatic transmission316 

which lessens the effectiveness of control measures centered around identification and 

isolation of symptomatic cases. The non-pharmaceutical interventions used in the UK 

included stay-at-home orders or ‘lockdowns’, social distancing, working from home and 

government backed furlough schemes, school and class closures, travel restrictions and 

mask wearing317.  The UK also built-up mass testing and contact tracing capacity as part of 

the Test, Trace and Isolate system (TTI)318,319.  In contrast to the NPFS which focused on 

treating individuals, the TTI focused on identifying, testing and isolating all suspected cases 

and their contacts in order to suppress community transmission.  The non-pharmaceutical 

interventions and restrictions imposed during the COVID-19 pandemic affected everyone, 

not just cases and their contacts.   

Although the public health response to the two pandemics were very different, they shared 

some of the same challenges described above including individuals not realizing they are 

infectious; individuals not contacting NPFS/TTI when they are symptomatic; individuals 
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not always staying at home when ill; difficulties in choosing the best set of symptoms for 

the case definition, the importance of asymptomatic infection and transmission.  All of 

these issues lessen the effect of the relevant public health intervention but the simultaneous 

use of multiple pharmaceutical and non-pharmaceutical interventions (the so-called swiss 

cheese approach320) limits impact.  The many types of restrictions, strict social distancing 

and particularly the stay-at-home orders helped reduce transmission321. 

Similar to influenza, it was difficult to choose which symptoms to include in the TTI case 

definition as apart from the high frequency of loss or change to sense of smell or taste, the 

symptoms were similar to other acute respiratory infections309.  Very early in the pandemic, 

my supervisor and I developed and evaluated the test characteristics of a COVID-19 

clinical case definition using data from the UK COVID-19 first few hundred study and 

symptom data from non-COVID-19 illnesses from the Flu Watch study (same dataset and 

similar methods to the work presented in this chapter).  We proposed a range of case 

definitions with a diffing balance between sensitivity, specificity and simplicity.  Since the 

UK CMOs valued sensitivity over specificity and also placed a premium on simplicity the 

triad of Cough OR Fever OR Loss of Sense of Taste or Smell was chosen (A. Haywards, 

personal communication, 27 February 2022). Additional symptoms such as headache and 

fatigue were not included due to large drops in specificity and marginal gains in sensitivity.  

Later, there were discussions among a group of academics representing the large 

community studies and Public Health England, debating the advantages and disadvantages 

of expanding the TTI case definition to increase the sensitivity by including additional 

constitutional symptoms as case numbers fell, but this would have the knock-on effects of 

increasing the number of tests needed and the number of people needing to self-isolate 

while they awaited their test results309.  So far, the case definition has not been changed 

although it should be kept under review as the symptom profiles may change with new 

variants.   

 In terms of health-related quality of life (HRQoL), one could argue that this was reduced 

for everyone, cases and non-cases, particularly during lockdowns322–324.  Among COVID-

19 cases, the total HRQoL lost due to illness will be extensive, not only because of the high 

level of morbidity and mortality, but also because a large number cases suffer from 
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extended periods of illness known as ‘long Covid’325–328.  It will take many years to 

understand the true cost of this pandemic, both in terms of morbidity but also in terms of 

the effects of the interventions.  

The Flu Watch data on attendance at work during periods of influenza illness is relevant to 

discussions about lifting of legal restrictions requiring isolation of COVID-19 cases as it 

suggests that unless there is a marked culture change compared to before the pandemic, 

then a high proportion of those with respiratory infections will attend work promoting 

transmission. 
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Table 7-10: Comparison of COVID-19 and Influenza 

 Similarities Differences 

Clinical Iceberg 

and disease 

severity 

 

• Large asymptomatic proportion 
• Large proportion of illnesses mild to 

moderate severity 
• Many people don’t stay home when 

symptomatic or positive 

• COVID-19 illness much more severe, particularly in older age groups 
• Long Covid – no equivalent in influenza 
• More awareness of the need to stay home during periods of illness 

Transmission 

 
• Acute Respiratory Infection spread 

via aersosol, droplets and fomites 
• Pre-symptomatic and asymptomatic 

shedding of virus 
• Somewhat similar R0 and serial 

intervals 
• Antibody waning and viral 

evolution mean people can be re-
infected 

• Children aren’t as susceptible as adults and don’t drive COVID-19 
epidemics as much as influenza 

Diagnostics & 

Laboratory 

assays 

• PCR assays detect active infection 
•  Rapid antigen testing now exists for 

both viruses  
• Serological Assays identify 

antibodies 
 

• COVID-19 rapid antigen testing widely available for at home testing 
with relatively good sensitivity among symptomatic cases; influenza 
rapid tests limited to clinical settings and not widely available.  

• At-home fingerprick test available for SARS-CoV-2 antibodies (e.g. 
lateral flow immunoassays) 

• SARS-CoV-2 serology can be conducted on small amounts of capilliary 
blood, self-collected with fingerpricks 
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• Anti-N SARS-CoV antibodies are a marker of natural infection and not 
vaccine derived.  No equivalent antibody marker for natural influenza 
infection. 

Pharmaceutical 

Interventions 
• Effective vaccines now available 
• Ongoing/booster vaccination 

needed; Vaccine updates likely 
needed as immune escape variants 
appear 

• SARS-CoV-2 vaccines use new technology (e.g. MRNA vaccines) 
• COVID-19 specific treatments at first didn’t exist 
• COVID-19 antivirals only recently introduced and not widely available 

yet 

Non-

Pharmacuetical 

interventions 

• List of potential non-
pharmaceutical interventions for 
acute respiratory infections are the 
same (i.e. they are not virus-
specific) 

• Asymptomatic and pre-
symptomatic individuals can 
unwittingly spread virus 

• Symptomatic people don’t always 
stay home even when they are 
asked to 
 

• Test. Trace and Isolate (TTI) aimed to REDUCE TRANSMISSION of 
SARS-CoV-2 through identification and isolation of cases and contacts 
so that medical services (particularly hospitals) weren’t 
overwhelmed.  Potential cases told to contact TTI, not GPs. Not aimed 
to treat individuals as antivirals not available; NPFS aimed to treat 
individuals & reduce burden on primary care 

• Lockdowns, social distancing, working from home, school 
closures, travel restrictions and mask wearing during Covid-19.  
Although non-pharmaceutical interventions for acute respiratory 
viruses are not-virus specific, the severity of covid-19 has meant much 
larger scale and more restrictive public health interventions (e.g. 
lockdowns) have been employed in the UK and many other countries 
around the world 

Seleted public 

health 

challenges 

• Asymptomatic/presymptomatic 
shedding (people can be infectious 
without realising it) 
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• Not everyone recognises they might 
be infected (not knowing the case 
definition symptoms or assuming 
symptoms are too mild to be 
COVID/Flu) 

• Not everyone seeks out testing 
(COVID-19) or assessment (NPFS) 

• Choosing a set of symptoms for case 
definition is challenging and has 
differ trade-offs in different 
circumstances 

• Not everyone stays at home / self-
isolates when ill or when required 
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 Conclusion 

The aim of this PhD was to inform seasonal and pandemic influenza preparedness, severity 

assessments and response through the production of empirical estimates on community-

level influenza immunity, infection and disease.  There were four objectives, one for each 

main analysis.  In the following section I will describe how I met these objectives by 

summarizing my main findings for each. The emergence of the COVID-19 pandemic arose 

following the main analyses but I have also attempted to reflect on the significance of the 

work for the COVID-19 pandemic. 

8.1 Summary of main findings 

 Investigate whether occupational exposure to pigs increases risk of seasonal, 

pandemic and zoonotic influenza infection  

By comparing serological evidence of infection with a selection of human and swine H1 

and H3 viruses among pig industry workers and a general population comparison group, I 

found that pig industry workers showed evidence of increased odds of A(H1N1)pdm09 

seropositivity compared to the comparison group, albeit with wide confidence intervals 

(CIs), adjusted odds ratio after accounting for possible cross-reactivity with other swine 

A(H1) viruses [(aOR) 15.1, (95% CI: 1.6–140), p=0.017].  I also found evidence that pig 

industry workers had elevated odds of swine H1N2 seropositivity [a(OR) 4.32 (95% CI: 

1.39–13.46), p=0.012] and H3N2 Perth seropositivity [a(OR) 4.22 (95% CI: 1.28–13.94), 

p=0.018], after controlling for vaccination, season and seropositivity to other measured, 

potentially cross-reactive strains.   

 Describe the population-level patterns of influenza infection and immunity in 

England during the 2012/13 winter season  

Using data from a population-level, repeated cross-sectional survey, I found evidence that 

a high proportion of the English population is infected with influenza over the course of a 

few months. Infection with A(H1N1)pdm09 was common with 42% (95% CI [33% - 51%]) 

of the unvaccinated population moving from undetectable to detectable H1N1pdm2009 
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antibodies; the equivalent figure for A(H3N2) was 24% (95% CI [12%-37%]). Using a 

higher threshold titre of 1:40 the cumulative increase was 38% (95% CI: 29% - 46%) for 

H1N1pdm2009 and 27% (95% CI: 16%-37%)  for A(H3N2).  These proportions are a great 

deal higher than estimates based on virologically confirmed cases and also higher than 

those typically estimated from community cohort studies which identify infections based 

on a four-fold rise in antibody titre from pre- and post-season serological samples 15,163,234.  

This suggests these other types of data may underestimate the true infection rate.  My 

results may also shed light on the level of strain-specific antibodies in the English 

population that permit and curtail epidemic spread of influenza.  Prior to the 

A(H1N1)pdm09 epidemic wave, approximately 50% of adults have detectable and 30% 

protect antibodies against A(H1N1)pdm09.  For A(H3N2) these figures were 50% 

detectable and 35% protective.  Immediately following the epidemic peak, levels of 

detectable antibodies against A(H1N1)pdm09 were approximately 80% and protective 

levels 50-60%.  For A(H3N2) these figures were 60-70% and approximately 55% 

respectively.  These pre-season low levels and immediately post-peak antibody levels may 

represent an immune environment where epidemic spread of influenza is feasible and 

curtailed respectively.  

 Quantify the work and school absences and health-related quality of life loss 

due to community influenza illnesses 

Using data from Flu Watch, a community cohort study, I found that the average quality 

adjusted life days (QALD) lost among community cases of acute respiratory infections 

(ARI), Influenza-like-illness (ILI), H1N1pdm09 and influenza B cases was 0.26, 0.93, 1.61 

and 1.84 respectively.  Among virologically confirmed cases (who are likely to be 

infectious) I also found that overall 40% (95% CI: 33%-48%) of influenza A cases and 

24% (95% CI: 13%-40%) of influenza B cases took time off work/school with an average 

duration of 3.6 and 2.4 days, respectively. Among ill children, 56% (95% CI: 42%-68%) 

and 31% (95% CI: 14%-52%) took time off school or childcare for an average duration of 

3.5 and 2.1 days for influenza A and B respectively.  Ill adults were less likely to take time 

off (31% [95% CI: 22%-41%] and 20% [95% CI: 4%-48%] for influenza A and B 

respectively) but, when they did so, took more time off (3.8 and 3.0 days for influenza A 

and B respectively).  ILI cases were broadly comparable with influenza cases although 
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more severe than the ARI cases.  When scaled up to the 2010/11 English population, we 

estimated that community influenza cases lost 24,300 quality adjusted life years (QALYs) 

and had an estimated 2.9 million absences per season based on data from 2006/07 to 

2009/10. 

 Evaluate the success of the 2009 National Pandemic Flu Service Algorithm 

against its two primary aims and propose changes to the algorithm to better target 

community-level antiviral treatment 

To inform a review of the NPFS treatment algorithm I assessed the 2009 algorithm on 

contemporaneous UK community cases from the Flu Watch study, many of whom did not 

consult the NPFS. Only a small proportion of all community cases of respiratory illness 

(11%) consulted a GP and even fewer (2%) (95% CI: 1%-3%) consulted the NPFS.  NPFS 

consultations typically occurred earlier in illness than GP consultations (median 2 days 

versus 4 days respectively). Among all consulting illnesses, 91% (95% CI: 87%-95%) had 

a GP consultation and only 17% (95% CI: 12%-22%) consulted the NPFS, although more 

than half of these NPFS users also consulted a GP.  Among consulting illnesses in the not 

at-risk group (the group that includes the ‘worried well’), only 6% (95% CI: 2% - 12%) 

consulted the NPFS and not a GP, indicating only a small potential diversion of GP 

workload.  Approximately 1% (95% CI: 1% – 2%) of all community illnesses were treated 

with antivirals, just over half of which took them within two days of illness onset.  More 

community cases were treated with antibiotics (7.2%, 95% CI: 6.1% – 8.5%). The 2009 

NPFS ILI case definition classified 15% (95% CI: 13% - 17%) of all community illnesses 

as positive for an ‘influenza-like illness’ whereas the afebrile version of the case definition 

classified 90% (95% CI: 88% - 92%) of community illnesses as positive. The sensitivity of 

the 2009 case definition was lower than the afebrile version (51% [95% CI: 38%-63%] 

versus 96% [95% CI: 88%-99%] respectively) but the specificity in turn was higher (87% 

[95% CI: 85%-89%] versus 10% [95% CI: 9%-12%] respectively).   

8.2 Strengths and weaknesses of the research 

Table 8-1 outlines some of the main strengths and weaknesses of the two studies – some 

generic in nature and some particular to the research questions that these studies were meant 

to address. 
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The Flu Watch study was a large, multi-year, community cohort study providing 

comparable data during periods of interpandemic, pandemic and post-pandemic influenza.  

It collected extensive data on potential risk factors and outcomes including laboratory 

confirmed outcomes covering the lower three levels of the clinical iceberg (infection, 

illness, consultation) and enabled research into many different questions on influenza 

immunity, burden and transmission.  Although the initial participation rate was low, 

retention was high and the cohort was fairly representative of the population.  Weekly 

prospective follow-up for all respiratory illnesses (regardless of consultation), daily 

recording of symptoms, treatment and behaviours and self-swabbing illnesses for PCR-

analysis of influenza and other common acute respiratory viruses provides a holistic and 

exquisitely detailed picture of the respiratory illnesses experienced in the community which 

primary care surveillance almost entirely misses.  The study benefits from the generic 

advantages of cohort studies (timing of exposures and outcomes typically known, lower 

level of biases, multiple exposures and outcomes collected, ability to directly calculate 

incidence rates) but also suffers from the many of the generic disadvantages of cohort 

studies such as time (both set up time and follow-up time can be long), high costs and 

complicated logistics. 

The PIPS study was designed as a much-slimmed down version of Flu Watch, aiming to 

capture the most critical infection and immunity data at the start of and in real-time 

throughout a pandemic without the cost and logistical challenges of a full cohort.  These 

advantages would also mean the study would be easier to fund and run on a continuous 

basis (i.e. as surveillance) rather than a one-off research study.  This had the benefit of 

providing comparable pre-pandemic data and could easily be a platform for research on 

other acute viruses in the community.  The main study limitations were the fact that this 

particular study design had a fixed sample size, may be more biased when estimating 

cumulative incidence of infection when compared to a cohort with paired sera, is unable to 

estimate asymptomatic infection rates and, perhaps most dramatically, data collection could 

be (and was) shut down in the event a severe pandemic.  As a cross-sectional study it lacked 

prospective follow-up by definition and this limited the additional research questions that 

could be addressed with a cohort study.   
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Table 8-1: Strength and weaknesses of the Flu Watch and PIPS studies 

Study Strengths Weaknesses 

Flu 

Watch 
• Community-level & fairly representative of population 

• Designed for seasonal and pandemic research 

• Most (possibly all) aspects of study adaptable to other 

existing or novel pathogens 

• Many different risk factors and outcomes collected 

• Relative timing of outcome and exposures typically known 

• Symptomatic and laboratory-confirmed outcomes for 

influenza infection and disease 

• PCR-confirmation of influenza A and B and other common 

acute respiratory infections including seasonal 

coronaviruses, RSV and rhinoviruses 

• Methods were adaptable over time 

• Laboratory assay conducted by expert team at PHE 

• Includes review of medical records by research nurse 

• Multiple levels of iceberg covered (infections, illness, 

consultation) 

• Data on humoral and T-cell immunity 

• Able to directly calculate rates of infection, disease & 

consultation  

• Paired antibody data enables less biased estimates of 

cumulative incidence/incidence rates and also evaluation of 

antibody waning 

• Expensive 

• Resource Intensive 

• Difficult and time consuming to set up 

• Major delays in obtaining further pandemic funding, ethics and R&D 

approval across multiple sites, resulting in delayed recruitment 

during the pandemic and fewer participants overall 

• Delays in obtaining serological results as PHE laboratory extremely 

busy during pandemic with many competing priorities 

• Hard to maintain funding during interpandemic periods 

• Low initial participation rate – can lead to bias 

• Potential for participant survey fatigue 

• Potential loss of follow-up 

• Harder to generate real-time serological data 

• Sample sizes too small to get accurate rates in small divisions of 

geography, time or age grouping. 
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• Detailed, daily prospective clinical and behavioural follow-

up enabling many research questions to be addressed with a 

high level of accuracy 

• Able to generate real-time data on clinical disease and 

behaviour 

• Data from multiple seasons covering interpandemic, 

pandemic and post pandemic influenza circulation 

PIPS • Community-level and highly representative of population 

• Designed for seasonal and pandemic research 

• Most (possibly all) aspects of study adaptable to other 

existing or novel pathogens 

• Key individual-level variables (including vaccination) 

collected 

• Pre-agreed funding, ethics & approvals 

• Hibernating yet triggerable in 2 weeks in event of pandemic 

• Cost-effective 

• Would be easier to run continuously during interpandemic 

periods than a cohort 

• Could be applied to other existing and novel viruses 

(depending on laboratory techniques) 

• No loss to follow-up / survey fatigue 

• Easier to generate real-time serological data 

• Builds serological capacity 

• Limited risk factor data & timing relative to outcome not always 

known 

• Lack of prospective follow up means no good data on illnesses.  

• Limited sample size & not able to scale up size 

• Methods not particularly adaptable 

• May be more prone to biased estimates of cumulative incidence 

• Study at risk of shutting down during a severe pandemic 

• Pilot ran only one influenza season 

• Difficult to recruit and train laboratory staff 

• Difficult to maintain laboratory expertise during hibernation periods 



 

 

 

185 

8.3 Contribution of the work  

 Occupational Exposure to Pigs 

This study improved our understanding of swine influenza transmission to humans, by 

comparing the serological evidence of SIV seropositivity in pig industry workers.  The 

increased risk of A(H1N1)pdm09 in pig industry workers is compatible with the concurrent 

emergence of infection with A(H1N1)pdm09 in pigs in England, which was first observed 

in November 2009 170 and confirmed by the serological results in our study.  As there was 

minimal trade of live pigs between North America and Europe during the period of the 

study and no reports of the pandemic strain in European pigs prior to human cases, 200 it is 

likely that pigs were initially infected by humans during the early stages of the 2009 

pandemic, and infection then transmitted efficiently within and between pig herds but also 

through reverse zoonoses events following contact of pigs with infected humans.  

Phylogenetic analysis has subsequently demonstrated that H1N1pdm2009 has been 

repeatedly transmitted from humans to swine since the pandemic 201.  Pig industry workers 

naïve to A(H1N1)pdm09 would be susceptible to zoonotic infection from pig herds 

undergoing active infection, with exposure to, sometimes large, groups of pigs 

simultaneously undergoing acute infection and shedding virus favouring transmission from 

pigs to pig industry workers.  Further bi-directional transmission may have led to an 

amplification effect leading to high levels of infection in both pigs and pig industry 

workers.  This is important in that it shows that dense populations of pigs can serve as an 

amplifying reservoir for influenza virus, increasing the risk of novel virus transmission to 

both pigs and to humans.   

It is generally considered that influenza virus reassortment with significant pandemic 

potential is most likely to occur in developing country “hotspots”208, where the 

demographic, cultural and economic circumstances and animal husbandry practices 

together result in settings of dense overlaps between humans and animal populations and 

opportunities for cross-species transmission. However, given my findings, and 

observations of new reassortant strains elsewhere in Europe 209,210, there should be no 

assumption that reassortment with possible zoonotic risk could not also occur in 

industrialised settings.   
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Observations from this study also offer strong supporting evidence that pig industry 

workers should be among the occupational groups offered annual seasonal influenza 

vaccination. Preventing influenza infection in people who work with pigs would seem to 

be a logical option to minimise the risk of transmission of human variants into pigs, and by 

extension to reduce the possibilities for reassortment in pigs.  Unfortunately, this 

recommendation to make pig industry workers an occupation that is routinely offered 

influenza vaccination has not been taken up, partly due to poor uptake of influenza vaccine 

in poultry workers (A. Hayward, personal communication related to NERVTAG 

discussions, 03 October 2021)329. 

 PIPS serosurvey 

The PIPS pilot study demonstrated that by appending influenza data and specimen 

collection to a nationally representative ongoing data collection system (in this case the 

HSE study), real-time serosurveillance can be done in a cost-effective and continuous 

manner and produce burden and severity estimates necessary for effective and 

proportionate response to seasonal and pandemic influenza.  It also confirmed that in a 

cross-sectional study, retrospective reporting of respiratory illness in the previous month 

suffers from high levels of recall bias.  This bias would likely be improved if the recall 

period was reduced to one or two weeks prior to data collection but this would capture 

fewer illnesses and the study would suffer from low power to detect trends in illness unless 

the sample size was increased.  Ideally prospective study designs would be used  

Unfortunately, the 2020 COVID-19 pandemic demonstrated the importance for pandemic 

research studies and surveillance systems to be robust to severe pandemics and the major 

societal disruptions they can cause. In early 2020 whilst I was adapting the PIPS study for 

SARS-CoV-2 and reactivation, the HSE study made a decision to halt all home visits (and 

thus all data and specimen collection) out of safety concerns for its staff and participants.  

This decision made our study unfeasible and as a result it was not triggered during the 

pandemic.  Other major studies were developed that captured the relevant data on 

population-level antibodies but due to their size and costs they are unsustainable in the long 

term.  There is an ongoing need for influenza and SARS-CoV-2 serosurveillance and this 
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HSE surveillance platform could still provide an efficient mechanism to collect venous 

blood specimens, albeit at a much smaller scale than the systems used during the pandemic.  

 Health Related Quality of Life and Absenteeism 

My research on absenteeism due to community influenza infection was requested by and 

informed the review of the UK government’s planning assumptions relevant to workforce 

absenteeism during an influenza pandemic.  This work was also requested ahead of 

publication by staff at the US CDC. 

The finding that among community cases of influenza A illnesses, only 56% of children 

took time off school or childcare and only 31% of adults took time off work or education 

highlights the fact that people are used to continuing with their daily activities even when 

ill.  It is important that seasonal and pandemic planning assumptions reflect realistic 

assumptions about absenteeism and self-isolation and anticipate that these behaviours are 

likely to vary depending on the severity of illness.  These findings also have implications 

for transmission models incorporating contact patterns of symptomatic community cases. 

Interestingly, despite the more virulent nature of the SARS-CoV-2 virus, we still see that 

individuals often do not adhere to self-isolation policies despite being legally required to 

do so 310.   

Estimates of QALDs lost and work and school absences associated with influenza differ 

depending on the setting in which cases are identified; community illnesses, being less 

severe than medically attended cases, result in smaller effects but contribute substantially 

to the population-level burden. Accurate assessment of both the number of expected cases 

and their QALDs/QALYs is essential to inform CUAs for decision-making bodies such as 

NICE. For some interventions, such as antiviral medically-attended cases, I believe that my 

estimates are more appropriate for assessing cost utility of community preventive 

interventions such as vaccines. 
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 Evaluation of the National Pandemic Flu Service 

I conducted this work in 2019 at the request of the committee tasked with the job of 

reviewing and updating the 2009 NPFS algorithm.  I was asked to evaluate the sensitivity 

and specificity of the NPFS ILI case definition which determined antiviral prescriptions to 

suspected community cases of pandemic influenza.  I expanded on this analysis to 

additionally evaluate how all the respiratory illnesses reported in the Flu Watch study 

flowed through the algorithm and I presented my findings to the committee in mid-2019 at 

a meeting in London.   

The NPFS has been designed to support two different population-level antiviral treatment 

strategies; a ‘treat all’ approach whereby all those meeting the case definition could 

potentially receive antivirals and a ‘targeted treatment’ approach whereby only members 

of at-risk groups would potentially receive antiviral treatment 92.  Therefore, the choice of 

the NPFS case definition not only has to balance the relative importance of correctly 

identifying and treating as many influenza cases as possible (high sensitivity) while not 

misdirecting too many treatments to non-influenza cases which could put pressure on the 

antiviral stockpiles (high specificity), but it also has to consider this balance for two 

different populations: the entire population and the subset of the population belonging to 

an at-risk group.  Clinical case definitions for influenza cannot be both highly specific and 

sensitive and therefore the best choice of case definition for the entire population under the 

‘treat all’ policy many not be the best choice of case definition for the at-risk population 

under the ‘targeted’ treatment policy.  Instead of choosing one case definition which would 

apply in both policy scenarios, I proposed to the committee that it may be beneficial to have 

a third hybrid policy option which streams those at higher risk of severe outcomes and those 

at lower risk and applies a different case definition to each group.  For example, for those 

at higher risk of severe outcomes (i.e. people with moderate to severe illness and / or a 

member of an at-risk group) one could apply a highly sensitive case definition since 

identifying and treating influenza cases would be the priority.  In contrast, among the non-

severe illnesses who are not in an at-risk group (the majority of illnesses), a more specific 

case definition would reduce the number of mis-directed antiviral treatments to non-

influenza cases, while still providing treatment to some influenza cases.  By streaming 

cases into high-risk and low-risk groups and applying different case definitions to each 
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group, the NPFS would simultaneously target antiviral treatment to those who would need 

and benefit from it the most whilst also preserving antiviral stockpiles. 

My proposal to alter the algorithm by streaming high- and low-risk individuals and 

applying different case definitions to these groups was accepted by the committee and was 

incorporated into the updated NPFS algorithm.  The algorithm now has the ability to turn 

the streaming function on and off and it provides a third policy option for the treatment of 

community cases of influenza. 

There is currently a massive effort underway to develop treatments to COVID-19 and 

although a few treatments have been licensed their availability is low and their cost is high.  

If the NPFS were to be adapted as a distribution mechanism for COVID-19 antivirals at the 

community level, then the functionality of the clinical case definition would likely be 

replaced by the results of widely available rapid antigen tests.  Although these rapid tests 

may have similar sensitivities to clinical case definitions among symptomatic COVID-19 

cases in the first week 309,330, they have much higher specificities. In settings where rapid 

tests are unavailable and clinical case definitions are needed, the concept of applying 

different case definitions to high and low risk individuals remains relevant.  In a future 

pandemic with a novel pathogen (influenza or otherwise) clinical case definitions are likely 

to still be needed until accurate rapid tests are widely available.  For this reason, the NPFS 

(or a similar system), with all the nuances of its use of clinical case definitions, may still 

remain relevant even if it is not used during the current COVID-19 pandemic.   

There is an ongoing debate about the current TTI COVID-19 case definition and whether 

it should be replaced with an alternative, more inclusive case definition with additional 

symptoms.  I and others have shown such alternative case definitions to be more sensitive 

however it would increase the number of tests needed and the number of people isolating 

whilst waiting for their test results309,331.  For this reason, a change to a more sensitive case 

definition would be least likely to overwhelm testing capacity if it occurred during periods 

of low incidence rates.  It is periods of low incidence however when finding every case is 

even more important if you want to impact community transmission. 
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 Generic contributions of this work to the COVID-19 pandemic 

As part of my PhD work I developed STATA scripts to generate, manipulate and analyse 

detailed daily data on Flu Watch illnesses.  This dataset and those scripts became 

instrumental in some of my early COVID rapid response work.  My and my colleagues’ 

work more generally on the Flu Watch study and the subsequent spin-off Bug Watch study 

332 for which I led the development, was also critical to the development, funding and 

success of our currently running Virus Watch community cohort study of SARS-CoV-2 

infection and illnesses 333.   

For example, my supervisor and I built on my NPFS case definition work and used my 

previously mentioned illness dataset to compare non-COVID illnesses from Flu Watch 

with the earliest known UK cases of COVID-19 from PHE’s First Few Hundred Study.  

We rapidly developed a symptomatic case definition for suspected COVID-19 infection for 

the purposes of community contact tracing.  This work was presented to the New and 

Emerging Respiratory Virus Threats Advisory Group (NERVTAG) and the UK 

Government’s Scientific Advisory Group for Emergencies (SAGE) and the UK Senior 

Clinicians Group comprising CMO’s and deputy CMOs from all four nations.  We 

presented a range of case definitions balancing sensitivity, specificity and complexity 

which was instrumental in helping the CMOs choose the case definition used for the UK 

Test, Trace and Isolate (TTI) system.   I later expanded on this work as part of a PHE 

roundtable on the potential updating of the TTI case definition.  This entailed the evaluation 

and comparison of the performance of various case definitions using data from four major 

UK community studies (Virus Watch, the ONS infection survey 334, Zoe App 335 and 

REACT 336).  I conducted and presented the Virus Watch estimates at the PHE roundtable, 

contributed to the harmonization of estimates from the four studies and then led the 

comparison of estimates that were presented to the UK Chief Medical Officers.  In related 

work, I also evaluated the performance of various case definitions for identification of 

Influenza and COVID-19 to inform WHO’s e-Consultation to Adapt Influenza Sentinel 

Surveillance Systems for Including COVID-19 and their subsequent case definition 

recommendations 337.  
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Another example of COVID-related impact arising from my PhD work was the direct and 

rapid adaptation of my protocols and STATA script which generated and analysed Flu 

Watch illness data.  This enabled me to rapidly convert Virus Watch follow-up data into an 

illness dataset which has since fed into a number of influential analyses 338,339   It also 

enabled me to conduct rapid and regularly updated analyses of the symptom profiles and 

case definition performance for COVID-19 and non-COVID-19 illnesses and enabled 

comparisons between illnesses caused by Wild-type SARS-CoV-2 and the Alpha and Delta 

variants of concern (VOC) when they began circulating in the UK.  My findings were 

presented to NERVTAG and SAGE, were incorporated into an official NERVTAG report 

on the B.1.1.7 VOC and are currently under consideration for publication 309.  Findings 

related to workplace attendance during periods of influenza are also incorporated into a 

NervTag paper (yet to be published) on the likelihood of co-circulation of COVID-19 and 

other respiratory infections in future winter seasons. 

8.4 Recommendations for further research and applications 

Much has changed in the world of influenza and pandemic research and response generally 

since the appearance of SARS-CoV-2 but the importance of obtaining continuous, high-

quality community-level data during interpandemic and pandemic periods has not.  

Globally, influenza levels are at historic lows since the COVID-19 pandemic began 340. 

Although it seems likely that a combination of non-pharmaceutical interventions, national 

and international travel restrictions as well as intensive seasonal influenza vaccination 

campaigns helped reduce influenza transmission 255,340, it has also been hypothesized that 

viral interference may have caused the SARS-CoV-2 and influenza viruses to compete with 

one another and further reduced influenza circulation 340.  In the coming years it will be 

important to monitor how SARS-CoV-2 circulation settles into a post-pandemic circulation 

pattern and how this affects the circulation of influenza and other acute respiratory viruses.  

There has been a great deal of technological advancements made in a very short time period 

in order to combat the COVID-19 pandemic, including vaccines, treatments, diagnostics 

and laboratory assays.  It would be wonderful if some of the advances made in SARS-CoV-

2 serological and virological assays could inform similar advancements for influenza. The 

rapid development of SARS-CoV-2 serological assays that only require small amounts of 
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capilliary blood which can be self-collected with a fingerprick; the at home antibody tests 

and the widespread at-home lateral flow rapid antigen test gives me hope that such assays 

may soon be developed for influenza.  These advances would make sero-surveillance and 

virological surveillance of influenza and COVID-19 much easier in a practical sense and 

more cost effective and thus more likely to be funded.  

In terms of further research, I think it would be useful to conduct a cohort study or some 

sort of ongoing co-ordinated surveillance of pig-workers and their pig herds with an aim to 

further explore the frequency of and risk factors for zoonotic transmission of influenza 

viruses and whether these zoonotic transmissions lead to clinical illness.  

I would also recommend that the UK and other public health agencies consider making pig-

industry workers a priority group for seasonal influenza vaccination to help prevent 

transmission of human influenza viruses into pigs and the potential reassortment events 

that could follow such transmissions.  

I think that it would be useful to conduct further analyses of Flu Watch and Virus Watch 

data in order to compare and contrast the symptom profiles, consultation patterns and 

impact of community cases of all the common acute respiratory infections.  It would be 

helpful to know the performance of common surveillance case definitions for all of these 

viruses, among both community cases and consulting cases in order to gain a better 

understanding of what surveillance systems do capture and could capture.  Although 

throughout most of the COVID-19 pandemic people have been encouraged in the UK to 

undertake PCR testing when symptomatic, this level of testing is unsustainable in the long 

run.  Therefore, the UK may need to return to syndromic surveillance, possibly 

supplemented with rapid antigen tests.  

I also think further research on the relative importance of asymptomatic and pre-

symptomatic transmission of influenza is warranted341, given the large role it has played in 

the effectiveness of non-pharmaceutical interventions for COVID-19. 

My recommendation for the UK surveillance systems would be to develop and 

continuously run a slimmed-down community cohort study as part of national surveillance 
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efforts.  Ideally it would have regular, repeated serological samples of individuals to 

examine immunity and infection to SARS-CoV-2, seasonal coronaviruses and influenza as 

well as active prospective follow-up of all respiratory illnesses and whether they consult 

including swabbing with PCR (and if available rapid tests) for SARS-CoV-2, influenza and 

other common acute respiratory viruses.  This could perhaps be embedded or linked with 

the RCGP primary care sentinel surveillance as a way to enhance the value of both the 

RCGP surveillance and the community cohort study.  I would recommend that there be 

rolling waves of ongoing recruitment, similar to the BugWatch study 332 to reduce the 

length of time any one person is asked to participate.  At the time of writing, with the 

removal of most free testing for COVID-19 the long-term future of community surveillance 

of respiratory infections is a very active debate.  Future sustainable, timely and informative 

surveillance needs to be informed by the experience of pre-pandemic and pandemic studies 

including Flu Watch, Virus Watch, Flu Survey, REACT, The COVID-19 infection survey 

and RCGP sentinel surveillance scheme. 

In addition to measuring frequency of infection, symptom profiles, levels of population 

immunity, risk factors and the importance of symptomatic and asymptomatic infection such 

systems are also useful for understanding behaviours that influence transmission and the 

success of control measures. 
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