8

10

11

13

14

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

Benefits of hybrid parallelization in reducing load imbalance in molecular
dynamics simulations

Julian Morillo®*, Maxime Vassaux”, Peter V. Coveney®, Marta Garcia-Gasulla®

aBarcelona Supercomputing Center, c/Jordi Girona 29, 08034 Barcelona (Spain)
bCentre for Computational Sciences, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom)

Abstract

The most widely used technique to allow for parallel simulations in molecular dynamics is spatial decom-
position, where the physical geometry is divided in boxes, one per processor. This technique can inherently
produce computational load imbalance when either the spatial distribution of particles or the computational
cost per particle is not uniform. This paper shows the benefits of using a hybrid MPI4+OpenMP model to
deal with this load imbalance. We consider the LAMMPS, a molecular dynamics simulator that provides its
own balancing mechanism and an OpenMP implementation for many of its modules, allowing for a hybrid
setup. In this work we extend the current OpenMP implementation of LAMMPS and optimize it and eval-
uate three different setups: MPI-only, MPI with the LAMMPS balance mechanism, and hybrid setup using
our improved OpenMP version. This comparison is made using the five standard benchmarks included with
LAMMPS distribution plus two additional test cases. Results show that the hybrid approach can deal with
load balance problems better and straightforwardly than the LAMMPS balance mechanism and improve
simulations with issues other than load imbalance.

Keywords: load balance, parallel computing, molecular dynamics, MPI, OpenMP, hybrid programming
model

1. Introduction and Related Work

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, [1, 2]) is a classical molecular
dynamics code with a focus on materials modeling. It has potentials for solid-state materials (metals,
semiconductors) and soft matter (biomolecules, polymers), and coarse-grained or mesoscopic systems. It
can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or
continuum scale.

LAMMPS can be run in parallel using MPI and a spatial-decomposition of the simulation domain. The
basic idea of a spatial decomposition method is to divide the physical geometry into small boxes, one per
processor. Each processor will compute primarily on atoms within its box. This may induce load imbalance
in problems with non uniform atom densities. The problem of load imbalance in MPI programs is well
known [3] and in particular in molecular dynamics simulations is widely recognized [4, 5].

The challenge of the MPI load imbalance problem comes from the nature of MPI programming, where
each process has its own data that can only be shared by explicit message passing. Simultaneously, the nature
of load imbalance is dynamic and affected by many factors, therefore difficult to predict. Traditionally,
solutions to load imbalance can be divided into two groups; The ones that are applied before execution; in
this group, we can consider different mesh partitioners [6, 7]. These solutions are static and cannot address

*Corresponding author
Email addresses: julian.morillo@bsc.es (Julian Morillo), m.vassaux@ucl.ac.uk (Maxime Vassaux), p.v.coveney@ucl.ac.uk
(Peter V. Coveney), marta.garcia@bsc.es (Marta Garcia-Gasulla)

Preprint submitted to Simulation Modelling Practice and Theory February 26, 2021

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

51

52

53

55

56

57

58

60

61

62

63

64

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

load changes during the execution. Moreover, they need to be tuned for new architectures, algorithms, or
simulations.

The approaches applied during the execution can be classified as solutions that "move” data and solutions
that change computational resources. The methods that redistribute data [8, 9], usually execute a load
balancing algorithm with a given frequency. This algorithm determines if there is a load imbalance problem,
when necessary, computes a new partition, and finally redistributes the data as needed. These approaches
are not able to deal with very dynamic load imbalance. They also need to be able to measure load and
decide how frequently the load balancing algorithm is executed because the cost of redistributing the data
is not negligible. Usually, these solutions are implemented within each application; LAMMPS provides its
own balancing mechanism [10].

In the category of solutions applied at runtime that change the computational resources, we find different
approaches. Adaptive MPI [11], for example, rely on virtualized processes, and the runtime is in charge
of scheduling them to achieve a good load balance. They run on top of CHARM++ [12] which implies a
change in the programming language and model. Etinski et al. [13] propose to use the Dynamic Voltage
and Frequency Scaling (DVFS) reducing the frequency of less loaded processes to save power and use the
turbo for more loaded ones. Also, in this category, we find the Dynamic Load Balancing library [14, 15]; this
library changes the computational resources assigned to the different MPI processes to help balance their
load.

We propose to use the hybrid programming model MPI+OpenMP [16, 17] to alleviate the load balance
problem. This approach offers the advantages of a hybrid code: improves the load balance, and at the
same time reduces the pressure on the communication between MPI processes. In contrast with other
approaches that need to be programmed adhoc for each input or architecture, an OpenMP parallelization
can be exploited in many situations without needing to tune the code specifically.

Deng et al. [4], for example, describes an adaptive method for achieving load balance in parallel compu-
tations that is tested on standard short-ranged parallel molecular dynamics calculations. Our proposal, in
contrast, is to use a hybrid (MPI+OpenMP) approach. We argue that the use of OpenMP can help alleviate
MPI scaling issues, especially the ones related to load balance, and that this can be done straightforwardly by
leveraging on the OpenMP characteristics. Moreover, our evaluation is not limited to short-ranged molec-
ular dynamics calculations: mid-range and long-range simulations are also considered, including all the
benchmarks provided by the LAMMPS distribution, together with two extra testcases with quite different
characteristics regarding load balance.

Many LAMMPS modules have OpenMP versions for shared-memory parallelism, allowing for hybrid
setups in which MPI+OpenMP configurations can be run. Although there are OpenMP versions of many
LAMMPS modules, many of them lack an OpenMP implementation. Other ones present a parallelization
pattern that is not optimum for performance or programmability. This leaves MPI as the only parallel
option for these parts of the code. Nonetheless, the code is designed to be easily modified or extended with
new functionality. In this paper, we use such a feature to parallelize with OpenMP some code regions that
lack this parallelism and improve the original OpenMP implementation in other sections of code.

The main contributions of this paper are: i) we present some addings/improvements to the LAMMPS
OpenMP implementation; ii) we provide an extensive evaluation of this improved LAMMPS hybrid version
against the MPI-only version as a baseline case but also against the LAMMPS balance mechanism mentioned
previously; iii) we show how the hybrid approach can deal with imbalance issues better than the balance
mechanism and, furthermore, it can improve performance in cases where load imbalance is not the main
problem.

The document is organized as follows. Section 2 presents a description of LAMMPS and the bench-
marks/testcases used for the evaluation together with the performance analyisis tools and efficiency metrics
employed. In Section 3 we explain why MPI load imbalance is a problem, the difficulties to address it, and
why it is very common in molecular dynamics simulations, together with the two compared approaches to
solve it: the LAMMPS balancing mechanism and the use of a hybrid model. Section 4 includes a description
of our proposed additions to the LAMMPS OpenMP implementation. Section 5 contains the environment
employed for the evaluation together with a characterization of the benchmarks/testcases used. Finally, a
complete performance comparison of the three evaluated scenarios is done for all the considered benchmark-

2

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

103

104

105

106

108

109

s/testcases. Section 6 concludes our study with comments and remarks.

2. Background

2.1. LAMMPS

The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS; [1, 2]) is a highly parallelised
code for the simulation of classical molecular dynamics. LAMMPS is mainly and widely used by the
materials science community. In classical molecular dynamics, atoms or molecules are described as particles
which dynamics are controled by Newton’s equations of motion. Particles interactions are determined by
potentials describing pairwise, multi-body and long-range interactions. Last, the thermodynamic properties
of the ensemble of particles modelled during the course of a molecular dynamics simulation are controlled
by the integration of global constraints on the particles position and velocities. LAMMPS, as its name best
describes, is intended for parallelism and runs as well on single processors as in parallel using message-passing
interface (MPI) and a spatial-decomposition of the simulation domain. Many modules provided by LAMMPS
to integrate global constraints or interatomic potentials have versions that provide accelerated performance
on CPUs, GPUs, and Intel Xeon Phis. LAMMPS is distributed by Sandia National Laboratories, a US
Department of Energy laboratory as an open source code under the terms of the GPL, and its design
is meant to be easily extended with new functionalities, which makes it easy for external developers to
contribute to the improvement of the code.

LAMMPS is used to simulate the dynamics and the properties of a wide range of systems including
amorphous and crystalised materials, proteins and much more. The need of computational chemists to
simulate larger systems for longer periods of time has continuously pushed the improvement of LAMMPS
scalability. Besides, LAMMPS is no also frequently coupled with other tools such as machine-learning or
continuum model simulators for scale-bridging purposes. As a result, large ensembles (up to thousands)
of molecular dynamics simulations can be simulated simultaneously. LAMMPS has already been used to
simulate the dynamics of tens of billions of atoms. On what is referred to as the "Lenard-Jones” benchmark,
the highest throughput recorded was 4.34 TFlops in 2005 on a 40x10° atoms simulation. In a more recent
attempt LAMMPS was shown to reach 2.35x107® s/atom/timestep.

2.2. Benchmarks

The evaluation reported in Section 5 is performed executing a combination of LAMMPS standard bench-
marking scenarios and a couple of additional scenarios triggering more specifically load-balancing issues.
LAMMPS features a set of five standard benchmark representative of the diversity of systems that can
be simulated. We assume that parallel efficiency is highly impacted by the range of interatomic potential
interactions. We therefore can classify the five scenarios into one of the following three classes of problems:
(i) short-range, (ii) mid-range and (iii) long-range interactions. Each scenario simulates the dynamics of
32,000 atoms. (i) The so-called ”Granular chute” scenario simulates the convective flow of falling particles
interacting via a frictional history potential. The "Polymer chain” melt scenario simulates the thermal fluc-
tuations of hundred monomers long chains. The two scenarios are representative of short-range interacting
systems, each particle interacting on average with respectively 7 and 5 neighbours. (ii) The "EAM” sce-
nario simulates the thermodynamic fluctuations of a metallic copper bulk solid which atoms interact via the
embedded atom method (EAM) potential. The "Lennard-Jonnes” scenario simulates the thermodynamics
of an atomic fluid. The two scenarios are representative of a mid-range interacting system, each particle
interacting on average with respectively 45 and 55 neighbours. (iii) The "Rhodopsin” scenario simulates
the conformation changes of the rhodopsin protein in a solvated lipid bilayer, the CHARMM force-field is
used to described atoms pairwise and multi-body interactions. The "Rhodopsin” scenario also integrates
long-range Coulomb interactions, resulting in each particle interacting on average with 440 neighbours. The
data required for the simulation of these benchmarks is included in the distribution of LAMMPS. Further
details on the constraints applied during the simulation of the scenarios can be found on the Benchmark’s
page on LAMMPS website (https://lammps.sandia.gov/bench.html).

131

132

133

134

165

166

167

169

170

171

172

174

175

In addition to LAMMPS standard benchmark scenarios, we introduce the simulation of an epoxy resin
and the simulation of a graphene-based nanocomposite. The simulation of the epoxy resin is referred to as
the "Epoxy” scenario, it simulates the non-equilibirum dynamics of highly-crosslinked epoxy polymer chains
under applied stretching. The epoxy resin is constrained with fixed number of atoms and temperature.
Meanwhile, the volume is controlled throughout the simulation and varied at fixed strain rate. The second
scenario features the simulation of graphene-oxide (GO) sheet embedded in a polymer precursor, it is referred
to as the "CG-GO” scenario. The GO sheet is a dense, two-dimensional packing of carbon atoms, while
polymer precursors consist in a disordered phase of poly(methyl methacrylate) (PMMA) precursors. The
"CG-GO” scenario simulates the dynamics of GO during annealing, the number of atoms and the volume
of the system are fixed and the temperature is increasing from 300K to 500K.

These two custom systems face specific computational efficiency issues which justified the improvement
of the current load balancing methods available in LAMMPS. We will perform efficiency measurements
which highlight existing bottlenecks and propose load balancing improvement based on the measurements
analysis.

2.3. Performance Tools and Efficiency Metrics

In this paper we go one step further and we aim at gaining in-sight on the reasons for the perfor-
mance achieved in the different situations at study. For this we rely on performance analysis tools and
the performance methodology promoted by Center of Excellence (CoE) for Performance Optimization and
Productivity (POP) 1.

The performance analysis tools used in this work are the following:

Extrae: To obtain traces of the different executions, it supports MPI and OpenMP among other parallel
programming models[18, 19].

Paraver: To visualize the traces obtained with Extrae. It allows us to analyze in detail the behaviour of the
program and also to compute the performance metrics[20, 21].

The POP CoE has defined a methodology for performance analysis. This methodology is independent
of the tool being used for the analysis and defines a set of performance metrics. This metrics are well
defined, accepted by the community and meaningful, pointing the analysts to the main factors affecting
the performance and scalability of the code. In this paper we use some of this metrics as they allow us to
compare the different LAMMPS benchmarks using a common ground.

The POP metrics are hierarchical and multiplicative, meaning that the parent metric can always be
computed as the product of its childs. Each metric can get values between 0 and 100, and the metric
indicates how well that indicator is performing. For example, a load balance of 70% indicates that 30% of
the cpu time used is lost due to load imbalance, and also that addressing the load imbalance problem we
will enable to improve the execution by at most 30%. Specifically we are going to use 3 metrics from the
POP methodology: Parallel Efficiency, Load Balance and Communication efficiency.

These efficiency metrics are based on the simplification of a process into two states: the state in which
it is performing computation, which is called Useful (blue), and the state in which it is not performing
computation, e.g., communicating to other processes, which is called Not useful (red).

An example of this simplification can be seen in Figure 1 were we can see two processes, named p; and
p2 running from left to right, the time being represented in the x axis. We can see how their execution
changes between the two states from Useful to Not useful and vice versa during their execution.

We call P = {py,..., pu} the set of MPI processes and n the number of MPI processes. For each MPI
process p we define the set U, = {u’f ,ug yeen ’”|pU|} of the time intervals where the application is performing
useful computation (the set of the blue intervals). We define the sum of the durations of all useful time
intervals in a process p as shown in Equation 1 and we call it the useful duration of a process.

Lhttps://pop-coe.eu/

176

180

181

182

183

184

185

186

187

188

190

191

192

193

195

196

197

198

200

201

202

3w w
2 2
P T

& S5

E

Figure 1: State evolution of two processes

Uy
Dy =y M= 1)
U, =1

Similarly we can define ﬁp and %p for the red intervals.
We also define the elapsed time E as E = max,_,Dy, + DU,,7 the elapsed time is the total duration of the
execution.

Parallel Efficiency (PE). The Parallel efficiency indicates the amount of time that is being lost due to the
parallelization of the code. Or, equivalently, the ratio between the time used for useful computation and
the total consumed CPU time. As we said the Parallel efficiency PE can be computed as the product of
its childs, in this case the Load balance LB and Communication efficiency CE and is defined as shown in
Equation 2.

2y,
T Esxn

PE ;PE=LB=+CE (2)
Load Balance. Load balance measures the efficiency loss due to different loads (useful computation) for each
process. Its definition can be seen in Equation 3.

er‘lzl DU[

LB= —————F—
n + max;_, Dy,

3)

Communication efficiency. Finally, the Communication efficiency is the efficiency loss for communicating
data, it can be divided into two child metrics Serialization efficiency and Transfer efficiency. Serialization
corresponds to time lost due to synchronizations between different processes, i.e., when one process needs
to wait for another one. Transfer is the time lost in any kind of MPI overhead, it includes different fac-
tors such as: network bandwidth, communication latency or implementation overheads. The definition of
Communication efficiency can be found in Equation 4.

max;_, Dy,

CE= —H—= (4)

3. Challenges and Proposed Approaches to Load Imbalance

3.1. Imbalance in Molecular Dynamics Simulations

Molecular dynamics (MD) is a commonly used tool for simulation of the structural, thermodynamic, and
transport properties of biological and polymeric systems on the picosecond to nanosecond timescale. During
a timestep of the MD simulation, forces are computed on each atom due to its interaction with other atoms,
and atoms move by integrating simple Newtonian equations of motion [5].

The parallel nature of MD simulations has long been recognized [5, 22]. The overall calculation on
P processors should scale as N/P, being N the total number of atoms in the simulated system. For gen-
eral molecular systems simulated on message-passing machines, most parallel implementations have used
the replicated — data technique [23] where a copy of all N atomic positions is stored on each of P proces-
sors. This enables easy computation and load-balancing. However at each timestep, the interprocessor

5

203

204

205

206

208

209

210

211

communication needed to globally update a copy of the N-vector of atom positions scales as N, indepen-
dent of P. Thus replicated-data methods do not scale to large numbers of processors. An alternative
known as force — decomposition scales as N/ VP but is still sub-optimal [24]. For large N/P ratios, spatial-
decomposition methods are clearly the best algorithmic choice. By subdividing the physical volume among
processors, most computations become local and communication is minimized so that optimal N/P scaling
can be achieved. Such method is the one used by LAMMPS.

The basic idea of a spatial decomposition method for MD is to divide the physical geometry into small
boxes, one per processor. Each processor will compute primarily on atoms within its box. This may induce
load imbalance in problems with non uniform atom densities.

3.2. Balancing

To alleviate the balancing problem, LAMMPS provides the balance command [10]. This command
adjusts the size and shape of processor sub-domains within the simulation box, to attempt to balance
the number of atoms or particles and thus indirectly the computational cost (load) more evenly across
processors. The load balancing is ”static” in the sense that this command performs the balancing once,
before or between simulations. The processor sub-domains will then remain static during the subsequent
run. To perform ”dynamic” balancing, LAMMPS provides the fix balance command, which can adjust
processor sub-domain sizes and shapes on-the-fly during a run.

Load-balancing is typically most useful if the particles in the simulation box have a spatially-varying
density distribution or when the computational cost varies significantly between different particles. For
example, a model of a vapor/liquid interface, or a solid with an irregular geometry containing void regions.
In these cases, LAMMPS default of dividing the simulation box volume into a regular-spaced grid of 3d
bricks, with one equal-volume sub-domain per processor, may assign numbers of particles per processor
in a way that the computational effort varies significantly. This can lead to poor performance when the
simulation is run in parallel.

The balancing can be performed with or without per-particle weighting. With no weighting, the balancing
attempts to assign an equal number of particles to each processor. With weighting, the balancing attempts
to assign an equal aggregate computational weight to each processor, which typically induces a different
number of atoms assigned to each processor. The weight assigned to a particle is defined a priori by the user
based on his knowledge of the particle, for example the expected number of neighbours and interactions.

3.3. Hybridization

It is not a trivial task to determine the optimal model (pure MPI vs MPI+OpenMP) to use for some
specific application. Although pure MPI can sometimes outperform hybrid, it is not less true that lots of
counterexamples do exist and results tend to vary with input data, problem size, etc. even for a given code.
In order to get optimal scalability one should in any case try to implement the following strategies:

o Reduce synchronization overhead
o Reduce load imbalance
o Reduce computational overhead and memory consumption

e Minimize MPI communication

Works like [25] pinpoint cases where hybrid programming model (MPI4+OpenMP) can indeed be the superior
solution because of reduced communication needs and memory consumption, or improved load balance.

Hybridizing the code can help alleviate MPI scaling issues, especially the ones related to load balance as
the load balance within OpenMP is addressed straightforwardly when using a dynamic schedule with work-
sharing or the tasking model (i.e. generating explicit tasks that will be dynamically executed by threads
when they become idle).

To perform the tests with the hybrid versions of the benchmarks we have made use of OpenMP features
already provided by LAMMPS library. Version lammps-20Nov19 has been used. However, and guided by
the Epoxy testcase, some modifications have been added to the OpenMP implementation that are described
in the following section.

251

261

262

264
265

4. Implementation

The use of the performance tools described in Section 2.3 to trace and analyze the execution of the Epoxy
testcase allowed us to find a source of load imbalance in void NPairHalfBinNewtonTri::build(NeighList *list)
function (blue regions in Figure 2). The bottom part of Figure 2 shows a timeline with the execution of two
LAMMPS iterations for 48 OpenMP threads. The upper timeline represents the execution with 48 MPI
ranks (included for reference, both timelines are at the same timescale). It can be seen how the OpenMP
parallelization of void NPairHalfBinNewtonTri::build(NeighList *list) alleviates the load imbalance. Note,
however, that the MPI execution is almost two times faster than the OpenMP one due to the sequential
parts (parts not OpenMP parallelized) in the later.

| Useful Duration @ dealammps4x4x3_48MPl.prv@s10r1b37 n

wiitiimiis Gt

TRUAEAIR RN Rt

Figure 2: MPI-only (top) vs OpenMP-only (bottom) execution: the load imbalance is alleviated (blue region) but there are
significant parts not OpenMP parallelized

4.1. OpenMP taskification

Given the timeline in Figure 2, our first work was to parallelize with OpenMP the biggest sequential
part (marked with a red 1 in the timeline). This part corresponds to Neighbor::build_ topology() function.
The original LAMMPS code is depicted in Listing 1.

void Neighbor:: build_topology ()
if (force->bond) {
neigh_bond->build () ;

if (force->angle) {
neigh angle->build () ;

if (force->dihedral) {
neigh__dihedral->build () ;

if (force->improper) {
neigh__improper->build () ;

284

285

287

288

289

290

292

293

294

295

297

298

299

300

302

303

305

306
307

Listing 1: void Neighbor::build_ topology() LAMMPS original code

This function consists in 4 calls to 4 different functions build (each one from a different class). Each of
these 4 functions have a very similar structure that consists in a computation phase that ends up with an
MPI_ Allreduce of an int calculated in this computation phase (among other things). The 4 functions work
with different data structures, therefore they are independent of each other and can be run in parallel.

The objective was to annotate these 4 calls to build functions with OpenMP tasks in order to allow their
execution in parallel by different threads. Besides, the issue associated with the MPI__Allreduce command
remains at the end of each function. The solution consists in moving these communications out of the
4 functions and put them one level above in the Neighbor::build topology function. The idea, then, is
to have at the end 4 tasks with the computation of the 4 build functions and one final task with the 4
communications. In this way, we delay as much as possible MPI communications, preventing unnecessary
waiting times if there is imbalance between MPI ranks in some of the 4 computation phases.

In order to allow the MPI communications to be executed at the end of the 4 build computations we
need to move them outside of each function. To do that, a change in the signature of the functions is needed:
we need them to return an int (the value shared in the MPI__Allreduce) instead of void. Then, in each of
the build functions, the calculated int in the computation phase is returned by the function instead of being
directly shared with other MPI ranks through the MPI__Allreduce call. These returned values are then used
in the new MPI_ Allreduce calls located in void Neighbor::build_topology() function.

Code Listing 2 presents a skeleton of the final implementation of Neighbor::build_topology() function.
As it can be seen, 4 new local variables are declared: the variables will be used to store the values returned
by each of the build functions and, in turn, to honor the dependencies between the 4 computation tasks and
the communications task.

void Neighbor:: build__topology ()
{
int nmissing_ bond, nmissing angle, nmissing dihedral, nmissing improper, all;
#pragma omp parallel

#pragma omp single

{
#pragma omp task depend(out:nmissing bond)

if (force->bond) {
nmissing__bond = neigh_bond->build () ;

}
#pragma omp task depend(out:nmissing angle)
if (force->angle) {
nmissing angle = neigh_angle->build ();

}

#pragma omp task depend(out: nmissing_dihedral)
if (force->dihedral) {
nmissing_dihedral = neigh_ dihedral->build () ;

}
#pragma omp task depend(out: nmissing_improper)
if (force->improper) {
nmissing__improper = neigh__improper->build () ;

}
#pragma omp task depend(in:nmissing_bond,nmissing_angle ,nmissing_dihedral,\
nmissing_improper)

MPI_Allreduce() x 4

} //end task
#pragma omp taskwait
} //end single and parallel

343

362

Listing 2: Modified void Neighbor::build_topology() code including OpenMP taskification

The present modifications significantly reduce the execution time of the biggest sequential part and work
efficiently for a small number of threads. Note, however, that we are generating only 5 OpenMP tasks and
only 4 of them can run in parallel as the communications one needs to wait for the execution of the others.
So, when moving to the extreme case of using 48 threads (the number of cores on the target machine), more
parallelism is needed. To accomplish that, the loops that make the calculations inside each of the 4 build
functions have also been taskified: this allows the generation of sufficient tasks to feed all threads.

The results of these modifications can be appreciated in Figure 3 where the red lines mark explicitly
the region of code affected by these changes and the reduction in execution time (upper part of the figure
corresponds to the original LAMMPS OpenMP implementation and the bottom timeline corresponds to our
improved OpenMP version).

Figure 3: Improved version compared to the LAMMPS original OpenMP implementation.

4.2. Use of OpenMP dynamic scheduler

The second code modification has been done in the previous mentioned function NPairHalfBinNewton-
Tri::build(NeighList *list). It has been shown how by simply using the LAMMPS OpenMP implementation
the detected imbalance was alleviated. A close look to the source code shows, however, that the LAMMPS
OpenMP implementation does a static partition of the workload (like MPI does) so there is still some room
for improvement in this part of the code. This static partition of the workload is done through the use of
3 macros defined in npair_omp.h (see Listing 3). These 3 macros are widely used along all the LAMMPS
OpenMP code so the same code refactoring done in this section could be done in many other parts of the
code.

// get access to number of threads and per-thread data structures via FixOMP
#define NPAIR_OMP_INIT \

const int nthreads = comm>nthreads;

const int ifix = modify->find_ fix (”package omp”)

// get thread id and then assign each thread a fixed chunk of atoms

#define NPAIR_OMP_SETUP(num) \
{ \
const int tid = omp get thread num(); \
const int idelta = 1 + num/nthreads; \
const int ifrom = tid*idelta; \

9

384

385

386

388

389

390

391

393

421

const int ito = ((ifrom + idelta) > num) \
? num : (ifrom+idelta);
FixOMP *fix = static_cast<FixOMP *>(modify->fix [ifix]); \
ThrData *thr = fix->get_thr(tid);
thr->timer (Timer ::START) ;

#define NPAIR_ OMP_CLOSE
thr->timer (Timer : : NEIGH) ;
}

—

Listing 3: Macros defined in npair__omp.h

Listing 3 shows that the macro actually performing the workload partition is NPAIR_ OMP__ SETUP(num).
It does so by dividing num among the number of available threads (i.e. in a loop of num iterations, defines
the starting and end iteration that must be executed by each thread by setting ifrom and ito variables).

Once understood how these macros work, it is quite straightforward to implement the proposed approach.
As it can be seen in Listing 4 the proposed change simply consists in substituting the original for that uses
ifrom and ito variables by another one that, instead, starts at 0 and ends at nlocal (i.e. the value used
in NPAIR,_ OMP_SETUP in this case). Of course, the new for is surrounded by a #pragma omp for
schedule(dynamic) to do the worksharing (note that a #pragma omp parallel is not needed as it is already
present at the beginning of the function in the original code, see Listing 4).

void NPairHalfBinNewtonTriOmp :: build (NeighList *list)
{

NPAIR, OMP_INIT;
#if defined (_OPENMP)
#pragma omp parallel default(none) shared(list)
#endif

NPAIR, OMP_SETUP(nlocal);

#pragma omp for schedule(dynamic,50)
for (i = 0; i < nlocal; i++) {
// for (i = ifrom; i < ito; i++) {
(Computation)

}
NPAIR, OMP_CLOSE;

}

Listing 4: Sketch of NPairHalfBinNewtonTriOmp::build(NeighList *list) code including the dynamic OpenMP schedule

4.3. Enabling more OpenMP parallelism

Looking into the generated traces showed that there was a relatively large portion of code not OpenMP
parallelized just before the execution of void NPairHalfBinNewtonTriOmp::build(NeighList *list). This is
shown in Figures 3 and 4 marked with a red 4. The bottom timeline of Figure 4 represents (at the same
timescale) the same part of the execution after parallelizing some functions in this region of code. The red
lines going from one timeline to the other show the reduction in execution time achieved when using the
new implemented parallel regions. Three different functions have been parallelized in this section of code
but let us focus on the most important in terms of execution time: void NBinStandard::bin_atoms() (see
Listing 5).

void NBinStandard::bin_atoms()

{

#if defined (_OPENMP)
#pragma omp parallel for
#endif
for (i = 0; i < mbins; i++) binhead[i] = -1;

10

J End

seful @ dealammps4x4x3_1MPIx480MP_Dynamic-50.prv@s21r1b52

Figure 4: New implemented parallel regions.

432 if (includegroup) {

433 int bitmask = group->bitmask[includegroup];
434 for (i = nall-1; i >= nlocal; i--) {
435 if (mask[i] & bitmask) {

436

437 }

438 }

439 for (i = atom->nfirst-1; i >= 0; i--) {
440

441 }

442

443 } else {

144 |#if defined (_OPENMP)
445 |#pragma omp parallel for private(ibin)

146 |#endif
447 for (i = nall-1; i >= 0; i--) {
448 ibin = coord2bin(x[i]);
449 atom2bin[i] = ibin;
450 bins[i] = binhead[ibin |;
451 binhead [ibin] = i;
452 }
453 }
158 |}
Listing 5: Sketch of void NBinStandard::bin__atoms()) code including the new added parallelization
156 Two parallel for worksharing constructs have been defined: the first one is not very relevant in terms of

457 execution time and it corresponds to the red area in the bottom timeline in Figure 4. The important one is
158 the located at the bottom of the Listing 5 which corresponds to the green region. As it can be seen it is a
159 very simple parallel for that just needs to privatize ibin to work correctly.

460 Another important region of code candidate for enabling more OpenMP parallelism is the one marked
161 with a purple 3 in Figure 3. This area corresponds to the execution of PPPM::poisson__ik__triclinic() method.
162 A sketch of the original code can be seen in Listing 6.

463
464

465 | void PPPM:: poisson__ik_ triclinic ()
466 | {

11

485

501

502
503
504
505
506
507

510

514

int i,j,k,n;
// x direction gradient

n = 0;

for (i = 0; i < nfft; i+4) {
work2[n] = fkx[i]*workl[n+1];
work2 [n+1] = -fkx[i]*workl[n];
n 4= 2;

}

fft2 ->compute (work2 ,work2,-1) ;

n = 0;
for (k = nzlo_in; k <= nzhi_in; k++)
for (j = nylo_in; j <= nyhi_in; j++)
for (i = nxlo_in; i <= nxhi_in; i++) {
vdx_ brick [k][j][i] = work2[n];
n += 2;
}

// y direction gradient
//(same code for y direction)
/ . . .

// z direction gradient

//(same code for z direction)

Listing 6: Sketch of void PPPM::poisson__ ik triclinic()) original code

The method consists on three differentiated parts (one for each x, y and z direction) with identical
structure: an initial loop, a call to fft2->compute() and, last, three nested loops. Unfortunately, variable n
prevents a direct parallelization of both the initial and the three nested loops.

The solution for the first loop is to incorporate the management of variable n (initialization and incre-
ment) to the control structure of the loop (see Listing 7). Once this is done, a simple pragma omp parallel
for will do the work.

void PPPM:: poisson__ik__triclinic ()

{

int i,j,k,n;

// x direction gradient

#pragma omp parallel for

for (i =0, n=0; i < nfft; i++, n = n+2) {
work2[n] = fkx[i]*workl [n+1];
work2 [n+1] = -fkx[i]*workl [n];

fft2 ->compute (work2,work2,-1) ;

int BS = (nyhi_in - nylo_in 4+ 1) * (nxhi in - nxlo_in 4+ 1) * 2;
#pragma omp parallel

#pragma omp for private(n,j,i) nowait
for (k = nzlo_in; k <= nzhi_in; k++) {
n = (k - nzlo_in) * BS;
for (j = nylo_in; j <= nyhi_in; j++) {
for (i = nxlo_in; i <= nxhi_in; i4++4) {
vdx_brick[k][j][i] = work2[n];
n 4= 2;
y//

12

529
530
531

533
534
535
536
537
538

540
541

843

544

561

562
563

564
565
566
567
568
569

571
572
573
574
575
576

578
579
580
581
582
583

Y/
} //k
// vy direction gradient
#pragma omp for
for (i =0, n=0; i < nfft; i++, n=n+2) {

work2[n] = fky[i]*workl[n+1];

work2 [n+1] = -fky[i]*workl[n];

} //parallel

//(rest of code omitted)

Listing 7: Sketch of parallelized version void PPPM::poisson__ik_ triclinic()) method

The solution for the second case (the three nested loops) is trickier: we need to privatize variable n and
to do that we need to manually calculate the initial value for n at each iteration of the outer-most loop.
This is easilly done through the use of the added variable BS that stores the increments of the variable n in
the two inner-most loops. Once all of these is done (see Listing 7), the outer-most loop can be parallelized
by simply privatizing n, j and i.

As a last comment, the parallel region opened for the nested loops of x direction is used for the first loop
of y direction as depicted in Listing 7. The same is done between y direction and z direction (not shown in
the Listing).

4.4. Overlapping computation and communication

Last, but not least, we show here how to effectively overlap computation with MPI communication. More
precisely, we have worked in remap_ 3d function, which is called several times in the same region of code
mentioned on the last part of previous subsection. As it can be seen in Listing 8, the function consists in 4
differentiated parts:

. A sequence of MPI_Irecv calls to receive data from other processes.

. A sequence of (pack, MPI_Send) calls that packs and sends data to other processes.

. A call to pack and unpack to manage the data of the calling process.

. A sequence of (MPI_Waitany, unpack) to wait for the corresponding MPI_Irecv to get the data and
put it in the required memory location.

=W N

void remap_3d(FFT_SCALAR *in, FFT_SCALAR *out, FFT_SCALAR *buf,
struct remap_plan 3d *plan)

{
... // (omitted code)
// post all recvs into scratch space
for (irecv = 0; irecv < plan->nrecv; irecv++) {
MPI_Irecv(&scratch [plan->recv_bufloc[irecv]],plan->recv_size[irecv],

MPL FFT SCALAR, plan->recv_ proc[irecv],0,
plan->comm,&plan->request [irecv]) ;

}

// send all messages to other procs
for (isend = 0; isend < plan->nsend; isend++) {
plan->pack(&in [plan->send_ offset [isend]],
plan->sendbuf,&plan->packplan[isend]) ;
MPIL_Send(plan->sendbuf, plan->send__size [isend] ,MPL_FFT_SCALAR,
plan->send_ proc[isend],0,plan->comm) ;

13

586

590

605

6

o

6

607

608

609

611

612

614

615

616

617

618

619

620
621

622
623

625
626
627
628
629
630

632
633
634
635
636
637

639
640
641

// copy in -> scratch -> out for self data
if (plan->self) {
isend = plan->nsend;
irecv = plan->nrecv;
plan->pack(&in [plan->send_ offset [isend]],
&scratch [plan->recv__bufloc[irecv]],
&plan->packplan[isend]) ;
plan->unpack(&scratch [plan->recv_bufloc[irecv]],
&out [plan->recv_offset [irecv]],&plan->unpackplan[irecv]);
}

// unpack all messages from scratch -> out
for (i = 0; i < plan->nrecv; i++) {
MPI_Waitany (plan->nrecv , plan->request ,&irecv ,MPL_STATUS_IGNORE) ;
plan->unpack(&scratch [plan->recv_bufloc[irecv]],
&out [plan->recv_offset [irecv]],&plan->unpackplan|irecv]);
}

// (omitted code)

Listing 8: Sketch of the original code in remap__3d() method

The changes done in the code to allow computation and communication overlapping can be seen in
Listing 9 and are summarized in the following items:

1.

All code is wrapped by a parallel and a single constructs to create the parallel OpenMP region and
allow only one thread to enter the code to create tasks.

. The loop corresponding to point number 2 of the original code has been split into two loops: one loop

doing all the packs and the other doing all the MPI__Send. The loop doing the packs has been moved
to the very beginning of the function and each pack has been defined as a task.

. To allow the previous taskification, plan->sendbuf has been redefined (not shown) and now is a buffer

of buffers indexed by isend: this allows for all pack tasks to be independent.

. As it is independent of the rest of the communications, the self-data management of point 3 of the

original code has been moved next and taskified.

. A taskwait is needed just after the loop with MPI_Irecv because the following MPI_Send needs the

tasks with packs defined in point 2 to be finished.

. Finally, the unpacks of the last loop have been defined as tasks: in this way, the following MPI_ Waitany

does not need to wait for the previous unpack to finish.

void

remap_ 3d (FFT_SCALAR *in, FFT _SCALAR *out, FFT SCALAR *buf,
struct remap_plan_3d *plan)

// (omitted code)

#pragma omp parallel
#pragma omp single

for (isend = 0; isend < plan->nsend; isend++) {
#pragma omp task firstprivate (isend)
plan->pack(&in [plan->send_ offset [isend]] ,
&plan->sendbuf[isend*plan->sendbuf_size],&plan->packplan [isend]) ;

}
// copy in -> scratch -> out for self data
if (plan->self) {

isend = plan->nsend;

irecv = plan->nrecv;

#pragma omp task firstprivate (isend ,irecv)

14

642
643
644

646

647

648

649

650

651

653

675

676

677

678

680

681

683

686

687

689

690

692

693

plan->pack(&in [plan->send_ offset [isend]],
&scratch [plan->recv__bufloc[irecv]],
&plan->packplan[isend]) ;
plan->unpack(&scratch [plan->recv_bufloc[irecv]],
&out [plan->recv_offset[irecv]],&plan->unpackplan|irecv]);

}
}
// post all recvs into scratch space
for (irecv = 0; irecv < plan->nrecv; irecv++) {

MPI_Irecv(&scratch [plan->recv__bufloc[irecv]],plan->recv_size[irecv],
MPI FFT SCALAR, plan->recv_ proc[irecv],0,
plan->comm,&plan->request [irecv]) ;

}

#pragma omp taskwait
// send all messages to other procs
for (isend = 0; isend < plan->nsend; isend++) {
MPI_Send(&plan->sendbuf[isend *plan->sendbuf_size],plan->send_size[isend] ,MPL FFT SCALAR,
plan->send_ proc[isend],0,plan->comm) ;
}

// unpack all messages from scratch -> out
for (i = 0; i < plan->nrecv; i++) {
MPI_Waitany (plan->nrecv , plan->request ,&irecv ,MPL STATUS IGNORE) ;
#pragma omp task firstprivate (irecv)
plan->unpack(&scratch [plan->recv_ bufloc[irecv]],
&out [plan->recv_offset [irecv]],&plan->unpackplan[irecv]);

} //parallel and single

// (omitted code)

Listing 9: Sketch of the modified code in remap__3d() method, including the code reordering and the taskification of packs and
unpacks

Figure 5 shows how computation and communication have been effectively overlapped. The timelines
correspond to a trace of a run with 8 MPI processes with 6 OpenMP threads each. The upper timeline
represents the MPI calls (being pink — MPI_Irecv, blue— MPI_Send, and green — MPI_ Waitany) and
the bottom timeline represents task execution. Figure 5 is a zoom of just one invocation of remap_ 3d
method for the first 2 processes (12 threads in total) used in the execution. In this case, isend = irecv =
3 so each process executes 3 pack tasks + the pack/unpack task corresponding to the self data (the tasks
on the left part), and 3 unpack tasks (on the right). It can be seen how the packs are now overlapped with
the MPI_ Irecv calls at the beginning and how the MPI_ Waitanys at the end do not need to wait for the
execution of the previous unpack.

5. Evaluation

5.1. Environment

The experiments have been performed on MareNostrum4 [26]. This supercomputer is based on Intel
Xeon Platinum processors from the Skylake generation. It is a Lenovo system composed of SD530 Compute
Racks, an Intel Omni-Path high performance network interconnect and running SuSE Linux Enterprise
Server as operating system. Compute nodes are equipped with:

e 2 sockets Intel Xeon Platinum 8160 CPU with 24 cores each @ 2.10GHz for a total of 48 cores per
node.

o L1d 32K; L1i 32K; L2 cache 1024K; L3 cache 33729K.

e 96 GB of main memory 1.88 GB/core.
15

696

697

698

699

700

701

702

703

704

705

Figure 5: Overlapping computation and communication in remap_ 3d method.

e 100 Gbit/s Intel Omni-Path HFI Silicon 100 series PCI-E adapter.

e 10 Gbit Ethernet.

e 200 GB local SSD available as temporal storage during jobs.

e The processors support well-known vectorization instructions such as SSE, AVX up to AVX-512.

The software environment used is as follows:

e LAMMPS 20Nov19
e Intel 17.0.4 20170411 compiler

5.2. Benchmark Characterization

Figure 6 shows efficiency metrics for all the testcases and benchmarks studied in this work. These
performance metrics correspond to MPI-only executions and using 48 MPI ranks in all cases. Most of them
present a poor parallel efficiency, considering that only 48 MPI ranks are considered. Particularly bad are
the cases of short-range interactions benchmarks and the CG-GO testcase. The reasons for poor parallel
efficiency are diverse. While the main problem of short-range interactions benchmarks is Communication
Efficiency, the most limiting factor of the CG-GO benchmark is Load Balance with an extremely low
value (in contrast with the rest of the benchmarks). Mid-range interactions benchmarks have very similar
characteristics: although with slightly different weights on the two components, they both have the same
Parallel Efficiency value. Finally, Rhodopsin is the best performing benchmark. Note that, the Epoxy
testcase presents quite different characteristics when compared with CG-GO as discused later.

So with all these benchmarks we cover very different scenarios both in terms of type of simulation and
in terms of performance metrics characteristics.

5.3. Execution Time

In this section we present the wall time execution of all testcases and benchmarks for different setups
including the so-called ”Vanilla” (i.e. the regular MPI-only execution), "Balance” (i.e. MPI-only execution
but including the balancing mechanisms provided by the LAMMPS implementation) and different hybrid
configurations. 48 cores are used in all cases and, for the hybrid configurations, only configurations up to
the point where using more OpenMP threads translates in worst performance than the MPI-only case are
shown. In all benchmarks, the number of timesteps has been increased to have an execution wall time of
at least 1 minute for the Vanilla case in order to better appreciate execution time differences (i.e. the wall
times reported are the ones provided by LAMMPS and they only have a precission of seconds).

16

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

Testcases: Short-range: Mid-range: Long-range:
Epoxy CG-GO |Granular chute Polymer chain [EAM Lennard-Jones|Rhodopsin

Parallel efficiency 0,58 0,58 0,64
|-- Load balance 0,81
|-- Communication efficiency 0,72 0,62 0,69

Figure 6: Efficiency metrics of all testcases and benchmarks using 48 MPI ranks.

5.3.1. Testcases

Let us start by the CG-GO testcase as it is the one that shows the greatest load imbalance. Figure 7 (left
part) presents the execution times for different setups of this benchmark. The bars represent the maximum
time spent by an MPI rank on a given code section as reported by LAMMPS in its performance execution
report while the blue line that traverses the figure represents the total wall time of the different executions.
So the difference between both heights gives an idea of the load imbalance that affects a given configuration.
As it can be seen, this is huge for the Vanilla case. The Balance version reduces this difference a lot
(mainly by reducing the "Comm” maximum execution time). Note, however how a wide range of hybrid
configurations (from 24 to 8 MPI processes) do this better achieving also lower (i.e. better) wall execution
times.

I Pair [Bond Neigh B Comm S Pair @ Bond I Kspace

BN Output EEEModify ~ EEEOther —e—Wall time Neigh = Comm S Output
50 I Modify I Other —o—Wall time

100 _—— I

40 —_
o 280
g 30 g |
E 20 T‘; 40
10 20
0 0
N & S L S
q’@' & %0&\ %0&0 '\XO&Q %O@
Q QR Q/\+ Q/\"r Qx‘r Q\"r
» » > >
N > \‘} q;)s
(a) CG-GO performance results (b) Epoxy performance results

Figure 7: Performance results for test cases inputs

Figure 8 represent 10 timesteps of the executions using the Vanilla, Balance and Hybrid versions at
the same timescale. As it can be seen, the Vanilla version presents a heavy load imbalance: this allows
the Balance version to achieve a 43% improvement in execution time (timeline in the middle). But, more
interestingly, the Hybrid version (bottom timeline) is 12% faster than the Balance version and it achieves a
50% improvement when compared with the Vanilla version.

Figure 9 shows the parallel functions executed by the Hybrid version. The time spent in OpenMP parallel
regions in this case is 80,6% of the total execution time.

A very different scenario is shown in the right plot of the figure, that presents the execution time of the
Epoxy resin testcase. Note the different characteristics of this testcase when compared with the CG-GO.
First, the imbalance is not so relevant for the Vanilla scenario. In fact, it can be seen how the use of
the balance mechanisms provided by LAMMPS actually make the execution slower (i.e. it adds overhead
without any improvement). Hybrid configurations from 24 to 8 MPI ranks perform better in terms of both
load balance and execution time, mainly due to the better performance of the pairing ("Pair”, orange in the
figure) of the hybrid cases, meaning that the OpenMP parallelization is more efficient than the MPI one.

17

Useful Duration @ CG-

17,288.01 >

43% improvement

1 9,770.90 >

12% improvement

50% improvement

2,890.08 5,778.87 >

Figure 8: Useful duration timelines for the CG-GO testcase (upper: Vanilla, middle: Balance, lower:Hybrid).

Parallel functions in useful @ CG-GO-hybrid.chopl.prv

Figure 9: Parallel functions timeline for the CG-GO testcase (Hybrid version).

18

747

748

749

750

752

753

754

755

756

757

758

759

760

761

762

764

765

766

767

768

769

770

771

772

This testcase clearly shows how the Hybrid version is able to improve the Vanilla even when the Balance
version is not, demonstrating that hybridization provides other benefits than just load balance.

5.3.2. Short-range interactions benchmarks

Figure 10 present the results for the short-range interactions benchmarks. For both benchmarks the
analysis is actually the same: nor the Balance mechanism nor the Hybrid solution are able to improve the
Vanilla setup.

. Pair = Neigh Comm W Pair [Bond | Neig?
B Output = Modify B Other Comm B Output m Modify
500 =o—Wall time 60 B Other =o—Wall time
= 50
= ' £ 10
g =
£ 100 = 30
= B
= 20
E:

ot
o o
—
o O

N & S S S
@5& & > S &
< <R N A N
F & S
®© N) ¥
(a) Granular chute flow performance results (b) Polymer chain melt performance results

Figure 10: Short-range interactions benchmarks results

For the Balance mechanism, the explanation is clear: the problem of the Vanilla setup, if any, is not load
imbalance. For the Hybrid configuration, we will take the Polymer chain benchmark as a representative but
a similar analysis could be done for the Granular chute. Figure 11 represents 10 timesteps of the Polymer
chain benchmark. The timelines, of course at the same timescale, show two main reasons that explain why
this short-range interactions cases do not benefit from the use of a Hybrid implementation:

1. The most computational intensive part (dark blue) is not OpenMP parallelized so the execution time
is increased.

2. Only very small parts of the less computational intensive part (light green) are parallelized with
OpenMP, leading also to an increased execution time. This can be perfectly seen in Figure 12 where
the OpenMP parallel regions are depicted (meaning light blue no parallel region at all, i.e. sequential
execution). Actually, the percentage of time of the whole execution spent in OpenMP parallel regions
is only of 23%. This suggests that there is a lot of room for improvement by parallelizing other parts
of the code used by this benchmark in similar ways as explained in Section 3.3.

5.3.3. Mid-range interactions benchmarks

Figure 13 (left) presents the execution times of the EAM benchmark for different configurations. In this
case, all the versions perform quite similar. It is noticeable, however that the best performing version is
Hybrid for the 24MPIx2omp case: 70 seconds in contrast with the 76 seconds of the Vanilla or the 75 seconds
of the Balance version. A similar analysis can be done for the Lennar-Jones benchmark (Figure 13 (right):
the only noticeable difference is that in this case Balance is a bit worst than Vanilla (just one second) while
the 24dMPIx2omp Hybrid configuration is still able to improve by 4 seconds the Vanilla case.

19

Figure 11: Useful duration timelines for the Polymer chain melt benchmark (Upper part: Vanilla execution, lower part: Hybrid

version).
Figure 12: Parallel functions timeline for the Polymer chain melt benchmark (Hybrid version).
. . Pair Neigh I Comm
Pair Neigh I Comm Output Output - \odify Other
 Modify Other Wall time Wall time
100 140
80 == PN
— N — —— . =
% [|| . [| Bl % 100 L~ N
g 60 g s0 -
= = —
= 10 S S |
= 2 40
20 20
0 0
' @ @
E &\\‘b N Q;ch@ %O&Q Q\Q »XO\&\Q O@Q 29® \%QL bP&Q q)o&Q
<° i \Q*’r ‘3* 8*‘& 8\% < o 8\+ ‘8\+

(a) EAM metallic solid performance results (b) Lennard-Jones liquid performance results

Figure 13: Mid-range interactions benchmarks results

20

773

774

775

776

778

779

780

781

782

784

785

786

787

Pair Bond I Kspace

Neigh B Comm I Output
190 B Modify B Other —o—Wall time
100 - E—
£ H N
:
= 60
g 40
=
20
0
NG @ S S S
:zﬁ& x‘v& QP& ,59& %0&
~ P & & &
S K K
S N o

Figure 14: Rhodopsin protein benchmark results.

5.3.4. Long-range interactions benchmarks

Figure 14 presents the execution time of the Rhodopsin benchmark for different configurations. The
three Hybrid configurations on the right are able to outperform both Vanilla and Balance versions. The
pairing process (orange bar) is much faster in the Hybrid configurations.

Figure 15 represents two timelines of 10 timesteps of the Rhodopsin benchmark execution at the same
timescale. As it can be visually noted, the execution of the Hybrid case is significantly faster. This gain
in performance comes mainly from the pairing phase (blue sections in the timelines) done in the compute
function in the PairLJCharmmCoulLongOMP module of LAMMPS which is faster for the Hybrid case.

3,623.31

9% improvement

Figure 15: Useful duration timelines for the Rhodopsin protein benchmark (top: Vanilla, bottom: Hybrid).

As it can be seen on the red parts of Figure 16, this function is fully OpenMP parallelized. Note, however,
that there are still other parts of the code not parallelized with OpenMP (light blue in Figure 16 and black
in bottom timeline of Figure 15), making the execution of the green areas in Figure 15 being slightly faster
for the Vanilla case. But even so, the improvement achieved by the OpenMP implementation of compute
subroutine is able to compensate by far this loss in performance.

All in all, the ratio of time in parallel regions with respect to the whole execution time is pretty high:
76,6%. We can now compare short-range with long-range interactions benchmarks and explain why Hybrid

21

788

789

790

791

792

793

795

796

797

798

800

802

803

804

806

807

808

809

811

812

813

814

816

817

818

819

821

822

823

824

Figure 16: Parallel functions timeline for the Rhodopsin protein benchmark (Hybrid version).

implementation is able to improve the performance of the later but not of the formers. Comparing Figures 12
and 16 one can see how the percentage of time outside any parallel OpenMP region (light blue areas) for
both benchmarks is drastically different. Actually, the percentage of time inside OpenMP parallel regions
of the Polymer chain benchmark is only 23,7%. This is exacerbated if we focus on the pairing phases: while
in the case of Rhodopsin benchmark this corresponds to the red parts in Figure 16, so it represents a high
percentage of the whole execution, this is not the case for the Polymer chain benchmark where the pairing
(light brown in Figure 12) corresponds to a very residual part of the whole execution (in this benchmark,
subroutine compute of PairLJCutOMP module).

So, at the end, the reason that ultimately explains the different behaviour of the two kind of benchmarks
is that the weight of the pairing process (which is the most important part parallelized with OpenMP in all
benchmarks) in the whole execution is very high for the long-range interactions benchmarks (45,6% in the
Rhodopsin benchmark) while it is insignificant for the short-range interactions benchmarks (8,4% for the
Polymer chain benchmark).

6. Conclusions

This paper has shown the potential of the proposed hybrid MPI4+OpenMP approach to effectively alle-
viate performance problems such as load imbalance in LAMMPS simulations.

LAMMPS provides a ready-to-use balacing mechanism to partially solve load balancing problems in
molecular dynamics simulations with non uniform atom densities. The LAMMPS balancing mechanism
shows high effiency compared to MPI-only simulation in case of high load imbalance (CG-GO testcase). We
have introduced the use of an MPI4+OpenMP hybrid implementation of LAMMPS as a third option. Fur-
thermore, we have complemented the current partial OpenMP implementation of LAMMPS with additions
and modifications, driven by the Epoxy textcase.

Our proposed modified version LAMMPS has been extensively compared against the baseline MPI case
and against the use of the LAMMPS balance mechanism. Five benchmarks present in the LAMMPS
distribution with varying range of interaction (short, mid and long-range) together with two testcases with
very different characteristics were used for the comparison.

For the short-range interactions benchmarks, the regular MPI-only version was the best performing. As
long as they do not present a load imbalance problem, the balancing mechanism does not provide any benefit
in this case. The problem with the hybrid setup in this case is that only a small fraction of the simulations
(~20%) runs in OpenMP parallel regions. This suggests that more additions similar to the ones proposed
in Section 3.3 could be done to the OpenMP LAMMPS implementation.

For the mid-range interactions benchmarks, the hybrid option was the best in all cases. The balance
mechanism only improves a bit the EAM simulation while it is the worst option for the Lennard-Jones
benchmark. These results indicate that the hybrid implementation is able to improve performance metrics
others than load balance, such as communication efficiency.

In the Rhodopsin benchmark (long-range interactions) the execution time is mainly dominated by the
LAMMPS pairing process. The obtained results show that the OpenMP paralllelization of the pairing is
much faster than the MPI one, making the hybrid approach the best option also for this benchmark.

22

826

827

828

829

831

832

833

834

836

837

838

839

840

841

842

843

844

846

847

848

850

Regarding the highly-imbalanced testcase (CG-GO), the balancing mechanism shows its potential achiev-
ing a 43% improvement with respect of the regular MPI simulation. Interestingly, the hybrid version is able
to improve even further, up to 50%.

In the case of the Epoxy resin testcase (the one that motivated the implementations explained in Sec-
tion 3.3), the use of the balance mechanism only adds overhead (the execution is slower than for the regular
MPI version). The hybrid implementation, on the contrary, is the best option showing again that it is able
to improve simulations where the load balance is not the main problem.

So, the overall conclusion is that LAMMPS hybrid setups are able to handle scenarios with very high
load imbalance at least as well (if not better) as the LAMMPS balance mechanism while also providing
benefits in other scenarios where load balance is not the main performance bottleneck.

Our suggestion to LAMMPS developers, and MD in general, is to put effort into hybridizing the code
with an MPI4+OpenMP strategy instead of implementing ad-hoc balancing methods. Because the hybrid
code not only can address more dynamic load imbalances but also improve the parallel efficiency reducing
the communication.

7. Acknowledgements

This work is partially supported by the Spanish Government through Programa Severo Ochoa (SEV-
2015-0493), by the Spanish Ministry of Science and Technology (TIN2015-65316-P), by the Generalitat
de Catalunya (2017-SGR-1414), and by the European POP CoE (GA n. 824080). This work is also
funded as part of the European Union Horizon 2020 research and innovation programme under grant agree-
ment nos. 800925 (VECMA project; www.vecma.eu) and 823712 (CompBioMed2 Centre of Excellence;
www.compbiomed.eu), as well as the UK EPSRC for the UK High-End Computing Consortium (grant no.
EP/R029598/1).

References

[1] LAMMPS. [link].

URL https://lammps.sandia.gov/

[2] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics 117 (1) (1995)
1-19.

[3] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco, J. Faik, J. E. Flaherty, L. G. Gervasio, New
challenges in dynamic load balancing, Applied Numerical Mathematics 52 (2-3) (2005) 133-152.

[4] Y. Deng, R. F. Peierls, C. Rivera, An adaptive load balancing method for parallel molecular dynamics simulations, Journal
of Computational Physics 161 (1) (2000) 250 — 263. doi:https://doi.org/10.1006/jcph.2000.6501.

URL http://www.sciencedirect.com/science/article/pii/S002199910096501X

[5] S. Plimpton, R. Pollock, M. Stevens, Particle-mesh ewald and rrespa for parallel molecular dynamics simulations, Proc.
8th SIAM Conf. on Parallel Processing for Scientific Computing (08 2000).

[6] C. Walshaw, M. Cross, Mesh partitioning: a multilevel balancing and refinement algorithm, STAM Journal on Scientific
Computing 22 (1) (2000) 63-80.

[7] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on
scientific Computing 20 (1) (1998) 359-392.

[8] D. F. Harlacher, H. Klimach, S. Roller, C. Siebert, F. Wolf, Dynamic load balancing for unstructured meshes on space-
filling curves, in: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum,
IEEE, 2012, pp. 1661-1669.

[9] K. Schloegel, G. Karypis, V. Kumar, A unified algorithm for load-balancing adaptive scientific simulations, in: SC’00:
Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, IEEE, 2000, pp. 59-59.

[10] LAMMPS-Balance. [link].

URL https://lammps.sandia.gov/doc/balance.html

[11] C. Huang, O. Lawlor, L. V. Kale, Adaptive mpi, in: International workshop on languages and compilers for parallel
computing, Springer, 2003, pp. 306-322.

[12] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson, Y. Sun, E. Totoni, et al., Parallel
programming with migratable objects: Charm++ in practice, in: SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, IEEE, 2014, pp. 647-658.

[13] M. Etinski, J. Corbalan, J. Labarta, M. Valero, A. Veidenbaum, Power-aware load balancing of large scale mpi applications,
in: 2009 IEEE International Symposium on Parallel & Distributed Processing, IEEE, 2009, pp. 1-8.

[14] M. Garcia, J. Corbalan, J. Labarta, LeWI: A Runtime Balancing Algorithm for Nested Parallelism, in: Proceedings of the
International Conference on Parallel Processing (ICPP09), 2009.

23

(15]

[16]

(17)
(18]
(19]
20]

[21]
[22]
23]
[24]

[25]

[26]

M. Garcia-Gasulla, F. Mantovani, M. Josep-Fabrego, B. Eguzkitza, G. Houzeaux, Runtime mechanisms to survive new
hpc architectures: a use case in human respiratory simulations, The International Journal of High Performance Computing
Applications 34 (1) (2020) 42-56.

R. Rabenseifner, G. Hager, G. Jost, Hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes, in:
2009 17th Euromicro international conference on parallel, distributed and network-based processing, IEEE, 2009, pp.
427-436.

R. Rabenseifner, G. Wellein, Communication and optimization aspects of parallel programming models on hybrid archi-
tectures, The International Journal of High Performance Computing Applications 17 (1) (2003) 49-62.

Barcelona Supercomputing Center, Paraver.

URL https://tools.bsc.es/paraver

V. Pillet, J. Labarta, T. Cortes, S. Girona, Paraver: A tool to visualize and analyze parallel code, in: Proceedings of
WoTUG-18: transputer and occam developments, Vol. 44, 1995, pp. 17-31.

Barcelona Supercomputing Center, Extrae.

URL https://tools.bsc.es/extrae

H. Servat, et al., Framework for a productive performance optimization, Parallel Computing 39 (8) (2013) 336-353.

D. Fincham, Parallel computers and molecular simulation, Molecular Simulation 1 (1-2) (1987) 1-45.
arXiv:https://doi.org/10.1080/08927028708080929, doi:10.1080,/08927028708080929.

URL https://doi.org/10.1080/08927028708080929

W. Smith, Molecular dynamics on hypercube parallel computers, Computer Physics Communications 62 (2) (1991) 229 —
248. doi:https://doi.org/10.1016,/0010-4655(91)90097-5.

URL http://www.sciencedirect.com /science/article/pii/0010465591900975

S. Plimpton, B. Hendrickson, A new parallel method for molecular dynamics simulation of macromolecular systems, Journal
of Computational Chemistry 17 (3) (1996) 326-337. doi:https://doi.org/10.1002/(SICI)1096-987X(199602)17:3<326::AID-
JCC7>3.0.CO;2-X.

R. Rabenseifner, G. Hager, G. Jost, Hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes, in:
2009 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, 2009, pp. 427-436.
doi:10.1109/PDP.2009.43.

Barcelona Supercomputing Center, Marenostrum4.

URL https://www.bsc.es/marenostrum/marenostrum

24

