
Available online at www.sciencedirect.com 

New strategies for interrogation of redox flow batteries 
via Synchrotron radiation 
Yue Wen and Rhodri Jervis   

Operando and in situ characterisation studies with the 
assistance of high energy light produced by synchrotrons are 
becoming increasingly attractive in the energy storage area, 
allowing for nondestructive investigations of material properties 
and device behaviour in realistic working environments, and 
with high temporal resolution afforded by the latest generation 
of high-flux beamlines. Many operando synchrotron techniques 
are well suited to redox flow batteries, which undergo redox 
changes of the active species in their electrolytes when flowed 
through porous electrodes. There is a large variety of redox flow 
battery designs and chemistries, spanning transition metal 
solutions, hybrid gas-liquid devices, plating and stripping 
mechanisms and organic redox species. This review presents 
an overview of recent progress and preponderance of 
synchrotron techniques in investigating the current issues of 
redox flow batteries. For each synchrotron X-ray analytical 
approach, practical examples and breakthrough findings are 
outlined and the potential applications on the newly developed 
redox flow batteries are discussed. 
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Introduction 
Clean and renewable energy sources have been gradu-
ally replacing traditional energy sources with the aim of a 
more sustainable society [1]. The intermittent nature of 
renewables means that cost-effective stationary energy 
storage is urgently required on the grid. Redox flow 
batteries (RFBs) are a prime candidate for grid-scale 
storage due to their ability to decouple energy density 

and power output. Though the technology was demon-
strated in the 1970s [2], there are still barriers to com-
mercialisation related to electrolyte cost, energy and 
power density, efficiency, and cycle life [3,4]. 

To achieve the goals and address existing and emerging 
issues of RFBs, advanced techniques for in situ or op-
erando studies are required to better understand phe-
nomena under a dynamic working environment. Many 
operando or in-line lab characterisation techniques have 
been successfully applied to monitor the state of charge, 
such as UV–Vis [5] and fluorescence [6], or chemical 
states and the distribution of electrolyte redox couples, 
via bulk magnetisation [7], nuclear magnetic resonance  
[8] and electron paramagnetic resonance [9] for organic 
RFBs. However, lab-based X-ray characterisation tech-
niques suffer from low temporal and (often) spatial re-
solution and restrictive working environments, 
limitations that can be overcome via the use of syn-
chrotron radiation sources (SRSs) [10]. Synchrotron ac-
celerators produce millions of times brighter light, 
predominantly in the X-ray region, which is useful for 
many material characterisation including imaging (2D 
radiography and 3D tomography), spectroscopy, and 
diffraction/scattering techniques. Since the 1960s, SRSs 
have evolved through first, second and third generations 
with the largest SRSs located in Europe (ESRF), USA 
(APS) and Japan (Spring-8) and have been recognised as 
a powerful research tool in many research areas [10–12]. 
With growing attention on energy storage systems, a vast 
range of experiments using synchrotron radiation have 
been carried out on batteries [12,13], fuel cells [14] and 
other electrochemical materials and devices [15,16]; the 
first experiment at an SRS on RFBs used X-ray ab-
sorption near-edge spectroscopy (XANES) to monitor 
vanadium oxidation state for all-vanadium redox flow 
batteries (VRFBs) in 2014 [17]. This comparatively late 
example highlights the underutilisation of SRSs for RFB 
research. 

Redox flow batteries 
RFBs are one of the most promising solutions for grid- 
scale storage due to their capability of decoupling power 
and energy. Their unique architecture separates the 
external energy storage tanks from the stacked electro-
chemical cells, where the electrolytes (catholyte and 
anolyte) containing the active redox species are pumped 
through the electrodes to activate the electrochemical 
reactions during charge/discharge. The basic principle of 
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RFBs is illustrated in Figure 1 with the state-of-the-art 
VRFB as an example. VRFBs stand out for its resilience 
to crossover of reactants, as both sides contain vanadium 
and protons. However, there are still limitations in-
cluding low voltage efficiency due to poor electro-
catalytic activity and low active surface area of the 
electrode, low energy density constrained by material 
solubility, small voltage window restricted by hydrogen 
evolution and cost of vanadium. 

Multiple types of RFBs have been developed through 
alterations of the electrolyte, electrode, and separator 
(Figure 1 [4]). The emerging chemistry or design of 
RFBs requires advanced characterisation of a variety of 
phenomena such as redox mechanisms, gas generation, 
flow characteristics and heterogeneity of reaction in the 
electrodes. The beneficial properties of synchrotron ra-
diation make it an attractive option for interrogation of 
RFBs across a range of techniques. 

Synchrotron X-ray studies on redox flow 
batteries 
Overview of synchrotron X-ray techniques 
Synchrotrons use magnetic fields to accelerate charged 
particles (electrons) to generate high-energy electro-
magnetic radiation (X-ray), and have been powerful tools 

for many research areas over decades of their existence. 
Depending on the interaction of the radiation with the 
sample, synchrotron X-ray techniques can be categorised 
into three broad areas: (1) spectroscopy, where X-rays are 
spectrally separated before absorbing and emitting by 
the sample to obtain information on the samples’ elec-
tronic states; (2) diffraction or scattering experiments, 
probing long range order (diffraction) or noncrystalline 
local structure (scattering); and (3) imaging experiments, 
where the X-rays penetrate samples and are absorbed, 
based on atomic mass and sample density, producing 2D 
images (radiography) or 3D images (tomography) to re-
veal internal structure. With the high flux synchrotron 
beam, acquisition time is minimised to achieve operando 
experiment conditions, where the dynamic variations of 
electron and chemical states, molecular structures and 
phase separation under RFBs’ operational conditions 
could be analysed. 

X-ray spectroscopy 
Spectroscopic experiments analyse the wavelength of 
absorbed or emitted X-rays by the studied specimen as 
shown in Figure 2. X-ray absorption spectroscopy (XAS) 
is a powerful and informative tool to investigate the 
oxidation state and electronic local structure of elements. 
Most XAS studies are performed at an SRS due to the 

Figure 1  
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Scheme of the state-of-the-art VRFB with detailed reactions and performance. The abbreviations are aqueous organic redox flow batteries (AORFBs), 
semi-solid redox flow batteries (SSFBs), solar redox flow batteries (SRFBs), solid mediated redox flow batteries (SMFBs). 
Timelines of the historical development (information reproduced with permission from ref.[4]) and synchrotron assisted in situ/operando studies 
of RFBs.   
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intense monochromatic radiation produced and lack of 
available lab-based XAS technology until recently [18]. 
The very first of RFBs studied at a synchrotron used in 
situ XANES to monitor the valence state variation of 
vanadium during one battery charge-discharging cycle  
[17]. An 82% battery state of charge (SOC) was calcu-
lated under a traditional cycling profile, prompting the 
proposal of an additional constant voltage charge to 
achieve 100% SOC [17]. 

Lutz and Fittschen [19] also studied the vanadium 
species gradient inside the electrolyte but with lab- 
based XANES, where 2–5 h was required for a single 
measurement with around 1% relative uncertainty on 
edge jump when correcting based on synchrotron data. 
Though the lab XANES can be helpful to understand 
the electrochemistry, it is not sufficient for operando 
studies, which require higher time resolution and more 
accurate measurements. Following this work, they 

conducted synchrotron experiments with just 5 ms for a 
single scan and micro-size probe, enabling sufficient 
spatiotemporal resolution to unravel the vanadium redox 
variation during the diffusion through the membrane at 
different points in the flow field [20]. The experimental 
procedures were carefully designed and proved to limit 
vanadium oxidisation by radiation damage (e.g. photo- 
oxidation and water radiolysis) and confirm the chemical 
formation of V(IV) inside the membrane after exposing 
to V(III) on one side and V(V) on the other [20,21]. 

Christopher et al. [22] studied the iron centre ionic li-
quid (ILs), where the solvent itself contains redox-active 
anions and cations, unlike the solvated salt systems (e.g. 
VRFB). To evaluate the electron transfer barrier into 
and from the active site during a redox reaction, Fe K- 
edge XANES and extended X-ray absorption fine 
structure (EXAFS) on ligand structures of the Fe centre 
were applied, showing a mixed Fe+2/+3 oxidation state 

Figure 2  

Current Opinion in Chemical Engineering

(a) C K-edge NEXAFS spectra of different carbon materials. (b) Schematic diagram of X-ray spectroscopy. (c) Experimental and simulated S K-edge 
NEXAFS spectra of the PFSA and PFICE ionomers and density distributions of the electronic component for a sulphur atom. 
(a) Adapted with permission from [24]. Copyright 2022 American Chemical Society. (b) Adapted with permission from [25]. ©2022 John Wiley and 
Sons, Inc. (c) Reproduced with permission from [26*] . Copyright 2022 American Chemical Society.   
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during oxidation (XANES) and no expected extension of 
nearest neighbour Fe-O distances during reduction 
(EXAFS). This work shows the great potential of XAS in 
addressing intrinsic mechanisms in the polarisation 
process, and XAS has also been used in many catalytic 
studies of metal catalysts and functional groups for RFB. 
Sheeraz et al. [23] applied XAS combined with other 
material analytical techniques to study the post-cycling 
performance of their electrocatalyst, SnO2 nanoparticles 
on carbon felt. With the near edge X-ray absorption fine 
spectroscopy (NEXAFS) results at the C K-edge of 
carbon felt, they analysed the extent of oxygen func-
tional groups on the surface, which has catalysing ac-
tivity and was found to increase with cycling. The 
NEXAFS result of the O K-edge spectrum and XANES 
of Sn K-edge confirmed a consistent Sn4+ state and 
stable adherence of SnO2 electrocatalyst on the carbon 
felt during cycling. NEXAFS measured at C K-edge was 
also used to study sp2 carbon extent (graphitisation de-
gree) by comparing the peak intensities at 285.6 eV 
photon energy, which is the typical C-C * resonance in 
the graphite C-ring shown in Figure 2a [24]. 

Except for electrolyte and electrode studies discussed 
above, XAS was also found to be a potent tool for un-
ravelling the molecular structure of ion-conducting 
polymer membranes that provide insights into water 
uptake and conductivity performance, assisting with the 
design of membrane chemistry for different energy de-
vices. Gregory et al. [26•] reported NEXAFS studies at S 
K-edge of perfluorosulfonic acid (PFSA) and perfuoro 
ionene chain extended (PFICE) ionomers, which con-
tains a sulphonic acid group and additional one or two 
bis(sulfonyl)imide groups on the side-chain terminal. 
The molecular structure and chemistry of the hydro-
phobic backbone of polytetrafluoroethylene and hydro-
philic sidechains of sulphonate groups determine the 
nanoscale phase separation by hydrophilicity force, 
where the hydrophilic phase separations could be stu-
died by combining NEXAFS with energy-dependent X- 
ray scattering to increase contrast with low electron 
transfer variation. Another highlight of this work is the 
ab initio calculation and theoretical simulation (Figure 
2c), which revealed the beneficial PFICE chemistry of 
well-ordered phase-separated structure with short-range 
order and enhanced water uptake through hydrogen- 
bonding. To conclude, XAS is an effective technique for 
understanding chemical states and electronic density 
distribution of electrodes, electrolytes, and separators 
in RFBs. 

X-ray diffraction 
Synchrotron X-ray diffraction (SXRD) probes the crys-
tallographic structure of ordered material by measuring    

the diffracted X-ray intensity at different angles. In 
comparison with lab XRD, SXRD provides higher re-
solution and sensitivity of the diffraction peaks, which 
can detect trace phases or minor variations of crystal-
lographic structure, and higher penetration allowing for 
in situ studies. Zhao et al. [27] proved the stability of Li- 
ion conductive ceramic separators for lithium-iodine 
hybrid RFBs with the unnoticeable variation of SXRD 
results before and after cycling. 

A recent highlight studied redox targeting VRFBs [28•], 
which are conventional VRFBs with a homemade 
Prussian blue analogue powder (PBA), (VO)6[Fe(CN)6]3 
stored in the catholyte tank. When charging and dis-
charging, the PBA was thermodynamically favoured to 
be chemically oxidised or reduced by vanadium. This 
design is benefited by the increased cathodic volumetric 
capacity given by PBA, which had uncertain crystal 
structure, solved by SXRD. Jisu et al. [29] also carried 
out SXRD to measure the crystal structures of different 
redox-active organic molecules for all-organic RFBs. 
The precise peak position and intensity of the scanning 
diffraction pattern makes SXRD attractive to determine 
the synthesised unknown crystal structures, which is 
advantageous for novel RFBs with complex chemistry. 

Diffuse X-ray scattering 
Diffuse X-ray scattering is mainly used to characterise 
the structure of noncrystalline materials such as poly-
mers (e.g. the separators in RFB) [30], and is particularly 
effective in detecting the in situ structural variations as 
the long-period relaxation nature of polymers and rapid 
data acquisition afforded by the high X-ray luminance of 
synchrotron radiation. Depending on the scattering 
angle, small-angle X-ray scattering (SAXS) and wide- 
angle X-ray scattering are applied to analysis of large 
structure and small features, respectively [31]. 

With a broad variety of hydrophobic backbones and 
hydrophilic sidechains, the properties of polymer se-
parators can be highly diverse [32]. The most important 
property of RFB separators, ionic conductivity [33] was 
reported to be mainly affected by the size and dis-
tribution of hydrophilic phase separation as the hydro-
philic sidechains containing functional groups provide 
the ionic pathway. SAXS, as a nondestructive quantita-
tive approach, is favourable to analyse the morphology, 
hydrophilic channel length, size and distribution of 
phase separation caused by intrinsic chemistry or ex-
ternal perturbation effects [34–36]. Si et al. [35] im-
proved the ionic conductivity of anion-exchange 
membrane for VRFBs through forming 3D ionic chan-
nels with microscopic hydrophobic-hydrophilic segre-
gated phases like cation-exchange membranes (e.g. 
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Nafion), where the target morphology and chemistry was 
verified by SAXS. Chen et al. [36] designed a copolymer 
membrane with controllable morphology, where the 
morphology variation and swelling effects were studied 
by SAXS. 

Other than application as membranes, conductive poly-
mers have also been studied as RFB electrodes [37,38]. 
Bharati et al. [39•] addressed the importance of polymer 
microstructure and polymer/liquid interface on the redox 
kinetics. The varied micro-crystalline structures of con-
ductive polymers with different fabrication methods 
were compared and investigated by grazing-incidence 
wide-angle X-ray scattering (GIWAXS), correlating the 
microstructure to the electronic properties, and char-
acterising the molecular aggregation state (molecular 
orientation) at the interface [40]. They found the chan-
ging of polymer microstructure resulted in different 
polymer density of states, which is directly linked to the 
symmetry of redox reactions. Therefore, they proposed 
the possibility of kinetic selectivity by altering the mi-
crostructure and nanostructure of the conductive 
polymer electrode. 

X-ray radiography and computed tomography 
X-ray imaging techniques are invaluable for non-
destructive monitoring of the internal structure of en-
ergy devices [41]. Computed tomography (CT) produces 
a virtual 3D volume of electrode microstructures which 
can be used as the basis of image-based modelling [42]. 
For RFBs, electrode microstructural properties are vital 
in influencing the pressure drop, mass transport phe-
nomena, electrolyte flow patterns and the wetting 
properties, which all affect battery efficiencies and per-
formance [43,44]. Furthermore, electrolyte flow patterns 
can be simulated based on the 3D microstructure of the 
electrode and verified with 2D radiography [45*,46*]. 
However, to realise a high image quality with lab-based 
CT, compensation of long acquisition time-limits the in 
situ and operando capabilities. SRSs provide steady high 
photon flux and hence high spatio-temporal resolution, 
and so the structure modelling parameters of energy 
devices under a dynamic environment and the transient 
phenomena under operating conditions can be obtained 
and captured. 

In 2016, Jervis et al. designed a miniature flow cell to 
conduct in situ imaging of RFB electrodes with syn-
chrotron X-ray CT [47]. This work proved the capability 
of synchrotron CT to image electrode structure and 
electrolyte variation under an operating environment. 
The cell was built in a rotational symmetry as shown in  
Figure 3a, where the attenuation of the beam at all an-
gles was kept constant to reduce the artefacts from the 

reconstructions. This work compared CT images by SRS 
and lab-based CT systems, showing that the former 
achieved higher signal-to-noise ratio and better seg-
mentation of electrode fibres from the electrolyte phase 
in a significantly reduced time frame, which enables 
imaging of RFBs with in situ/operando X-ray CT [47]. 

Real-time imaging electrolytes and electrode structures 
is desirable because of the direct impacts on the elec-
trochemically active surface area leading to a significant 
variation of battery efficiency. The focus was on elec-
trode compression which has a large influence on the 
performance of RFBs [43,48]; studies indicated reduced 
porosity, permeability, and diffusion [43,49], increased 
electrolyte resistance and pressure drop with compres-
sion [50]. Apart from the in situ compression studies, 
electrolyte species [51], electrode thermal treatment  
[49], operation potential [45•] and flow field-electrode 
interface [46•] were found to be closely related to 
electrolyte flow patterns, where synchrotron X-ray 
radiography and tomography interrogated temporal var-
iations. Bevilacqua et al. [51] traced the initial invasion 
and flow-through behaviours of electrolytes with radio-
graphy and tomography, where the effect of different 
electrolyte species, varied compression and thermal ac-
tivation were studied. They concluded improved wet-
ting and reduced pressure drop were observed in 
activated electrodes with a flow-through configuration. 
In terms of electrode saturation, electrode activation was 
the determining factor, which also improved with in-
creasing compression ratio until 50%. Banerjee et al.[49] 
reported the negative impacts of compression: reduced 
permeability and single-phase diffusion, and increased 
breakthrough pressure with compression up to 67%, 
where they modelled the electrolyte invasion and 
transport patterns based on electrode 3D structure from 
tomography and compared this with the experimental 
visualised flow with radiography. 

Roswitha’s group [46•] also studied compression ratio up 
to 75% and different flow fields; synchrotron X-ray 
radiography combined with quantitative analysis pre-
sented a time and spatially resolved saturation of elec-
trolyte, where higher compression ratio improved the 
saturation ratio, and more than 97% utilisation of elec-
trode was achieved when compression reached 50%. 
The highlight of this study was the electrolyte invasion 
pattern at lower compressions (25% and 17%), which 
breaks in and followed a ‘highway’ path till reaching the 
other side, then spreads through the tilted fibre align-
ment shown in Figure 3b and gradually filled the elec-
trode over time. However, at higher compression, the 
invasion steps were time-scale unresolvable due to a 
faster process, attributed to a steeper tilt angle of fibres 
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caused by compression, altering the wetting behaviour. 
Another work by Roswitha’s group [45•] investigated 
the side reaction of hydrogen production through vi-
sualisation of gas-phase variation by tomography, where 
electrolyte flow dynamics by radiography with three 
different flow geometries were monitored and related to 
the potential-current response and hydrogen gas forma-
tion. This study found flow-through configuration 
achieved the highest saturation (96.56%), and inter-

digitated flow field has a slightly higher saturation ratio 
(90.99%) than serpentine (90.29%). With a time-resolved 
3D gas detection, the hydrogen gas was discovered to be 
mainly retained by pre-existing air bubbles (Figure 3c), 
which result in decreased saturation at 1.09% per redox 
cycle. It is worth noting that the combination of radio-
graphy and tomography realised the real-time tracking of 
all existing phases: liquid-solid-gas in the VRFB elec-
trochemical cell, which allows the relationships between 

Figure 3  
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(a) Design of a miniature flow cell with a transparent view of internal structure and electrolyte flow, (b) radiograms of the vanadium electrolytes in time- 
spatial scales with different compression ratios, (c) tomograms of gas-phase evaluation before and after continuously hydrogen evolution periods. 
(a) Adapted with permission from [47], (b) Reproduced with permission from [46•], (c) Reproduced with permission from [45•] ©2022 John Wiley and 
Sons, Inc.   
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variables and aqueous electrolyte intake to be analysed 
in detail. 

Conclusion and perspective 
With the assistance of synchrotron radiation, an addi-
tional dimension of time is realised to capture the var-
iations under dynamic or operating conditions of RFBs. 
The development of new RFBs with advanced electro-
lyte materials or battery design will require increasing 
use of synchrotron techniques that are now almost 

routinely used in related fields of Li ion batteries and 
fuel cells; similar studies are far less ubiquitous in RFBs.  
Figure 4 summarises the current issues of RFBs and 
proposes the great potential of applying synchrotron 
techniques to addressing the problems. 

Although it is a powerful tool, there are a few points that 
need attention when designing an experiment at SRSs: 
(i) Synchrotron experimental protocols for RFBs, as to 
monitor dynamic changes, should avoid any possible 

Figure 4  
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Conclusion diagram of emerging types of RFBs and their current issues linked with the potential solutions by synchrotron X-ray techniques.   
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errors caused by the characterisation itself (e.g. radiation 
damage); (ii) Design of operando cells to eliminate ar-
tefacts caused by attenuation or X-ray interaction of the 
cell and peripheral parts; (iii) Environment and scale 
differences between the synchrotron testing cell and real 
RFBs, where assumptions could be considered to reduce 
the undesired impacts by the differences; (iv) the in-
terplay between resolution and region of interest, and 
data quality and time resolution. There is an obvious 
opportunity for SRSs to play a larger role in RFB re-
search with the correct approach to such experiments 
and new insights could be gained into this exciting fa-
mily of storage technologies. 
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