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Evidence generated from nonrandomized studies (NRS) is increasingly submitted to health technology
assessment (HTA) agencies. Unmeasured confounding is a primary concern with this type of evidence, as
it may result in biased treatment effect estimates, which has led to much criticism of NRS by HTA agencies.
Quantitative bias analyses are a group of methods that have been developed in the epidemiological
literature to quantify the impact of unmeasured confounding and adjust effect estimates from NRS. Key
considerations for application in HTA proposed in this article reflect the need to balance methodological
complexity with ease of application and interpretation, and the need to ensure the methods fit within
the existing frameworks used to assess nonrandomized evidence by HTA bodies.
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Guidance from regulatory and health technology assessment (HTA) agencies recommend that in many settings,
evidence on relative treatment effectiveness is generated from well-conducted randomised controlled trials (RCTs).
However, the conduct of well-powered, unbiased RCTs is not always feasible, as can sometimes be the case with
very rare diseases. In the HTA setting, the use of RCTs is further complicated by the fact they often provide
comparison against technologies that do not reflect the standard of care relevant to the decision problem of
interest [1]. Notably, the growth of personalised medicine and diversification of treatment options appear to be
increasing the prominence of these issues. These initiatives have been accompanied by an increasing number of
single-arm trials and a resultant increase in the use of estimates of treatment effectiveness from nonrandomized
studies (NRS) to inform submissions to regulatory bodies and HTA agencies [2–4]. One recent review reported the
number of HTA submissions including single-arm trials to have increased from 8 in 2011 to 102 in 2019, across
several HTA agencies including the Canadian Agency for Drugs and Technologies in Health, the French National
Authority for Health, the National Institute for Health and Care Excellence in the United Kingdom, the German
Federal Joint Committee and Australia’s Pharmaceutical Benefits Advisory Committee [4].

For medicines, given the initiatives towards faster access, particularly for obtaining marketing authorisation for
oncology products, NRS submitted to regulators and payers are typically formed of a single-armed trial of the
experimental treatment compared with another source of data reflecting the comparator treatment or control. In
these cases, the control data can be obtained from a historic trial, from an observational cohort identified in real-
world data sources such as electronic health record databases or patient registries, or a prospective observational study
among other sources. However, NRS based solely on real-world data sources may also be submitted, particularly in
HTA reassessments.
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A key concern with all NRS is confounding [5,6]. Rigorous design of NRS [7], in combination with the appropriate
analytical methods, should be the primary approach to address confounding, particularly when complete, high-
quality data on confounders are available [8,9]. Even in well-designed NRS, it is impossible to exclude the possibility
of unmeasured confounding, and most NRS typically assume ‘no unmeasured confounding’ [10]. If the data on
confounding variables are not accurate or are not collected in the data source, residual confounding may result
in biased treatment effect estimates, which may lead to incorrect conclusions about the effectiveness and cost–
effectiveness of the health technology. As one can never be certain that all confounders have been captured in an
analysis, unmeasured confounding is a concern in all NRS.

Given the potential for unmeasured confounding in NRS, an important step in the design and analysis of such
studies is to quantitatively explore the potential impact of unmeasured confounding on results [6,11]. There are
a variety of so-called quantitative bias analysis (QBA) methods that have been developed to assess the impact
of confounding and other sources of systematic error [11–13]. QBA offers a potentially powerful tool to support
decision makers in utilising NRS and has been discussed recently in the context of regulatory decision making [13].
However, its use in HTA has received little attention [6,14]. This may be due to a lack of knowledge of the methods
and/or uncertainties in how best to utilise them within existing HTA frameworks. This article introduces QBA
methodologies that can be used to assess the potential impact of unmeasured confounding on the treatment effect
estimates and the resultant impact on cost–effectiveness analyses, and discusses important considerations related to
their use in HTA settings.

This article focuses on QBA methods that rely on external data and expert or analyst opinion to estimate the
treatment effect typically after measured confounders have been adjusted for within a prespecified primary analysis.
QBA methods that aim to account for unmeasured confounding using internal data (i.e., data on a subgroup of the
population) and methods that are applied during the design or primary analysis of the study such as instrumental
variable estimation and propensity score calibration are not considered within this article [15,16].

Overview of QBA methods for confounding
A large number of QBA methods have been developed over the past number of decades [17] and can be linked
back to work by Cornfield et al. [12]. The methods are all based on a similar premise, that additional information
describing the nature of unmeasured confounding can be utilised to adjust the estimates of interest to better reflect
the ‘true’ estimates that would have been observed had the confounder(s) in question been accounted for.

Table 1 summarises several of these methods, dividing them into groups based on the analytical methods used.
These include but are not limited to Bayesian twin-regression/hierarchical modelling, a simulation-based approach,
Rosenbaum’s approach, Rosenbaum-Rubin sensitivity analysis, and directly derived formulae approaches such as
the calculation of bias factors, E-value and the use of contingency tables. Further commentary on each group of
methods is provided in a supplementary file.

A common assumption of the developed methods is independence of unmeasured confounders from measured
confounder(s). Under this assumption, there is a large number of methods that could be applied [31,34,45]. Typically,
this assumption cannot be validated; in addition, there are potential unknown unmeasured confounders, in which
case this assumption is even harder to justify. However, there are several approaches that do not make this assumption
that may better reflect realistic scenarios [25,35–37].

In general, most QBA approaches assume a single hypothetical unmeasured confounder, which is a strong
assumption due to the possibility that multiple unmeasured confounders could have a large joint effect. However,
some methods, such as the simulation-based approach introduced in the work of Groenwold et al. [32] is one such
approach that can adjust for multiple unmeasured confounders. Other methods assume particular forms of the
unmeasured confounder. For example, several approaches have assumed that the single unmeasured confounder
is binary in nature [18,26,38,45]. These approaches can still be applicable to settings with continuous unmeasured
confounders by dichotomising the continuous variable, although this often leads to significant loss of information.

The value of these QBA methods is highly dependent on the quality of the external information available to
inform them. External data is ideally obtained from a data source in which the relationship between the unmeasured
confounder and other key variables has been (or can be) measured in a similar study population. The choice of QBA
method may differ according to whether patient level or aggregate data are available. The methods that specifically
use external data implicitly assume transportability between the external data and the original population – that
is, that the external data are representative of the study sample regarding the joint distribution of the exposure,
outcome and confounding variables. This assumption can be difficult to validate, typically due to the lack of
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Table 1. Summary of quantitative bias analysis methods for unmeasured confounding by type.
Method type Description Effect measure Limitations Ref.

Rosenbaum’s approach Finding the thresholds of association between the
unmeasured confounder and the exposure and/or
outcome variable that would result in the test statistic
becoming insignificant

OR, HR Lack of treatment effect
estimate, assumes single
unmeasured confounder,
assumes ignorability

[18–21]

Rosenbaum-Rubin Estimating the average effect of a treatment on a binary
outcome after adjusting for covariates and an
unobserved binary covariate

OR, RR, HR Setting simulation parameters,
assumes only rare outcomes for
survival data, assumes
ignorability, potential for
investigator bias

[22–24]

Bayesian
hierarchical/twin-
regression
modelling

A model is defined in hierarchies and the parameters of
the respective posterior distributions are estimated
through the Bayesian framework, and the unmeasured
confounder is modelled as missing data; these methods
avoid presenting many equally likely scenarios
(‘multiverse approach’)

OR, HR, difference
of continuous
measures

Assumes a single unmeasured
confounder, setting prior
distribution, prior distribution
dependency, potential for
investigator bias

[23,25–30]

Simulation based Hypothetical unmeasured confounders are simulated
through assumptions and correlation with measured
confounders and the outcome, and the treatment effect
is estimated under different scenarios

OR, RR, RD, HR,
difference of
continuous
measures

Assumes ignorability, simulation
parameter settings, potential for
investigator bias

[31–33]

Derived bias formulas
(e.g., E-value,
bias/bounding factor,
contingency table,
array/rule-out approach)

Use derived formulae from a statistical model typically
with some assumptions to adjust the observed point
estimate and confidence interval for a set of sensitivity
parameters

OR, RR, RD, HR,
difference of
continuous
measures

Defining sensitivity parameters,
assumes rare outcomes for
survival data, confounders
independent to unmeasured
confounder, potential for
investigator bias

[34–44]

This table is not exhaustive; rather, it provides an indication of the types of QBA methods available, the settings in which they can be used and their limitations. There are other
QBA methods available that have not been accounted for in this table.
HR: Hazard ratio; OR: Odds ratio; QBA: Quantitative bias analysis; RD: Risk difference; RR: Relative risk.

information on the correlation between the measured and unmeasured confounders. In the absence of data from
an external source, one can use subjective evidence to assign values to the parameters of these methods. In such
cases, evidence should ideally be provided by external experts with no vested interest in the outcome of the analysis
and prespecified in study protocols to mitigate investigator bias.

In many settings, such high-quality external data is not available, and approaches that focus on threshold analysis,
such as the E-value, and Rosenbaum’s approaches are often preferred. Essentially, these methods assess how strong
(association with treatment assignment and outcome) the unmeasured confounder would need to be, to change the
conclusions of the study. This type of QBA method is relatively straightforward to implement and therefore tends
to be more prevalent in practice [46–48] and meaningful interpretation of the results typically requires information
of the nature required to parameterise other methods. As a result, it places the onus on the investigator and decision
maker to interpret the plausibility of the relationships between the hypothetical unmeasured confounder, treatment
and outcomes [49].

In studies with time-to-event outcomes, such as– survival or competing risk outcomes, the proportional haz-
ards assumption is often required for QBA methods. The proportional hazards assumption assumes that each
covariate has a multiplicative effect in the hazard function and is constant over time – that is, the ratio of any
two hazards is constant over time. When this assumption is not met, QBA methods that assume proportional
hazards [19,22,27,33,39,50] have limited applicability.

Key considerations for application in HTA
General considerations for good practice in the application of QBA methods have been proposed by Lash and
colleagues [11]. Their recommendations broadly focus on the thorough and transparent selection and reporting of
QBA methods and highlight the importance of pre-specification of any QBA in a study protocol. Specific topics
discussed by Lash et al. [11] include how to select the sources of biases that ought to be addressed, how to select a
method to model biases, how to assign bias parameter models, the use of transparent and credible methods to test
the sensitivity of results to the choice of input parameters, and guidance on when QBA is advisable versus when
it is essential. These recommendations were developed from an epidemiological perspective, and some important
aspects relevant to the HTA setting were not covered.
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Table 2. Summary of the key considerations for the application of quantitative bias analysis methods in health
technology assessment.
Consideration Summary

Responsibility for conducting QBA • The primary responsibility for carrying out QBA for HTA should lie with the manufacturer
• However, there is a need for HTA agencies to provide clear guidelines for such analyses
• In the absence of a manufacturer-submitted QBA, HTA bodies should carry out their own simple, conservative QBA

Identification of confounders • Systematic and transparent approach to confounder identification needed
• Based on search of the published literature, de novo studies and/or elicitation of expert opinion
• Consider use of directed acyclic graphs in conceptualizing confounders and other sources of bias

Choice of QBA method • Simple, threshold-based methods represent an accessible starting point for the use of QBA in HTA and possibly the
minimum required in submissions that derive treatment effects from NRS
• A requirement for more complex approaches will require more advanced knowledge and experience of the methods
• The use of Bayesian approaches should be considered particularly when relevant prior evidence is available
• In cost–effectiveness settings, the compatibility of the QBA method with cost–effectiveness decision models should be
considered
• The choice of method may depend on the type of outcome of interest

Valuation of QBA parameters • Critically review the literature to inform the values of the sensitivity parameters of a QBA
• In the absence of published data, the use of formal expert elicitation to value parameters may be acceptable to HTA
bodies if best practices for elicitation are followed
• Thorough valuation of QBA parameters should be carried out irrespective of the approach considered

Incorporation into evidence synthesis • QBA can be applied to individual study results prior to evidence syntheses
• QBA could potentially be used alongside methods such as design-adjusted methods to further mitigate the bias in NRS

HTA: Health technology assessment; NRS: Nonrandomized studies; QBA: Quantitative bias analysis.

In the following, we discuss several additional considerations required for the application of QBA for confounding
in the HTA context (Table 2).

Responsibility for conducting QBA
As with other evidence generation activities for HTA, we believe the primary responsibility for carrying out QBA
should lie with the manufacturer. However, there is a need for HTA agencies to support manufacturers in conducting
QBA by providing clear guidelines on their preferred QBA methods. Additionally, where a manufacturer does not
provide sufficient consideration of confounding in a submission containing a NRS or claims there to be little
or no evidence suggestive of unmeasured confounding, it may be prudent for HTA bodies to utilise QBA to
ensure the results of a NRS demonstrates robustness to some default hypothetical level(s) of confounding. Notably,
the knowledge that a default, relatively conservative approach to QBA would be applied in the absence of more
considered approaches may better incentivise manufacturers to carry out thorough work to identify and address
confounding, both in their main analysis and in any QBA. The subsequent considerations are provided in this
context.

Identification of confounders
As with general guidance on QBA practices, and NRS more generally, we recommend a systematic and transparent
approach to the identification of relevant confounders during study design [7,11]. Manufacturers should include a
systematic search of the published literature and elicitation of expert opinion. The use of directed acyclic graphs is
becoming increasingly common in the design of NRS, and they are a simple and transparent approach to identify
potential causal relationships between variables of interest [11,51]. We would strongly advocate for their use in
conceptualising and communicating potential sources of bias in effect estimates from NRS for submission to HTA
bodies.

Where it is anticipated that NRS will form a key part of a HTA submission, discussion and alignment on
potential sources of bias and the need for QBA, should be considered during early engagement with HTA bodies
and other key stakeholders. All details regarding the potential sources of bias and planned QBA analyses should be
prespecified in the study protocol and statistical analysis plan.

Choice of QBA method
Determining the most appropriate QBA method in practice is not trivial. Here, we provide some important
considerations to the use of QBA methods in a HTA setting.

The relative simplicity of threshold-based methods such as the E-value means that they have the potential to be
widely used in HTA as has been the case in epidemiological settings [46–48,52]. These approaches are akin to the
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‘dramatic effects’ approach currently taken by the independent Institute for Quality and Efficiency in Health Care
(IQWiG) in Germany, under which nonrandomized treatment effects may be considered acceptable if they are of a
sufficient magnitude and meet a number of other key criteria [53]. Like the IQWiG approach, these approaches could
utilise a relatively conservative set of assumptions/thresholds to ensure that confounding is not inappropriately ruled
out as a potential explanation. In cost–effectiveness settings, threshold-based approaches could also be anchored
against a cost–effectiveness threshold, rather than a null clinical effect, to better support decision making.

Although their simplicity and interpretation are appealing, there are limitations to the threshold-based methods.
Notably, some of their simplicity comes at the cost of placing a greater responsibility on the end user (in this case
the HTA body) in interpreting the plausibility of the results. In some cases, the use of the nonthreshold-based
methods may allow QBA to be formulated in a way that is more readily understood by HTA agencies. Further,
HTA decision making is often based on a consideration of the magnitude of relative treatment effect(s), in contrast
to regulators who are more interested in establishing the simple presence or absence of the effect(s). As a result,
QBA approaches that focus on prespecification of scenarios of unmeasured confounding and assessment of their
impact on the observed treatment effect are likely to be better aligned with decision problems of this nature than
threshold-based methods.

The use of threshold-based approaches perhaps represents an accessible starting point for the uptake of QBA
methods in the HTA setting and a minimum level of QBA that should be required in HTAs involving NRS.
In contrast, the approaches in which the impact of prespecified scenarios is modelled perhaps represents an ideal
practice which manufacturers could be increasingly encouraged to pursue as familiarity with the methods within
the HTA community grows. Irrespective of the approach used, the choice of QBA should be justified and informed
by subject matter expertise in the relevant clinical context.

Another key question in selecting a QBA method relates to the choice of a frequentist or Bayesian approach. QBA
typically involves exploring a range of plausible sensitivity parameter values, and frequentist-type QBA methods
often assume that all different sensitivity parameter values, and the resultant set of treatment effect estimates, are
equally likely. This typically leads to a multiverse approach, where all results of many different possible analyses
are presented to a reader. Although broadly informative, particularly when coupled with transparent reporting of
assumptions, multiverse approaches may leave HTA decision makers with challenges in leveraging the results to
support their decision making. In contrast, Bayesian approaches typically evaluate the entire posterior distribution
and as such provide the reader with a more succinct synthesis to support their decision problem. The advantages of
Bayesian methods would only be fully realised if sufficient historical data are available to inform the specification of
the prior distribution and other model parameters. The Bayesian approach also requires that HTA decision makers
are familiar with the review and interpretation of Bayesian inference, which may not be the case in all jurisdictions.

Another important consideration to the choice of QBA method is the extent to which different approaches can
facilitate the incorporation of the uncertainty directly into cost–effectiveness decision models. Methods which can
be integrated into a cost–effectiveness model would be likely to allow for the better integration of the QBA results
into many of the key outputs used to support decision making by these HTA bodies. For example, some approaches
could be incorporated into the existing deterministic and probabilistic sensitivity analysis approaches applied in
cost–effectiveness models thereby allowing for the consideration of the structural uncertainty introduced by these
biases alongside other sources of uncertainty. Although QBA methods that make use of individual patient-level
data have some methodological advantages over those that are applied to aggregate data, such as allowing for the
alignment of outcomes and greater scope to assess the comparability of populations, they may be more challenging
to apply directly in a decision model and would have the added complexity of requiring review of a separate
patient-level analysis. As a result, some HTA bodies may have a preference for those that can be applied to aggregate
data.

The choice of method will also be determined by the outcomes under study and the extent to which the available
methods have been developed to handle them. Although most QBA methods can be adapted for different outcome
types and effect estimates, their application to time-to-event end points is more challenging and the options available
are more limited.

Additionally, other than a bias induced due to unmeasured confounding, there are other potential biases that
may impact the results of NRS, such as information bias (i.e., measurement error, misclassification) and selection
bias. Although we have not reviewed QBA methods related to other biases within the scope of this article, guidelines
for QBA suggest that all potential sources of bias should be discussed and, if possible, assessed using QBA. As such,
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in choosing or recommending a QBA method for use in HTA settings, it may be prudent to consider the extent to
which a method allows for multiple types of biases to be addressed within a single analysis [53].

Whichever QBA method is chosen, it is crucial that its choice is clearly justified and transparently reported, and
that the interpretation of the results are consistent with its underlying assumptions. Any corresponding software
code used in the QBA should be made available to aid in replicability.

Valuation of QBA parameters
A literature review used to identify potential confounders can also typically serve the purpose of providing some
data to inform the values to assign the sensitivity parameters of a QBA. Where sufficient data is not identified in
the literature, the conduct of de novo epidemiological studies should be considered [54]. When external data are
available, assumptions regarding transportability of relationships across populations should be carefully considered
and critically examined as highlighted previously.

In practice, the data required to support data-driven approaches to QBA are often unavailable, and more
subjective approaches to assigning parameter values are commonly necessary. For example, formal expert elicitation
methods are already commonly used to support HTA, and it is the view of many HTA agencies that when no
other empirical evidence is available, expert elicitation can be considered. However, given the centrality of relative
efficacy/effectiveness estimates to the HTA process, the potential for inaccuracy in the elicited information is likely
to be a major concern. The potential for conflicts of interest to influence expert inputs is likely to be a further
concern. As a result, it is vital that any QBA based on expert elicitation follow formal, protocol-driven best practices.

Notably, although the threshold-based approaches to QBA do not require evidence of this nature to inform their
application, such information is needed to inform the plausibility of the sensitivity analysis scenarios. Therefore,
we would advocate for collection of such data to inform QBA regardless of the approach considered.

Incorporation into evidence synthesis
In the HTA setting, it may be the case that there are multiple studies informing an estimate of treatment effect,
and there is a requirement to synthesise these in an indirect treatment comparison before incorporating them into
a cost–effectiveness model. Recent guidance from NICE on evidence synthesis appears to group QBA methods
under ‘design-adjusted’ approaches – one of several possible options they suggest to consider when incorporating
NRS into indirect treatment comparisons [55]. An advantage of QBA or design-adjusted approaches is that they
require explicit consideration of the sources and nature of biases. This is in contrast to other available methods that
synthesise the results of NRS focusing on broadly decreasing the extent to which the NRS influence results relative
to RCTs. An approach which both applies QBA/design-adjustment methods and utilises methods which limit the
influence of NRS in the synthesis may allow one to harness the advantages of both groups of approaches.

It is expected that in the short term, the majority of situations in which nonrandomized data are submitted to
HTA bodies will be in settings where there is quite limited evidence available, and therefore evidence synthesis may
not be relevant. However, it will be important to consider the role of QBA as approaches to synthesis of NRS for
HTA are further developed.

Conclusion
A variety of QBA methods have been proposed to adjust for unmeasured confounding in the estimation of treatment
effects in NRS. These methods can be applied to a range of different types of end points, using independent patient-
level or aggregate data, adopting either a Bayesian or frequentist perspective. Although QBA should not be viewed
as the only approach to address biases in NRS, when conceived and implemented as part of a well-designed and
analysed NRS, these methods can play an important role in ensuring that estimates of treatment effects from NRS
are appropriately considered in HTA.

This article highlights several methodological and practical considerations which must be examined if the
methods are to be successfully used in the HTA setting. These points reflect the need to balance methodological
complexity with ease of application and interpretation, the need to ensure objectivity and transparency in their
application and the need to determine suitability of the methods to fit within the existing frameworks used to
assess evidence by HTA bodies. Clear methodological guidelines on the application of QBA in the HTA setting
will aid the uptake of these methods. The development of any such guidelines should include the input of various
stakeholders including HTA bodies, manufacturers, and clinical and methodological experts.
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Future perspective
Quantitative bias analysis (QBA) for unmeasured confounding represents a potentially useful tool for decision
makers, particularly when assessing outcomes from non-randomised studies. Their application in the health
technology assessment (HTA) setting raises a number of unique challenges. Collaboration between academia,
industry and HTA agencies to further increase the awareness of the potential of QBA in HTA and to develop best
practices for their use, will be key to increasing their implementation in this setting.

Executive summary

• Quantitative bias analysis for unmeasured confounding is well placed to support the use of nonrandomized
studies in health technology assessment (HTA).

• Key considerations for application in HTA reflect the need to balance methodological complexity with ease of
application and interpretation.

• Ensuring quantitative bias analysis, the methods fit within the existing frameworks used to assess evidence by
HTA bodies will increase transparency and application of such methods.
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