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ABSTRACT
In this paper, we use algorithm unrolling approaches in order
to design a new neural network structure applicable to hyper-
spectral unmixing challenges. In particular, building upon a
constrained sparse regression formulation of the underlying
unmixing problem, we unroll an ADMM solver onto a neural
network architecture that can be used to deliver the abun-
dances of different (known) endmembers given a reflectance
spectrum. Our proposed network – which can be readily
trained using standard supervised learning procedures – is
shown to possess a richer structure consisting of various skip
connections and shortcuts than other competing architectures.
Moreover, our proposed network also delivers state-of-the-art
unmixing performance compared to competing methods.

Index Terms— HSI unmixing, Deep Neural Networks,
Algorithm Unrolling, Algorithm Unfolding

1. INTRODUCTION

The hyperspectral image (HSI) unmixing problem involves
decomposing a spectral signature onto its constituent spec-
trum, also known as endmembers, and their abundance. It
arises in many applications where there is a need to under-
stand materials of a scene/sample such as remote sensing [1,
2], art investigation [3], and many more.

The unmixing procedure [2] typically involves endmem-
ber extraction followed by abundance estimation. Many ap-
proaches [4, 5] have been proposed based on this procedure.
In particular, lots of methods focus on abundance estimation
for settings where the endmembers are known.

Model-based approaches leverage a mathematical formu-
lation of the underlying mixing problem – such as a linear
mixing model (LMM) [6] – in order to develop unmixing
algorithms that can estimate the abundance of the various
endmembers given a reflectance spectrum. Popular model-
based methods leveraging sparsity driven techniques include
constrained sparse regression (CSR) problems [7] – leverag-
ing the fact that abundance vectors tend to be sparse –that
can be solved by using iterative soft thresholding algorithms
(ISTA) [8] or alternative direction method of multipliers
(ADMM) [9] algorithms. The disadvantage of this class
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of approaches relates to computational complexity deriving
from the fact that the underlying iterative process tends to be
slow.

Recently, with the surge of machine learning, a number of
data-driven approaches have also been proposed to tackle the
unmixing challenge. In a supervised learning algorithm, one
presents the machine learning model with a set of pairs of HSI
reflectances along with the abundances of different endmem-
bers in order to learn a function that is able to map a new un-
seen reflectance to corresponding abundances. For example,
reference [10] proposed a two-stage approach based on the
use of an auto-associative neural network for dimensionality
reduction purposes followed by a new multi-layer perceptron
for unmixing. Reference [11] instead proposed two end-to-
end unmixing networks based on convolution neural networks
(CNN), including a pixel-based CNN and cube-based CNN
respectively. Gewali et al. [12] overviews various other su-
pervised machine learning approaches – such as support vec-
tor machines – to the HSI unmixing challenge. However, the
disadvantage of learning-based approaches derives from the
need for substantial labelled datasets.

Notably, [8, 13] have proposed to use the emerging no-
tion of algorithm unrolling or unfolding – which combines
ideas deriving from model-based approaches with data-driven
ones [14, 15] – for HSI unmixing purposes. In particular,
based on a typical sparsity driven unmixing approach, these
works have proposed to unfold an ISTA based solver to the
CSR problem onto a deep network architecture that can be
further trained to solve the unmixing challenge. However, it is
well known that ISTA based solvers can underperform in re-
lation to other solvers such as ADMM [16]. Therefore, in this
paper, we propose instead to unfold an ADMM based solver
to the CSR problem onto a network architecture to solve un-
mixing challenges.

This paper is organized as follows: In Section 2, we in-
troduce the CSR model for abundance estimation. In Section
3, we propose to unfold ADMM into learning structure. In
Section 4, we propose the new ADMM based network for
abundance estimation along with its training and initialisa-
tion strategies. Section 5 instead illustrates that our proposed
network outperforms existing ones in unmixing tasks. Con-
clusions are drawn in Section 6.



2. MODEL

We concentrate on LMM [6] given by:

y = Ax+ n (1)

where y = [y1, . . . , yNB
]T ∈ RNB×1 is a HSI reflectance

vector acrossNB bands for a given pixel, x = [x1, . . . , xNE
]T ∈

RNE×1 is corresponding abundance vector containing the
proportion of each endmember, and n = [n1, . . . , nNB

]T ∈
RNB×1 is the additive noise. The matrix A = [a1, . . . ,aNE

] ∈
RNB×NE – which is assumed to be known as in [9] –is an
endmember signature matrix, i.e. am ∈ RNB×1 models the
signature of themth endmember (m = 1, . . . , NE). Note that
the abundance vector must meet abundance nonnegative con-
straint (ANC), x ≥ 0, and abundance sum-to-one constraint
(ASC),

∑NE

m=1 xm = 1.
Given that the mixing matrix A is often available in the

form of a spectral library, and the abundance vector tends to
be sparse, one can adopt a CSR based optimization problem
in order to recover the abundance vector from the reflectance
vector as follows [9]:

min
x

1

2
||y − Ax||2 + λ||x||1, s.t.,x ≥ 0 (2)

where || · ||2 and || · ||1 denote the `2-norm and `1-norm re-
spectively, whereas λ ≥ 0 is a regularization parameter that
controls the sparsity of solutions.

The CSR optimization problem in (2) – which has led to a
state-of-the-art performance in HSI unmixing over the years
– can be solved using a range of solvers such as ISTA [8]
and ADMM [9]. We next show that – by building upon the
well-known ADMM solver – we can map this problem onto
a network architecture that can be trained to improve HSI un-
mixing performance further.

3. ADMM-BASED UNFOLDING OF CONSTRAINED
SPARSE REGRESSION

3.1. ADMM-Based CSR Solver

Our approach to HSI unmixing builds upon unfolding an
ADMM solver to the CSR problem. In particular, by intro-
ducing an auxiliary variable z such that x = z along with
a dual variable d, ADMM leads to an iterative scheme to
compute the solution of the CSR problem appearing in (2) as
follows:

xk+1 = (ATA+ µI)−1(ATy + µ(zk + dk)) (3)

zk+1 = max

(
soft

(
xk+1 − dk,

λ

µ

)
, 0

)
(4)

dk+1 = dk − (xk+1 − zk+1) (5)

where, xk (resp. zk,dk) is the value of variable x (resp. z,d)
at kth iteration, and µ ≥ 0 is a parameter that is usually cho-
sen to be an upper bound to the largest eigenvalue of ATA.

It is clear that this iterative scheme – involving different
intertwined operations – can be mapped onto different com-
ponents of a neural network architecture using algorithm un-
rolling techniques [14]. The different components of the neu-
ral network layers are described in the sequel.

3.2. Neural Network Layer Components

We first define each constituent of a neural network layer by
unrolling the three different iterative operations appearing in
(3), (4), and (5).

X-Update Component This component of the (k + 1)th

layer is obtained by unfolding (3). In particular, by noting
that

xk+1 = W Ty +BT (zk + dk) (6)

where W T = (ATA+µI)−1AT ,BT = (ATA+µI)−1µ,
we can then re-express (6) as follows:

xk+1 = W T
k+1y +BT

k+1(zk + dk)

:= fX(zk,dk,y;W k+1,Bk+1)
(7)

where we have introduced the learnable parameters W k+1 ∈
RNE×NB and Bk+1 ∈ RNE×NE that can differ from the orig-
inal ones W and B in order to better adapt to the character-
istics of the data.

Z-update component This component of (k+1)th layer
is obtained by unfolding (4). In particular, we propose to re-
express (4) as follows:

zk+1 = max (soft (xk+1 − dk, θk+1) , 0)

:= fZ(xk+1,dk; θk+1)
(8)

where θk+1 ∈ R is a learnable parameter, that can also differ
from the original parameter λ

µ in order to better adapt to the
characteristics of the unmixing problem.

D-update component Finally, this component of the (k+
1)th layer is obtained by unfolding (5). In particular, propose
to re-express (5) as follows:

dk+1 = dk − ηk+1(xk+1 − zk+1)

:= fD(xk+1, zk+1,dk; ηk+1)
(9)

where ηk+1 is also a learnable parameter offering additional
flexibility.

3.3. Overall Neural Network Layer

We can now define the network layer by intertwining the
above components. See Fig. 1.

Such a layer corresponds to one iteration of the original
ADMM algorithm. However, each layer is associated with
learnable parameters Θk = {W k,Bk, θk, ηk}, whereas each
iteration in the ADMM algorithm is associated with hand-
coded fixed parameters {A, µ, λ}. One of the advantages of
using such a learnable parameterization is that, the resulting
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Fig. 1. Neural network layer unfolding from ADMM.

network has less number of layers than the number of itera-
tions in the ADMM, thus lifting the computational burden. In
addition, the resultingK-layers network has (N2

E+NENB+
2)K learnable parameters, less than millions of parameters in
conventional HSI unmixing networks [11].

It is also instructive to comment on how different a net-
work layer deriving from ADMM is compared to that from
ISTA [13]. In particular, the proposed layer contains far more
short cuts and skip connections [17] compared with ISTA
based layers, including skip connections between different
components of each layer (see Fig. 1). Such shortcuts have
been shown to be beneficial during network training [18] and
image processing tasks [19].

4. ADMM BASED ABUNDANCE ESTIMATION
NETWORK

We next describe how to utilise the various components to
construct a neural network to estimate abundances, as well as
training and initialisation procedures.

4.1. Network Construction

The proposed network (designated U-ADMM-AENet) re-
sults from concatenating K layers – consisting of X-Update,
Z-Update, and D-Update components – where the learnable
parameters are untied across layers, that is, for layer k, we
use layer specific parameters Θk = {W k,Bk, θk, ηk},∀k ∈
[1,K]). We set K = 2 as it has been experimentally veri-
fied that it has very little influence on the performance. This
untied parameterisation is the key to increase the network
capacity and flexibility, leading up to improved unmixing
results.

In line with the standard ADMM algorithms, we let the
network (pseudo) inputs be such that z0 = 0 and d0 = 0. We
also let the network output to be derived from the Z-Update
component in the last layer because this component guaran-
tees compliance with the ANC constraint. We also further
normalize the network output to meet the ASC constraint.

4.2. Training Procedure

The neural network is trained using a supervised learn-
ing approach, by leveraging access to a training set D =

{yi,xi}Ni=1 consisting of N reflectance spectra yi and cor-
responding abundances xi. Instead of the commonly used
MSE loss, we propose to use a composite loss given by:

LΘ = α1 · L1 + α2 · L2 + α3 · L3 (10)

where α1, α2, and α3 are hyper-parameters controlling the
contribution of corresponding loss terms.

The first component of the loss function derives from the
standard mean-squared error (MSE) given by:

L1 =
1

N

∑
{yi,xi}∈D

‖xi − x̃i(yi)‖22 (11)

where x̃i(yi) corresponds to the network estimate of xi given
yi.

The second component of the loss function derives from
the angle distance as follows:

L2 =
1

N

∑
{yi,xi}∈D

cos−1
(

xTi x̃i(yi)

‖xi‖2‖x̃i(yi)‖2

)
(12)

The third component of the loss function derives instead
from the information divergence as follows:

L3 =
1

N

∑
{yi,xi}∈D

KL(xi|x̃i(yi)) +KL(x̃i(yi)|xi) (13)

where, KL(·|·) is KL divergence, which is well-defined be-
cause abundance vectors can be seen as a distribution because
of the ANC and ASC constraints.

The additional dissimilarity measures enable networks to
gauge how different the recovered abundance is from the true
one. By adopting stochastic gradient descent algorithms, the
proposed network can be trained to minimize the proposed
loss function LΘ, where, via cross-validation techniques, we
empirically set α1 = 1.0, α2 = 1e− 7, α3 = 1e− 5.

4.3. Initialisation Approach

The networks are also trained by adopting warm initialisation,
in order to speed up the training procedure. In particular, as
we assume knowledge of the true endmembers, the param-
eters Wk and Bk are initialised by using definitions of W ,
B in Section 3. Similarly, θk is initialised by setting it to be
equal to λ

µ . Finally, ηk is initialised to one. We note with
this initialisation strategy a K-layer U-ADMM-AENet corre-
sponds exactly to K iterations of the ADMM algorithm.

5. EXPERIMENTS

We now compare the performance of the proposed ADMM
based unmixing network to the performance of the ISTA
based unmixing network [8] – referred to as MNN-AE-2 –
and the performance of SunSAL [9]. In particular, we also
use the RMSE between the true abundance and the recovered
one to measure the performance of the different approaches.



5.1. Evaluation on Synthetic Data

We adopt the procedure in [8] to generate the synthetic
dataset. Six endmember signatures are randomly chosen
from the USGS spectral library. We then divide a synthetic
image of size 100×100 pixels into 100 disjoint patches, each
of which we assign a spectrum mixed from two randomly
selected endmembers with fractions [0.8, 0.2]. Finally, the
abundance map is convolved with a Gaussian filter of size
11 × 11, followed by further re-scaling in order to meet the
ASC constraint per pixel. In addition, the data is contami-
nated with additive white Gaussian noise (AWGN).

By default, the training data consists of 1000 randomly
chosen pixels from the synthetic HSI data, which is polluted
with AWGN leading to SNR = 15 dB, while the remaining
data is used for evaluation. The network consists of two layers
and is trained using ADAM optimizer [20] with learning rate
set to 1e − 4, a batch size set to 64, and a number of epochs
set to 300.

Performance vs. Training Epochs We first assess the
convergence performance of the various approaches as a func-
tion of the number of training epochs. We use the default
experiment settings but the number of epochs varies from 0
to 500. As shown in Fig. 2(a), the proposed method can
achieve faster convergence than MNN-AE. We attribute this
to the fact that ADMM based solvers typically converge faster
than ISTA based ones. We also attribute this to the fact the
weighted loss function adopted in our learning algorithms is
more complex than that adopted in competing ones [13], al-
lowing to promote additional dissimilarity.
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Fig. 2. Performance versus various factors.

Performance vs. Training Data We now assess the per-
formance of various approaches as a function of the number
of training data. We use the default experiment settings but
the training data size ranges from 256 up to 4096. Per Fig.
2(b) it is clear that our proposed methods can achieve bet-
ter performance compared to competitors in the presence of
smaller training datasets. Specifically, when the size of train-
ing dataset is very small (e.g. 256), U-ADMM-AENet out-
performs MNN-AE a lot. This may be due to the fact that
the network deriving from ADMM have much more residual
connections in relation to networks deriving from ISTA.

5.2. Evaluation on Real data

We also evaluate our method on real HSI datasets, Jasper
Ridge [21]. There are four different endmembers in the scene:
Road, Soil, Water, and Tree. We consider 100 × 100 pixels
sub-images of the original images due to complexity consid-
erations. After removing bands due to water vapour effects,
198 bands are used in the experiment. We use the default
training settings used in synthetic data experiments, except
that the training data size is set to be equal to 256.

Table 1. Averaged RMSE by Different Algorithms.
SunSAL MNN-AE-2 U-ADMM-AENet

RMSE 0.0612 0.1262 0.0214

The performance of various algorithms is reported in Ta-
ble 1. It can be seen that the proposed U-ADMM-AENet
achieves the best performance. A qualitative result – abun-
dance map – is also shown in Fig. 3. It can also be seen
that the proposed network leads to abundance maps closer to
the ground truth in comparison to competing algorithms. We
have also done more experiments to validate the superior of
the proposed network, which are not shown due to limited
space.

(a) SunSAL [9] (b) MNN-AE2 [8] (c) Proposed (d) Reference

Fig. 3. Abundance estimation maps. From top to bottom:
Tree, Water, Soil and Road.

6. CONCLUSION

We have proposed a new HSI unmixing networks deriving
from unfolding procedures. In particular, we have shown how
ADMM leads to neural network architectures that possess
very rich structures, thereby state-of-the-art unmixing perfor-
mance in comparison to existing approaches. We have also
proposed a new weighted loss function to better fit in HSI ap-
plications. We demonstrate the effectiveness of the proposed
algorithm both on a synthetic and real dataset.
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