
Identification of Important Biological Pathways for 
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ABSTRACT 
Stroke ranks second after heart disease as a cause of disability in 
high-income countries and as a cause of death worldwide. 
Identifying the biomarkers of ischemic stroke is possible to help 
diagnose stroke cases from non-stroke cases, as well as advancing 
the understanding of the underlying theory of the disease. In this 
study, a mathematical programming optimisation framework 
called DIGS is applied to build a phenotype classification and 
significant pathway inference model using stroke gene expression 
profile data. DIGS model is specifically designed for pathway 
activity inference towards supervised multi-class disease 
classification and is proved has great performance among the 
mainstream pathway activity inference methods. The highest 
accuracy of the prediction on determining stroke or non-stroke 
samples reaches 84.4% in this work, which is much better than the 
prediction accuracy produced by currently found stroke gene 
biomarkers. Also, stroke-related significant pathways are inferred 
from the outputs of DIGS model in this work. Taken together, the 
combination of DIGS model and expression profiles of stroke has 
better performance on the discriminate power of sample 
phenotypes and is capable of effective in-depth analysis on the 
identification of biomarkers.  
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1.INTRODUCTION 
Acute ischemic stroke (AIS) is a dangerous disease worldwide, 
which has multiple complications and hard to cure [1]. According 
to [2], stroke is still the second leading cause of death and the 
third leading cause of disability after years of clinical treatment 
and basic researches. Also, it is well known that the economic 
costs of treatment and post-stroke care of stroke patients are 
substantial. Therefore, looking for an effective way for diagnostic 
or pathogenesis of AIS is important for both scientific researches 
and clinical practice [3]. 

Microarray technology has become a popular methodology in 
deriving comprehensive view from gene expression data of 
certain conditions. Based on the development of the microarray 
technology, several researches have identified molecular 
biomarkers from AIS blood samples [4]. However, most of these 
simple and efficient biomarker deriving approaches focused on    
independent genes and adopt basic statistical approaches. 
Therefore they were suffering from low prediction accuracy and 
the difficulty of biological interpretation. However, most of these 
simple and efficient biomarker deriving approaches treated genes 
independently and adopted basic statistical approaches. Therefore 
they were suffering from low prediction accuracy and the 
difficulty of biological interpretation [3, 5]. Following the 
principle that genes do not work isolated but work in concert, in 
recent years, independent gene editing therapeutic methods are 
increasingly replaced by simultaneously considering functional 
gene groups. Biological pathways are one of the representative 
kinds of these functional gene sets, which are available from 
public databases, for example, Reactome [6], Kyoto Encyclopedia 
of Genes and Genomes (KEGG) [7] and Gene Ontology (GO) [8]. 
Biological pathways provide the possibility of analysing groups of 
genes that belongs to same pathways and identifying the target-
relevant pathways as biomarkers [5].   

In [5], a novel multi-class disease classification method, 
Differential Gene Signature (DIGS), which infers pathway 
activity in a supervised manner, is proposed. DIGS is a MILP 
mathematical programming formulation that consists of a linear 
objective function and several linear constraints. The general idea 
of DIGS is using weighted linear summation of the constitute 
genes expression values from same pathway as the pathway 
activity evaluation of that sample, where the weights of constitute 
genes are decided by the optimisation model so that the 
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constructed pathway activity can optimally distinguish samples 
from different phenotype. DIGS has been tested on Psoriasis, 
Breast Cancer, Prostate Cancer and diffuse large B-cell lymphoma 
(DLBCL), and showed good performance on distinguishing their 
sub-phenotypes and detecting biomarkers of these diseases. 

In this work, we apply DIGS on three acute ischemic stroke 
microarray profile datasets (Section 2), aiming to reach high 
prediction accuracy between stroke and non-stroke phenotypes 
and deriving relative functional pathways as biomarkers of AIS 
(Section 3). 

2. METHODOLOGY 
2.1. Data Acquisition and Preparation 
Three publicly available gene expression profile datasets 
GSE22255 [4], GSE16561 [9] and GSE58294 [10] were obtained 
from Gene Expression Omnibus (GEO). All microarrays 
experiments of these three GEO series were conducted on 
Affymetrix Human Genome U133 Plus 2.0 Array Platform. 
GSE22255 [4] contains 20 stroke and 20 control (non-stroke) 
peripheral blood mononuclear cells (PBMCs); GSE16561 [9] 
contains 39 stroke and 24 control peripheral whole blood samples; 
GSE58294 [10] contains 23 control whole blood samples and 69 
stroke samples. Because the 69 stroke samples of GSE58294 were 
analysed at three time points: less than 3 hours, 5 hours, and 24 
hours following the onset of stroke, only samples collected at 3 
hours time points were used in our work. In total, there are 82 
stroke peripheral blood samples from stroke patients and 55 from 
control patients. 

These three datasets have been combined, preprocessed and 
normalised according to the pipeline described in [3] in order to 
remove experimental biases, normalise based on sample type, 

filter genes, impute missing values and detect outliers. 

Pathways data were acquired from MsigDB [11] KEGG C2 
functional gene sets, which include 186 curated pathways with in 
total 5267 genes. 

2.2. Pathway Activity Inference: DIGS [5] 
The overview of the computational procedure of DIGS, which is 
developed for pathway-based sample phenotype classification, is 
illustrated in Figure 1. Pathway specific gene expression matrices 
G is consists of the standardised gene expression values of sample 
s across gene m. The amount of gene expression matrices is equal 
to the amount of pathways. For each matrix G, DIGS model 
assigns pathway activity score for each sample and pathway 
activity range for each phenotype. The purpose of the model is to 
make as many pathway activity scores as possible fall into its 
corresponding phenotype range. 

The mathematical programming based formulation of DIGS 
contains 10 constraints and an objective function. The first part of 
the formulations define how pathway activity values are 
calculated. For each sample s, pathway activity pas is defined as 
the summation of the gene expression values Gsm multiples gene 
weight (rpm-rnm), where rpm represents the positive weight of gene 
m and rnm represents the negative weight. Then, the first limitation 
(set by the second and third constraints) is applied on a pair of 

positive variables, rpm and rnm. For each m, neither  rpm  nor rnm 
can take positive value, which means one of them is forced to be 
zero. Here a binary variable Lm is introduced to complete these 
constraints. 

The second limitation (set by the fourth constraint) restricts on the 
number of genes that can be “active” genes among all member 
genes in a pathway. Active genes are defined as genes that gain 
non-zero weights, while keep the rest non-active genes’ weights 
equal to zero. A binary variable Wm is introduced to indicate 
whether a gene m is “active”. When Wm takes 1, the gene m is an 
active gene and its weight (rpm-rnm) would be token between -1 
and 1. Also, a user defined variable NoG (used in the fifth 
constraints) is introduced to restrict the maximum number of 
active genes. For normalization purpose, the summation of 
absolute gene weights is equal to 1, as defined as the sixth 
constraint.  

The following part of formulations set restrictions on the 
phenotype ranges. According to the seventh and eighth 
constraints, the range for a phenotype c is defined by two 
continuous variables, lower bound LOc and upper bound UPc. A 
binary variable Es is adopted to indicate whether the pas value of a 
sample s falls within the LOc and UPc of its corresponded 
phenotype. 

Other last two constraints are introduced to guarantee that, for 
each pair of phenotypes (c, k), the ranges are not overlap. Here a 
binary variable Ykc ensures this requirement. When Ykc = 1, the 
relationship between c and k is k<c and UPk is lower than the 
LOc; while Ykc = 0 means the otherwise conditions (c < k, UPc < 
LOk). Also, ε, an arbitrarily small positive number, is designed to 
ensure pair-wise classes do not share borders. 

Finally, the objective function of this optimization problem can be 
defined by minimising the number of miss-classified samples (1 - 
Es). 

In conclusion, all constraints of DIGS model are linear with a 
linear objective function and multiple binary or continuous 
variables. Therefore, DIGS is defined as a mixed integer linear 
programming (MILP) model that can be solved to reach global 
optimal with standard algorithms [5]. 

2.3. Implementation and Validation Scheme 
The implementation procedure of pathway activity-based disease 
classification is illustrated in Figure 2. To gain robust and 
objective prediction results, all samples of stroke dataset are 
randomly split into 70% training set and 30% testing set. This 
procedure was repeated 10 times to produce 10 training/testing 

Figure 1. Schematic flow chart of DIGS pathway activity 
inference approach

Table 1. Processed Dataset Summary 

Disease Samples Genes Phenotypes

AIS 137 13243
Stroke: 82
Control: 55



sets. During model training process, testing samples are always 
blind to the training procedures to ensure no information leakage. 
For every training gene expression matrix of 10 training/testing 
sets, gene sets from KEGG pathways are integrated with the gene 
expression matrix to create individual pathway specific expression 
matrices. In total, 1860 pathway specific expression matrices are 
generated and DIGS models are trained on them. From model 
solving results, composite features, which summarise the 
expression patterns of member genes m into a new feature pas, are 
constructed for samples in a pathway matrix. The pathway activity 
value pas represents the activity levels or deregulation degrees of a 
pathway on samples. After profiling activity vectors from all 
pathway specific expression matrices independently, pathway 
activity matrices for each training set are formed by the ensemble 
of corresponded 186 pathway activity vectors. In the next step, 
classifiers are going to be trained on these pathway activity 
matrices. 
In parallel, for each training/testing set and each pathway, gene 
weights (rpm and rnm) are extracted when solving DIGS models on 
training samples. Then the gene weights are applied to testing 
samples to construct pathway activity vectors for testing set. 
Similarly, pathway activity vectors from testing samples are 
combined into pathway activity matrix and classifiers are tested 
on it to produce prediction outputs. 
Mathematical details of DIGS model used in this work is a 
reproduction of the model in [5], which also provides example 
input files and user guide at www.ucl.ac.uk/~uceclap/DIGS. The 
DIGS model is implemented by General Algebraic Modelling 
System (GAMS) [12] using the CPLEX MILP solver. According 
to the sensitivity analysis for parameter NoG  in [5], DIGS model 
is robust with respect to NoG in range of 5 to 20. In this work, 
NoG is set as 10, which means allowing 10 genes per pathway to 
participate in pathway activity inference. The optimal gap is set as 
0.00 for the attempting of getting globally optimal solutions. 
However, as the computation time limit for solving per DIGS 
model is set as 200 seconds by [5], the solving status of DIGS 

models includes both global optimal solution and optimal 
solution.  
Overall, the above procedure produced 10 sets of training/testing 
pathway activity matrices corresponding to original random 
division of  training/testing set on stroke dataset. Six commonly 
used machine learning classifiers, K-nearest-neighbour (KNN), 
Logistic Regression (LR), Random Forest, Neural Network (NN), 
Naive Bayes and Support Vector Machine (SVM), were employed 
in our study using Python package Sklearn version 0.22.1 to 
produce the classification accuracies on pathway activity 
matrices. Six classifiers were trained on 10 training pathway 
activity matrices and tested on testing pathway activity matrices 
with the following parameters: for NN, hidden layer is 2, learning 
rate is 0.1, training time is 10000; for KNN, the number of 
clusters is 5. For the other classifiers, default settings were 
retained. 

3. RESULTS AND ANALYSIS 
3.1. Evaluation of Prediction performance 
To rigorously evaluate the prediction accuracy of various 
implemented classification approaches, prediction accuracy are 
averaged over 10 randomly developed 70% training sets and 30% 
testing sets for each classifier. Due to the inherent problem of 
unbalanced numbers of samples across two phenotypes (Table 1), 
both classification accuracy (ACC) and area under curve (AUC) 
[13] are used as metrics to measure the prediction accuracy of a 
classification model. Higher AUC values corresponded to better 
prediction performance, with AUC of 1 indicates perfect 
prediction, while 0.5 indicates the performance is equal to 
random. Overall, Table 2 shows the averaged ACC and AUC 
values  across 10 testing sets produced by 6 different classifiers on 
stroke dataset. 
Generally, all six classifiers have produced relatively high 
accuracies (~83.5%) and high AUC scores (~91.5%) towards the 
classification on stroke and control samples. Among six 

Figure 2. Overview of DIGS validation scheme from Microarray gene expression Profile to Phenotype Classification

http://www.ucl.ac.uk/~uceclap/DIGS


classification methods, 5-Nearest-Neighbours reached the highest 
prediction accuracy (84.4%) and Logistic Regression got the best 
AUC score (93.2%). 
In order to further validate the superiority of DIGS, other three 
widely used pathway activity inference methods were 
implemented on stroke dataset for comparison. In overview, these 
three methods are: ⅰ) Mean method [14] that take the mean gene 
expression values of all genes within a pathway for each sample. 
More specifically, Mean method derives the pathway activity 
vector from the pathway specific matrix by calculation the mean 
expression values across all member genes for each sample; ⅱ) the 
second method, referred as Median method [15], has exactly same 
procedure as Mean method, only by replacing the mean 
expression values across genes with the median expression values 
across genes; and ⅲ) the third method is called PCA method, built 
by [16], which uses the first principal component of the pathway 
specific expression matrix as representation of pathway activity 
scores for each sample. To make the prediction results 
comparable, the validation scheme for these other three pathway 

activity inference method is same as DIGS. The ten training/
testing sets used for DIGS were applied to Mean, Median and 
PCA method too. The arrangement of the resulting 10 pathway 
activity matrices and same classifier training procedures were 
adopt. The output prediction accuracy for theses three methods 
were also averaged across 10 testing sets and all results are plotted 
in Figure 3. 
In Figure 3, x-axis is labeled with six classification approaches 
and y-axis represents the prediction accuracy values for each 
pathway activity inference methods across each classifier. From 
the figure, it is obvious that DIGS-based classification approach 
achieves higher classification rates than other pathway inference 
methods. The performance of Mean and Median methods are 
similar (accuracies range form 60% to 80%), and PCA methods 
gets the lowest prediction accuracies (range from 50% to 60%). It 
can be concluded that DIGS is the most effective method among 

four methods for deriving pathway activity score towards 
phenotypes detection. 

3.2. AIS Relevant Pathway Identification  
3.2.1. Pathway Relevance Ranking 
Not only promising classification rates can be achieved by DIGS 
model, but also a number of pathways are identified that may 
indicate pathway biomarkers. To rank the pathways, Point-biserial 
correlation coefficient ranking method in Python SciPy package 
(Version 1.3.0) is employed in this work. 
To gain an ultimate pathway activity value for each pair of sample 
and pathway, 10 pathway activity matrices (combination of the 
corresponded training samples and testing samples of each 
training/testing set) were merged into one pathway expression 
matrix by averaging operation. Then, for each pathway , the 
Point-biserial Correlation Coefficient is calculated using the 
pathway activity vector across all samples and the phenotype 
vector that consists of sample phenotypes (stroke or control). 
Point-biserial Correlation Coefficient is a statistical measure of 
the relationship between a binary variable and a continuous 
variable, and it is mathematically equivalent to the Pearson 
correlation. In Machine Learning, Point-biserial correlation can be 
used to calculate the similarity between features and categories. In 
other words, it is adopt to judge whether the extracted features are 
positively correlated, negatively correlated or not correlated with 
the responded categories. The range of Point-biserial Coefficient 
is [-1, 1] and the greater the absolute value is, the stronger the 
correlation is. Therefore, the absolute value of the calculated 
correlation metrics for each pathway were ranked in descending 
order and top 10 pathways were selected as the most 
discriminative pathways. 
The selected ten discriminative pathways are listed in Table 3. 
Apart from pathways that have obvious links to cancer pathways, 
for example the well-known signalling pathway (B cell receptor 
signalling pathway), and pathways involve in the cell metabolism 
procedures and genetic information processing (Cell cycle, 
Pyrimidine metabolism, RNA degradation and Spliceosome), we 
note a research concluded that the immunoblockade or genetic 
deletion of adhesion molecules showed to reduce infarct volume, 
edema, behavioural deficits and/or mortality in different animal 
models of ischemic stroke [17]. Also, [18] indicates that the 
ubiquitin-mediated proteolysis pathway, especially TRAF6, may 
be the most vital molecules among TLR downstream pathways in 

Table 3. Significant pathways

Pathway Name Coef.
1 CELL_CYCLE 0.782

2 B_CELL_RECEPTOR_SIGNALING_PATHW
AY 0.744

3 UBIQUITIN_MEDIATED_PROTEOLYSIS 0.743
4 LEISHMANIA_INFECTION 0.739
5 PYRIMIDINE_METABOLISM 0.739
6 SPLICEOSOME 0.737
7 CELL_ADHESION_MOLECULES_CAMS 0.736
8 RNA_DEGRADATION 0.727

9 TOLL_LIKE_RECEPTOR_SIGNALING_PAT
HWAY 0.725

10 EPITHELIAL_CELL_SIGNALING_IN_HELI
COBACTER_PYLORI_INFECTION 0.721

Classifier ACC AUC
5-NN 0.844 0.895

Logistic Regression 0.833 0.932
Random Forest 0.836 0.923
Neural Network 0.840 0.917

SVM 0.830 0.927
Naive Bayes 0.843 0.907

Table 2. Mean Prediction accuracy of Stroke dataset 

Figure 3.Classification accuracy comparison of four pathway 
activity inference methods



incidences of ischemic stroke, which proves that two of our top 10 
pathways (Ubiquitin mediated proteolysis and Toll-like receptor 
signalling pathway) are strongly related to the diagnosis of 
ischemic stroke. 
Accordingly, these DIGS found top ranked pathways are highly 
related to AIS, and thereby can be treated as pathway biomarkers. 
More amount of significant pathways can be inferred by DIGS 
and their relationships with AIS are worth being studied in further 
researches. 

3.2.2.Top Ranked Pathways Evaluation 
To intuitively display the performance of significant pathways, 
two heat-maps were drawn using gene expression data and 
significant pathway activity data. In Figure 4 and Figure 5, rows 
are gene names and pathway names respectively and columns are 
sample phenotypes. Samples are hieratically clustered based on 
similarity. In horizontal colour bar, different colours (green and 
blue) represents ‘stoke’ and ‘control' respectively. From the 
comparison between Figure 4 and Figure 5, it is clear that most of 
the samples belonging to the same phenotype outcomes are indeed 
assigned into same clusters with the significant pathways data 
found by DIGS (compared with the randomly distributed sample 
clusters in Figure 4). This phenomenon is also consistent with the 
good prediction performance of DIGS inferred pathway activity 
that is illustrated in section 3.2.1.    
To Further explain to what extent the significancy has been 
reached by the top ranked pathways, 10 box plots in Figure 6 

show the distribution of pathway activity values of the two 
different sample phenotypes for each significant pathway. The left 
box plot in each subplot represents the activity values of ‘stoke’ 
samples and the right box plot represents for the ‘control’ 
samples. It is obvious that the ranges between upper quartiles and 
lower quartiles of the two phenotypes are perfectly separated in 
each subplot. That is to say, even using only one of theses top 
discriminate pathway to classify the phenotypes, the accuracy 
would be at least 75%. Similar analysis was done in [3] too, 
where the 10 most statistically significant differentially expressed 
genes, illustrating the extent of Fold Change and the separation of 
median expression levels between the two phenotypes, were 
selected from the stroke dataset and their logarithmic relative 
expression values were plotted.  The box plots of these significant 
differentially expressed genes in [3] presents the distribution of 
the expression ranges of ‘stroke’ and ‘control’ phenotypes. 
However, the differences with the Figure 6 is obvious because the 
ranges between upper quartiles and lower quartiles of the two 
phenotypes in these box plots of the selected differential 
expressed genes are overlap, which indicates the prediction 
accuracy of the significant genes are less than the top ranked 
pathways. Also, according to their study, the prediction accuracy 
produced by log FC expression level significance method, which 
employed 557 genes, is less than 71%.  
It can be concluded that DIGS found pathways have stronger 
discriminate power on separating stroke samples from non-stroke 
samples than current found significant genes biomarkers of stroke, 
and also these results have proven the idea that the way of 
regarding genes belong to a same functional group as a whole for 
the analysis towards phenotypes on gene expression profiles is 
better than using single genes independently [16].  

4. CONCLUSION 
This work applies a mathematical programming optimisation 
method DIGS on three stroke gene expression profiles for the 
purpose of inferring pathway activity values for acute ischemic 
stroke samples. The prediction results towards stroke phenotypes 
gave promising accuracy rates (~83.5%) and relatively high AUC 
values (~91.5%) on testing sets. To authors’ best knowledge, the 
classification accuracy reached by DIGS is higher than most 
current stroke phenotype prediction researches. Also, DIGS  
model identified a mount of biological pathways that are proved 
related to the cause of AIS can be seen as pathway biomarkers of 
AIS. 

One of the improvements, compared with former gene-based 
stroke studies, is incorporating biological pathways with gene 
expression profiles. The advancement of combining pathways 
with gene expression profiles is approved by the higher 
classification accuracy of separating stoke samples and non-stroke 
samples in this work. Besides, DIGS provides a more flexible way 
for inferring stroke related biomarkers. By modifying the 
participate pathways for constructing pathway specific expression 
matrix or changing the number of active genes inside DIGS 
model, different aspects and levels of biological information can 
be extracted from the running outputs. 
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