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As a sociotechnical infrastructure system composed of equipment and facilities, operational staff, and passengers, 

metro station systems (MSSs) manage threats of high-frequency fires in the city, but scant attention is drawn to 

how MSSs in operation systematically cope with fires. To improve the existing MSSs’ poor performance across 

the fire lifecycle, the concept of fire resilience is proposed based on the system resilience theory. The disaster 

scene analysis, TOSE approach, and modified TOPSIS method are combined to identify critical fire resilience 

indexes. Then, a Bayesian network is developed to assess fire resilience and reveal critical causal chains in fire 

scenes. Furthermore, sensitivity analysis and dynamic Bayesian network with critical importance analysis are 

adopted to formulate optimization strategies for MSSs in different periods of operating life. The resulting 

integrated framework for managing fire resilience is applied to Nanjing MSS, providing operational staff and 

decision makers with practical tools to engage in long-term resilient operation of MSS against fires within a clear 

manageable scope. The results indicate that passengers’ safety knowledge and behaviors, effectiveness of security 

screening operations, and skills of staff in emergency response team are the prime factors resulting in low fire 

resilience; meanwhile, economic resource allocation should be prioritized for optimization initially, but 

optimization priorities should be transferred to the less controllable passengers’ escape skills and aging 

firefighting equipment as operating life increases. The integration of identification, assessment, and optimization 

methods can also be flexibly embedded into various infrastructure systems’ operation management processes to 

optimize disaster resilience continuously. 
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An integrated framework for managing fire resilience of metro station system: identification, 15 

assessment and optimization 16 

Abstract 17 

As a sociotechnical infrastructure system composed of equipment and facilities, operational staff, and 18 

passengers, metro station systems (MSSs) manage threats of high-frequency fires in the city, but scant 19 

attention is drawn to how MSSs in operation systematically cope with fires. To improve the existing MSSs’ 20 

poor performance across the fire lifecycle, the concept of fire resilience is proposed based on the system 21 

resilience theory. The disaster scene analysis, TOSE approach, and modified TOPSIS method are combined 22 

to identify critical fire resilience indexes. Then, a Bayesian network is developed to assess fire resilience and 23 

reveal critical causal chains in fire scenes. Furthermore, sensitivity analysis and dynamic Bayesian network 24 

with critical importance analysis are adopted to formulate optimization strategies for MSSs in different 25 

periods of operating life. The resulting integrated framework for managing fire resilience is applied to 26 

Nanjing MSS, providing operational staff and decision makers with practical tools to engage in long-term 27 

resilient operation of MSS against fires within a clear manageable scope. The results indicate that passengers’ 28 

safety knowledge and behaviors, effectiveness of security screening operations, and skills of staff in 29 

emergency response team are the prime factors resulting in low fire resilience; meanwhile, economic resource 30 

allocation should be prioritized for optimization initially, but optimization priorities should be transferred to 31 

the less controllable passengers’ escape skills and aging firefighting equipment as operating life increases. 32 

The integration of identification, assessment, and optimization methods can also be flexibly embedded into 33 

various infrastructure systems’ operation management processes to optimize disaster resilience continuously. 34 

Keywords: Metro station system; Fire resilience; Resilience capacities; Disaster scenes; Dynamic Bayesian 35 

network 36 
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1 Introduction 37 

By the end of 2020, 538 cities worldwide had operational metros with a total length reaching 33346 38 

kilometers [1]. As an urban lifeline infrastructure, metros provide cities with daily transportation services 39 

and disaster relief functions, such as emergency evacuation and emergency supply transportation, which 40 

guarantees cities’ public safety. Furthermore, most metros are located in urban underground spaces and have 41 

complex structures and dense passenger flows, which dramatically increases various disaster risks [2]. 42 

According to incomplete statistics of metro operation accidents, metro stations have the highest accident rates 43 

in an entire metro system [3]; meanwhile, fire disasters are the accident type with the highest occurrence 44 

probability and the most severe consequences among all operation accidents [4]. Therefore, it is urgent to 45 

identify, assess and optimize metro stations’ capacities to address fire disasters to minimize catastrophic 46 

economic losses and negative social impacts. 47 

Current research on metro station fires mainly focuses on risk management with the goal of efficient 48 

fire prevention and emergency management with the goal of robust fire resistance, which emphasizes 49 

structural response to fires, but ignores the participation of operational staff and passengers during the fire 50 

recovery and adaptation [5]. Although fire resilience has gradually attracted attention, most related research 51 

aims only to address the functional continuity of equipment and facilities from structural perspective [6, 7], 52 

which ignores the role of operators and users in disaster resilience management of infrastructure systems. To 53 

fill the above gaps, this research applies system resilience theory to define the fire resilience of a metro station 54 

system (MSS) as the comprehensive capacities to absorb and resist negative impacts of fires, return to normal 55 

operations, and adapt to potential fires. Meanwhile, considering that the causality between the formation and 56 

emergence of fire resilience is usually neglected in existing resilience assessment tools [8, 9], this research 57 

integrates the disaster scene analysis and the technical, organizational, social, and economic (TOSE) 58 

approach to establish a standardized D-TOSE model to identify fire resilience indexes including assessment 59 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 4 / 49 

indicators and influential factors. In this model, assessment indicators reflecting fire resilience formation are 60 

identified as resilience capacities in the fire lifecycle scenes, and influential factors reflecting fire resilience 61 

emergence are identified from the TOSE dimensions. Then, the impacts of the emergence process of the 62 

influential factors on the formation process of resilience capacities are quantified by integrating resilience 63 

capacities with their influential factors and fire scene status into a Bayesian network (BN). Moreover, given 64 

that static BN model cannot be updated quickly according to the development or degradation characteristics 65 

of the system [10], dynamic Bayesian network (DBN) model is applied to capture the changing law of the 66 

failure probability of various influential factors as the MSS operating life increases. Finally, sensitivity 67 

analysis and critical importance analysis are combined to provide decision makers with current, short-term, 68 

and long-term optimization strategies of fire resilience. The above methods are integrated into a systemic 69 

framework for operational staff and decision makers to manage fire resilience of MSSs through scene-based 70 

identification, causality-based assessment, and time-based optimization. Such integration is applied in 71 

Nanjing MSS and advances comprehensive understanding of the system’s existing fire resilience level and 72 

optimization strategy preferences, helping MSSs respond to fires with minor occurrence, less consequence, 73 

and faster recovery. 74 

2 Literature review 75 

2.1 Fire safety management for metro stations 76 

Metro stations are characterized by complex fire compartmentation, limited evacuation paths, narrow 77 

emergency rescue space, etc. Once fires occur in metro stations, they quickly cause severe casualties and 78 

public property losses [11]. Therefore, studies on the fire safety management of metro stations have been 79 

extensively conducted with the following three aspects: (1) As for the existing studies on fire risk prevention 80 

for metro stations, they mainly propose targeted prevention measures of high-frequency hazards through 81 

statistical analysis and risk assessment [12, 13]. Many studies have found that fires breaking out in metro 82 
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stations were mainly due to equipment faults and abnormal passenger behaviors [14, 15]; then, their 83 

likelihood, exposure, and consequence of triggering fires are assessed to develop rating early-warning 84 

measures in terms of human, technology, environment, and management aspects [13, 16]. (2) As for the 85 

existing studies on experimental and numerical simulation of fires in metro stations, they have mainly verified 86 

the reliability of the structural fire-resistance design and the evacuation efficiency of the walking equipment 87 

and facilities by simulating smoke movement and crowd evacuation behaviors under fires [3, 17]. (3) As for 88 

the existing studies on fire emergency management for metro stations, they mainly focus on emergency 89 

response plan optimization through multi-objective decision-making on disposal schedules, evacuation and 90 

rescue routes, and emergency resource allocation to minimize consequential losses [18–20]. 91 

It is concluded that most fire safety management schemes for MSSs ignore recovery and adaptation 92 

measures after fires [21]. As a result, an MSS usually wastes more time restarting operation services and 93 

suffers from recurring fires caused by the same influential factor, proving that scattered and unsystematic fire 94 

safety management measures struggle to make a difference when an MSS experiences fires. To address the 95 

above deficiencies, the concept of resilience is introduced into fire safety management, and four fire lifecycle 96 

scenes including prevention scene (pre-disaster), response scene (in-disaster), restoration scene (post-97 

disaster), learning scene (after resuming operations) [22], and their corresponding influential factors are 98 

identified to manifests the formation and emergence process of fire resilience. 99 

2.2 Resilience management for metro systems 100 

Compared with traditional safety management theories, system resilience theory can better reflect the 101 

changing state of system performance when a system is attacked by various disturbances [23]. Therefore, 102 

resilience management for metro systems has increasingly gained ground in research on identification and 103 

assessment [24]. (1) Metro system resilience identification is mainly realized by capturing system responses 104 

to different disturbances at physical or topological level. From the perspective of physical equipment and 105 
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facilities, the interruption consequences caused by technical faults of trains, tracks, and cables are often 106 

identified as resilience metrics [25–27]. From the perspective of topological networks, a metro system is 107 

usually modeled as a complex network loaded with various attack strategies, including node, edge, and space 108 

destruction. And changes in the topological attributes of a metro network are usually identified as resilience 109 

metrics [28, 29]. (2) Metro system resilience assessment is realized by quantifying system performance or 110 

resilience capacities [30, 31], in which the performance-based method assesses resilience by the geometric 111 

solution of the change curve of the system performance over time [32], and the capacity-based method 112 

assesses resilience by inferring the resilience capacity level [33]. Because of the limited data on damage to 113 

infrastructures, many studies support the capacity-based method and indicate that resilience capacities as 114 

assessment indicators can be adjusted more flexibly according to different types of systems and disasters, 115 

which makes it easier to collect basic data [34]. However, the existing capacity-based assessment indicators 116 

usually do not address all the resilience capacities formed throughout the disaster lifecycle, which causes 117 

final assessment results reflecting reliability, robustness, and vulnerability, instead of resilience [35]. 118 

Meanwhile, almost all indicators are static and cannot be automatically updated as operating life increases 119 

[36]. Hence, corresponding resilience assessment results cannot assist in decision-making for long-term 120 

system operations. 121 

In conclusion, the shortcomings of existing research are as follows: (1) Most research objects focus on 122 

metro systems’ physical hardware and topological network, but there is a lack of attention to metro stations 123 

that are simultaneously equipped with service function and topological function [37]. In addition, metro 124 

system resilience is mainly assessed by simulating generalized attacks on metro networks without a 125 

characteristic analysis of specific disasters. Hence, the formation and emergence of various system resilience 126 

capacities against specific disasters are still black-box issues. (2) Most resilience optimization strategies fail 127 

to consider complex time-varying characteristics of metro system components’ functional states and their 128 
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gain or loss effects on resilience capacities over time [38]. To address the above deficiencies, this research 129 

selects metro station as the system and fire disaster as the disturbance, and then proposes the concept of fire 130 

resilience based on system resilience theory. Furthermore, resilience capacities with their dynamic influential 131 

factors are considered in BN model and DBN model to assess and optimize fire resilience of the MSS. 132 

3 Methodology 133 

3.1 Three-phase integrated framework 134 

System resilience theory indicates that resilience is an inherent property of a system in operation; meanwhile, 135 

assessing and optimizing system resilience are premised on the basis of identifying the system, disturbance, 136 

time period when the system experiences the disturbance, required capacities of the system to handle the 137 

disturbance, and influential factors of required capacities [39]. It is worth noting that system resilience should 138 

be built not only in the technical and physical elements as in traditional engineering practices, but also in the 139 

social and organizational elements. Therefore, in this research, the MSS is defined as a sociotechnical system 140 

composed of “hard” parts including equipment and facilities as well as “soft” parts including operational staff 141 

and passengers [40–42]; the disturbance is fire disaster; the time period refers to the fire lifecycle, namely, 142 

prior-disaster, in-disaster, post-disaster and after resuming operation stages; the remaining two elements are 143 

resilience capacities as assessment indicators of fire resilience and their influential factors, reflecting the 144 

formation and emergence process of fire resilience, respectively. A three-phase integrated framework is 145 

proposed as shown in Fig. 1 to fulfill scene-based identification, causality-based assessment, and time-based 146 

optimization of fire resilience. 147 
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Identifying assessment indicators
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Probability distribution functions

for state transition of root nodes

Legend:

Phase Case study

 148 

Fig. 1. A three-phase integrated framework for managing fire resilience 149 

3.2 Identification methods in Phase 1 150 

Phase 1 aims to identify fire resilience of the MSS based on fire lifecycle scenes. The disaster scene analysis 151 

and TOSE approach are integrated to construct the D-TOSE model for identifying fire resilience indexes, 152 

including assessment indicators and influential factors. Then, the modified technique for order preference by 153 

similarity to ideal solution (TOPSIS) is used to calculate influential factors’ contributions on fire resilience 154 

for screening critical influential factors tailored to different MSSs. The identification methods in Phase 1 help 155 

operational staff and decision makers fully understand specific resilience capacities and influential factors 156 

involved in the fire lifecycle, which encourages them to engage in resilient operation of MSS within a clear 157 

manageable scope. 158 

3.2.1 Disaster scene analysis to identify assessment indicators 159 

To date, many studies have reached a basic consensus that the resilience capacities are effective assessment 160 

indicators to quantify disaster resilience of infrastructure systems [43], and they include absorption capacity 161 
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to prevent disturbances, resistance capacity to minimize consequences, recovery capacity to return to normal 162 

operations, and adaptation capacity to learn from undesirable situations [44, 45]. However, the connotation 163 

of resilience capacities is still very abstract for front-line operational staff and decision makers, which easily 164 

causes inefficient resilience management due to significant understanding bias when assessing resilience 165 

capacities. Because the basis of analyzing the antecedents and consequences of disasters is to determine 166 

specific scenes (or scenarios), the scene analysis has been increasingly applied to infrastructure disaster 167 

management [46, 47]. It is worth noting that the scene analysis emphasizes that one scene should contain 168 

both “hard” and “soft” elements including physical space, awareness, and behaviors [48], which coincides 169 

with the system boundaries defined in system resilience theory. Hence, combing with specific disaster 170 

characteristics, one fire scene can be divided into reaction components, reaction time, reaction causes, 171 

reaction behaviors, and scene statuses to capture resilience capacity and its corresponding efficacy [49], 172 

which facilitates understanding and assessing resilience capacities through observing scene status of the MSS 173 

under its different reaction components’ reaction behaviors. The fire lifecycle is divided into the following 174 

four fire scenes as shown in Table 1: 175 

(1) the prevention scene, where the absorption capacity forms, is characterized by the prevention status of 176 

unsafe passenger behaviors and unsafe equipment and facilities; 177 

(2) the response scene, where the resistance capacity forms, is characterized by the response status of fire 178 

detection, evacuation, and extinguishment; 179 

(3) the restoration scene, where the recovery capacity forms, is characterized by the reuse status of 180 

equipment, facilities and operation services; 181 

(4) the learning scene, where the adaptation capacity forms, is characterized by the feedback status from the 182 

operation organization.183 
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Table 1 Fire scene analysis of an MSS 184 

Scene type Prevention scene Response scene Restoration scene Learning scene 

Reaction 

component 

·Equipment and facilities 

·Inspection team 

·Training team 

·Passengers 

·Equipment and facilities 

·Emergency response team 

·Passengers 

·Emergency response team 

·Maintenance team 

·Customer service team 

·Technical service team 

·Data and analytics team 

·Duty manager 

Reaction 

time 

Pre-disaster In-disaster Post-disaster After resuming operation 

Reaction 

behavior 

·Fire safety and emergency 

training 

·Security checks for 

flammable and explosive 

substances 

·Routine inspection of 

electrical equipment 

·Fire alarm system warning 

·Coordination with internal 

and external rescue teams 

to fight fire 

·Evacuation commands for 

passengers 

·Repair work on the site 

·Operation order recovery 

·Compensation for casualties 

·Investigation of 

incidents 

·Summary of experience 

and knowledge 

·Rectification 

implementation 

Scene 

status 

Prevention status of 

·unsafe passenger behavior 

·unsafe equipment and 

facilities 

Response status of 

·fire detection 

·fire evacuation 

·fire extinguishment 

Reuse status of 

·equipment and facilities 

·operation services 

Feedback status of 

·operation organization 

Resilience 

capacity 

Absorption capacity 

(Abs) 

Resistance capacity 

(Res) 

Recovery capacity 

(Rec) 

Adaptation capacity 

(Ada) 

Resilience 

efficacy 

Prevent fires Control the fire spread Restart operation services Avoid recurrence 

3.2.2 TOSE approach to identify preliminary influential factors 185 

It should be acknowledged that identifying influential factors of fire resilience not only emphasizes the 186 

disaster lifecycle, but also needs to focus on the whole system and systematically subdivide the influential 187 

factors to reflect different types of reaction components’ contribution to resilience in fire scenes. In this 188 

research, the TOSE approach is applied to further subdivide all the influential factors into technical, 189 

organizational, social, and economic dimensions, which respectively represent physical hardware operation 190 

related to equipment working status and facility design features; operational management implementation 191 

related to all the internal work teams including inspection team, training team, emergency response team, 192 

maintenance team, customer service team, technical service team and data and analytics team; social 193 

organization interaction related to passengers and external organization access; and resource allocation 194 

related to decision makers’ input of investments, equipment, and manpower [34, 50]. Then, four dimensions 195 

from the TOSE approach and four fire scenes from the disaster scene analysis are combined to establish the 196 

D-TOSE model, which provides a systematic classification matrix to identify influential factors. Moreover, 197 

the relevance of each influential factor to the 4R attributes of system resilience (namely, robustness, 198 
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redundancy, resourcefulness, and rapidity [51]) should also be judged to guarantee that all identified 199 

influential factors are closely related to fire resilience, which can confirm when influential factors come into 200 

play, whether the MSS better resist various negative impacts of fire, possess more replaceable redundancy 201 

components, schedule resources more reasonably, and recover operational services faster. 202 

3.2.3 Modified TOPSIS method to screen critical influential factors 203 

The limited investment should be optimized the most critical influential factors of fire resilience; in addition, 204 

different operational management schemes and philosophies of metro stations in various cities lead to 205 

different preferences for critical influential factors. Therefore, it is essential to screen critical influential 206 

factors before the formal assessment and optimization of fire resilience of an MSS. The TOPSIS method has 207 

been gradually applied to screen the influential factors of engineered system resilience [52], and this research 208 

modifies traditional TOPSIS method by constructing the “degree of contribution” as the screening threshold 209 

for each influential factor and quantifying it by combining the “degree of importance” and the “degree of 210 

differentiation”, where the “degree of importance” aims to find which influential factor is no longer important 211 

with technological development, and the “degree of differentiation” aims to find which influential factors are 212 

not differentiated for most metro stations. The steps of applying the modified TOPSIS method to screen the 213 

critical influential factors are illustrated as follows [53, 54]. 214 

(5) Step1: Construct the initial decision matrix 𝑋 215 

Each influential factor has three attributes: likelihood of occurrence (𝑝), severity of consequence (𝑐), 216 

controllability of uncertainty (𝛼), and they can be marked through questionnaire survey on a 5-point Likert-217 

type scale as “Unlikely=1, Seldom=2, Occasional=3, Likely=4, Frequent=5”, “Negligible=1, Minor=2, 218 

Moderate=3, Major=4, Catastrophic=5”, and “Very difficult =1, Difficult =2, Neutral=3, Easy=4, Very easy 219 

=5” respectively. Meanwhile, 𝑝 and 𝑐 are positive, and 𝛼 is negative; namely, the larger the value of 𝑝 220 

and 𝑐, the smaller the value of 𝛼, the more important this influential factor is [55]. The initial decision matrix 221 
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𝑋 is shown in Equation (1): 222 

 𝑋 = [

𝑋11 𝑋12 𝑋13

𝑋21 𝑋22 𝑋23

⋮ ⋮ ⋮
𝑋𝑚,1 𝑋𝑚,2 𝑋𝑚,3

] =

[
 
 
 
 
 
 
∑ 𝑥11

𝐾
1

𝐾

∑ 𝑥12
𝐾
1

𝐾

∑ 𝑥13
𝐾
1

𝐾
∑ 𝑥21

𝐾
1

𝐾

∑ 𝑥22
𝐾
1

𝐾

∑ 𝑥23
𝐾
1

𝐾
⋮ ⋮ ⋮

∑ 𝑥𝑚,1
𝐾
1

𝐾

∑ 𝑥𝑚,2
𝐾
1

𝐾

∑ 𝑥𝑚,3
𝐾
1

𝐾 ]
 
 
 
 
 
 

 (1) 

Where 𝑖  is the 𝑖𝑡ℎ  preliminary influential factor (𝑖 = 1, 2,⋯ ,𝑚); 𝑗  is the 𝑗𝑡ℎ  influential factor 223 

attribute (𝑗 = 1, 2, 3); 𝑋𝑖𝑗  is the value of 𝑗𝑡ℎ  attribute of 𝑖𝑡ℎ  influential factor, which is obtained by 224 

questionnaire survey with 𝐾 experts. 225 

(6) Step2: Calculate the weighted sum of squares of the distance between positive and negative ideal 226 

solutions 𝑓𝑖(𝜔) 227 

The questionnaire data 𝑋𝑖𝑗 is normalized to 𝑟𝑖𝑗 with Equation (2)-(3) for positive attributes (𝑝, 𝑐) and 228 

negative attribute (𝛼). The weights of 𝑝, 𝑐, and 𝛼 are 𝜔1, 𝜔2, and 𝜔3 respectively, and the total weight 229 

is 1. Then, 𝑓𝑖(𝜔) is calculated with Equation (4): 230 

 𝑟𝑖𝑗 =
𝑋𝑖𝑗−𝑚𝑖𝑛 (𝑋𝑖𝑗)

𝑚𝑎𝑥(𝑋𝑖𝑗)−𝑚𝑖𝑛 (𝑋𝑖𝑗)
, where 𝑗 = 1,2 (2) 

 𝑟𝑖𝑗 =
𝑚𝑎𝑥(𝑋𝑖𝑗)−𝑋𝑖𝑗

𝑚𝑎𝑥(𝑋𝑖𝑗)−𝑚𝑖𝑛 (𝑋𝑖𝑗)
, where 𝑗 = 3 (3) 

 𝑓𝑖(𝜔) = 𝑓𝑖(𝜔1, 𝜔2, 𝜔3) = ∑ 𝜔𝑗
2(1 − 𝑟𝑖𝑗)

23

𝑗=1
+ ∑ 𝜔𝑗

2𝑟𝑖𝑗
2

3

𝑗=1
 (4) 

When the distance is used as a limiting condition, a smaller value of 𝑓𝑖(𝜔) is better. To achieve this 231 

goal, the goal programming model is established as Equation (5), then Lagrange function is constructed as 232 

Equation (6) to calculate the optimal solution as Equation (7) 233 

 𝑚𝑖𝑛𝑓(𝜔) = ∑ 𝑓𝑖(𝜔)3
𝑖=1 , where ∑ 𝜔𝑗

3
𝑗=1 = 1,𝜔𝑗 ≥ 0, 𝑗 = 1, 2, 3 (5) 

 𝐹(𝜔, 𝜆) = ∑ ∑ 𝜔𝑗
2 [(1 − 𝑟𝑖𝑗)

2
+ 𝑟𝑖𝑗

2]
3

𝑗=1

𝑚

𝑖=1
− 𝜆 (1 − ∑ 𝜔𝑗

3

𝑗=1
) (6) 

 𝜔𝑗 =
𝜇𝑗

∑ 𝜇𝑗
3
𝑗=1

, where 𝜇𝑗 =
1

∑ [(1−𝑟𝑖𝑗)
2
+𝑟𝑖𝑗

2]36
𝑖=1

, 𝑗 = 1, 2, 3 (7) 

(7) Step3: Calculate the degree of importance 𝐼𝑖 234 

Based on the weights calculated in Step 2, 𝐼𝑖 is calculated with Equation (8): 235 
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 𝐼𝑖 = 𝜔1𝑥𝑖1 + 𝜔2𝑥𝑖2 + 𝜔3(6 − 𝑥𝑖3), where 𝑖 = 1,2,⋯ ,𝑚 (8) 

The threshold value of 𝐼𝑖 is set to delete influential factors that are unlikely to occur, have negligible 236 

consequences, and are very easy to control. Hence, it is calculated as follows: 𝐼0 = 𝜔1 × 2 + 𝜔2 × 2 + 𝜔3 ×237 

(6 − 4) = 2. When 𝐼𝑖 < 𝐼0, this influential factor is judged to be unimportant. 238 

(8) Step4: Calculate the degree of differentiation 𝐷𝑖 239 

The influencing proportion of 𝑖𝑡ℎ influential factor to the whole influential factor system is defined as 240 

𝑘𝑖 in Equation (9). Taking into account the differences in the relative importance of each attribute of 𝑖𝑡ℎ 241 

influential factor, the influential proportion of attribute 𝑗 of 𝑖𝑡ℎ  influential factor is defined as 𝑝𝑖𝑗  in 242 

Equation (10). 243 

 𝑘𝑖 =
𝑓𝑖(𝜔)

∑ 𝑓𝑖(𝜔)𝑚
𝑖=1

, where 𝑖 = 1 ,2,⋯ ,𝑚 (9) 

 𝑝𝑖𝑗 =
𝑟𝑖𝑗𝑘𝑖

∑(𝑟𝑖𝑗𝑘𝑖)
, where 𝑖 = 1, 2,⋯ ,𝑚;  𝑗 = 1, 2, 3 (10) 

Based on the entropy theory, entropy value 𝐻𝑖 and entropy weight 𝑒𝑖 can be combined to determine 244 

each influential factor’s 𝐷𝑖 with Equations (11)-(13): 245 

 𝐻𝑖 = −𝑘 ∑ 𝑝𝑖𝑗𝑙𝑛𝑝𝑖𝑗
3
𝑗=1 , where 𝑘 =

3

𝑙𝑛𝑚
 to make sure that 𝐻𝑖𝜖[0,1] (11) 

 𝑒𝑖 =
1−𝐻𝑖

𝑚−∑ 𝐻𝑖
𝑚
𝑖=1

, where 𝑖 = 1,2,⋯ ,𝑚 (12) 

 𝐷𝑖 =
𝑒𝑖

𝐻𝑖
=

1−𝐻𝑖

(𝑚−∑ 𝐻𝑖
𝑚
𝑖=1 )𝐻𝑖

, where 𝑖 = 1,2,⋯ ,𝑚 (13) 

The larger the value of 𝐷𝑖 means that 𝑖 is more beneficial for decision making. However, when 𝐻𝑖 is 246 

infinitely close to 1, the contribution of each attribute is consistent, resulting in the influential factor 𝑖 not 247 

having a substantial role compared with the other influential factors. Therefore, the maximum value of 𝐻𝑖 248 

is generally set to 0.8 as the threshold, and 𝐷𝑖’s threshold value 𝐷0 can be calculated accordingly [56]. 249 

When 𝐷𝑖 < 𝐷0, this influential factor is judged to be undifferentiated. 250 

(9) Step5: Calculate the degree of contribution 𝐶𝑖 251 

To ensure that influential factor 𝑖 is important and differentiated to MSS fire resilience at the same time, 252 
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𝐼𝑖 and 𝐷𝑖 are combined to calculate 𝐶𝑖 with Equation (14): 253 

 𝐶𝑖 =
𝐼𝑖𝐷𝑖

∑ 𝐼𝑖𝐷𝑖
36
𝑖=1

, where 𝑖 = 1,2,⋯ ,𝑚 (14) 

According to the threshold values of 𝐼𝑖 and 𝐷𝑖, 𝐶𝑖’s threshold value 𝐶0 can be calculated to screen 254 

critical influential factors. When 𝐶𝑖 < 𝐶0, this influential factor is deleted. 255 

3.3 Assessment methods in Phase 2 256 

Phase 2 aims to assess fire resilience of the MSS based on causality inference. The BN model is applied to 257 

simulate complex causality between fire resilience capacities and their influential factors. Then fuzzy 258 

comprehensive evaluation method (FCEM) and Leaky Noisy-OR model are respectively applied to calculate 259 

the prior probabilities and conditional probabilities of nodes in the model according to questionnaire survey 260 

on causality among nodes. Finally, fire resilience is assessed through BN inference including forward and 261 

backward propagation analysis. The assessment methods in Phase 2 help operational staff and decision 262 

makers understand how fire resilience forms and emerges under complex causality, grasp MSS’s current fire 263 

resilience level, and reveal the weakest chains in the fire resilience operation process. 264 

3.3.1 Bayes theorem to construct the BN model 265 

Considering the uncertainties of the fire lifecycle, this research applies the BN model and its inference rules 266 

to assess fire resilience. The BN model is a directed acyclic graph consisting of nodes and directed arcs, 267 

where the nodes represent various random variables and the directed arcs directing from the parent node to 268 

the child node quantify the conditional dependencies between nodes [57]. Additionally, a node not linked to 269 

any parent node is a root node, and a node not linked to any child node is a leaf node. In this research, fire 270 

resilience is regarded as the leaf node. Based on fire scene analysis of the MSS, fire resilience, four resilience 271 

capacities identified as assessment indicators, and influential factors identified from TOSE perspectives can 272 

be connected into one BN model with clear causality structure through fire scene status. The BN model can 273 

reveal how influential factors affect the emergence process of resilience capacities and how resilience 274 
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capacities further affect the formation process of fire resilience during fire lifecycle. Supposing a BN model 275 

consists of 𝑛  variables 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 , the corresponding decomposition of the joint probability 276 

distribution of variables can be reported as Equation (15) based on Bayes theorem [58]: 277 

 𝑃(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))
𝑛

𝑖=1
 (15) 

where 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) represents the parent node of variable 𝑋𝑖. 278 

It is worth noting that when the data source used for Bayesian inference is from questionnaire survey, 279 

each node state is usually set with binary parameters [59, 60], which is consistent with the characteristics of 280 

participants’ understanding and memory of causalities of historical events, guaranteeing the surveyed experts 281 

can accurately invoke the related work experience when they fill out questionnaires. Therefore, each node is 282 

equipped with two state parameters: “0” and “1”, in which “1” indicates that the node fails, and vice versa. 283 

Then, in the BN model, the forward propagation analysis can be carried out to infer the probability of non-284 

failure of the leaf node as the assessment result of MSS fire resilience; and the backward propagation analysis 285 

can be carried out to reveal the critical cause chain with the biggest contribution to the fire resilience failure. 286 

3.3.2 Leaky Noisy-OR model to calculate node probability tables 287 

After constructing the BN model, node probability tables (NPTs) consisting of the prior probability of the 288 

root nodes and the conditional probability of the non-root nodes should be calculated to infer the leaf node’s 289 

non-failure probability as fire resilience. It is assumed that a child node 𝑌 has 𝑞 parent nodes in 𝑋𝑇 =290 

{𝑋1, 𝑋2, … , 𝑋𝑖 , … , 𝑋𝑞}, and both the child node and its parent nodes have binary state parameters. Thus, 2𝑞 291 

questions need to be set in the questionnaire to obtain expert judgment for calculating the conditional 292 

probability of 𝑌 , which causes exponential growth of computational complexity [61]. To make the 293 

information obtained from experts reliable, the Noise-OR model is widely applied to simplify the calculation 294 

of the conditional probability of non-root nodes by only setting 𝑞 questions about the failure probability of 295 

𝑌 when only one of its parent nodes fails [62], and the simplified formula is shown in Equation (16): 296 
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 Noisy OR: 𝑃(𝑌|𝑋𝑇) = 1 − ∏ (1 − 𝑃(𝑌|𝑋𝑖))
𝑞
𝑖=1  (16) 

More importantly, considering that the fires occurring in MSSs are sometimes caused by unpredictable 297 

and accidental influential factors, a leaky node 𝑋𝐿 is introduced to supplement possible factors that may be 298 

neglected. The basic assumption of the Leaky Noisy-OR model is that when all the parent nodes of a child 299 

node 𝑌 are in a non-failure state, it is possible that 𝑌 is in a failure state due to the existence of the leaky 300 

node [63]. The model is explained in Equation (17): 301 

 Leaky Noisy OR: 𝑃(𝑌|𝑋) = 1 − (1 − 𝑃(𝑌|𝑋𝐿))∏
1−𝑃(𝑌|𝑋𝑖)

1−𝑃(𝑌|𝑋𝐿)

𝑞
𝑖=1  (17) 

where 𝑃(𝑌|𝑋𝐿) represents the probability of the occurrence of 𝑌 in the absence of other causes listed in 302 

the BN structure. Considering the uncertainty of other unpredicted factors, it is assumed that 𝑃(𝑌|𝑋𝐿) is 303 

normally distributed with a confidence interval of 0.9; namely, 𝑃(𝑌|𝑋𝐿)=0.1 [64]. 304 

Finally, the complete NPT of each node in the BN model can be obtained by experts only judging the 305 

failure probability of each root node and the probability that each parent node failure will cause its child node 306 

failure. Moreover, considering that the causality judgment should be more meticulous than the importance 307 

judgment of influential factors in Section 3.2.3, the failure likelihood of each root node and their causality 308 

with child nodes are measured through questionnaire survey on a scale of 1-7 points [65]. Then, all 309 

questionnaire data representing expert judgment are transformed into node probabilities through FCEM, and 310 

the specific data transformation process is shown in Table 2. 311 

Table 2 Data transformation process of expert questionnaire data 312 

Linguistic term Fuzzy number Graphical presentation of the linguistic term 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

EU VU U ML L VL EL
1.0

0.8

0.6

0.4

0.2

M
em

b
er

sh
ip

 d
eg

re
e

Fuzzy evaluation result  

Extremely unlikely (EU) (0, 0, 0.1, 0.2) 

Very unlikely (VU) (0.1, 0.2, 0.2, 0.3) 

Unlikely (U) (0.2, 0.3, 0.4, 0.5) 

More or less (ML) (0.4, 0.5, 0.5, 0.6) 

Likely (L) (0.5, 0.6, 0.7, 0.8) 

Very likely (VL) (0.7, 0.8, 0.8，0. 9) 

Extremely likely (EL) (0.8, 0.9, 1, 1) 
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Questionnaire data processing step [66] Specific formula, see Equations (18)-(23) 

Step 1: Calculate the arithmetic mean of 𝑛 experts’ 

fuzzy evaluation results 𝐹 = (𝐹𝑎
1, 𝐹𝑎

2, 𝐹𝑎
3, 𝐹𝑎

4) 

𝐹𝑎
1 =

1

𝑛
∑ 𝐹𝑘

1𝑛
𝑘=1 , 𝐹𝑎

2 =
1

𝑛
∑ 𝐹𝑘

2𝑛
𝑘=1 , 

𝐹𝑎
3 =

1

𝑛
∑ 𝐹𝑘

3𝑛
𝑘=1 ,𝐹𝑎

4 =
1

𝑛
∑ 𝐹𝑘

4𝑛
𝑘=1  

(18) 

 

Step 2: Calculate the distance between each expert’s 

fuzzy evaluation result 𝐹𝑘 and the arithmetic mean of 

all experts’ fuzzy evaluation results 𝐹𝑎 

𝑑(𝐹, 𝐹𝑎) =
1

4
(|𝐹𝑘

1 − 𝐹𝑎
1| + |𝐹𝑘

2 − 𝐹𝑎
2| 

+|𝐹𝑘
3 − 𝐹𝑎

3| + |𝐹𝑘
4 − 𝐹𝑎

4|) 

(19) 

 

Step 3: Calculate the similarity between each expert’s 

fuzzy evaluation result 𝐹𝑘 and the arithmetic mean of 

all experts’ fuzzy evaluation results 𝐹𝑎 

𝑆(𝐹𝑘 , 𝐹𝑎) = 1 −
𝑑(𝐹𝑘 , 𝐹𝑎)

∑ 𝑑(𝐹𝑘 , 𝐹𝑎)𝑛
𝑘=1

 (20) 

 

Step 4: Calculate the weight of each expert 
𝜔(𝐹𝑘 , 𝐹𝑎) =

𝑆(𝐹𝑘 , 𝐹𝑎)

∑ 𝑆(𝐹𝑘 , 𝐹𝑎)𝑛
𝑘=1

 (21) 

 

Step 5: Integrate the expert fuzzy evaluation results 𝐹 = (𝐹1, 𝐹2, 𝐹3, 𝐹4) 

= ∑ 𝜔𝑘𝐹𝑘

𝑛

𝑘=1
= ∑ (

𝑆(𝐹𝑘 , 𝐹𝑎)

∑ 𝑆(𝐹𝑘 , 𝐹𝑎)𝑛
𝑘=1

𝐹𝑘)
𝑛

𝑘=1
 

(22) 

 

Step 6: Calculate the defuzzification value 
𝑃 =

1

4
(𝐹1, 𝐹2, 𝐹3, 𝐹4) (23) 

 

3.4 Optimization methods in Phase 3 313 

Phase 3 aims to optimize fire resilience of the MSS. Considering the impacts of influential factors’ time-314 

varying characteristics on fire resilience, the DBN model is established through setting probability 315 

distribution functions for the state transition of different influential factors. Then, sensitivity analysis is 316 

conducted to formulate static optimization strategies based on diagnostic perspective, and critical importance 317 

(CI) analysis is applied to formulate dynamic optimization strategies based on predicted perspective. The 318 

optimization methods in Phase 3 incorporate the degradation and strength characteristics of various 319 

influential factors of fire resilience over time into the optimization strategy, which makes BN model be 320 

automatically updated to determine optimization priorities from both static and dynamic aspects. 321 

3.4.1 DBN model to capture system state transitions 322 

In the practice of resilience management through the BN model, decision makers have frequently ignored 323 

the change characteristics of system component states over time, which makes optimization strategies not 324 
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appropriate for long-term system operations [67]. Therefore, to incorporate influential factors’ state change 325 

rules into the decisions on optimization priorities, the Markov law is introduced into the traditional BN model 326 

to generate the DBN model with the following two assumptions [68]: 327 

(1) The BN structure does not change over time, and the conditional probability remains the same; 328 

(2) The probability distribution of the next state depends only on the current state and not on the sequence 329 

of events that preceded it. 330 

A DBN model has two types of arcs, including normal arcs linking nodes at the same time slice and 331 

temporal arcs linking nodes at different time slices. The joint probability of 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑖 , … , 𝑋𝑛) at 332 

the 𝑡 + ∆𝑡 time slice can be mathematically expressed as Equation (24): 333 

 𝑃(𝑋𝑡+∆𝑡) = ∏ 𝑃(𝑋𝑖
𝑡+∆𝑡|𝑋𝑖

𝑡 , 𝑃𝑎(𝑋𝑖
𝑡), 𝑃𝑎(𝑋𝑖

𝑡+∆𝑡))
𝑛

𝑖=1
 (24) 

where 𝑃𝑎(𝑋𝑖
𝑡) and 𝑃𝑎(𝑋𝑖

𝑡+∆𝑡) represent parent nodes of 𝑋𝑖
𝑡 and 𝑋𝑖

𝑡+∆𝑡. 334 

3.4.2 Sensitivity and CI analysis to determine optimization priorities 335 

As an in-depth diagnosis method, sensitivity analysis is an indispensable step to quantify the impact of each 336 

influential factor on the target nodes in the BN model [69]. In this research, considering that the purpose of 337 

the sensitivity analysis is to determine the static optimization priorities of root nodes based on their current 338 

rank of nonfailure probabilities, hence, the prior probability of each root node is increased step by step with 339 

a 5% step length from the original probability to 100%, which simulates decision makers gradually increasing 340 

optimization inputs for this root node until it does not fail completely, and then the increments of four fire 341 

resilience capacities are observed as optimization effects. Furthermore, the optimization effects of four 342 

resilience capacity increments on fire resilience are also observed. Finally, the optimization priority of 343 

influential factors and resilience capacities can be ranked by calculating the average sensitivity coefficient 344 

(i.e., the percentage change in the nonfailure probability of the root note to the percentage change in the target 345 

nodes [70]). 346 
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Compared with static sensitivity coefficient, CI indicator, which is defined as the ratio of the change 347 

rate of the root node’s failure probability to the leaf node’s failure probability, can better grasp the dynamic 348 

influence of root node failure on leaf node failure from both perspectives of sensitivity and the failure 349 

probability itself. Meanwhile, CI reflects that optimizing a root node with a high failure probability is easier 350 

than a root node with a low failure probability [71, 72]. In this research, the rank changes in the CI of the 351 

influential factors are observed to determine dynamic changes in the optimization priorities, helping 352 

operational staff predict the contribution changes of different influential factors on fire resilience over 353 

increasing operating life, and make scientific decisions on breakdown maintenance and safety investments. 354 

The CI of the root node i at a specific time slice is calculated as Equation (25) [73]: 355 

 𝐼𝑖 =
𝑃(𝑋𝑖 = 1) ∗ (𝑃(𝑅 = 1|𝑋𝑖 = 1) − 𝑃(𝑅 = 1|𝑋𝑖 = 0))

𝑃(𝑅 = 1)
 (25) 

where 𝑋𝑖 is a binary variable which represents the state of root node i (i.e., 1 and 0 represents failure state 356 

and reliable state, respectively); 𝑅 represents the state of leaf node; 𝑃(𝑅 = 1| ·) represents the conditional 357 

probability of the leaf node failure; 𝑃(𝑅 = 1) represents the failure probability of the leaf node. 358 

4 Case study results and discussion 359 

4.1 Study case and data collection 360 

Nanjing MSS has served about 3.5 million passengers daily since it opened in 2005, and it has real historical 361 

experience in coping with fire accidents. Therefore, Nanjing MSS was chosen as a real-life case application 362 

to demonstrate how the developed D-TOSE model, BN model, and DBN model assist operational staff and 363 

decision makers to identify, assess and optimize MSS fire resilience at city level, which can provide valuable 364 

references to other cities’ MSS facing challenges of fire resilience management. Given that the number of 365 

participants who can make professional judgment on influential factors’ importance and causality with 366 

sufficient relevant knowledge and practical experience is minimal, most case studies tend to choose 5-30 367 

experienced experts to guarantee the validity of the questionnaire data [74-76]. 368 
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To collect data for screening critical influential factors of fire resilience, a one-day facilitated workshop 369 

with Questionnaire survey A (see Section Supplementary material) that investigates the contribution degree 370 

of each influential factor was conducted in Nanjing with 51 participants, including front-line operational staff 371 

for station operation, line operation, and company management from the Nanjing metro operating company. 372 

And the selection of participants is strictly abided by the criteria suggested by Witkin and Altschuld to 373 

guarantee that all participants have a deep understanding of metro station fire in the operation phase [77]. 374 

The workshop started with a detailed presentation to introduce the preliminary influential factors and their 375 

corresponding failure modes identified through the D-TOSE model, then followed by a panel discussion for 376 

the 51 participants to supplement and revise the factors. Immediately after the facilitated workshop, the 377 

updated Questionnaire A was conducted among 51 participants independently to rate 𝑝, 𝑐, and 𝛼 of each 378 

influential factor on a scale of 1 to 5 points. Among the 51 returned questionnaires, 15 invalid questionnaires 379 

were removed due to the participants’ insufficient rating duration and lack of working experience (i.e., less 380 

than 3-year working periods). Finally, 36 valid questionnaires were collected, with a response rate of 70.6%. 381 

To collect data for calculating the NPTs, an online Questionnaire survey B (see Section Supplementary 382 

material) was conducted to investigate the causality among the influential factors on a scale of 1 to 7 points. 383 

In this survey, the participant quality is more important than its quantity because the accuracy of causality 384 

judgment depends heavily on the participants’ experience [78]. Hence, 25 out of 36 valid respondents to the 385 

Questionnaire A were selected to conduct Questionnaire B due to their post-fire treatment experience in 386 

Nanjing MSS. Participants need to individually judge the causality for each pair of nodes in the BN model. 387 

Finally, 7 invalid questionnaires were removed due to participants’ carelessness for failing one attention test 388 

item set in Questionnaire B. Thus, 18 valid questionnaires were collected for further analysis, with a response 389 

rate of 72%. And the demographic information of valid respondents to the Questionnaire A and Questionnaire 390 

B is listed in Table 3. 391 
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Table 3 Demographic information of valid respondents to the Questionnaire A and Questionnaire B 392 

Item Type 

Questionnaire A Questionnaire B 

Number Percent Number Percent 

Work experience 3 to 5 years 6 16.7% 2 11.1% 

5 to 10 years 23 63.9% 9 50.0% 

over 10 years 7 19.4% 7 38.9% 

Educational level Bachelor degree 19 52.8% 10 55.6% 

Master degree 14 38.9% 6 33.3% 

Doctoral degree 3 8.3% 2 11.1% 

Job level Station operation 21 58.3% 13 72.2% 

Line operation 10 27.8% 2 11.1% 

Company management 5 13.9% 3 16.7% 

Department Inspection and maintenance team 10 27.8% 4 22.2% 

Technical service team 5 13.9% 2 11.1% 

Emergency response team 9 25.0% 5 27.8% 

Analysis and tasking team 2 5.6% 2 11.1% 

Training and development team 3 8.3% 1 5.6% 

Customer service team 2 5.6% 1 5.6% 

Senior management team 5 13.9% 3 16.7% 

Post-fire treatment 

experience 

Involvement 25 69.4% 18 100.0% 

Non-involvement 11 30.6% 0 0.0% 

4.2 Scene-based identification of fire resilience for Nanjing MSS 393 

4.2.1 Preliminary influential factors 394 

Based on the D-TOSE model, a total of 36 influential factors of fire resilience for Nanjing MSS are 395 

preliminarily identified from national codes issued by the Chinese Ministry of Transport, enterprise standards 396 

issued by the Chinese metro operating companies, and metro fire accidents reported by official news. 397 

Furthermore, 3 out of 36 influential factors were supplemented by participants through the facilitated 398 

workshop, i.e., AbsT3, ResO6, and AdaO3. All influential factors’ relationship with the 4R attributes of system 399 

resilience, and specific failure modes are illustrated in Table 4. 400 
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Table 4 Preliminary influential factors of fire resilience for the Nanjing MSS 401 

Influential factor’s dimension, relationship with 4Rs, coding, and contents Failure mode (i.e., consequences of influential factor failure on fire scene) 

Prevention scene for absorption capacity 

T (R1) AbsT1 Passenger and baggage security screening system Undetected flammable or explosive items carried by passengers 

AbsT2 Integrated supervision and control system Lack of real-time monitoring and warning of fire hazards 

AbsT3 Cigarette extinguisher Passengers’ unextinguished cigarette butts thrown at stations 

O (R1) AbsO1 Inspection and maintenance of electrical equipment Power failures such as short circuits of aging equipment 

AbsO2 Fire safety and emergency training Lack of fire prevention awareness and emergency management abilities 

AbsO3 Effectiveness of security screening operations  Failure of checking all carry-on belongings of passengers due to negligence and careless attitudes 

AbsO4 Compliance of hot-work procedures Operation errors or missing protective measures in regular hot-work procedures 

AbsO5 Inspection and maintenance of ancillary equipment Disordered placement of wires and circuits in the auxiliary equipment room resulting in power failures 

AbsO6 Stability control of the environment Unsafe environmental conditions such as humidity, high temperatures, and extensive dust inside the station 

S (R1) AbsS1 Passengers’ safety knowledge and behaviors Passengers smoking in the station, throwing unextinguished cigarette butts, carrying flammable or explosive 

items, etc. 

AbsS2 Safe operation of underground commercial areas Power usage, decoration materials, and firefighting equipment in the underground commercial areas without 

meeting fire safety requirements 

E (R2, R3) AbsE1 Resource allocation for fire prevention Fire occurrence due to irrational allocation of investments, equipment, and manpower in fire prevention 

Response scene for resistance capacity 

T (R2, R4) ResT1 Fire alarm system Delays in fire emergency response and rescue caused by the fire alarm system failing to warn in time 

ResT2 Emergency safety equipment Disordered emergency evacuation due to the failure or wrong use of emergency equipment such as the 

emergency lighting, broadcast system, and power supply 

ResT3 Current evacuation design of the metro station Low evacuation efficiency and high-frequency stampede accidents due to chaotic spatial layout or the 

imbalance between metro station’s evacuation capacity and the current passenger flow 

ResT4 Current fire-resistance design of the metro station Rapid fire spread and severe equipment and facilities damage due to fire-resistance design defects 

ResT5 Firefighting equipment Inefficient and slow extinguishing due to insufficient supply or failure of firefighting equipment such as dry 

powder fire extinguishers 

ResT6 Smoke ventilation and extraction system Rapid rise in temperature, low visibility, and high concentration of poisonous gas in the metro station due to 

failures of smoke ventilation and extraction systems 

O (R4) ResO1 Regular security detection of fire Delays in fire emergency response and rescue due to negligence of fire detection 

ResO2 Current fire emergency plan Confusion at fire emergency site due to the absence of an effective fire emergency plan as a guide 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 23 / 49 

ResO3 Coordination of the emergency response team Inefficient firefighting and evacuation due to confused labor division, unclear emergency procedures, and 

information delay in emergency response and rescue 

ResO4 Skills of staff in the emergency response team Wrong or inefficient emergency work due to lack of skills and experience in emergency responses 

ResO5 Implementation of emergency response actions Aggravation of the fire consequences caused by missing or wrong critical emergency measures or procedures 

such as opening automatic ticket checkers and turning on emergency lighting 

ResO6 Fire and rescue service access Delays in firefighting and medical teams’ rescue caused by the blockage of fire and rescue routes 

S (R4) ResS1 Escape skills of the passengers Increasing evacuation difficulty and casualties caused by passengers lacking basic escape knowledge and good 

psychological qualities 

ResS2 Urban fire remote monitoring and networking system Delays in external rescue and medical team receiving signals to arrive at the metro station and extinguish fires 

E (R2, R3) ResE1 Resource allocation for firefighting Prolonged burning fires due to irrational allocation of investments, equipment, and manpower in firefighting 

Restoration scene for recovery capacity 

O (R2, R4) RecO1 Coordination of repair and rescue teams Secondary and derivative accidents, the extension of the recovery time, and the increase in the recovery cost 

due to inefficient cooperation of various on-site repair and rescue teams 

RecO2 Supplementary supply of emergency equipment Insufficient new emergency equipment to replace the broken equipment after fires 

RecO3 Implementation of operation recovery actions Delays in fire recovery progress due to missing or wrong critical recovery measures and procedures such as 

arranging treatment for the injured, organizing resuming operational order and public services 

E (R2, R3) RecE1 Resource allocation for fire recovery Prolonged interruption due to irrational allocation of investments, equipment, and manpower in fire recovery 

Learning scene for adaptation capacity 

O (R3) AdaO1 Fire cause investigation Recurring fires due to the lack of detailed investigation into root causes of previous fires 

AdaO2 Summary of lessons learned Lack of experience and lessons resulting in the staff involved are still not clear about their responsibilities 

AdaO3 Implementation and supervision of the rectification Failure of rectification and supervision measures for the hazards triggering previous fires 

AdaO4 Archive of fire history data Missing historical data due to careless data collection and report 

E (R2, R3) AdaE1 Resource allocation for rectification Recurring fires due to irrational allocation of investments, equipment, and manpower in rectification 

Notes: T, O, S, and E refer to technical, organizational, social, and economic aspects, respectively; R1, R2, R3, and R4 represent robustness, redundancy, resourcefulness, and rapidity, respectively. 402 
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4.2.2 Critical influential factors 403 

Based on the scores of three attributes 𝑝 , 𝑐 , and 𝛼  of each influential factor from the 36 valid 404 

questionnaires collected, all preliminary influential factors’ degree of importance, differentiation, and 405 

contribution were obtained as shown in Fig. 2. Then, 5 influential factors including AbsT2, AbsO6, AbsS2, 406 

RecO2, and AdaO4 were deleted according to the thresholds of importance, differentiation, and contribution 407 

calculated 𝐼0 = 2 , 𝐷0 = 0.0271, 𝐶0 = 0.0118 based on Section 3.2.3. Notably, these five influential 408 

factors were deleted due to low degree of differentiation, which indicates that these influential factors have 409 

been implemented with unified standardized operation by the whole Nanjing MSS. Finally, 31 critical 410 

influential factors applicable to Nanjing MSS were obtained. 411 

 412 

Fig.2. Degrees of importance, differentiation, and contribution of all preliminary influential factors 413 

4.3 Causality-based assessment of fire resilience for Nanjing MSS 414 

4.3.1 Constructed BN model 415 

A BN model with 44 nodes integrating assessment indicators, fire scene status variables, and influential 416 

factors is constructed as shown in Fig. 3, and each node has two state parameters: fail (State 1) and not fail 417 

(State 0). 418 
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Fig. 3. BN model for assessing fire resilience of Nanjing MSS 420 

All the participants agreed with the nodes and their causality established in this model. Meanwhile, all 421 

items rated by participants in the Questionnaire B reached the required level (inter-rater agreement (𝑅𝑤𝑔) >422 

0.7) proposed by James et al. [79], which confirms the validity of constructed BN structure. The meanings 423 

of various nodes in the BN model are as follows: 424 

(1) 4 nodes represent fire resilience capacities, including absorption capacity (Abs), resistance capacity (Res), 425 

recovery capacity (Rec), and adaptation capacity (Ada); and the leaf node represents fire resilience (R); 426 

(2) 8 auxiliary nodes represent fire scene status variables, including unsafe behavior prevention status (SV1), 427 

unsafe equipment and facilities prevention status (SV2), fire detection status (SV3), fire evacuation status 428 

(SV4), fire extinguishment status (SV5), equipment and facilities reuse status (SV6), operation service 429 
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restart status (SV7) and operation organization feedback status (SV8); 430 

(3) 31 nodes represent influential factors of fire resilience. Among them, 27 nodes representing technical, 431 

organizational, and social influential factors determine fire scene status, then, fire scene status further 432 

affect fire resilience capacities; the remaining 4 nodes representing economic influential factors directly 433 

affect fire resilience capacities because the number of investments, equipment, and manpower allocated 434 

in the fire lifecycle can be directly applied to speed up fire resilience formation [80]. 435 

4.3.2 Forward propagation analysis 436 

The process of the BN model to disseminate the effect of evidence through the network is defined as 437 

“propagation analysis” [81]. Propagation analysis helps to anticipate what kind of uncertainties might affect 438 

the underlying model. Forward propagation is a typical cause-to-effect analysis, where the probability of the 439 

target variable is inferred based on the probability of the cause variables and the propagation of the causality 440 

among them. According to the forward propagation analysis results shown in Fig. 4, the non-failure 441 

probabilities of Nanjing MSS's absorption capacity, resistance capacity, recovery capacity, adaptation 442 

capacity, and fire resilience are 75.5%, 70%, 76.9%, 84.8%, and 68.8%, respectively. 443 

From the perspective of resilience capacities, it is evident that the Nanjing MSS has weak capacities to 444 

absorb and resist fires. AbsS1 (passengers’ safety knowledge and behavior), AbsO3 (effectiveness of security 445 

screening operations), and ResO4 (skills of staff on the emergency response team) frequently fail with failure 446 

probabilities at 43.74%, 30.49%, and 27.07%, respectively, which rank in the top three among all the 447 

influential factors. From the perspective of the influential factor type, technical and economic factors are 448 

more reliable than organizational and social factors. Hence, it is necessary to strengthen operational staff 449 

skills through training and improve passenger safety awareness through regular broadcasts of safety 450 

knowledge in carriages [82]. 451 
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4.3.3 Backward propagation analysis 452 

Backward propagation is a typical effect-to-cause analysis to observe the leaf node, and the marginal 453 

probabilities of unobserved parent nodes are calculated by propagating the impact of the observed child node 454 

through the BN model in a backward fashion. In this research, the leaf node (i.e., fire resilience) is set to a 455 

complete failure state (i.e., 𝑃(𝑅 = 1) = 1) to identify the influential factors with high posterior probabilities 456 

in the BN model. According to the posterior probability results shown in Fig. 5, when the fire resilience of 457 

Nanjing MSS fails completely, the resilience capacity failure risks gradually increase in the order of 458 

adaptation, recovery, absorption, and resistance capacity, and their failure probabilities are 27.5%, 37.3%, 459 

42.8%, and 50.6%, respectively. Moreover, the critical cause chain with the biggest contribution to the fire 460 

resilience failure was revealed, namely, “escape skills of passengers (ResS1) → fire evacuation status (SV4) 461 

→ resistance capacity (Res) → fire resilience (R)”. Hence, the resistance capacity was the most important 462 

guarantee for fire resilience formation in the Nanjing MSS, and the timely evacuation of passengers is the 463 

most effective measure to reduce casualties. Considering that fire evacuation efficiency is greatly affected by 464 

escape skills of passengers, it is also necessary to strengthen the publicity of fire knowledge and arrange 465 

professional command staff to help passengers evacuate quickly, which can avoid the cascading failure of 466 

the critical cause chain.467 
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Fig. 4. Forward propagation analysis for assessing fire resilience Fig. 5. Backward propagation analysis for revealing the critical cause chain 

468 
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4.4 Time-based optimization strategies of fire resilience for Nanjing MSS 469 

4.4.1 Static optimization strategies 470 

To maximize fire resilience with limited resources, it is necessary to observe the effects of optimizing 471 

different root nodes on four resilience capacities [83]. The optimization priorities of rooted influential factors 472 

and resilience capacities can be ranked according to average sensitivity coefficients as shown in Fig. 6. 473 

 474 

Fig. 6. Sensitivity coefficients of the 28 root nodes and 4 resilience capacities 475 

The simulation results show that the four resilience capacities’ optimization priorities are the absorption, 476 

resistance, adaptation, and recovery capacities in descending order of the sensitivity to fire resilience, which 477 

reflects that Nanjing MSS has great optimization potential of effective fire prevention and rapid fire 478 

prevention response to fires. In addition, fire resilience capacities are the most sensitive to economic 479 

influential factors (AbsE1, ResE1, RecE1, AdaE1), which proves that increasing the investment, equipment 480 

and manpower in fire lifecycle scenes can directly reduce the consequences of fires because sufficient 481 

resource input can provide essential economic support to optimize technical, organizational and social 482 

influential factors [84]. Except for optimizing the resource allocation, the remaining static optimization 483 

strategies are as follows: 484 

(1) The absorption capacity is the most sensitive to AbsO1, which indicates that strengthening real-time 485 
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monitoring, regular inspection and maintenance of mechanical and electrical devices can optimize fire 486 

prevention effect to the maximum extent; 487 

(2) The resistance capacity is the most sensitive to ResT5, which indicates that adjusting and updating 488 

firefighting equipment types, quantities, and installation locations according to the lessons from 489 

historical fires and the latest fire safety requirements can maximize the efficiency of fire spread control; 490 

(3) The recovery capacity is the most sensitive to RecO1, which indicates that the timely arrival and efficient 491 

coordination of repair and rescue teams can avoid secondary accidents to the greatest extent and 492 

guarantee the rapid reopening of the MSS to the public; 493 

(4) The sensitivity coefficient of the root node affecting adaptation capacity tends to be zero, indicating that 494 

the MSS has mature fire accident investigation and rectification process with little room for improvement. 495 

4.4.2 Dynamic optimization strategies 496 

Dynamic optimization strategies are proposed based on DBN simulation results considering system 497 

component states' change characteristics over time. The DBN model with three kinds of temporal arcs linking 498 

each root node from the current time slice 𝑡 to the next time slice 𝑡 + ∆𝑡 is shown in Fig. 7, in which 28 499 

root nodes of fire resilience are divided into the following three categories [85]:  500 

(1) Equipment and facility factors, including MSS internal equipment and facilities (all the technical root 501 

nodes: AbsT1, AbsT3, ResT1, ResT2, ResT3, ResT4, ResT5, and ResT6) and external equipment (ResS2); 502 

(2) Individual behavior factors, including operational staff’s regulated behaviors for daily work and 503 

emergency work (AbsO1, AbsO3, AbsO4, AbsO5, ResO1, ResO6, RecO1, and RecO3) and passengers’ 504 

behavior under current knowledge and skills (AbsS1 and ResS1);  505 

(3) Management experience factors, including operational organization’s emergency management 506 

capabilities (AbsO2, ResO2, ResO3, ResO4, and AdaO1) and resource investment decision-making 507 

capabilities (AbsE1, ResE1, RecE1, and AdaE1). 508 
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Fig. 7. DBN model for optimizing fire resilience of Nanjing MSS510 
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In addition, considering that each root node’s state transition in the DBN model complies with the 511 

hidden Markov model [86], the transition probabilities of three types of root nodes are defined as shown in 512 

Table 5 based on the following assumptions: 513 

(1) For equipment and facility factors, all equipment and facilities work in one of two states: normal 514 

operation (State 0) or failure (State 1). As the MSS’s operating life increases, equipment and facilities 515 

will age to a certain extent so that operational staff has to maintain all equipment and facilities regularly. 516 

It is assumed that the equipment and facility factor’s failure rate due to aging is 𝜆1, and the repair rate 517 

due to regular maintenance is 𝜇. Moreover, the failure rate and repair rate of the equipment and facilities 518 

are assumed to meet the exponential distribution [87]. 519 

(2) For individual behavior factors, all individuals execute tasks or instructions in one of two states: 520 

normative (State 0) or non-normative (State 1). Considering that human errors due to non-normative 521 

behavior belong to random events, it is assumed that such a random event is a counting process, in which 522 

the average number of human errors per unit time is 𝜆2 meeting the Poisson distribution [88]. 523 

(3) For management experience factors, all teams or organizations invoke management experience to make 524 

decisions, implement plans, and allocate resources in one of two states: rational (State 0) or irrational 525 

(State 1). Considering that as the establishment years of operational organizations increase, the 526 

management experience will become increasingly affluent through accumulation; the experience 527 

enhancement coefficient 𝑐  is introduced to reflect the improvement in the decision-making level, 528 

implementation ability, and resource allocation rationality due to the enhancement of operational 529 

management experiences [89].530 
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Table 5. Three types of root nodes’ state transition probabilities 531 

𝑡 𝑡 + ∆𝑡 

Equipment and facility factors: AbsT1, AbsT3, ResT1, ResT2, ResT3, ResT4, ResT5, ResT6, ResS2 

 State 0 State 1 

State 0 𝑒−𝜆1∆𝑡 1 − 𝑒−𝜆1∆𝑡 

State 1 1 − 𝑒−𝜇∆𝑡 𝑒−𝜇∆𝑡 

Individual behavior factors: AbsO1, AbsO3, AbsO4, AbsO5, AbsS1, ResO1, ResO6, ResS1, RecO1, RecO3 

 State 0 State 1 

State 0 1 − 𝜆2𝑒
−𝜆2 𝜆2𝑒

−𝜆2 

State 1 𝑒−𝜆2 1 − 𝑒−𝜆2 

Management experience factors: AbsO2, AbsE1, ResO2, ResO3, ResO4, ResE1, RecE1, AdaO1, AdaE1 

 State 0 State 1 

State 0 1 0 

State 1 c 1 − 𝑐 

Notes: (1) ∆𝑡 = 1  represents 1 year; (2) 𝜆1 = 12/365  represents that equipment and facilities will 532 

breakdown 12 times a year, 𝜇 = 0.1; (3) 𝜆2 = 12 represents that human errors will occur 12 times a year; 533 

(4) 𝑐 = 0.1 represents that management experience enhancement can reduce the related influential factors’ 534 

failure probability by 10%. 535 

In this case study, the original static BN model is transferred ten times to form the DBN model with ten 536 

time slices, and then the CI of 28 root nodes from 𝑇0 to 𝑇10 is obtained. Based on the numerical range of 537 

the CI, the optimization priorities are determined as follows: when 𝐼𝑖 > 0.03, the corresponding root nodes 538 

are optimized with the first priority; when 0.015 < 𝐼𝑖 ≤ 0.03, the corresponding root nodes are optimized 539 

with the second priority; and when 𝐼𝑖 ≤ 0.03, the corresponding root nodes are optimized with the third 540 

priority. According to the CI results of all the root nodes during ten time slices, the CI of root nodes ranked 541 

11th to 28th at 𝑇0 is lower than 0.015 in all the time slices. Therefore, the root nodes with the top 10 CI at 𝑇0 542 

are selected for dynamic CI analysis to help decision makers prioritize the critical influential factors at 543 

different stages of MSS operation. The dynamic optimization priorities of the critical influential factors from 544 

𝑇0 to 𝑇10 are shown in Fig. 8. 545 
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 546 

Fig. 8. Dynamic optimization priorities of the critical influential factors for Nanjing MSS 547 

From the perspective of the influential factor type, the top 10 root nodes’ dynamic optimization priorities 548 

are as follows: 549 

(1) The CI of management experience factors (AbsE1, ResE1, RecE1, and AdaE1) decreases significantly. 550 

(2) The CI of individual behavior factors (ResS1, ResO6, AbsS1, RecO1, and AbsO1) increases slightly. 551 

(3) The CI of equipment and facility factor (ResT5) increases significantly. 552 

The above predicted trend is consistent with the actual operation practice of Nanjing MSS, which 553 

reflects that as the operating life increases, the resource allocation becomes increasingly scientific with little 554 

room for further optimization; the failure probability of firefighting equipment and facilities increases due to 555 

aging; and human error occurrence increases, but human errors still belong to small probability events 556 

compared with technical failure. 557 

From the perspective of the execution time of optimization strategies, the top 10 root nodes’ dynamic 558 
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optimization strategies are as follows: 559 

(1) In the present moment 𝑇0, it is necessary to increase the resource allocation strength (AbsE1, ResE1, 560 

RecE1, and AdaE1) with the first priority, facilitating rapidly building the absorption, resistance, recovery, 561 

and adaptation capacities. Then, less controllable passengers’ escape skills (ResS1) and easily 562 

overlooked fire and rescue service access (ResO6) should be optimized with the second priority. 563 

(2) In the short term, from 𝑇1 to 𝑇3, only the optimization priority of rectification resource allocation 564 

(AdaE1) is degraded, mainly because rectification resources involve fewer investment items than the 565 

prevention, resistance, and recovery resources and are easier to optimize within the short term. 566 

(3) In the long term since 𝑇4, the optimization priorities of all resource allocations are degraded, which 567 

indicates that the resource allocation level of an MSS will be optimized to a relatively ideal state without 568 

further improvement potential after many years of MSS operation. Meanwhile, long-term optimization 569 

priorities should transfer to passengers’ escape skills (ResS1) that need to be continuously cultivated by 570 

playing various videos of escape skills in various media channels of the MSS, and firefighting equipment 571 

(ResT5) that needs to be regularly maintained by establishing strict supervision process for monitoring, 572 

maintaining and updating firefighting equipment. 573 

5 Conclusions and future work 574 

5.1 Theoretical contribution 575 

This study establishes an integrated framework for managing MSS fire resilience, which enriches the 576 

connotation of system resilience through disaster scene analysis and provides resilience management 577 

strategies with dynamic and long-term insights through combining BN and DBN. More importantly, this 578 

systemic integration of identification, assessment, and optimization methods can be extended to various 579 

infrastructures at asset, city, and national levels. 580 

(1) For scene-based identification methods: system resilience theory, disaster scene analysis, and TOSE 581 
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approach are combined to establish a standardized D-TOSE model for identifying resilience capacities 582 

and their influential factors in the prevention, response, restoration, and learning scenes, which facilitates 583 

understanding the manageable scope of fire resilience and then screen out critical influential factors 584 

tailored to different cities. 585 

(2) For capacity-based assessment methods: the formation and emergence process of fire resilience are 586 

simulated through the BN model linking resilience capacities with influential factors and fire scene status. 587 

This BN model reveals that the emergence level of influential factors affects fire scene status; then, fire 588 

scene status further affects resilience capacity formation; finally, the formation level of resilience 589 

capacities determines the fire resilience value. Moreover, considering that the BN model involves 590 

numerous conditional probability calculations and ignores the high uncertainty of influential factors, the 591 

Leaky Noisy-OR model is introduced to simplify the conditional probability calculation process and 592 

optimize the causality inference structure. 593 

(3) For time-based optimization methods: from diagnostic perspective, static optimization strategies 594 

conforming to the MSS’s current operation situation are formulated based on the sensitivity analysis; 595 

from predictive perspective, dynamic optimization strategies for short-term and long-term operations are 596 

formulated based on the DBN model with critical importance analysis, which addresses the impact of 597 

influential factors’ time-varying characteristics on MSS fire resilience. The time-based optimization 598 

method delivers static and dynamic optimization strategies by ranking the optimization priorities of 599 

various influential factors, which helps decision makers flexibly adjust optimization strategies at 600 

different stages of operating life to maximize fire resilience. 601 

5.2 Practical implication 602 

The developed integrated framework is a practical management tool for the MSS’s operational staff and 603 

decision makers. It can also flexibly adapt to the operation conditions of different metro stations in different 604 
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cities by collecting questionnaire data on the influential factors’ importance and causalities with fire resilience. 605 

Based on the case study of Nanjing MSS, the following results can be applied in practice. 606 

(1) For identification results: 36 preliminary influential factors were identified based on the D-TOSE model, 607 

and among them, 3 influential factors including “cigarette extinguishers”, “fire and rescue service 608 

access”, and “implementation and supervision of the rectification” were supplemented in the facilitated 609 

workshop. However, 5 influential factors including “integrated supervision and control system”, 610 

“stability control of the environment”, “safe operation of underground commercial areas”, 611 

“supplementary supply of emergency equipment”, and “archive of fire history data” were deleted because 612 

their implementation status differed little in the current operational practice. Finally, 31 influential factors 613 

were selected to assess fire resilience of Nanjing MSS. 614 

(2) For assessment results: the nonfailure probabilities of absorption capacity, resistance capacity, recovery 615 

capacity, adaptation capacity, and fire resilience were 75.5%, 70%, 76.9%, 84.8%, and 68.8%, 616 

respectively. These results reflect that the low fire resilience of Nanjing MSS resulted from poor system 617 

performance in the prevention and response scenes, where “passengers’ safety knowledge and behaviors”, 618 

“effectiveness of security screening operations”, and “skills of staff on the emergency response team” 619 

had high failure probabilities. Meanwhile, the critical cause chain, “escape skills of passengers → fire 620 

evacuation status → resistance capacity → fire resilience” contributed the most to the failure of fire 621 

resilience. The above assessment results not only quantify Nanjing MSS’s fire resilience value but also 622 

help operational staff confirm influential factors with the highest failure probabilities and the bottleneck 623 

existing in the fire resilience emergence process. 624 

(3) For optimization results: from the perspective of resilience capacities, the optimization priority ranking 625 

is absorption, resistance, adaptation, and recovery capacities; from the perspective of influential factors, 626 

in addition to increasing resource allocation strength in four fire scenes, assigning the optimization 627 
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priorities to the remaining top 10 influential factors for the sensitivity to fire resilience, namely, 628 

“firefighting equipment” from the technical dimension, “fire and rescue service access”, “coordination 629 

of repairs and rescue teams”, and “inspection and maintenance of electrical equipment” from the 630 

organizational dimension, and “escape skills of passengers” and “passengers’ safety knowledge and 631 

behaviors” from the social dimension, can maximize the optimization effect. More importantly, 632 

incorporating dynamic impacts of aging equipment and facilities, human error randomness, and the 633 

reinforcement of operational management experience, dynamic optimization priorities applicable to the 634 

long-term Nanjing MSS operation conditions should transfer from resource allocation to passengers’ 635 

escape skills that need to be continuously cultivated and firefighting equipment that needs to be 636 

maintained regularly. 637 

5.3 Limitations and future work 638 

This study aims to improve the understanding and optimization effect of fire resilience for operational staff 639 

and decision makers of the MSS, but the proposed integrated framework still has the following limitations: 640 

(1) For identification methods: the interactions between the MSS and other systems (such as tunnel systems 641 

and bus systems) are not discussed in the influential factor analysis because fire resilience is regarded as 642 

the inherent capacity of an MSS. 643 

(2) For assessment methods: considering that the causalities among resilience capacities, influential factors, 644 

and scene status are quantified by questionnaires data which is dependent on the accuracy of the fire 645 

handling experience invoked by experts, the states of all nodes in the BN model have to be set with 646 

binary parameters to match the experts’ memory characteristics of historical fire disasters. 647 

(3) For optimization methods: the existing probability distribution functions are used to simulate the state 648 

transition process of the equipment and facility factors, individual behavior factors, and management 649 

experience factors, which does not accurately describe a specific MSS’s status change rules of various 650 
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influential factors as the operating life increases. 651 

Our future research will focus on addressing the above limitations. First, influential factors representing 652 

the interdependencies of other systems interacting with an MSS will be introduced into the BN model. Second, 653 

one pilot study will be conducted by installing sensors and cameras in a specific metro station to accumulate 654 

operation and maintenance data of equipment and facilities as well as behavior data of operational staff and 655 

passengers. Finally, each influential factor's practical state distribution and transition rules will be fitted based 656 

on real-time data for precise assessment and efficient optimization of fire resilience, realizing automatic 657 

decision-making and resilient operation. 658 
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