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1 Introduction

This section briefly describes the physical background, introduces themost important
mathematical definitions, and provides a summary of the main results.

1.1 Physical background

Over the last decades the so-called entanglement entropy (EE) has become a use-
ful single-number quantifier of non-classical correlations between subsystems of a
composite quantum-mechanical system [1, 14]. For example, one may imagine a
macroscopically large system consisting of a huge number of particles in the state of
thermal equilibrium at some (absolute) temperature T ≥ 0. All the particles inside
some bounded spatial region Λ may then be considered to constitute one subsystem
and the particles outside of Λ another one. The corresponding EE, more precisely
the spatially bipartite thermal EE, now quantifies, to some extent, how strongly these
two subsystems are correlated “across the interface” between Λ and its complement.

In the simplified situation where the particles do not dynamically interact with
each other, such as in the ideal gas or, slightlymore general, in the free gas, all possible
correlations are entirely due to either the Bose–Einstein or the (Pauli–)Fermi–Dirac
statistics by the assumed indistinguishability of the (point-like and spinless) parti-
cles.The present study is devoted to the latter case. Accordingly, we consider the
free Fermi gas [10, 3] infinitely extended in the Euclidean space Rd of an arbitrary
dimension d ≥ 1. Although the fermions neither interact with each other nor with
any externally applied field, their EE remains a complicated function of the region
Λ ⊂ Rd which is difficult to study by analytical methods. In general one can only
hope for estimates and asymptotic results for its (physically interesting) growth when
Λ is replaced with αΛwhere the scaling parameter α > 0 becomes large. A decisive
progress towards the understanding of the growth of the EE at T = 0, in other words
of the ground-state EE, is due to Gioev and Klich [11, 12]. They observed, remark-
ably enough, that this growth is related to a conjecture of Harold Widom [28, 31]
about the quasi-classical Szegő-type asymptotics for traces of (smooth) functions of
multi-dimensional versions of truncated Wiener–Hopf operators with discontinuous
symbols. After Widom’s conjecture had been proved by one of us [21, 23] the gate
stood open to confirm [16] the precise (leading) large-scale growth conjectured in
[12] and, in addition, to establish its extension from the von Neumann EE to the
whole one-parameter family of (quantum) Rényi EE’s.

In the present study we only consider the case of a true thermal state characterized
by a strictly positive temperature T > 0 (and a chemical potential µ ∈ R or,
equivalently, a spatial particle-number density ρ > 0). On the one hand, the case
T > 0 is simpler, because the Fermi function E 7→ 1/

(
1 + exp(E/T )

)
on the real

line R is smooth in contrast to its zero-temperature limit, the Heaviside unit-step
function. On the other hand, a reasonable definition of the EE (see (1.8)) is more
complicated, because the thermal state is not a pure state. Nevertheless, due to the
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presence of the “smoothing parameter” T > 0 the leading asymptotic growth of
the EE as α → ∞, is determined by an asymptotic coefficient again going back to
Widom [27, 30], see also [19, 8]. We introduce it in (2.4) and denote it by B.

From a physical point of view it is interesting to study the scaling asymptotics
α→∞ as the temperature T varies. The emerging double asymptotics of the EE and
of the coefficientB are not simple to analyze and hard to guess by heuristic arguments.
For low temperatures, that is, small T > 0, this analysis has been performed in [18]
for d = 1 and in [25] for d ≥ 2 yielding a result consistent with that for T = 0 in
[12, 16].

At high temperatures quantum effects become weaker and the free Fermi gas
should exhibit properties of the corresponding classical free gas without correlations
(for fixed particle density). In particular, the ideal Fermi gas [10, 3] should behave like
the Maxwell–Boltzmann gas, the time-honored “germ cell” of statistical mechanics.
Hence the main purpose of our study is to determine the precise two-parameter
asymptotics of the EE as α→∞ and T →∞.

1.2 Pseudo-differential operators and entropies

At first we introduce the translation invariant pseudo-differential operator1

(
Opα(a)u

)
(x) :=

αd

(2π)d

∫∫
Rd×Rd

eiαξ·(x−y)a(ξ)u(y) dydξ , x ∈ Rd . (1.1)

Here the smooth real-valued function a is its underlying symbol, u is an arbitrary
complex-valued Schwartz function, and α > 0 is the scaling parameter. Informally,
one may think of Opα(a) as the function a(−(i/α)∇) of the gradient operator
∇ := (∂x1

, ∂x2
, . . . , ∂xd), that is, the vector of partial derivatives with respect to

x = (x1, x2, . . . , xd).
The main role will be played by the truncated Wiener–Hopf operator

Wα(a, Λ) := χΛOpα(a)χΛ ,

where χΛ is the (multiplication operator corresponding to the) indicator function of
the “truncating” open set Λ ⊂ Rd. Clearly, for a bounded symbol a the operators
Opα(a) and Wα(a;Λ) are bounded on the Hilbert space L2(Rd). Given a test
function f : R → R, we are interested in the operator f

(
Wα(a, Λ)

)
and in the

operator difference

Dα(a, Λ; f) := χΛf
(
Wα(a, Λ)

)
χΛ −Wα(f ◦ a, Λ) , (1.2)

where the symbol f◦a is the composition of f anda defined by (f◦a)(ξ) := f
(
a(ξ)

)
.

1 In [18, 26] the right-hand side of (1.1) is mistakenly multiplied by (2π)d/2 .
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For a bounded Λ and suitable a and f both operators on the right-hand side of
(1.2) belong individually to the trace class. Remarkably, its difference does so even
for a large class of unbounded Λ, see Condition 2.1 and Proposition 2.6 below. Our
analysis of the scaling behavior of the entropies will be based on the asymptotics for
the trace of Dα(a, Λ; f) as α→∞. The reciprocal parameter α−1 can be naturally
viewed as the Planck constant, and hence the limit α → ∞ can be regarded as the
quasi-classical limit. By a straightforward change of variables the operator (1.2) is
seen to be unitarily equivalent to D1(a, αΛ; f), so that α → ∞ can be interpreted
also as a spatial large-scale limit. In our large-scale applications it is either α itself
or a certain combination of α with the temperature T that will become large.

The macroscopic thermal equilibrium state of the free Fermi gas depends, first of
all, on its (classical) single-particle Hamiltonian h : Rd → R, sometimes also called
the energy-momentum (dispersion) relation. The minimal conditions that we impose
on h are as follows. We assume that h is smooth in the sense that h ∈ C∞(Rd) and
that it satisfies the bounds∣∣∂nξ h(ξ)∣∣ . |ξ|2m for all n ∈ Nd

0 , and h(ξ) & |ξ|2m for |ξ| & 1 , (1.3)

for some constant m > 0. Here N0 := N ∪ {0} and the notations ∂nξ , . , & are
defined at the end of the Introduction.

For given h, temperature T > 0, and chemical potential µ ∈ R we introduce the
Fermi symbol as the composition of the Fermi function and the “shifted”Hamiltonian
h− µ by

aT,µ(ξ) :=
1

1 + exp
(h(ξ)−µ

T

) , ξ ∈ Rd . (1.4)

Next, we introduce the (bounded and continuous) entropy function ηγ : R →
[0, ln(2)] for each Rényi index γ > 0. For γ 6= 1 it is defined by

ηγ(t) :=

{
1

1−γ ln
[
tγ + (1− t)γ

]
if t ∈ (0, 1),

0 if t 6∈ (0, 1),
(1.5)

and for γ = 1, the von Neumann case, it is given by the point-wise limit

η1(t) := lim
γ→1

ηγ(t) =

{
−t ln(t)− (1− t) ln(1− t) if t ∈ (0, 1),

0 if t 6∈ (0, 1).
(1.6)

Finally, we define the (Rényi) local entropy associated with a bounded region Λ as
the trace

Sγ(T, µ;Λ) := tr ηγ
(
W1(aT,µ, Λ)

)
≥ 0, (1.7)

and the (Rényi) entanglement entropy (EE) for the bipartition Rd = Λ ∪ (Rd \ Λ)
as

Hγ(T, µ;Λ) := trD1(aT,µ, Λ; ηγ) + trD1(aT,µ,R
d \ Λ; ηγ) . (1.8)
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This definition is motivated by the notion of mutual information, see e.g. [14, below
Formula (188)]. The conditions (1.3) guarantee that these entropies are well-defined,
see the paragraph after Proposition 2.6. In formula (1.8) either Λ or its complement
R
d \ Λ is assumed to be bounded, see Section 2 for details. It is useful to observe,

as in (26) of [17], that for bounded Λ the local entropy (1.7) can be expressed as

Sγ(T, µ;Λ) = sγ(T, µ) |Λ|+ trD1(aT,µ, Λ; ηγ) . (1.9)

Here |Λ| is the volume (Lebesgue measure) of the bounded region Λ and

sγ(T, µ) :=
trW1(ηγ ◦ aT,µ, Λ)

|Λ|
= (2π)−d

∫
Rd

ηγ
(
aT,µ(ξ)

)
dξ . (1.10)

is the spatial entropy density.

1.3 Summary of the main results

Our first result is of non-asymptotic nature. In Section 3 we explore concavity
properties of the function ηγ . First we notice that ηγ is concave on the unit interval
[0, 1] for all γ ∈ (0, 2], so that for a bounded Λ one can use a Jensen-type trace
inequality to establish a lower bound for the local entropy (1.7) in terms of the
entropy density (1.10), see Theorem 3.3. For the EE (1.8) this argument is not
applicable, but we observe that ηγ for γ ∈ (0, 1] is even operator concave so that
the Davis operator inequality (3.4) implies the positivity of the EE for γ ∈ (0, 1]
(including the most important case γ = 1 corresponding to the von Neumann EE),
see Theorem 3.5. We do not know whether the EE is positive for γ ∈ (1, 2]. Later
on however, we will see that the EE for γ ∈ (1, 2] is positive at least for large T , see
Remark 2 in Subsection 6.3.

The other main objective of the present paper is to study the asymptotics of
Hγ(T, µ;αΛ) as α → ∞ and T → ∞. For this, we have to impose conditions on
the Hamiltonian h stronger than those in (1.3), see Subsection 5.1. In particular, h
should be asymptotically homogeneous as |ξ| → ∞. We distinguish between two
high-temperature cases: the case of a constant chemical potential µ ∈ R and the
case where the mean particle density

%(T, µ) :=
1

(2π)d

∫
Rd

aT,µ(ξ) dξ , (1.11)

being finite by (1.3), is (asymptotically) fixed to a prescribed constant ρ > 0, as T
becomes large. The latter case implies that the chemical potential effectively becomes
a function of T (and ρ) in the sense that

%(T, µρ(T ))→ ρ as T →∞ . (1.12)
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This corresponds to the quasi-classical limit of the free Fermi gas at fixed particle
density. Indeed, since the so-called integrated density of states

N (T ) := (2π)−d
∫
h(ξ)<T

dξ (1.13)

of the single-particle Hamiltonian h, evaluated at T , tends to infinity as T →∞, one
has ρ/N (T ) → 0. In physical terms, the spatial density of the number of particles
is much smaller than that of the number of occupiable single-particle states with
(eigen)energies below T , when T is sufficiently large. Therefore the restrictions by
the Pauli exclusion principle are negligible.

Our results on the high-temperature scaling asymptotics are presented in Theorem
6.1 (for constant µ) and in Theorem 6.3 (for constant ρ). We postpone the discussion
of these theorems until Section 6. Here we only mention two important facts: a) in
both regimes the asymptotics still hold if T → ∞ and the scaling parameter α is
fixed, e.g. α = 1, b) the EE with Rényi index γ > 2 becomes negative for fixed
particle density at high temperature; the same happens for fixed chemical potential
at large γ. This suggests that values γ > 2 are only of limited physical interest.

Themain asymptotic orders asα→∞ and T →∞ have been presented (without
precise pre-factors and proofs) in [17], in the cases of fixed µ and fixed ρ, for γ = 1
and all d ≥ 1. Here we provide complete proofs for all γ > 0, but concentrate on the
multi-dimensional case d ≥ 2. The case d = 1 is not considered for lack of space.

The paper is organized as follows. In Section 2 we present the basic information
such as our conditions on the truncating region and the definition of the asymptotic
coefficient B. Section 2 also contains the results, borrowed mostly from [26], that
are used throughout the paper. In Section 3 we study the concavity of the function ηγ
and investigate the positivity of the corresponding entanglement entropy. In Section
4 we derive elementary trace-class bounds for some abstract bounded (self-adjoint)
operators. These bounds are based on estimates for quasi-commutators of the form
f(A)J −Jf(B)with bounded J , bounded self-adjointA,B, and suitable functions
f . By using such bounds in Section 5 we obtain the large α and T asymptotics
for the trace of the operator Dα(pT , Λ; f) with a symbol pT modeling the Fermi
symbol (1.4) in the fixed µ or fixed ρ regimes. In Section 6 we collect our results
on the high-temperature asymptotics for the EE (1.8), see Theorems 6.1 and 6.3.
Their proofs are directly based on the formulas obtained in Section 5. In Subsection
6.3 we also comment on the asymptotics of the local entropy (1.7). The Appendix
contains a short calculation clarifying the structure of the Fermi symbol when the
mean particle density is fixed as T →∞.

Throughout the paper we adopt the following standard notations. For two positive
numbers (or functions)X andY , possibly depending on parameters,wewriteX . Y
(or Y & X) ifX ≤ CY with some constantC ≥ 0 independent of those parameters.
If X . Y and X & Y , then we write X � Y . To avoid confusion we often make
explicit comments on the nature of the (implicit) constants in the bounds. Formultiple
partial derivatives we use the notation ∂nξ := ∂n1

ξ1
∂n2

ξ2
· · · ∂ndξd for a vector ξ ∈ Rd

and a multi-index n = (n1, n2, . . . , nd) ∈ Nd
0 of order |n| := n1 + n2 + · · ·+ nd.
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By B(z, R) we mean the open ball inRd with center z ∈ Rd and radius R > 0. We
also use the weight function 〈v〉 :=

√
1 + |v|2 for any vector v ∈ Rd.

The notation Sp, p ∈ (0,∞), is used for the Schatten–von Neumann classes
Sp, p ∈ (0,∞), of compact operators on a complex separable Hilbert space H,
see e.g. [6, Chapter 11]. By definition, the operator A belongs to Sp if ‖A‖p :=
(tr(A∗A)p/2)1/p <∞. The functional ‖ · ‖p on Sp is a norm if p ≥ 1 and a quasi-
norm if p < 1. Apart from Section 4, where the spaceH is arbitrary, we assume that
H = L2(Rd).

We dedicate this paper to thememory ofHaroldWidom (1932–2021).His ground-
breaking results on the asymptotic expansions for traces of pseudo-differential op-
erators have been highly influential to many researchers including us. Without his
results the present contribution and our previous ones to the study of fermionic
entanglement entropy would have been unthinkable. We are deeply indebted to
Widom’s ingenious insights. All three of us had the honor and pleasure of meeting
him at a memorable workshop in March 2017 hosted by the American Institute of
Mathematics (AIM) in San Jose, California, USA.

2 Basic definitions and basic facts

In this section we collect some definitions and facts from [26] concerning the trace
of (1.2) and its asymptotic evaluation. They are instrumental in the proof of our main
asymptotic results corresponding to a = aT,µ and f = ηγ . Throughout the rest of
the paper we always assume d ≥ 2 for the spatial dimension.

2.1 Conditions on the truncating region Λ

We call an open and connected set Λ ⊂ R
d a Lipschitz domain, if it can be

described locally as the epigraph of a Lipschitz function, see [22] for details. We
call Λ a Lipschitz region, if it is a union of finitely many Lipschitz domains such that
their closures are pair-wise disjoint. From now on we always assume that Λ satisfies
the following condition. Nevertheless, for convenience we will often mention it.

Condition 2.1 1. The set Λ ⊂ Rd is a Lipschitz region, and either Λ or Rd \ Λ is
bounded.

2. The boundary (surface) ∂Λ is piece-wise C1-smooth.

We note that Λ andRd \ Λ satisfy Condition 2.1 simultaneously.
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2.2 The asymptotic coefficient B and its basic properties

We assume the real-valued symbol to be smooth in the sense that a ∈ C∞(Rd) and
satisfies the decay condition∣∣∂nξ a(ξ)∣∣ . 〈ξ〉−β with some constant β > d , (2.1)

for all ξ ∈ Rd and all n ∈ Nd
0 with some implicit constants that may depend on n.

Before stating the leading asymptotic formula for trDα(a, Λ; f) as α →∞, we
need to introduce the corresponding asymptotic coefficient. For a function f : R→
R and any u, v ∈ R we consider the integral

U(u, v; f) :=

∫ 1

0

f
(
tu+ (1− t)v

)
−
[
tf(u) + (1− t)f(v)

]
t(1− t)

dt . (2.2)

It is well-defined for any Hölder continuous f . And it is positive if f is also concave.
For every unit vector e ∈ Rd we define a functional of the symbol a by the

principal-value integral:

A(a, e; f) := 1

8π2
lim
ε↓0

∫
Rd

∫
|t|>ε

U
(
a(ξ), a(ξ + te); f

)
t2

dtdξ . (2.3)

Finally we define the main asymptotic coefficient by

B(a, ∂Λ; f) := 1

(2π)d−1

∫
∂Λ

A(a,nx; f)σ(dx) , (2.4)

where nx is the (unit outward) normal vector at the point x ∈ ∂Λ and σ is the
canonical (d− 1)-dimensional area measure on the boundary surface ∂Λ.

For functions f ∈ C2(R) obeying the condition (2.1) the integral (2.3) exists in
the usual sense and is bounded uniformly in e. Hence (2.4) is also finite, see [26,
Section 3]. However, in order to accommodate the entropy function ηγ we allow for
test functions being non-smooth in the sense of the following condition.

Condition 2.2 The function f is in C2(R\T )∩C(R), where T := {t1, t2, . . . , tN}
is a finite set of its singular points. Moreover, for some δ > 0 and all R > 0 the
function f = f (0) and its first two derivatives satisfy the bounds∣∣f (k)(t)

∣∣ .∑
u∈T
|t− u|δ−k , k = 0, 1, 2 , (2.5)

for all t ∈ [−R,R] \ T with an implicit constant that may depend on R.

Under this condition B(a, ∂Λ; f) is finite:

Proposition 2.3 [26, Corollary 3.4] Let the set Λ satisfy Condition 2.1 and let the
function f satisfy Condition 2.2 with δ > 0. Finally, let the symbol a satisfy (2.1), but
this time with some β > d max{1, 1/δ}. Then the coefficient B(a, ∂Λ; f) is finite.
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We point out a few simple properties of this coefficient.

Remark 2.4 1. Since A(a, e; f) = A(a,−e; f), the coefficients B for the regions
Λ andRd \ Λ coincide.

2. By definition (2.2), the coefficient (2.4) is positive for concave functions f and
negative for convex ones. For example, the function ηγ with γ ∈ (0, 2] is concave
on the interval [0, 1] (see Lemma 3.1) so that B(a, ∂Λ; ηγ) ≥ 0 for symbols a
taking values in [0, 1], like the Fermi symbol aT,µ.

3. If the symbol a is spherically symmetric (for example, by spherical symmetry of
the Hamiltonian h in aT,µ), then the surface area |∂Λ| factors out of B(a, ∂Λ; f).
Nevertheless, the remaining integral is still hard to compute for general a and f .
See, however, Remark 2 in Subsection 6.3 for Gaussian a and quadratic f .

A less obvious property of the coefficient B(a, ∂Λ; f) is its continuity in the
symbol a. Since it is important for our purposes, we state a corresponding result.
In the next and subsequent assertions we consider a family of symbols {a0, aλ},
λ > 0, all of them satisfying (2.1) with some β > d max{1, δ−1}, uniformly in λ,
and point-wise convergence aλ → a0 as λ ↓ 0.

Proposition 2.5 [26, Corollary 3.5] Let the set Λ and the function f be as in Propo-
sition 2.3. Then

B(aλ, ∂Λ; f)→ B(a0, ∂Λ; f) as λ ↓ 0 . (2.6)

2.3 The asymptotics for trDα(a,Λ; f) as α→∞

Now we are in a position to state the required asymptotic facts.

Proposition 2.6 [26, Theorem 2.3] Let the set Λ, the function f , and the symbol a
be as in Proposition 2.3. Then the operator Dα(a, Λ; f) is of trace class and

lim
α→∞

α1−d trDα(a, Λ; f) = B(a, ∂Λ; f) .

This limit is uniform in the class of symbols a that satisfy (2.1) with the same implicit
constants.

Proposition 2.6 ensures the existence of the entropies (1.7) and (1.8). In fact,
assume that Λ satisfies Condition 2.1 and that the Hamiltonian h in the Fermi
symbol aT,µ of (1.4) is as specified in (1.3). Then aT,µ satisfies (2.1) for all T > 0
and µ ∈ R. Moreover, the function ηγ satisfies Condition 2.2 for all γ > 0 with
arbitrary δ < min{1, γ} and the set T = {0, 1}. Thus, due to Proposition 2.6, the
operators D1(aT,µ, Λ; ηγ) and D1(aT,µ,R

d \ Λ; ηγ) are of trace class, so that the
entanglement entropy (1.8) is finite. If we additionally assume that Λ is bounded,
then by (1.9) also the local entropy (1.7) is finite.
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Proposition 2.6 was also used in [26] to determine the scaling asymptotics for the
entanglement entropy at fixed temperature. To study the high-temperature regime,
we need the continuity of this result in the symbol a:

Corollary 2.7 Let the set Λ and the function f be as in Proposition 2.3. Then

lim α1−d trDα(aλ, Λ; f) = B(a0, ∂Λ; f) , (2.7)

where the limits α→∞ and λ→ 0 are taken simultaneously.

Proof According to Proposition 2.6,

lim
α→∞

α1−d trDα(aλ, Λ; f) = B(aλ, ∂Λ; f) ,

uniformly in λ. Together with (2.6) this leads to (2.7). �

The next two propositions describe the asymptotics for “small” symbols.

Proposition 2.8 [26, Theorem 2.5] Let the set Λ satisfy Condition 2.1 and let f0 be
the function defined by f0(t) := M |t|δ with real constants M and δ > 0. Finally,
suppose that the function f ∈ C2(R \ {0}) satisfies the conditions

lim
t→0
|t|k−δ d

k

dtk
(
f(t)− f0(t)

)
= 0 , k = 0, 1, 2 . (2.8)

Then

lim
α→∞λ→0

(
α1−dλ−δ trDα(λaλ, Λ; f)

)
= B(a0, ∂Λ; f0) .

In the next proposition we consider instead of the homogeneous function f0 the
function η defined by

η(t) := −t ln(|t|) , t ∈ R , (2.9)

which still leads to an asymptotically homogeneous behavior.

Proposition 2.9 [26, Theorem 2.6] Let the set Λ satisfy Condition 2.1 and suppose
that the function f ∈ C2(R \ {0}) satisfies the conditions

lim
t→0
|t|k−1 dk

dtk
(
f(t)− η(t)

)
= 0 , k = 0, 1, 2 . (2.10)

Then

lim
α→∞λ→0

(
α1−dλ−1 trDα(λaλ, Λ; f)

)
= B(a0, ∂Λ; η) .

We note that under any of the assumptions (2.8) and (2.10) the function f satisfies
Condition 2.2 with T = {0}. For assumption (2.8) (resp. (2.10) ) the condition (2.5)
holds with the constant δ from (2.8) (resp. arbitrary δ < 1).
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The asymptotic results listed above are useful, but, as they stand, not directly
applicable for our purposes. This is because our symbol of main interest, the Fermi
symbol (1.4), depends on the two parameters T and µ, and in the course of our
analysis in Section 5 we naturally come across certain “effective” symbols that
do not satisfy conditions like (2.1) uniformly in these parameters. However, we
overcome this problem by considering a wider class of symbols, called multi-scale
symbols in [18, Section 3].

2.4 Multi-scale symbols

We consider symbols a ∈ C∞(Rd) for which there exist two continuous functions
τ and v onRd with τ > 0, v > 0, v bounded, and such that∣∣∂kξa(ξ)∣∣ . τ(ξ)−|k|v(ξ) , k ∈ Nd

0, ξ ∈ Rd , (2.11)

with implicit constants independent of ξ. It is natural to call τ the scale (function)
and v the amplitude (function). The scale τ is assumed to be globally Lipschitz
continuous with Lipschitz constant L < 1, that is,

|τ(ξ)− τ(ξ′)| ≤ L|ξ − ξ′| , for all ξ, ξ′ ∈ Rd . (2.12)

Under this assumption the amplitude v is assumed to satisfy the bounds

v(ξ′) � v(ξ) , for all ξ′ ∈ B
(
ξ, τ(ξ)

)
, (2.13)

with implicit constants independent of ξ and ξ′. It is useful to think of τ and v
as (functional) parameters. They, in turn, may depend on other parameters, e.g.
numerical ones like α and T . For example, the results in the previous subsections
are based on the assumption that a satisfies (2.1), which translates into (2.11) with
τ(ξ) = 1 and v(ξ) = 〈ξ〉−β . On the other hand, in Section 5we encounter amplitudes
and scales depending on the temperature T .

Actually, we will only need the following result involving multi-scale symbols. As
mentioned in the Introduction, ‖ · ‖q denotes the (quasi-)norm in the Schatten-von
Neumann class Sq of compact operators. Below the underlying Hilbert space is
H = L2(Rd).

Proposition 2.10 [18, Lemma 3.4] Let the set Λ satisfy Condition 2.1 and let the
functions τ and v be as described above. Suppose that the symbol a satisfies (2.11)
and that the conditions

ατinf & 1 , τinf := inf
ξ∈Rd

τ(ξ) > 0 , (2.14)

hold. Then for any q ∈ (0, 1] we have
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‖[Opα(a), χΛ]‖qq . αd−1

∫
Rd

v(ξ)q

τ(ξ)
dξ . (2.15)

This bound is uniform in the symbols a satisfying (2.11) with the same implicit
constants.

We will make use of (2.15) in Section 5 by combining it with bounds obtained in
Section 4.

3 The positivity of certain entanglement entropies

Given the organization of the paper, this section is a kind of interlude. It turns out
that the property given by its title is present if the underlying entropy function ηγ , as
defined in (1.5) and (1.6), is operator concave (when restricted from the real lineR to
its unit interval [0, 1]). Since this and related results are not of asymptotic character,
we assume in this section α = 1 for the scaling parameter.

3.1 Concavity of the entropy function ηγ for γ ≤ 2

We prove the property given by the title of this subsection and then establish conse-
quences for the corresponding local and entanglement entropies. The next lemma is
elementary.

Lemma 3.1 The entropy function ηγ is concave on the interval [0, 1] if γ ∈ (0, 2],
and neither convave nor convex if γ > 2.

Proof By the continuity of ηγ on [0, 1] its enough to check the sign of the second
derivative of ηγ on the open interval (0, 1). For γ = 1 we simply have η′′1 (t) =
−t−1(1− t)−1 < 0 so that η1 is concave. For γ 6= 1 we use the formula

η′′γ (t)[t
γ + (1− t)γ

]2
= −γ[t(1− t)]γ−2 − γ

1− γ
[tγ−1 − (1− t)γ−1]2 . (3.1)

For γ < 1 the right-hand side is obviously negative for all t ∈ (0, 1). For γ = 2 it
simply equals −8t(1− t) < 0. If γ > 2, then (3.1) implies η′′γ (0) = γ/(γ − 1) > 0
and η′′γ (1/2) = −4γ < 0. Hence ηγ is neither concave nor convex.

It remains to consider the case γ ∈ (1, 2). We rewrite (3.1) as

η′′γ (t)[t
γ + (1− t)γ ]2 = − γ

γ − 1
gγ−1(t) ,

gp(t) := p[t(1− t)]p−1 − [tp − (1− t)p]2 ,

for any p := γ − 1 ∈ (0, 1). Our claim gp(t) ≥ 0 is equivalent to
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[t(1− t)]1−p[t2p + (1− t)2p] ≤ 2t(1− t) + p . (3.2)

Using the abbreviation

M := 2p−1 max
t∈[0,1]

[t2p + (1− t)2p] =

{
2−p if 0 < p < 1/2

2p−1 if 1/2 ≤ p < 1
,

the (elementary example of the) Young inequality

ab ≤ au

u
+
bv

v
, a, b ≥ 0 , u, v > 1 ,

1

u
+

1

v
= 1

for a = [t(1− t)]1−p , u = (1− p)−1 and b = 1, v = p−1 yields

[(t(1− t)]1−p[t2p + (1− t)2p] ≤M [2t(1− t)]1−p

≤M(1− p)[2t(1− t)] +Mp ≤ 2t(1− t) + p .

Since this coincides with (3.2), the proof is complete. �

The just established concavity is useful to find a lower bound on the local entropy
(1.7) with γ ≤ 2, which is greater than the obvious bound 0. To this end, we recall
a formulation [15, Theorem A.1] of an abstract Jensen-type trace inequality dating
back to Berezin [5].

Proposition 3.2 Let H be a complex separable Hilbert space, P an orthogonal
projection on H, A a self-adjoint operator on H with its spectrum contained in the
interval I ⊂ R, and f : I → R a concave function. Finally, let∆ := Pf(PAP )P−
Pf(A)P be of trace class and PAP compact. Then tr∆ ≥ 0. If ∆ and PAP are of
trace class, than also the following trace inequality is valid:

tr(Pf(PAP )P ) ≥ tr(Pf(A)P ) .

(If 0 /∈ I , then the operator f(PAP ) is understood to act on the subspace PH).

The following result is a corollary to Proposition3.2.

Theorem 3.3 Let Λ ⊂ Rd be bounded and satisfy Condition 2.1. Assume that the
Hamiltonian h satisfies (1.3) and that γ ∈ (0, 2]. Then the local entropy (1.7) obeys
the inequality

Sγ(T, µ;Λ) ≥ sγ(T, µ)|Λ| , (3.3)

where sγ(T, µ) is the entropy density (1.10).

Proof We use Proposition 3.2 with A = Op1(aT,µ), P = χΛ, and the concave
function f = ηγ . Since 0 ≤ A ≤ 1 and PAP has %(T, µ)|Λ|, see (1.11), as its finite
trace, Proposition 3.2 is indeed applicable and yields trD1(a, Λ; ηγ) ≥ 0. By (1.9)
this entails (3.3). �
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We stress that Proposition 3.2 cannot be applied if the set Λ is unbounded,
since in this case the operator χΛOpα(aT,µ)χΛ is not necessarily compact. Thus
Theorem 3.3 cannot be used to determine the sign of the entanglement entropy (1.8).
But, fortunately, we can use the rather strong property as given by the title of the
following subsection.

3.2 Operator concavity of the entropy function ηγ for γ ≤ 1

For the general background of this genre we recommend Simon’s comprehensive
book [20]. Let H be a complex separable Hilbert space of infinite dimension and
{A,B} an arbitrary pair of bounded self-adjoint operators on H with spectra in an
interval I ⊂ R. A continuous function f : I → R is called (decreasing) operator
monotone if the (operator) inequality f(A) ≥ f(B) holds whenever A ≥ B. Like-
wise it is called operator concave if f

(
λA+ (1 − λ)B

)
≥ λf(A) + (1 − λ)f(B)

holds for all λ ∈ [0, 1]. It is called operator convex if −f is operator concave. Of
course, every operator monotone (operator concave) function is monotone (concave).
We are going to use the following standard examples, see [2]:

1. The function t 7→ tp, t ∈ [0,∞), is operator monotone and operator concave if
p ∈ (0, 1].

2. The function t 7→ ln(t), t ∈ (0,∞), is operator monotone and operator concave.
3. The function t 7→ −t ln(t), t ∈ [0,∞), is operator concave.

Any operator concave function f satisfies [9, 13] the following Davis operator
inequality for all bounded self-adjoint operators A with spectrum in I and all or-
thogonal projections P onH:

Pf
(
PAP

)
P ≥ Pf(A)P . (3.4)

If 0 /∈ I , then the operator f(PAP ) is understood to act on the subspace PH. If
0 ∈ I and f(0) = 0, then (3.4) may be shortened to f

(
PAP

)
≥ Pf(A)P .

Lemma 3.4 If γ ∈ (0, 1], then ηγ is operator concave on the interval [0, 1].

Proof It suffices to consider self-adjoint operators A and B with 0 ≤ A,B ≤ 1.
Assume first that γ < 1. The function gγ(t) := tγ + (1 − t)γ is operator concave
on [0, 1] (by example 1 above) and the logarithm is operator monotone on (0, 1]
(example 2). Thus for all λ ∈ [0, 1] we have

ηγ
(
λA+ (1− λ)B

)
=

1

1− γ
ln
[
gγ
(
λA+ (1− λ)B

)]
≥ 1

1− γ
ln
[
λgγ
(
A
)
+ (1− λ)gγ

(
B
)]
.

Now, since the logarithm is also operator concave on (0, 1] (again example 2), the
right-hand side is larger than or equal to
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1

1− γ
[
λ ln(gγ(A)) + (1− λ) ln(gγ(B))

]
= ληγ(A) + (1− λ)ηγ(B) .

Hence ηγ , for γ < 1, is operator concave on (0, 1] and, by continuity, on [0, 1]. For
γ = 1 we proceed more directly and use that g(t) := −t ln(t) is operator concave
on [0, 1] (example 3).This immediately implies that η1(t) = g(t) + g(1− t) is also
operator concave on [0, 1]. �

Now we can use the inequality (3.4) with f = ηγ (for γ ∈ (0, 1]), P = χΛ, and
A = Op1(aT,µ). Combining this with Proposition 2.6 yields the following result.

Theorem 3.5 Let Λ ⊂ R
d satisfy Condition 2.1. Assume that the Hamiltonian

h is as in (1.3) and that γ ∈ (0, 1]. Then both operators D1(aT,µ, Λ; ηγ) and
D1(aT,µ,R

d \ Λ; ηγ) are not only of trace class, but also positive. Hence the
entanglement entropy (1.8) is positive.

This method cannot be used for the EE with γ > 1 because of the following
negative result.

Theorem 3.6 If γ > 1, then ηγ is not operator concave on the interval [0, 1].

Proof For convenience, instead of ηγ we consider the function

gγ(u) := −ηγ
(
u+ 1

2

)
=

1

γ − 1
ln
[
( 1

2 − u)
γ + ( 1

2 + u)γ
]
, u ∈

[
− 1

2 ,
1
2

]
.

Our objective is to show that gγ is not operator convex on [−1/2, 1/2]. If gγ were
operator convex, then by [4, Corollary 1], gγ would be analytic on the complex plane
with cuts along the half-lines (−∞,−1/2) and (1/2,∞). Let us prove that such an
analytic continuation of gγ is impossible. To this end, let u = iy/2with y > 0. Then

1
2 ± u = 1

2

√
1 + y2 exp[±i tan−1(y)]

so that

( 1
2 − u)

γ + ( 1
2 + u)γ = 21−γ(1 + y2)γ/2 cos[γ tan−1(y)] . (3.5)

Since γ > 1, there exists a finite y0 > 0 such that γ tan−1(y0) = π/2, so that the
right-hand side of (3.5) changes sign at y = y0. This implies that the function gγ
has a branching point at u = iy0/2, and hence cannot be analytic in the whole upper
half-plane. This proves that gγ is not operator convex, as claimed. �

4 Quasi-commutator bounds

In this section we collect some bounds for the Schatten–von Neumann classes Sp,
p ∈ (0,∞), of compact operators on a complex separable Hilbert space H, see
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e.g. [6, Chapter 11]. As mentioned at the end of the Introduction, the functional
‖A‖p := (tr(A∗A)p/2)1/p, A ∈ Sp, defines a norm for p ≥ 1 and a quasi-norm for
p < 1. It satisfies the following “triangle inequality”:

‖A+B‖pp ≤ ‖A‖pp + ‖B‖pp , 0 < p ≤ 1. (4.1)

This inequality is used systematically in what follows. The main part is played by
estimates for quasi-commutators f(A)J − Jf(B) with bounded J and bounded
self-adjoint A,B. The following fact is adapted from [24, Theorem 2.4].

Proposition 4.1 Suppose that f satisfies Condition 2.2 with some δ > 0. Let A,B
be two bounded self-adjoint operators and let J be a bounded operator. Suppose
that AJ − JB ∈ Sq where q satisfies 0 < q < min{1, δ}. Then

‖f(A)J − Jf(B)‖1 . ‖J‖1−q
(
1 + ‖A‖δ−q + ‖B‖δ−q

)
‖AJ − JB‖qq , (4.2)

with a constant independent of the operators A,B, J . This constant in (4.2) may
depend on the set T in Condition 2.2, and is uniform in the functions satisfying (2.5)
with the same implicit constants.

Actually, [24, Theorem 2.4] provides bounds of the type (4.2) in arbitrary (quasi-)
normed operator ideals of compact operators and gives a more precise dependence
on the constants related to the function f . For the present paper (4.2) is sufficient.

All subsequent bounds involving the function f are uniform in f in the sense
specified in Proposition 4.1. We are going to apply Proposition 4.1 to obtain various
bounds for the operator difference D(A,P ; f) := Pf(PAP )P − Pf(A)P .

Corollary 4.2 Let the function f and the parameter q be as in Proposition 4.1. Let
A,B be bounded self-adjoint operators and let J be a bounded operator such that

[A, J ] = [B, J ] = 0 , (A−B)J = 0 . (4.3)

Then

‖D(A,P ; f)J‖1 + ‖JD(A,P ; f)‖1 . ‖[P, J ]‖qq + ‖[JA, P ]‖qq , (4.4)

and

‖D(A,P ; f)J − JD(B,P ; f)‖1 . ‖[J, P ]‖qq + ‖[J, P ]‖1 . (4.5)

The implicit constants in these bounds depend on the norms ‖A‖, ‖B‖, and ‖J‖,
but they are uniform in the operators A,B, J whose norms are bounded by the
same constants. They are also uniform in the functions f in the sense specified in
Proposition 4.1.

Proof The proof is based mainly on the bound (4.2). The assumption (4.3) consid-
erably simplifies the calculations, and we use it without further comments.

We prove (4.4) for the first term on the left-hand side only, as the second one can
be treated in the same way. We rewrite
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D(A,P ; f)J = P
(
f(PAP )PJ − PJf(A)

)
− P [f(A), PJ ] . (4.6)

Then we use (4.2) and (4.1) to estimate the first term on the right-hand side,

‖Pf(PAP )PJ − PJf(A)‖1 ≤ ‖f(PAP )PJ − PJf(A)‖1

. ‖PAPJ − PJA‖qq . ‖P (AJ − JA)P‖qq + ‖[P, J ]‖qq + ‖[JA, P ]‖qq
= ‖[P, J ]‖qq + ‖[JA, P ]‖qq .

For the second term on the right-hand side of (4.6) we also use (4.2) and (4.1):

‖P [f(A), PJ ]‖1 . ‖APJ − PJA‖qq
. ‖(AJ − JA)P‖qq + ‖[P, J ]‖qq + ‖[JA, P ]‖qq
= ‖[P, J ]‖qq + ‖[JA, P ]‖qq .

Adding up the above two bounds we get (4.4).
In order to prove (4.5) we first estimate the difference

Pf(PAP )PJ − JPf(PBP )P = P
(
f(PAP )J − Jf(PBP )

)
P

+ Pf(PAP )[P, J ]− [J, P ]f(PBP )P . (4.7)

Then we use (4.2) to estimate the first term on the right-hand side as follows

‖P
(
f(PAP )J − Jf(PBP )

)
P‖1 . ‖PAPJ − JPBP‖qq ≤ ‖[J, P ]‖qq .

To estimate the second and the third term on the right-hand side of (4.7), we notice
that ‖f(A)‖ . 1, ‖f(B)‖ . 1 uniformly in the operators A,B and in the function
f . Consequently,

‖Pf(PAP )[P, J ]− [J, P ]f(PBP )P‖1 ≤ 2‖[J, P ]‖1 ‖f‖L∞ . ‖[J, P ]‖1 .

This ensures (4.5) for (4.7).
Finally we estimate the trace norm of the operator

Pf(A)PJ − JPf(B)P = P
(
f(A)J − Jf(B)

)
P

+ Pf(A)[P, J ]− [J, P ]f(B)P .

In view of (4.3), the first term on the right-hand side vanishes, and hence

‖Pf(A)PJ − JPf(B)P‖1 ≤ 2‖[P, J ]‖1 ‖f‖L∞ . ‖[J, P ]‖1 .

Together with the bound (4.5) for (4.7) this completes the proof of (4.5). �

Corollary 4.3 Under the assumptions of Corollary 4.2 (with 1 being the identity
operator) we have
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‖D(A,P ; f)−D(B,P ; f)‖1 . ‖[J, P ]‖qq + ‖[(1− J)A,P ]‖qq
+ ‖[(1− J)B,P ]‖qq + ‖[J, P ]‖1 . (4.8)

This bound is uniform in A,B, J and in the function f in the same sense as in
Corollary 4.2.

Proof We observe

D(A,P ; f)−D(B,P ; f) = D(A,P ; f)J − JD(B,P ; f)
+D(A,P ; f)(1− J)− (1− J)D(B,P ; f)

and apply Corollary 4.2. �

5 High-temperature analysis

The purpose of this section is to obtain the large α and large T asymptotics for the
trace of the operatorDα(pT , Λ; f) with the symbol pT of (5.5), modeling the Fermi
symbol (1.4) for large T . Throughout the section we assume that the function f
satisfies Condition 2.2 with some δ > 0 and recall that this condition is guaranteed
by assumption (2.8) as well as by assumption (2.10). We also continue to assume
that the truncating region Λ satisfies Condition 2.1. Since Λ is always fixed, we omit
it from the notation and simply write Dα(pT ; f) and B(pT ; f). Recall that d ≥ 2
throughout.

5.1 Further conditions on the single-particle Hamiltonian h

So far we assumed that the Hamiltonian h satisfies (1.3) with somem > 0. Now we
need to impose on h more restrictive conditions. We assume that h ∈ C∞(Rd) and
that for some constantm ∈ N, the following bounds hold:∣∣∂nξ h(ξ)∣∣ . 〈ξ〉2m−|n| , for all n ∈ Nd

0 and ξ ∈ Rd . (5.1)

Furthermore, we assume that there exists a function h∞ : Rd → R which is
homogeneous of degree 2m (that is, h∞(tξ) = t2mh∞(ξ) for all ξ ∈ Rd and all
t > 0), such that

|ξ|−2m
∣∣h(ξ)− h∞(ξ)

∣∣→ 0 as |ξ| → ∞ . (5.2)

The function h∞ is assumed to be non-degenerate in the sense that

2ν := min
|ξ|=1

h∞(ξ) > 0 . (5.3)
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Homogeneity and non-degeneracy of h∞ imply that h∞ ≥ 0. It is clear that the
conditions (5.1), (5.2) and (5.3) imply that h satisfies (1.3) with the constant m
from (5.1). It is important to emphasize that from now on the constant m > 0 is
supposed to be integer. This guarantees that the function h∞ belongs to C∞(Rd)
which enables application of the results in Subsection 2.3 to the limiting symbols
(1 + eh∞)−1 and e−h∞ featured in Section 6.

5.2 Modeling the Fermi symbol

Given two positive continuous functions T 7→ φT ≥ 0 and T 7→ ωT > 0 on the
temperature half-line [1,∞) with the properties

φT → φ∞ ≥ 0 and ωT → ω∞ > 0 as T →∞ , (5.4)

we generalize the Fermi symbol aT,µ of (1.4) to the symbol pT by the definition

pT (ξ) :=
1

φT + ωT exp
(
h(ξ)/T )

) , ξ ∈ Rd . (5.5)

We also consider its “high-temperature limit” p∞ naturally defined by

p∞(ξ) :=
1

φ∞ + ω∞ exp
(
h∞(ξ)

) . (5.6)

Theorem 5.1 Let pT be the symbol defined in (5.5). Then

lim
(
αT

1
2m

)1−d
trDα(pT ; f) = B(p∞; f) , (5.7)

as αT 1/2m →∞ and T →∞.

We also consider the operator Dα(λT pT ; f) with the symbol λT pT , where
λT > 0 is, for the time being, an arbitrary continuous function of T that tends to
zero as T →∞.

Theorem 5.2 Let f0 be as in Proposition 2.8 and η be as in (2.9). Assume that
αT 1/2m →∞ and T →∞. Then the following implications hold:

1. If f ∈ C2(R \ {0}) ∩ C(R) satisfies (2.8), then

lim
(
αT

1
2m

)1−d
λ−δT trDα(λT pT ; f) = B(p∞; f0) . (5.8)

2. If f ∈ C2(R \ {0}) ∩ C(R) satisfies (2.10), then

lim
(
αT

1
2m

)1−d
λ−1
T trDα(λT pT ; f) = B(p∞; η) . (5.9)
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To prove these two theorems we compare the operator Dα for two different
symbols defined as follows. Firstly,we pick an arbitrary real-valued “cut-off” function
w ∈ C∞(Rd) with w(ξ) = 0 if |ξ| ≤ 1 and w(ξ) = 1 if |ξ| ≥ 2. Moreover, we
define two scaled versions of w by

wT (ξ) := w
(
ξT−

1
2m

)
, w̃T (ξ) := wT (ξ/2) , (5.10)

so that wT w̃T = w̃T . For a fixed number r ∈ (0, 1] we now consider the operators

A = Opα(pT ) , B = Opα(wrT pT ) , P = χΛ , J = Opα(w̃rT ) .

They fulfill (4.3) and their (uniform) norms are uniformly bounded in T . Thus we
can use Corollary 4.3 for the proof of the following “comparison lemma”:

Lemma 5.3 Assume that T & 1 and α(rT ) 1
2m & 1 for a fixed r ∈ (0, 1]. Then,

using (5.10), we have

‖Dα(pT ; f)−Dα(wrT pT ; f)‖1 . αd−1(rT )
d−1
2m , (5.11)

with an implicit constant independent of α, T , and r.

Proof Let us estimate the right-hand side of (4.8) and start with a bound for
‖[J, P ]‖q , q ≤ 1. Since [J, P ] = −[1 − J, P ], we use Proposition 2.10 with
a = 1− w̃rT . This symbol satisfies (2.11) with scale and amplitude functions

τ(ξ) = (rT )
1

2m , v(ξ) = 〈ξ(rT )− 1
2m 〉−β , ξ ∈ Rd ,

with an arbitrary β > 0. Now we assume that βq > d. The conditions (2.12) and
(2.13) are obviously satisfied, and hence Proposition 2.10 is applicable. We estimate
the integral on the right-hand side of (2.15)as follows:∫

Rd

v(ξ)q

τ(ξ)
dξ = (rT )−

1
2m

∫
Rd

〈ξ(rT )− 1
2m 〉−βq dξ . (rT )

d−1
2m .

Thus, under our assumptions on α, T , and r the condition (2.14) is satisfied, and
hence, by (2.15), we have

‖[J, P ]‖qq = ‖[Opα(a), χΛ]‖qq . αd−1(rT )
d−1
2m .

Estimating ‖[(1−J)A,P ]‖q and ‖[(1−J)B,P ]‖q is somewhat trickier. For the first
commutator we are going to use Proposition 2.10 with the symbol a = (1−w̃rT )pT .
At first we estimate the derivatives of eh(ξ)/T for |ξ| ≤ 4(rT )

1
2m using (5.1):∣∣∂kξ e

h(ξ)
T

∣∣ . 〈ξ〉−|k|eh(ξ)T . 〈ξ〉−|k| , k ∈ Nd
0 .

Furthermore,
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|k|
2mχ

{|ξ|≤4(rT )
1

2m }
(ξ) . 〈ξ〉−|k| χ

{|ξ|≤4(rT )
1

2m }
(ξ) .

Therefore, we obtain from (5.5) that∣∣∂kξ a(ξ)∣∣ . 〈ξ〉−|k|〈ξ(rT )− 1
2m 〉−β .

with an arbitrary β > d/q. Consequently, the symbol a satisfies (2.11) with the scale
and amplitude

τ(ξ) =
1

2
〈ξ〉 , v(ξ) = 〈ξ(rT )− 1

2m 〉−β , ξ ∈ Rd .

Again the conditions (2.12), (2.13), and (2.14) are satisfied, and we can use Propo-
sition 2.10 to produce the bound∫

Rd

v(ξ)q

τ(ξ)
dξ ≤ 2

∫
Rd

|ξ|−1〈ξ(rT )− 1
2m 〉−βq dξ . (rT )

d−1
2m .

Thus by (2.15),

‖[(1− J)A,P ]‖qq = ‖[Opα(a), χΛ]‖qq . αd−1(rT )
d−1
2m .

The bound for the commutator [(1−J)B,P ] is proved in the same way. Substituting
the above bounds into the statement (4.8) of Corollary 4.3, we get the claimed
estimate (5.11). �

A useful consequence of this fact is the following continuity statement:

Corollary 5.4 With the function wr defined in (5.10) and the symbol p∞ defined in
(5.6) we have

lim
r→0
B(wrp∞; f) = B(p∞; f) . (5.12)

Proof We apply Lemma 5.3 with h = h∞, T = 1, and the constant functions
ω ≡ ω∞ and φ ≡ φ∞. Then, for αr & 1,

‖Dα(p∞; f)−Dα(wrp∞; f)‖1 . αd−1r
d−1
2m .

Therefore, ∣∣α1−d trDα(p∞; f)− α1−d trDα(wrp∞; f)
∣∣ ≤ r d−1

2m .

Now, we use Proposition 2.6 to obtain the estimate∣∣B(p∞; f)− B(wrp∞; f)
∣∣ . r d−1

2m .

This leads to (5.12), as claimed. �
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We already have a result on the continuity of the asymptotic coefficient, see
Proposition 2.5. However, this proposition is not applicable to the truncated symbol
wr pT , since its derivatives are not bounded uniformly in r > 0. This explains why
we need Corollary 5.4.

The next lemma provides the same asymptotics as in Theorems 5.1 and 5.2, but
this time forwrT pT instead of pT . We recall that λT > 0 obeys λT → 0 as T →∞.

Lemma 5.5 Assume that r ∈ (0, 1] is fixed and that αT 1
2m →∞, T →∞. Then

lim
(
αT

1
2m

)1−d
trDα(wrT pT ; f) = B(wr p∞; f) . (5.13)

If f satisfies (2.8), then

lim
(
αT

1
2m

)1−d
λ−δT trDα(λTwrT pT ; f) = B(wr p∞; f0) . (5.14)

If f satisfies (2.10), then

lim
(
αT

1
2m

)1−d
λ−1
T trDα(λTwrT pT ; f) = B(wr p∞; η) . (5.15)

Proof By a straightforward change of variables in definition (1.1), we obtain

Opα(wrT pT ) = OpL(bT ) and Dα(wrT pT ; f) = DL(bT ; f) , L := αT
1

2m ,

where for ξ ∈ Rd

bT (ξ) := wr(ξ)pT (T
1

2m ξ) .

Thanks to the condition (5.2), for all ξ 6= 0, we have as T →∞:

T−1h(T
1

2m ξ)→ h∞(ξ) and hence, by (5.4), bT (ξ)→ wr(ξ)p∞(ξ) .

Assuming that T & 1, an elementary calculation using (5.1) leads to the bounds∣∣∂nξ bT (ξ)∣∣+ ∣∣∂nξ (wr(ξ)p∞(ξ)
)∣∣ . e−ν|ξ|

2m

, n ∈ Nd
0 , ξ ∈ Rd , (5.16)

with ν > 0 from (5.3) and implicit constants depending on the number r ∈ (0, 1].
Since bT satisfies (5.16) uniformly in T & 1, we obtain by Corollary 2.7 that

lim
L→∞,T→∞

L1−dDL(bT ; f) = B(wrp∞; f) .

By the above change of variables, this leads to (5.13). Formulas (5.14) and (5.15)
follow along the same lines from Propositions 2.8 and 2.9. �

Proof (of Theorem 5.1) We begin by estimating as follows:
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d−1
2m trDα(pT ; f)− B(p∞; f)

∣∣
≤
(
αT

1
2m

)1−d‖Dα(pT ; f)−Dα(wrT pT ; f)‖1
+
∣∣(αT 1

2m

)1−d
trDα(wrT pT ; f)− B(wr p∞; f)

∣∣
+ |B(wr p∞; f)− B(p∞; f)

∣∣ .
By (5.11) and (5.13) we then obtain

lim sup
∣∣α−(d−1)T−

d−1
2m trDα(pT ; f)− B(p∞; f)

∣∣
≤ r

d−1
2m + |B(wr p∞; f)− B(p∞; f)

∣∣ ,
where the upper limit is taken as αT 1

2m → ∞, T → ∞. Taking r → 0 and using
(5.12) we arrive at (5.7). �

Proof (of Theorem 5.2) We recall that the only singular point of the function f is
t = 0. We assume that f satisfies (2.8), so that for all t 6= 0,

|f (k)(t)| . |t|δ−k, k = 0, 1, 2 . (5.17)

Consequently, the function f̃T (t) := λ−δT f(λT t), t ∈ R, satisfies the same inequal-
ities with the same constants. Now we can apply the argument in the previous proof
to the operator

Dα(pT ; f̃T ) = λ−δT Dα(λT pT ; f) .

More precisely, we estimate as follows∣∣α−(d−1)T−
d−1
2m λ−δT trDα(λT pT ; f)− B(p∞; f0)

∣∣
≤
(
αT

1
2m

)1−d∥∥Dα(pT ; f̃T )−Dα(wrT pT ; f̃T )
∥∥

1

+
∣∣(αT 1

2m

)1−d
λ−δT trDα(λTwrT pT ; f)− B(wr p∞; f0)

∣∣
+ |B(wr p∞; f0)− B(p∞; f0)

∣∣ . (5.18)

By (5.11) and (5.14) we then obtain

lim sup
∣∣α−(d−1)T−

d−1
2m λ−δT trDα(λT pT ; f)− B(p∞; f0)

∣∣
≤ r

d−1
2m + |B(wr p∞; f0)− B(p∞; f0)

∣∣ ,
where lim sup is taken as αT 1

2m →∞, T →∞. Taking r → 0 and using (5.12) we
obtain (5.8).

Now we assume that f satisfies (2.10). We use (5.18) with δ = 1 and f0 replaced
by η. Then
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d−1
2m λ−1

T trDα(λT pT ; f)− B(p∞; η)
∣∣

≤
(
αT

1
2m

)1−d∥∥Dα(pT ; f̃T )−Dα(wrT pT ; f̃T )
∥∥

1

+
∣∣(αT 1

2m

)1−d
λ−1
T trDα(λT wrT pT ; f)− B(wr p∞; η)

∣∣
+ |B(wr p∞; η)− B(p∞; η)

∣∣ .
As before, the last term on the right-hand side tends to zero due to (5.12). The second
term vanishes as αT 1

2m →∞, T →∞ due to (5.15). To estimate the first term we
represent f = η + g, so that g satisfies (5.17) with δ = 1. Therefore,

Dα(pT ; f̃T )−Dα(wrT pT ; f̃T ) =
[
Dα(pT ; η̃T )−Dα(wrT pT ; η̃T )

]
+
[
Dα(pT ; g̃T )−Dα(wrT pT ; g̃T )

]
,

where η̃T (t) := λ−1
T η(λT t) and g̃T (t) := λ−1

T g(λT t). As in the previous cal-
culation, the second term is estimated with the help of (5.11) by r

d−1
2m . Since

η̃T (t) = η(t) − t ln(λT ) and the operator difference (1.2) vanishes for linear func-
tions f , we have

Dα(pT ; η̃T )−Dα(wrT pT ; η̃T ) = Dα(pT ; η)−Dα(wrT pT ; η) .

The function η from (2.9) satisfies (5.17) for all δ < 1, and hence by (5.11) the above
difference is again estimated by r d−1

2m . This entails (5.9) and the proof of Theorem
5.2 is complete. �

6 Main results on the high-temperature asymptotics

In this section we adapt Theorems 5.1 and 5.2 to two different asymptotic regimes
of the entanglement entropy (1.8), when the temperature becomes large. This is
straightforward for the (first) regime of a fixed chemical potential µ, since we work
from the outset within the grand-canonical formalism [3, 7] for an indefinite number
of particles. For the (second) regime of a fixed particle density ρ it is slightly more
involved, but physically often more interesting. Both results will be discussed in
some detail in Subsection 6.3.

6.1 Case of a fixed chemical potential µ

Since the Fermi symbol aT,µ of (1.4) equals pT of (5.5) with φT = 1 and ωT =
exp(−µ/T ), the limit symbol in this case is obviously p∞ = (1 + eh∞)−1. For the
function f we take ηγ which satisfies Condition 2.2 with T = {0, 1} and an arbitrary
δ < min{1, γ}. Thus, by combining definition (1.8), Remark 2.4(1), and Theorem
5.1 we obtain:
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Theorem 6.1 Let the truncating region Λ satisfy Condition 2.1. Then we have,

lim
(
αT

1
2m
)1−d

Hγ(T, µ;αΛ) = 2B
(
(1 + eh∞)−1, ∂Λ; ηγ

)
(6.1)

for any fixed µ ∈ R, as αT 1
2m →∞ and T →∞.

6.2 Case of a fixed particle density ρ

In this case we have to find a function T 7→ µρ(T ) satisfying (1.12) for a fixed
constant ρ > 0. According to the Appendix we have for any such function

exp
(
− µρ(T )/T

)
= λ−1

T

(
1 + o(1)

)
as T →∞ , (6.2)

with the function T 7→ λT given explicitly by

λT := ρT−
d

2m /κ where κ := (2π)−d
∫
Rd

exp(−h∞(ξ)) dξ . (6.3)

This implies for the Fermi symbol at fixed ρ the formula

aT,µρ(T ) = λT pT , (6.4)

where pT is given by (5.5) with

φT = λT and ωT = λT exp
(
− µρ(T )/T

)
. (6.5)

By (6.2) and (6.3) we clearly have φT → 0 and ωT → 1 as T →∞. Hence the limit
symbol is the classical “Boltzmann factor” corresponding to h∞:

p∞(ξ) = e−h∞(ξ) , ξ ∈ Rd . (6.6)

To study the symbol aT,µρ(T ) we use Theorem 5.2 with f = ηγ . For a start we need
to understand the behavior of ηγ(t) for small t. Since this behavior depends on γ, we
have to distinguish five different regimes for its value. To state the result in a unified
way for all values, we define a parameter δγ and a pair of functions {fγ , ηeff

γ } on the
interval (0, 1) in Table 1.

The next lemma shows that ηeff
γ describes the effective asymptotic contribution

of fγ as t ↓ 0.

Lemma 6.2 Let the parameter δγ and the functions fγ , ηeff
γ on the interval (0, 1) be

as defined in Table 1. Then the following three asymptotic relations hold:

lim
t→0

tk−δγ
dk

dtk
(
fγ(t)− ηeff

γ (t)
)
= 0 , k = 0, 1, 2 . (6.7)

Proof For γ 6= 1 we expand ηγ at t = 0 to obtain
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Table 1 The parameter δγ and the functions {fγ , ηeffγ } for different values of the Rényi index γ

δγ fγ(t) ηeffγ (t)

0 < γ < 1 γ ηγ(t)
1

1−γ t
γ

γ = 1 1 η1(t)− t −t ln(t)

1 < γ < 2 γ ηγ(t)− γ
γ−1

t 1
1−γ t

γ

γ = 2 3 η2(t)− 2t −4
3
t3

γ > 2 2 ηγ(t)− γ
γ−1

t γ
2(γ−1)

t2

(1− γ)ηγ(t) = tγ − γt− γ

2
t2 +O(t3) +O(t2γ) +O(t1+γ) . (6.8)

The notation g(t) = O(tb) means that |g(k)(t)| . tb−k, for all k ∈ N0. This
expansion leads to the claim (6.7) for all γ /∈ {1, 2}. For γ = 2 the expansion (6.8)
is insufficient since the terms with t2 cancel out. By including the third-order term
explicitly we find η2(t) = 2t− 4

3 t
3 +O(t4) and obtain (6.7) for γ = 2. Finally, for

γ = 1 we have η1(t) = −t ln(|t|) + t+O(t2) which again leads to (6.7). �

Now we are in a position to state and prove our second main result for the scaling
of the entanglement entropy.

Theorem 6.3 Let the truncating region Λ satisfy Condition 2.1. For a fixed number
ρ > 0 let T 7→ µρ(T ) be a function satisfying (1.12) and κ be as defined in (6.3).
Finally, let δγ and ηeff

γ be as defined in Table 1. Then we have the asymptotic relation

lim
(
αT

1
2m
)1−d (κ T d

2m /ρ
)δγ

Hγ(T, µρ(T );αΛ) = 2B
(
e−h∞ , ∂Λ; ηeff

γ

)
, (6.9)

as αT 1
2m →∞ and T →∞ .

Proof We replace the symbolaT,µρ(T ) withλT pT as specified in (6.5). Furthermore,
since the operator difference (1.2) vanishes for linear functions f , we have

Dα(λT pT , Λ; ηγ) = Dα(λT pT , Λ; fγ) .

As the function fγ satisfies the condition (6.7), we can use Theorem 5.2 which gives

lim
(
αT

1
2m

)1−d
λ
−δγ
T trDα(λT pT , Λ; fγ) = B(p∞, ∂Λ; ηeff

γ ) ,

as αT 1
2m → ∞ and T → ∞, where p∞ is given by (6.6). The same formula holds

for the regionRd \Λ. The claimed formula (6.9) now follows from definition (1.8),
Remark 2.4(1), (6.3), and (6.4). �
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6.3 Concluding remarks

1. We have proved the positivity of the EE for Rényi index γ ≤ 1, see Theorem 3.5.
For bounded Λ and γ ≤ 1 we have actually somewhat more, namely:

0 ≤ Sγ(T, µ;Λ)− sγ(T, µ)|Λ| ≤ Hγ(T, µ;Λ) .

Here the first inequality for the local entropy is due to Theorem 3.3 and holds
even for γ ≤ 2. The second one follows by combining (1.8), (1.9), and Theorem
3.5. Although Theorem 3.5 ensures the positivity of the EE only for γ ≤ 1, the
asymptotic coefficient B(aT,µ, ∂Λ; ηγ) is positive for all γ ≤ 2 and all µ ∈ R,
T > 0, see Remark 2.4(2). It is an open question however whether the positivity
of the EE extends to all γ ≤ 2.

2. In case of a fixed ρ (Theorem 6.3) and γ ≤ 2, the function ηeff
γ in Table 1 is

strictly concave so that the coefficient B
(
e−h∞ , ∂Λ; ηeff

γ

)
is strictly positive. On

the other hand, if γ > 2, then ηeff
γ is strictly convex so that this coefficient is strictly

negative. This change of sign, unexpected by us, suggests that the definition (1.8)
of the EE used by us is somewhat unphysical for γ > 2. In passing we note that
B
(
e−h∞ , ∂Λ; ηeff

γ

)
for γ > 2 can be computed rather explicitly. Indeed, since

ηeff
γ (t) = γ(2(γ − 1))−1 t2 it is easy to calculate the function (2.2):

U
(
u, v; ηeff

γ

)
= − γ

2(γ − 1)
(u− v)2 , γ > 2 .

This observation and the use of Parseval’s identity, as in the proof of Proposition
1 in [29], enables us to find the coefficient (2.3) and hence (2.4) in terms of
the Fourier transform of exp(−h∞). In particular, for the quadratic “asymptotic”
Hamiltonian h∞(ξ) = |ξ|2/2 (which includes the Hamiltonian of the ideal Fermi
gas) we obtain the formula

B
(
e−h∞ , ∂Λ; ηeff

γ

)
= − γ

γ − 1
2−d−3π−(d+1)/2|∂Λ| , γ > 2 .

3. For γ < 2 the function ηeff
γ is exactly the classical entropy function of the

Maxwell–Boltzmann gas. This confirms our expectations stated in the Introduc-
tion. This conclusion does not hold for γ ≥ 2.

4. In case of a fixed µ (Theorem 6.1), for γ ≤ 2, by strict concavity of the function
ηγ we have that the coefficient Bγ := B(p∞, ∂Λ; ηγ), p∞ = (1 + exp(h∞))−1,
on right-hand side of (6.1) is positive. Below we present a formal calculation that
indicates that Bγ should become negative for large γ. Indeed, we calculate the
point-wise limit:

η∞(t) := lim
γ→∞

ηγ(t) = min
{
− ln(1− t),− ln(t)

}
, t ∈ [0, 1] .

This function is (strictly) convex on [0, 1/2] and also on [0, 1/2], but not on the
whole interval [0, 1]. Since by our assumptions in Section 5.1 h∞ ≥ 0, we have
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p∞ ≤ 1/2, and hence

B(p∞, ∂Λ; η∞) = B(p∞, ∂Λ;− ln(1− ·)) < 0 .

Thus, assuming continuity of Bγ as a function of γ > 0 we can claim that there
is a value γ0 > 2 such that Bγ0 = 0 and Bγ < 0 for γ > γ0.
One can be more specific about the value of B∞. Namely, for u, v ∈ [0, 1/2] we
have

U
(
u, v; η∞

)
= −U

(
u, v; ln(1− ·)

)
= −U

(
1− u, 1− v; ln(·)

)
= −1

2

(
ln(1− u)− ln(1− v)

)2
.

The last step is an elementary calculation (see [29]) that reconfirms the negativity
of U . With b(ξ) := ln

(
1 + exp(−h∞(ξ)

)
we get

U
(
p∞(ξ), p∞(ξ + te); η∞

)
= −1

2

(
b(ξ)− b(ξ + te)

)2
.

Similarly to Remark 2, the coefficient B∞ can be found in terms of the Fourier
transform of the symbol b. In particular, in the case of the ideal Fermi gas the
coefficient B∞ can be computed explicitly:

B((1 + exp(h∞))−1, ∂Λ; η∞) = −1

2
(2π)−(d+1)/2Σ(d)|∂Λ| ,

where Σ(d) :=
∑
n,m≥1(−1)n+m(nm)−1/2(n+m)−(1+d)/2. We omit the de-

tails.
5. In both high-temperature regimes (fixed µ or fixed ρ) the scaling parameter α

may be fixed to, say, α = 1. Thus the truncating set αΛ is fixed and only the
temperature T tends to infinity.

6. Using the relation (1.9) and Theorem 5.1 one can also derive appropriate asymp-
totic formulas for the local entropy. For example, assuming that µ is fixed, as in
Theorem 6.1, we easily obtain the asymptotic relation

lim
(
αT

1
2m
)1−d [

Sγ(T, µ;αΛ)− αdsγ(T, µ) |Λ|
]
= B

(
(1 + eh∞)−1, ∂Λ; ηγ

)
,

as αT 1
2m → ∞ and T → ∞. However, in order to obtain from this formula a

proper asymptotic expansion for the local entropy, one needs to find an expansion
for the entropy density sγ(T, µ) as T → ∞. A convenient starting point for its
derivation could be, for example, the representation (10.8) in [18].
An analogous formula can be written down for the case of a fixed ρ. The inequality
B
(
e−h∞ , ∂Λ; ηeff

γ

)
< 0 for γ > 2 would then imply that the local entropy obeys

for largeT the bound Sγ(T, µρ(T );Λ) < sγ(T, µρ(T ))|Λ|, instead of (3.3) which
is valid for all γ ≤ 2 and all T > 0.
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Appendix: The Fermi symbol for fixed ρ and large T

Ourmain aim is to derive formula (6.2) for aHamiltonianh as specified in Subsection
5.1. After a change of variables and replacing µ with µρ(T ) formula (1.11) for the
mean particle density takes the form

%
(
T, µρ(T )

)
=

T
d

2m

(2π)d

∫
Rd

dξ

1 + exp
(
− µρ(T )/T

)
exp

(
h(ξT

1
2m )/T

) .
Since T−1h(T

1
2m ξ) → h∞(ξ) as T → ∞, for each ξ 6= 0, it is clear that the

condition (1.12) requires that exp
(
− µρ(T )/T

)
→∞. Consequently,

%
(
T, µρ(T )

)
= T

d
2mκ exp

(
µρ(T )/T

)(
1 + o(1)

)
,

where κ is defined in (6.3). Due to (1.12), this leads to (6.2).
As mentioned in the Introduction, the high-temperature limit under the condition

(1.12) corresponds to the Maxwell–Boltzmann gas limit. This fact can be conve-
niently restated in terms of the so-called fugacity zρ(T ) := exp

(
µρ(T )/T

)
as

follows. By (5.2) the integrated density of states N (T ) of (1.13), satisfies for large
T the relation N (T ) � T d

2m . So (6.2) implies zρ(T ) � ρN (T )−1 → 0.
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