UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Bimolecular reactions of CH2CN2+ with Ar, N2 and CO: reactivity and dynamics

Armenta Butt, Sam; Price, Stephen; (2022) Bimolecular reactions of CH2CN2+ with Ar, N2 and CO: reactivity and dynamics. Physical Chemistry Chemical Physics 10.1039/d2cp01523d. (In press). Green open access

[thumbnail of Price_d2cp01523d.pdf]
Preview
Text
Price_d2cp01523d.pdf

Download (2MB) | Preview

Abstract

The reactivity, energetics and dynamics of bimolecular reactions between CH2CN2+ and three neutral species (Ar, N2 and CO) have been studied using a position sensitive coincidence methodology at centre-of-mass collision energies of 4.3 – 5.0 eV. This is the first study of bimolecular reactions involving CH2CN2+, a species relevant to the ionospheres of planets and satellites, including Titan. All of the collision systems investigated display two collision-induced dissociation (CID) channels, resulting in the formation of C+ + CH2N+ and H+ + HC2N+. Evidence for channels involving further dissociation of the CID product HC2N+, forming H + CCN+, were detected in the N2 and CO systems. Proton-transfer from the dication to the neutral occurs in all three of the systems via a direct mechanism. Additionally, there are product channels resulting from single electron transfer following collisions of CH2CN2+ with both N2 and CO, but interestingly no electron transfer following collisions with Ar. Electronic structure calculations of the lowest energy electronic states of CH2CN2+ reveal six local geometric minima: both doublet and quartet spin states for cyclic, linear (CH2CN), and linear isocyanide (CH2NC) molecular geometries. The lowest energy electronic state was determined to be the doublet state of the cyclic dication. The ready generation of C+ ions by collision-induced dissociation suggests that the cyclic or linear isocyanide dication geometries are present in the [CH2CN]2+ beam.

Type: Article
Title: Bimolecular reactions of CH2CN2+ with Ar, N2 and CO: reactivity and dynamics
Open access status: An open access version is available from UCL Discovery
DOI: 10.1039/d2cp01523d
Publisher version: https://doi.org/10.1039/d2cp01523d
Language: English
Additional information: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10150744
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item