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Abstract—Point set registration (PSR) is an essential problem
in the field of surgical navigation and augmented reality. In
surgical navigation, the aim of registration is mapping the
pre-operative space to the intra-operative space. This paper
introduces a reliable hybrid mixture model, in which the re-
liability of the normal vectors in the generalized point set
(GPS) is examined and exploited. The motivation of considering
the reliability of orientation information is that normal vectors
cannot be estimated or measured accurately in the clinic. The
point set is divided into two subsets according to the reliability
of normal vectors. PSR is cast into the maximum likelihood
estimation (MLE) problem. The expectation maximization (EM)
framework is used to solve the MLE problem. In the E-step,
the posterior probabilities between points in two point sets are
computed. In the M-step, the transformation matrix and model
components are updated by optimizing the objective function. We
have demonstrated through extensive experiments on the human
femur bone point set that the proposed algorithm outperforms
the state-of-the-art ones in terms of accuracy, robustness, and
convergence speed.

Index Terms—Point set registration (PSR), surgical navigation,
partial hybrid mixture model, maximum likelihood estimation
(MLE), expectation maximization (EM).

I. INTRODUCTION

POINT set registration (PSR) aims to estimate the trans-
formation matrix between two sets of points [1]. It is

an essential task in computer vision [2]–[4], robotics [5]–[7],
computer-assisted surgery (CAS) [8], [9], medical image anal-
ysis [10], [11] and augmented reality (AR) surgical navigation
system [12]–[14]. In CAS, PSR can be used to match the pre-
operative space to the intra-operative space [15]. In the field of
AR-assisted surgical navigation systems, PSR is usually used
to align and overlay the virtual models to the physical space
[13]. For example, in AR-guided total hip replacement surgery,
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Fig. 1: Illustration of the proposed PSR algorithm. The re-
liability of normal vectors is incorporated into registration.
The point with unreliable normal vector is represented as red
dot both in the model PS and the observed PS. The points
reliable normal vectors are denoted with green cross marks in
the model PS and blue dots in the observed PS, respectively.

the intra-operative point set (PS) of a femur bone is registered
to the pre-operative three-dimensional model reconstructed by
computer tomography (CT) or magnetic resonance imaging
(MRI).

Optimization-based registration algorithms are widely used
in surface alignment, because of their low computational
complexity and guaranteed convergence [16]. Among them,
probabilistic registration algorithm is a popular kind of state-
of-the-art algorithms to solve PSR. Since a one-to-many
alignment strategy is adopted, probabilistic registration al-
gorithms achieve better performance than other conventional
optimization-based registration algorithms in presence of noise
and outliers. In general, probabilistic registration algorithms
cast PSR into the problem of estimating the parameters of
mixture model. In many previous studies, the Gaussian mix-
ture model (GMM) and the Hybrid mixture models (HMM)
both are mainstream mixture model utilized in probabilistic
registration algorithms.

GMM-based registration is a mainstream method when the
number of position features is considerable. In this framework,
the observed PS and the model PS are described by GMM
and the registration problem is treated as minimizing the
L2 distance between two Gaussian mixtures [17]. Since it
is not possible to compute high-dimensional data directly in
the MLE problem, the EM framework is a widely utilized
optimization strategy to estimate the transformation matrix and
GMM parameters. In the coherent point drift (CPD) method
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[18], the GMM centroids are forced to move coherently as
a group to maintain the topological structure of the PS. In
the expectation conditional maximization for point registra-
tion (ECMPR) algorithm [19], three conditional maximiza-
tion steps replace the traditional M-step, and the anisotropic
positional covariance matrix is utilized. The jointly register
multiple PSs (JRMPC) algorithm [20] considers any point
as a realization of a single GMM and recast the registration
problem into a cluster problem. All of these above-mentioned
GMM-based approaches consider only the location features of
the PS, which is feasible when the point features are sufficient.

Furthermore, a novel HMM-based registration combining
multiple features such as position information and orientation
has been proposed. In this framework, the correspondences
between two PSs are computed according to both position and
orientation information. Ravikumar et al. [21] have formulated
an HMM consisting of Student’s t and vMF distributions
for group-wise registration. Min et al. [22] have proposed
a probabilistic registration method for human femur bones,
where a GPS is represented by the HMM containing a GMM
and a vMF. Then, they extend this framework to nonrigid
registration with anisotropic noise [23]. However, in these
HMM-based algorithms, the normal vectors were pre-assumed
to be available accurately and reliably at each point.

In this paper, we incorporate the partially reliable normal
vectors into PSR. Normal vectors are extracted by principal
component analysis (PCA) on a matrix consisting of position
information of a PS [24]. The point clouds subset containing
reliable normal vectors is applied to HMM. In contrast, the
normal vectors extracted from the remaining points are not
available or are subject to large errors. The registration prob-
lem is formulated by aligning two above-mentioned mixture
models. The idea of our algorithm is then shown in Fig. 1.
The EM framework is used to solve the MLE problem.

The rest of this paper is organized as follows. Section II
summaries the motivations and the contributions of this papers.
Section III presents the formulation of a partial observable
PSR problem in a probabilistic framework. Section IV de-
scribes the details of our method. Section V presents the
implementation details of experiments. Section VI discusses
the proposed method and experimental results. Section VII
concludes this paper.

II. MOTIVATIONS AND CONTRIBUTIONS

The motivations of this paper are twofold. One is to elimi-
nate the error caused by normal vectors estimated in the pre-
operative stage. In previous studies, normal vectors can be
acquired by using points of the neighborhood in the surface
can estimate normal vectors from the 3D model. The virtual
model is reconstructed from CT or MRI in the pre-operative
stage. However, accurate estimation of normal vectors has
potential challenges due to the presence of surfaces with large
curvature and the non-uniform density of the points. Besides,
the accuracy and robustness of surface normal estimation is
sensitive to addictive and outlier noise. As is reported in
[24], average orientation error per point ranges [10, 20]

◦ under
the Gaussian noise with σn = 0.6%. The other motivation

Fig. 2: PS with reliable normal vectors of the human femur
bone. Red points represent point subset where the orientation
information is unreliable. Blue points and associated arrows
represent point subset where the orientation information is
considered. Orientation estimations of two different methods
are shown in two right subfigures.

is to reduce the noise and outliers produced in the intra-
operative measurement. Surgeons usually use a tracked probe
attached with a force sensor to measure normal vectors in the
intra-operative stage. However, the measurement of normal
vectors can be affected by different points, directions and
magnitudes of external force. According to research [25],
the measurement error and standard deviation are 0.7mm
and 2.5mm respectively, when the force magnitude ranges in
[5, 40]N. Consequently, it is a challenging work for surgeons
to measure the orientation accurately in the clinic.

This paper is a significantly extended work of the HMM-
based algorithm. Due to the evaluation of normal vectors, our
method achieves more accurate results in PSR in computer-
assisted orthopedic surgery (CAOS). The main contributions
of this paper can be summarized as follows.

1) Under the HMM framework, we first introduce the
proposed indicators to assess the reliability of normal
vectors. The curvature of a surface is introduced to assess
the reliability of normal vectors.

2) Rigid registration of two PSs with position information
and partial reliable normal vectors is formally formulated
as an MLE problem, which is dealt with the EM frame-
work.

3) The proposed registration algorithm is benchmarked by
comparing to the state-of-the-art probabilistic methods
in terms of accuracy, noise robustness, and convergence
speed. The experimental results demonstrate that the pro-
posed method outperforms the other compared methods
in different conditions.

III. RELIABLE HYBRID MIXTURE MODEL

In this paper, two PSs are first preprocessed before com-
puting orientation features. To evaluate the reliability of the
normal vector generated at each position, the curvature of the
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Fig. 3: Overview of our proposed PSR algorithm. The pre-operative CT is captured and segmented to create a surface
representation of the anatomy (in our case, the human femur bone). This surface is then used to extract the model PS. The
observed PS is also randomly sampled from this surface for simulation. The partial-HMM registration algorithm accurately
aligns the model PS with the observed PS.

fitted plane is introduced as a credibility evaluation standard.
Normal vectors estimated at points with small curvature of
the fitted plane are deemed to be reliable. Hence, these posi-
tions and normal vectors form reliable feature subsets in the
model set (Y, Ŷ) and the observed set (X, X̂), respectively.
Meanwhile, normal vectors of other points will be considered
unreliable. Consequently, the normal vectors of observed and
model sets can be defined as follows.

x̂n = δwx̂n

ŷm = δwŷm
(1)

where 1 ≤ n ≤ N , 1 ≤ m ≤ M , and δw is the Kronecker
symbol to distinguish the reliability of normal vectors, accord-
ing to the curvature of one point. The Kronecker symbol is
defined as follows.

δw =

{
1, if w < w0

0, otherwise. (2)

where w denotes the curvature of one point in the observed
and the model sets, w0 denotes the threshold that distinguishes
the reliability of normal vectors. The result of preprocessing
is shown in Fig. 2. The observation is that red points ignoring
normal vectors mainly distribute on the steep curvature of
the bone surface and the edge of a surface, where orientation
estimation of two different methods has large difference. This
is in line with our idea of preprocessing.

After preprocessing, the registration of two PSs is further
formulated as an MLE problem. More specifically, we consider
the points in Y as the GMM centroids, and the points in
X are generated by GMM. The unit normal vectors in the
reliable observed orientation set are generated by the Fisher
mixture model (FMM). The reliable normal vectors denote the
mean and central directions of FMM. The position vectors and
unit normal vectors are assumed to be independent. Hence,
the probability density function (PDF) of the nth point in the
observed data set is described as following.

p (dn|Θ) =

M+1∑
m=1

P (zn = m)p(dn| zn = m; Θ) (3)

where 1 ≤ n ≤ N and Θ denotes all parameters in the mixture
model. P (zn = m) is the prior probability that the nth point
is registered to the mth point, which is defined as following.

P (zn = m) = δw
1

M1
+ (1− δw)

1

M2
(4)

where M1 and M2 denote the number of points in the model
set that incorporate reliable normal vectors or not, respectively.
In order to express the independence of position vectors and
normal vectors, we define the positional and orientational
PDFs as follows.

pp(dn| zn = m; Θ) =
1

(2πσ2)
3
2

e−
1

2σ2
‖xn−(Rym+t)‖2

po(dn| zn = m; Θ) =

[
κ

2π(eκ − e−κ)
eκ(Rŷm)T x̂n

]δw (5)

With above assumption, given all model parameters Θ and
correspondence zn = m, the PDF of nth point with reliably
direction feature is

p(dn| zn = m; Θ) = pp(dn| zn = m; Θ)po(dn| zn = m; Θ)
(6)

where 1 ≤ n ≤ N and 1 ≤ m ≤ M . To account for noise
and outliers normally distributed in the observed PS, uniform
distribution p(dn| zn = M+1) is added to the mixture model
in (3). The PDF of outliers’ uniform distribution is defined as
follows.

p (dn| zn = M + 1; Θ) = δw
1

N1
+ (1− δw)

1

N2
(7)

where N1 and N2 denote the number of points in the observed
set that incorporate reliable normal vectors or not, respectively.
Furthermore, 0 ≤ ω ≤ 1 represents the weight of uniform
distribution. Therefore, the PDF in (3) can be written as

p(dn|Θ) = ωp(dn| zn = M + 1; Θ)

+ (1− ω)

M∑
m=1

P (zn = m)p(dn| zn = m; Θ)
(8)
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We integrate these probabilities into optimal estimation
for mixture model, by maximizing the likelihood function,
or equivalently by minimizing the negative log-likelihood
function as follows:

Q (Θ) = f(λ, δw)

N∑
n=1

log

M+1∑
m=1

P (zn = m)p(dn| zn = m; Θ)

(9)
where f(λ, δ) = λδw + (1− λ)(1− δw) represents the choice
weight function, and λ = N1/N represents the weight of
registration considering orientation vectors.

IV. GENERALIZED POINT SET REGISTRATION BY
RELIABLE HMM

Generalized point set registration by reliable HMM adopt
the EM framework to solve probabilistic optimization problem.
As proposed in [18], the idea of EM is first to determine
the initial value of all parameters and then compute the
posterior probability of mixture components. In our algorithm,
the posterior probabilities of mixture components are derived
by using Bayes’ theorem, which is the expectation or E-step
of the algorithm. Given new posterior probability, the new
model parameters can be updated by minimizing the negative
log-likelihood function as following [22].

Q(Θnew|Θold) = f(λ, δ)

N∑
n=1

M∑
m=1

[
p(zn = m|dn; Θold)

log (P (zn = m)p(dn| zn = m; Θnew))]
(10)

where P (zn = m) is the prior probability computed in
(4), p(zn = m|dn; Θold) is computed in the E-step, and
p(dn| zn = m; Θnew) is derived in (6). We define (10) as
the objective function, which is the upper bound of the
negative log-likelihood function in (9). By using properties of
logarithmic functions and ignoring the parameters unrelated to
Θ, the objective function can be expanded as follows:

Q(Θnew|Θold)

= f(λ, δw)

N∑
n=1

M∑
m=1

pmn
1

2σ2
‖xn − (Rym + t)‖2

− λδw
N∑
n=1

M∑
m=1

pmn · κ(Rŷm)
T
x̂n

+Np

[
log κ− log

(
eκ − e−κ

)
+

3

2
log σ2

]
(11)

where we define Np = f (λ, δw)
∑N
n=1

∑M
m=1 pmn, and pmn

is abbreviations of p(zn = m|dn; Θold) computed in the E-
step. For clarity, the flow chart of our algorithm is summarized
in Fig. 3.

A. E-Step

In the E-step, posterior probabilities of mixture components
are computed by Bayes’ theorem.

p
(
zn = m|dn; Θold

)
=
P (zn = m)p(dn| zn = m; Θold)

p(dn|Θold)
(12)

where p
(
dn| zn = m; Θold

)
and p(dn|Θold) are computed in

(6) and (8) respectively.

B. M-Rigid Step

In this step, given new posteriors and old model parameters,
the transformation matrix [R, t] can be optimized by minimiz-
ing the objective function. First, to find the optimal vector t∗,
the parameters independent of t are ignored. The optimization
function can be simplified as follows:

t∗ = arg min
t

f (λ, δw)

2σ2

N∑
n=1

M∑
m=1

pmn‖xn − (Rym + t)‖2

(13)
Then t∗ can derived by solving ∂Q(Θnew|Θold)

/
∂t = 0 ,

that is

∂

∂t

[
f (λ, δw)

2σ2

N∑
n=1

M∑
m=1

pmn‖xn − (Rym + t)‖2
]

= 0 (14)

We can obtain
t∗ = µx −Rµy (15)

where µx and µy can be represented as following:{
µx = 1

Np
f (λ, δw) XTPT1

µy = 1
Np
f (λ, δw) YTP1

(16)

where AT denotes the transpose of a matrix or vector and P
is a posterior matrix composed of posterior probabilities pmn.

To find the optimal rotation matrix R∗, we let the partial
derivative of the objective function concerning R be equal to
zero. By eliminating the parameters independent of R, the
optimization equation can be deduced as follows:

R∗ = arg max
R

[
f (λ, δw)

2σ2

N∑
n=1

M∑
m=1

pmn ‖xn − (Rym + t)‖

+λδw

N∑
n=1

M∑
m=1

pmnκ(Rŷm)
T
x̂n

]
(17)

By substituting t with t∗, we have

R∗ = arg max
R

[
f (λ, δw)

σ2

N∑
n=1

M∑
m=1

pmnx
′

n

T
Ry

′

m

+λδw

N∑
n=1

M∑
m=1

pmnκ(Rŷm)
T
x̂n

] (18)

where x
′

n = xn − µx and y
′

n = yn − µy . By using H1 and
H2, we can obtain

R∗ = arg max
R

Tr (H1R + H2R)

= arg max
R

Tr (HR)
(19)

where Tr (•) denotes the trace of matrix. Then optimal
rotation matrix can be got as following:

R∗ = Udiag(1, 1,det(UVT ))VT (20)

where diag (A) denotes the diagonal matrix consisting of
elements in the A. U and V can be found by singular value
decomposition (SVD) of HT.
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C. M-Var Step

Then, given the newly updated transform matrix, the op-
timization problem concerning the variance of the Gaussian
distribution σ2 is following:

(
σ2
)∗

= arg min
σ2

[
f (λ, δw)

2σ2

N∑
n=1

M∑
m=1

pmn‖xn − (R∗ym + t∗)‖2

+
3

2
Np log σ2

]
(21)

Letting the partial derivative of the objective function concern-
ing σ2 be equal to zero, we have

(
σ2
)∗

=

f (λ, δw)
N∑
n=1

M∑
m=1

pmn‖xn − (R∗ym + t∗)‖2

3Np
(22)

D. M-Con Step

Afterwards, given the updated transformation matrix [R, t]
and new variance of mixture model, the optimization function
with respect to the concentration parameter of von-Mises-
Fisher distribution κ can be deduced as following:

κ∗ = arg min
σ2

[
λδw

N∑
n=1

M∑
m=1

pmnκ(Rŷm)
T
x̂n

−Np log κ+Np log(eκ − e−κ)
] (23)

Then the new κ can be obtained by solving the equation that
partial derivative of the objective function concerning κ equals
zero.

1

κ
=
eκ + e−κ

eκ − e−κ
− λδw

Np

N∑
n=1

M∑
m=1

pmn(Rŷm)
T
x̂n (24)

Then the new κ is updated by solving this nonlinear equation.

E. M-Model Step

In this step, the new model set including positions and
normal vectors is updated, by using new R∗ and t∗.

Ynew = R∗Yold + t∗

Ŷnew = R∗Ŷold (25)

where R∗ and t∗ are updated in Section IV-B. The proposed
algorithm is summarized in Algorithm 1.

V. IMPLEMENTATION DETAILS

Since the EM algorithm is sensitive to the initial value, the
pre-determinations of parameters’ value are necessary. We ex-
perientially initialize the number of κ|0 to be 1 and the initial
variance is set as σ2

∣∣0 =
∑N
n=1

∑M
m=1 ‖xn − ym‖2

/
3MN .

The weight ω in (8) is set to be 0.5. Considering that the two
PSs are not aligned at the beginning of the iterative algorithm,
the initial transformation matrix is set as R|0 = I3×3,
t|0 = 03×1. As the iteration proceeds, the value of σ2 tends
more and more to zero and the value of κ becomes larger.
However, the increase in the value of κ will result in the
number of eκ become larger. Hence, we set the upper bound

Algorithm 1: Generalized Point Set Registration by
Reliable HMM
Input: Point clouds set (X, X̂) and (Y, Ŷ)
Output: Transform matrix R∗ and t∗

Initialization: Initialize Θ|0 =
{

R|0, t|0, κ|0, σ2
∣∣0}

while not convenged do
1) E-step: Compute posterior probability matrixes
P in (12), given current

{
R, t, κ, σ2

}
2) M-rigid step: Update R and t in (20) and (15)
3) M-var step: Update σ2 in (22)
4) M-con step: Update κ in (24)
5) M-model step: Update the new model set
(Y, Ŷ) in (25)

end
Return: R∗ and t∗

of κ to be 100. The iterative algorithm will stop if one of three
following convergence conditions is satisfied: 1) the value of
σ2 is less than 10−4; 2) the rate of the change of σ2 is less
than 10−6; 3) the number of iterations reaches 100.

VI. RESULTS AND DISCUSSION

Two experiments on the human femur bone model are
conducted to validate the proposed algorithm. All experiments
are done on a surface PS on a human femur bone segmented
from the CT image. The model PS (Y, Ŷ) has 1586 points and
the observed PS (X, X̂) are randomly sampled from the model
PS. To highlight the advantage of the proposed algorithm,
two different ratios of unreliable normal vectors in the model
PS are set in the following experiment. In the model PS, the
normal vectors of the points with curvature ranking in the top
75% and 90% are considered to be reliable in the experiment,
respectively. The rest of normal vectors are considered to
be wrong. For each experiment, 100 registration trials are
conducted to compare our algorithm with ECMPR and orig-
inal HMM. For every trial, the true rotation matrix Rtrue

and translation vector ttrue are randomly generated from
[10, 20]

◦ and [10, 20]mm. Then the transform matrix is applied
to (X, X̂) to obtain misaligned observed data set, which
is motivated to simulate practical clinical applications. The
estimated transform matrix is represented as [Rcal, tcal]. Two
kinds of noise were injected into data, including position noise
obeying Gaussian distribution and orientation noise obeying
vMF distribution. We set two levels noise for positions and
unit normal vectors in (X, X̂): µ = 0, σ2 = 1/3, κ = 800 and
µ = 0, σ2 = 4/3, κ = 3200. Errors of the transform matrix
can be represented as follows: errorR = ‖Rtrue −Rcal‖ and
errort = ‖ttrue − tcal‖.

A. Experiment I: Outliers Robustness

In this section, the robustness of three algorithms to different
numbers of outliers is tested. The number of inlier points in
(X, X̂) was set to be 100. The generation of outliers has
two steps. Firstly, the positional vectors were generated by
randomly translating observed points with random vectors
whose lengths ranged in [10, 20]mm. Secondly, the orien-
tational vectors were randomly generated within [0, 360]

◦.
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TABLE I: P-value of the statistical tests comparing the error results using the proposed algorithm and the other two algorithms
in experiment I. Rot and Trans are used as the abbreviation for rotational error and translational error respectively. The table
(a) presents p-values of results when the ratio of reliable normal vectors in the model PS is set 90%. The table (b) presents
p-values of results when the ratio of reliable normal vectors in the model PS is set 75%.

(a) The ratio of reliable normal vectors: 90%
Low Noise High Noise

Outlier Percentage ECMPR(Rot) HMM(Rot) ECMPR(Trans) HMM(Trans) ECMPR(Rot) HMM(Rot) ECMPR(Trans) HMM(Trans)

10% 9.11× 10−10 3.41× 10−15 6.03× 10−12 2.42× 10−15 1.66× 10−12 7.04× 10−13 1.48× 10−15 1.42× 10−7

20% 9.69× 10−35 1.11× 10−8 8.88× 10−19 2.05× 10−14 9.04× 10−30 5.56× 10−13 4.49× 10−6 1.66× 10−16

30% 1.73× 10−33 1.10× 10−8 6.44× 10−29 1.31× 10−9 9.22× 10−34 1.63× 10−11 2.28× 10−15 1.06× 10−18

40% 2.44× 10−46 0.0138 7.99× 10−48 0.0219 9.52× 10−46 6.04× 10−7 8.50× 10−34 6.46× 10−14

50% 2.36× 10−54 2.03× 10−5 3.95× 10−54 0.6342 3.16× 10−58 1.40× 10−5 1.37× 10−49 2.03× 10−10

(b) The ratio of reliable normal vectors: 75%
Low Noise High Noise

Outlier Percentage ECMPR(Rot) HMM(Rot) ECMPR(Trans) HMM(Trans) ECMPR(Rot) HMM(Rot) ECMPR(Trans) HMM(Trans)

10% 6.00× 10−11 5.68× 10−13 1.66× 10−9 1.18× 10−23 1.13× 10−12 4.99× 10−15 3.29× 10−15 5.34× 10−5

20% 3.57× 10−16 1.21× 10−26 1.41× 10−15 0.0138 2.43× 10−31 1.04× 10−23 0.0032 0.56

30% 4.57× 10−24 1.12× 10−39 3.44× 10−27 3.12× 10−42 2.56× 10−36 4.86× 10−33 1.55× 10−14 4.12× 10−20

40% 9.31× 10−43 1.38× 10−12 2.47× 10−51 3.31× 10−52 3.21× 10−49 4.92× 10−34 9.69× 10−34 1.24× 10−16

50% 3.24× 10−39 2.00× 10−33 9.96× 10−62 9.21× 10−48 1.00× 10−63 7.92× 10−34 1.69× 10−52 9.95× 10−17
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Fig. 4: Four plots represent the rotational and translational
errors’ means and standard deviations under five different
numbers of injected outliers and different noise in Experiment
I. In this experiment, the ratio of reliable normal vectors in
the model PS is set as 90%. (a) Low noise, rotational error.
(b) Low noise, translational error. (c) High noise, rotational
error. (d) High noise, translational error.

For each trial, five different ratios of outliers were set to
be 10% ∼ 50%, which means the number of points in the
observed PS ranges in [110, 150].

1) 90% reliability: Fig. 4 shows the rotational errors and
the corresponding translational errors of three algorithms in
cases where five different percentages of outliers were injected
under two levels of noise, respectively. In the experiment
shown in Fig. 4, the ratio of reliable normal vectors in the
model PS is set as 90%. As shown in Fig. 4(a) and (c),
the means of rotational errors of our algorithm are less than
ECMPR and original HMM. With more outliers injected in
the observed PS, our algorithm achieves better results than
ECMPR and original HMM.
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Fig. 5: Four plots represent the rotational and translational
errors’ means and standard deviations under five different
numbers of injected outliers and different noise in Experiment
I. In this experiment, the ratio of reliable normal vectors in
the model PS is set as 75%. (a) Low noise, rotational error.
(b) Low noise, translational error. (c) High noise, rotational
error. (d) High noise, translational error.

2) 75% reliability: Fig. 5 shows the rotational errors and
the corresponding translational errors of three algorithms in
cases where five different percentages of outliers were injected
under two levels of noise, respectively. In the experiment
shown in Fig. 5, the ratio of reliable normal vectors in the
model PS is set as 75% . As shown in Fig. 5, both rotational
errors and translational errors of our algorithm are less than
ECMPR and original HMM. Comparing Fig. 4 and Fig. 5,
the observation can be obtained that ignoring more unreli-
able normal vectors in the model PS can effectively reduce
errors and improve robustness, compared with original HMM.
Especially under high noise, the means of translational error
are less than 1 mm, which is considered to meet the clinical
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TABLE II: P-value of the statistical tests comparing the error results using the proposed algorithm and the other two algorithms
in experiment II. Rot and Trans are used as the abbreviation for rotational error and translational error respectively. The table
(a) presents p-values of results when the ratio of reliable normal vectors in the model PS is set 90%. The table (b) presents
p-values of results when the ratio of reliable normal vectors in the model PS is set 75%.

(a) The ratio of reliable normal vectors: 90%
Low Noise High Noise

Outlier Percentage ECMPR(Rot) HMM(Rot) ECMPR(Trans) HMM(Trans) ECMPR(Rot) HMM(Rot) ECMPR(Trans) HMM(Trans)

3 6.71× 10−20 0.0019 2.64× 10−29 1.64× 10−7 1.10× 10−23 8.57× 10−7 0.0292 2.70× 10−4

5 1.09× 10−4 5.18× 10−14 1.63× 10−4 0.0927 8.98× 10−8 7.36× 10−17 5.33× 10−6 0.0051

7 7.18× 10−7 1.02× 10−19 9.38× 10−6 1.64× 10−7 2.70× 10−9 3.05× 10−19 1.10× 10−7 2.46× 10−10

9 2.13× 10−5 4.67× 10−13 2.00× 10−4 3.77× 10−18 1.75× 10−6 6.41× 10−16 0.0020 0.0737

(b) The ratio of reliable normal vectors: 75%
Low Noise High Noise

Outlier Percentage ECMPR(Rot) HMM(Rot) ECMPR(Trans) HMM(Trans) ECMPR(Rot) HMM(Rot) ECMPR(Trans) HMM(Trans)

3 9.40× 10−24 0.0348 7.66× 10−25 1.08× 10−11 4.65× 10−24 9.13× 10−19 5.05× 10−5 2.37× 10−31

5 4.04× 10−8 3.15× 10−11 3.04× 10−40 3.74× 10−5 6.39× 10−8 3.68× 10−37 4.47× 10−5 2.62× 10−26

7 7.12× 10−10 2.49× 10−53 3.86× 10−25 2.56× 10−64 8.82× 10−11 6.40× 10−36 8.03× 10−7 1.16× 10−36

9 4.00× 10−7 1.31× 10−16 3.08× 10−31 1.26× 10−8 8.52× 10−7 6.01× 10−35 0.0019 3.36× 10−25
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Fig. 6: Four plots represent the rotational and translational
errors’ means and standard deviations under five different
numbers of points ignoring orientation information and dif-
ferent noise in Experiment II. In this experiment, the ratio of
reliable normal vectors in the model PS is set as 90%. (a) Low
noise, rotational error. (b) Low noise, translational error. (c)
High noise, rotational error. (d) High noise, translational error.

criteria. Hence, the robustness of our proposed algorithm to
outliers outperforms other algorithms in the estimation of the
transformation matrix.

To verify the statistical significance of results in this experi-
ment, Table I(a) and (b) shows the p-value of two-tailed paired
t-test for two levels noise when the ratio of reliable normal
vectors is set as 90% and 75%, respectively. Most p-values
are less than 0.05 (α = 0.05 significance level), indicating
that the results of different algorithms in this experiment are
statistically significant and have not occurred by chance.

B. Experiment II: Different numbers of points with unreliable
normal vectors

In this experiment, we chose different numbers of points
without incorporating normal vectors in the observed PS to
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Fig. 7: Four plots represent the rotational and translational
errors’ means and standard deviations under five different
numbers of points ignoring orientation information and dif-
ferent noise in Experiment II. In this experiment, the ratio of
reliable normal vectors in the model PS is set as 75%. (a) Low
noise, rotational error. (b) Low noise, translational error. (c)
High noise, rotational error. (d) High noise, translational error.

validate the performance of our algorithm. The number of
points in (X, X̂) was set to be 100. Four different numbers
of points with unreliable normal vectors in the observed PS
were set as 3, 5, 7, 9.

1) 90% reliability: Fig. 6 shows the rotational errors and
the corresponding translational errors of three algorithms with
respect to different numbers of unreliable-orientation points
under different levels noise, respectively. In the experiment
shown in Fig. 6, the ratio of reliable normal vectors in the
model PS is set as 90%. The mean value of the rotational
error using our algorithm approximates half of that using
HMM. The further observation is that the error decreases as
the number of unreliable orientation points increases, within
a certain range.
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Before Registration Iteration 1 Iteration 10 Iteration 100

ECMPR

Ours

Fig. 8: Subfigures in the first and second row represent four registration results using ECMPR and our algorithm before
registration and after 1, 10, 100 iterations. The low level noise and 30% outliers were injected into the observed PS. The points
in the model set, points in the observed set, and outliers are shown by green, blue, and orange dots, respectively. Particularly,
the points ignoring orientation information in the proposed algorithm are shown by red dots.
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Fig. 9: Convergence numbers and errors of three algorithms.

2) 75% reliability: Fig. 7 shows the rotational errors and
the corresponding translational errors of three algorithms with
respect to different numbers of unreliable-orientation points
under different levels noise, respectively. In the experiment
shown in 7, the ratio of reliable normal vectors in the model
PS is set as 75%. According to Fig. 6 and 7, the proposed
algorithm achieves the lowest and most robust error mean
and standard deviation. As is shown in Fig. 7, when the
more unreliable normal vectors in the model PS are ignored,
the advantages of the proposed algorithm are more obvious.
Furthermore, the proposed algorithm achieves better rotational
error than the other two algorithms, with more unreliable
normal vectors ignored in the observed PS.

The p-values reported in Table II also verify that the
experiment results are statistically significant and that the
errors of three algorithms are highly differentiated. Therefore,
we can conclude that incorporating reliable normal vectors in
the observed PS achieves more accurate and reliable results
than that of ECMPR and original HMM.

Fig. 8 shows the registration results using ECMPR and our

algorithm after four different iterations when 30% outliers
were injected into the observed PS. As shown in Fig. 8, after
the tenth iteration, our algorithm can well register PSs. On
the contrary, the result of ECMPR algorithm is not accurate
enough, after the hundredth iteration.

C. Convergence speed

Fig. 9 shows the convergence speed under the same condi-
tions, including noise, outliers, and the number of points with
unreliable orientation. As shown in Fig. 9, (1) the convergence
speed of the proposed algorithm is faster than others; (2)
our algorithm achieves smaller error values among the three
mentioned algorithms.

D. Discussion

In this paper, we propose a novel probability-based registra-
tion algorithm that considers reliable normal vectors of PSs.
The evaluation of the reliability of normal vectors is introduced
into the registration algorithm. This process is more applicable
for registration in the case where the PS is sparse and bears
large curvature.

Extensive experimental results demonstrate that the pro-
posed algorithm achieves improved accuracy, robustness, and
convergence speed compared to the state-of-the-art methods.
The benefit of incorporating normal vectors can be shown by
comparing the results of ECMPR and original HMM, ECMPR
and our algorithm in three experiments. More importantly, the
benefit of considering the reliability of normal vectors can be
validated by comparing the performance of HMM and ours
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in three experiments. We emphasize again that the reliable
normal vectors benefit significantly registration under different
conditions. In order to better analyze the superiority of the
proposed algorithm over HMM and ECMPR, the comparisons
of negative-log likelihood functions of the three approaches
are given as follows.

1) Comparisons With HMM: In HMM algorithm, normal
vectors of all points are incorporated. With the model com-
ponents ΘHMM =

{
R, t, σ2, κ

}
, the objective function of

HMM algorithm is as follows.

Q(Θ) =
N∑
n=1

M∑
m=1

pmn

(
1

2σ2
‖xn − (Rym + t)‖2 − κ(Rŷm)

T
x̂n

)
+

3

2
Np log σ2 +Np log

(
eκ − e−κ

)
−Np log κ

(26)

Comparing (11) and (26), We can conclude that HMM algo-
rithm has the potential to introduce wrong normal vectors on
sparsely distributed point clouds. These wrong normal vectors
inevitably result in poor accuracy.

2) Comparisons With ECMPR: In the ECMPR algorithm,
the positional information of points is only considered. With
the model components ΘECMPR =

{
R, t, σ2

}
, the objective

function of ECMPR algorithm is as following.

Q(Θ) =

N∑
n=1

M∑
m=1

1

2σ2
‖xn − (Rym + t)‖2 +

3

2
Np log σ2

(27)

Comparing (11) and (27), We can conclude that the ECMPR
algorithm does not take advantage of normal vectors. There-
fore, registration can not achieve an accurate result when point
clouds distribute sparsely.

To conclude, our algorithm brings great benefits in practical
applications, especially in hip replacement surgery or pedicle
screw placement. However, as the extended work of HMM,
our limitations are evident. First, in our algorithm, the model
PS is assumed to be noise-free, and the observed data set is
sampled from it. To improve this ideal assumption, two PSs
should be considered to contain noise. On the other hand,
our algorithm belongs to the probabilistic registration method.
Hence, our algorithm is sensitive to initial parameter such as
σ2
∣∣0 and κ|0.
In the future, we plan to extend our registration method by

using deep learning technology to solve the above-mentioned
challenges. First, the neural network will be used to estimate
the normal vectors in the pre-operative stage to improve the
reliability of normal vectors. Second, the registration will be
considered as an end-to-end framework by the combination of
neural network and optimization. In this framework, the neural
network will be used to learn point-to-distribution parameter
correspondences. Then these correspondences will be fed
into optimization module to estimate the rigid transformation
matrix.

VII. CONCLUSION

This paper presents a novel PSR algorithm that incorpo-
rates the concept of reliable normal vectors under the HMM
framework. The proposed algorithm is validated through
extensive experiments, whose results show the advantages
of our algorithm in terms of accuracy, convergence speed,
and robustness to the different levels of noise and outliers.
Hence, the proposed algorithm is more suitable in the surface
registration between pre-operative and intra-operative space,
especially in the hip replacement surgery and pedicle screw
placement where many fitted planes exist large curvature. In
the future, we plan to combine the conventional probabilistic
registration theory with deep neural networks to estimate the
transformation matrix in CAOS.
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