
1

Aligning 3D Curve with Surface using Tangent and
Normal Vectors for Computer-Assisted Orthopedic

Surgery
Zhe Min, Member, IEEE, Delong Zhu, Member, IEEE, Jianbang Liu, Student Member, IEEE,

Hongliang Ren, Senior Member, IEEE and Max Q.-H. Meng?, Fellow, IEEE

Abstract—Registration that aligns different views of one inter-
ested organ together is an essential technique and outstanding
problem in medical robotics and image-guided surgery (IGS).
This work introduces a novel rigid point set registration (PSR)
approach that aims to accurately map the pre-operative space
with the intra-operative space to enable successful image guid-
ance for computer-assisted orthopaedic surgery (CAOS). The
normal vectors and tangent vectors are first extracted from the
pre-operative and intra-operative point sets (PSs) respectively,
and are further utilized to enhance the registration accuracy
and robustness. The contributions of this article are three-
folds. First, we propose and formulate a novel distribution
that describes the error between one normal vector and the
corresponding tangent vector based on the von-Mises Fisher
(vMF) distribution. Second, by modelling the anisotropic position
localization error with the multi-variate Gaussian distribution, we
formulate the PSR considering anisotropic localization error as a
maximum likelihood estimation (MLE) problem and then solve it
under the expectation maximization (EM) framework. Third, to
facilitate the optimization process, the gradients of the objective
function with respect to the desired parameters are computed and
presented. Extensive experimental results on the human femur
and pelvis models verify that the proposed approach outperforms
the state-of-the-art methods, and demonstrate potential clinical
values for relevant surgical navigation applications.

Index Terms—Image-to-patient registration, computer-assisted
orthopedic surgery (CAOS), anisotropic positional localization
error, von-Mises Fisher (vMF) distribution, maximum likelihood
estimation (MLE), expectation maximization (EM).

I. INTRODUCTION

W ITH 20,0000 annual cases in the USA alone, the
anterior cruciate ligament (ACL) rupture is a common
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medical condition [1]. ACL reconstruction is the procedure
where the torn ligament is replaced by a tissue graft, which is
pulled into the knee joint through tunnels [1], [2]. Correct tun-
nel placement (CTP) is crucial for knee ability and maximizing
proprioception. However, the performance of CTP depends
heavily on the surgeon’s operating experience, which varies
broadly among different physicians. Some previous studies
reveal that only 75% reaches levels of satisfaction with an inci-
dence of revision surgeries being 10% to 15%, half of which
is caused by deficient technical execution [3]. In computer-
assisted ACL surgery, the pre-operative computed tomography
(CT) needs to be registered with the intra-operative points
typically collected by an optically tracked surgical pointer. In
the total hip replacement (THR) surgery, a failing orthopedic
hip implant is replaced with a new one by removing the old
implant, by removing the cement and fitting a new implant
into an enlarged canal broached in the femur [4]. Computer-
assisted surgery for pelvic fracture may cause a high risk of
mortality, although the pelvic fractures or surgeries account
for 2-8% of all fractures [5].

Generally speaking, computer-assisted surgery (CAS) brings
many benefits including stable high accuracy, significantly
improved surgical outcomes, and decreased learning curves
of novice surgeons [6], [7]. The steps involved in a typical
CAS are presented as follows. Before surgery, a computerized
surgical plan is tailored for the specific patient in volumet-
ric medical images such as computed tomography (CT) or
Magnetic resonance imaging (MRI) [8]. During surgery, the
intra-operative data from various modalities such as optically
tracked surgical instrument, endoscopic cameras or X-rays in
real-time are acquired [9]–[13]. Satisfactory surgical outcome
relies on the accurate registration between the pre-defined
interventional plan and the intra-operative data in order to
achieve the successful interventional image guidance [8], [14]–
[16]. Let us consider the rigid point set registration (PSR)
problem in the background of computer-assisted orthopedic
surgery (CAOS). The pre-operative point set (PS) is acquired
by segmenting the interested regions whitin the pre-operative
volumetric images while the intra-operative PS is acquired
using a optically tracked pointer. Most previous registration
methods usually only utilize the positional information con-
tained in the extracted PSs, which are susceptible to noise and
outliers. One reason is that finding the correct correspondences
between PSs with the presence of noise or outliers is a
challenging problem. In this work, in addition to the positional
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information, we also utilize the orientational information (i.e.,
either normal or tangent vectors) extracted from both PSs.
Pre-operatively, we extract the normal vectors since that the
pre-operative PS is usually dense. Intra-operatively, we extract
the tangent vectors from the intra-operative PS. As will be
verified in this article, the orientational information extracted
from the original raw PSs can help significantly find the correct
correspondences.

Related Work PSR problem can be broadly classified
into two categories: rigid registration and non-rigid registra-
tion [17]–[19]. Rigid registration aims to compute the rigid
transformation between two spaces, which includes a rotation
matrix, a translation vector and possibly a scaling. Non-
rigid registration aims to recover the deformation between
two spaces [20]–[23]. Our work focuses on solving the rigid
registration problem in an accurate and robust way.

Under the iterative closest point (ICP) framework, the
NICP [24] and G-IMOP [25], [26] methods incorporate the
estimated surface normal vectors into both correspondence and
registration stages of their algorithms. In both orthopedic and
cardiac surgeries, both position vectors and normal vectors are
utilized to enable intra-operative guidance in both pair-wise
[27]–[29] and group-wise generalized PSR problems [30]–
[32], and in both rigid [33] and non-rigid PSR problems
[27], [28], [30]–[32], [34]. In neurosurgery, the extracted
features from the multi-modal brain images could be utilized to
screen the outliers [14], [35]. Recent deep-learning based PSR
algorithms such as PointNetLK [36], DCP [37] or PRnet [38]
first learn high-dimensional features, from which keypoints
can then be detected and further used to search the best
transformation [36], [39]. Both the above normal-assisted and
learning-based registration methods require the PSs to be
dense, which may be impractical in many surgical navigation
applications. There are also global registration methods such
as Fast Global Registration (FGR) method [40], which also
requires the PSs to be dense. Under the maximum likeli-
hood (ML) framework, Gaussian Mixture Models- (GMMs-
) based probabilistic methods adopt the soft correspondence
assignment technique [41]–[43]. Coherent point drift (CPD)
[43] method assumes one PS to be generated from the other
PS considered as the mixed model’s centroids. Expectation
conditional maximization for point registration (ECMPR)[42]
method generalizes the assumption of isotropic positional error
to the anisotropic case. Joint registration of multiple point
clouds (JRMPC) method [41] eliminates the bias towards one
specific PS in previous methods, by regarding as samples
generated from Gaussian Mixture Models whose centres are
the rigidly transformed underlying noise-free PS, which was
proved to outperform the other advanced methods. Those
methods without using extra features, including FGR, CPD,
ECMPR and JRMPC, are not robust to noise and outliers.

Motivations and Contributions of Our Work In CAS,
the PS segmented from the pre-operative volumetric medical
images is dense, from which various features (i.e., normal
vectors, lines, planes or fpfh) can be extracted [44]. How-
ever, the intra-operative PS usually only forms a curve, from
which features such as normal vectors cannot be accurately
estimated. Hence, most existing feature-based [24], [26], [28],

[31], [34], [45] or deep-learning based methods [36]–[38] can-
not be readily adopted in the CAOS application. In addition,
in many surgical procedures such as the ACL reconstruction,
the intra-operative data only covers a partial region of the
whole interested organ, and is often corrupted with noise
and outliers. With the existing registration methods, finding
the correct point correspondences and further estimating the
correct rigid transformation are still challenging because of
the above-mentioned factors including partial overlapping,
noise and outliers. To deal with the above challenges, the
normal vectors extracted from the pre-operative PS and the
tangent vectors estimated from the intra-operative curve are
utilized. The anisotropic multi-variate Gaussian distribution is
adopted in the proposed method, considering that the position
localization error (PLE) in the surgical navigation system is
usually anisotropic [46], [47]. Our contributions of this article
are both scientific and technical. Scientifically, motivated by
the relevant clinical applications, we formulate the prob-
lem of registering the pre-operative PS with normal vectors
and intra-operative PS with tangent vectors as a maximum
likelihood estimation (MLE) problem while considering the
anisotropic localization error. The expectation maximization
(EM) technique is used to solve the formulated MLE problem.
Technically, to facilitate the computational process, we derive
and present gradients of the overall objective function with
respect to desired parameters.

Differences from Our Previous Work We have previously
proposed several rigid and non-rigid registration methods,
which utilize the normal vectors estimated from both PSs to be
registered [29], [34], [45], [48], [49]. In those methods, von-
Mises Fisher (vMF) distribution was used to model the error
distributions between one model normal vector and one data
normal vector [29]. The registration problem actually belongs
to the category of surface to surface registration, where both
PSs have to be dense to accurately estimate the normal vectors.
In this paper, we aim to solve the curve to surface registration
problem where the pre-operative surface is to be aligned with
the intra-operative acquired curve. To enhance the registration
performance such as accuracy and robustness, we adopt the
tangent vectors estimated from the intra-operative curve and
the normal vectors estimated from the pre-operative surface.
To model the error distribution between one model normal
vector and one data tangent vector, we modify the original
vMF distribution. With the tailored error distribution, the
curve to surface rigid registration is formulated as a maximum
likelihood estimation (MLE) problem.

This article is organized as follows. Section II presents
our proposed curve-to-surface registration method in detail.
Section III describes the experiments and associated results.
Section IV discusses our proposed approach and future work.
Section V concludes this paper. Section VI presents the
Appendix that includes derivations of some formulations.

II. METHODS

The aim of the rigid point set registration (PSR) prob-
lem is to estimate the rotation matrix R ∈ SO(3) and
the translation vector t ∈ R3 given two point sets (PSs)
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{ym}Mm=1(M ∈ N+) and {xn}Nn=1 (N ∈ N+). Let us
denote X = [x1, ...,xn, ...,xN ] ∈ R3×N (M ∈ N+) and
Y = [y1, ...,ym, ...,yM ] ∈ R3×M (N ∈ N+). In our proposed
algorithm, the tangent vectors X̂ = [x̂1, ..., x̂N ] ∈ R3×N and
normal vectors Ŷ = [ŷ1, ..., ŷM ] ∈ R3×M are also utilized,
which can be extracted from X and Y. In image-guided
surgery (IGS), the model PS Y is the PS segmented from the
pre-operative volumetric medical images while the data PS X
denotes the intra-operative PS. We formulate the PSR problem
as a maximum likelihood estimate (MLE) one, and solve the
problem with the expectation maximization technique. The
overall registration scheme is the following: (a) construct the
probabilistic models associated with the positional vectors X
and orientational vectors X̂; (b) formulate the MLE problem
that is to be solved with respect to the desired parameters
including R and t; (c) derive the formulas of the iterative
expectation maximization (EM) steps in solving the MLE
problem.

A. Illustration of the modified vMF distribution

There is no off-the-shelf probability distribution to quantify
the error between a sample tangent vector and the central
normal vector of that distribution from which the tangent
vector is generated. In order to model the error distribution
between a normal vector and the corresponding tangent vector,
we correspondingly modify the original von-Mises Fisher
(vMF) distribution that describes the error between two normal
vectors to a new distribution. The probability density function
(PDF) of the modified vMF distribution

p(x̂n|Rŷm) =
κ

2π(eκ − e−κ)
eκ||Rŷm×x̂n|| (1)

gives the probability of x̂n being generated by Rŷm, where
κ ∈ R is the concentration parameter, × denotes the cross
product of two vectors. In the context of our paper, ŷm
represent the pre-operative normal vectors while x̂n represent
the intra-operative tangent vectors. The above distribution
p(x̂n|Rŷm) gives the probability that one data tangent vector
x̂n is sampled from the corresponding transformed model
normal vector Rŷm. Let x̂⊥n ∈ R3 (||x̂⊥n || = 1) denote the
normal vector that is orthogonal to x̂n at the point xn(i.e.
x̂T
nx̂⊥n = 0 , and ||x̂⊥n || = 1). In all the following cases, x̂n

and x̂⊥n lie in one common plane P while x̂⊥n and the rotated
model normal vector Rŷm lie in the other plane Q. As it is
shown in Fig. 1, let θ1 ∈ R denote the angle between Rŷm
and the tangent vector x̂n while θ2 ∈ R denote the angle
between Rŷm and x̂⊥n . In Case One, the three vectors (i.e.,
x̂n, Rŷm, and x̂⊥n ) lie in one common plane P , and θ1 <

π
2 ,

θ2 <
π
2 . As shown in Fig. 1 (Case One), θ2 = π

2 − θ1 holds,
resulting cos(θ2) = cos(π2 − θ1) = sin(θ1). Thus, the cross
product Rŷm × x̂n (i.e., sin(θ1)) is utilized in our case to
replace the dot product (Rŷm)Tx̂⊥n . In Case Two, the three
vectors lie in common plane P , θ2 <

π
2 while θ1 >

π
2 . As

shown in Fig. 1 (Case Two), θ1 = π
2 + θ2 holds, resulting the

equation cos(θ2) = cos(θ1 − π
2 ) = cos(π2 − θ1) = sin(θ1). In

Case Three, as shown in Fig. 1 (Case Three), x̂n ∈ P and
x̂⊥n ∈ P while Rŷm lies in a different plane. In this case, we
notice that if θ1(in the range [0,90]◦) becomes larger, θ2(in

the range [0,90]◦) will become smaller accordingly. Thus, it
is appropriate to use sin(θ1) to replace cos(θ2). In the last
extreme case (i.e., Case Four), as shown in Fig. 1 (Case Four),
θ1 = π

2 regardless of the values of θ2. By summarizing the
above four cases, we can see that the dot product of two normal
vectors is equal to the cross product of a tangent vector and
a normal vector.

B. Rigid Point Set Registration with Normal and Tangent
Vectors

Now we have the PDF that describes the error between one
normal vector and its corresponding tangent vector, we are
able to cast the registration into an optimization problem. With
the latent variables being the point correspondences in two
PSs, the registration of two generalized PSs is formulated as a
MLE problem. The MLE problem is readily solved under the
expectation maximization (EM) framework. More specifically,
in the expectation step, the point correspondences are com-
puted given the other parameters (either from the initialization
at the beginning of the algorithm or from last EM step). In
the maximization step, the rotation matrix, translation vector,
positional covariance matrix and the concentration parameter
are updated given the other parameters. In what follows,
we first construct the objective function to be minimized.
Afterwards, the detailed EM steps are derived and presented.
The Hybrid Mixture Models Since we are registering gen-
eralized points that include positional vectors and normal (or
tangent) vectors in two spaces, the probability density function
has to be defined. To proceed, the positional vectors and orien-
tational vectors are assumed to be independent in both spaces
to be registered [31]. The multi-variate Gaussian distribution
is utilized to model the localization error associated with the
positional vectors. With the above (modified vMF) distribution
presented in (1), the probability of one generalized intra-
operative data point dxn = [xT

n, x̂
T
n]

T ∈ R6 being generated by
the transformed model point dym = [(Rym + t)T, (Rŷm)T]T

given the correspondence zn = m and model parameters Θ
(which will be defined below) is the product of the anisotropic
multi-variate Gaussian distribution and the modified vMF
distribution as follows
p(dxn|zn = m,Θ)

=
1

(2π)
3
2 |Σ| 12

e
−1
2

(
xn−(Rym+t)

)T
Σ−1

(
xn−(Rym+t)

)
︸ ︷︷ ︸

Anisotropic Multivariate Gaussian Distribution
κ

2π(eκ − e−κ)
eκ||Rŷm×x̂n||︸ ︷︷ ︸

Modified vMF Distribution

,

(2)

where dxn = [xT
n, x̂

T
n]

T ∈ R6, Σ ∈ S3 is the symmetric
positional covariance matrix, |Σ| denotes the determinant of
Σ, κ ∈ R is the concentration parameter associated with the
orientational error, zn ∈ N+ is the correspondence variable
(zn = m if x̂n corresponds to ŷm), the model parameter set
is Θ = {R, t, κ,Σ}. The inherent rationale, with zn = m, is
that the data positional vector xn and the data tangent vector
x̂n are respectively randomly sampled from the multi-variate
Gaussian distribution (with the covariance matrix Σ) centered
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Case One Case Two  Case Three                                                        Case Four

Fig. 1. Illustration of the novel modified vMF distribution, case one to case four. In Case One and Two, all three vectors Rŷm (the rotated model normal
vector), x̂⊥n (the data normal vector) and x̂n (the data tangent vector) lie in the same plane P . In Case Three, x̂⊥n and x̂n lie in the common plane P while
the transformed model normal vector Rŷm lie in another plane. In Case Four, Rŷm and x̂⊥n lie in the common plane Q while x̂n lies in another plane.

at the transformed model position vector Rym + t and the
modified vMF distribution (with the concentration parameter
κ) centered at the transformed model normal vector Rŷm.

To seek the optimal model parameters Θ, by assuming the
independence of all the data points (which is a common and
needed assumption in PSR algorithms), the likelihood defined
as Θ = argmaxΘ p(Dx|Dy,Θ) =

∏N
n=1 p(d

x
n|zn = m,Θ)

(where Dx includes all the dxn and T(Dy) includes all the
T(dy

m) = [(Rym + t)T, (Rŷm)T]T ∈ R6) needs to be max-
imized with respect to Θ. However, in practice, the negative
log likelihood −logp(Dx|T(Dy),Θ) is usually minimized to
estimate Θ as follows

Θ = − argmin
Θ

log p(Dx|Dy,Θ)

= − argmin
Θ

log

N∏
n=1

p(dxn|Dy,Θ)

= argmax
Θ

N∑
n=1

log p(dxn|Dy,Θ)

(3)

where the expression of the hybrid mixture model (HMM)
p(dxn|Dy,Θ) is

p(dxn|Dy,Θ) = (1−w)
M∑
m=1

1

M
p(dxn|zn = m,Θ)+w

1

N
(4)

which is the sum of an additional uniform distribution (to
account for noise or outliers) and the PDF in (2), w ∈ R is
the weighting factor of the outlier distribution in the HMMs
and the expression of p(dxn|zn = m,Θ) is defined in (2).
The Objective Function Similar to the derivations in [29],
by (i) substituting (2) into (4) and by substituting the updated
(4) into (3); (ii) retaining the terms that are related with the
rotation matrix Θ, the overall objective function Q(Θ) to be
minimized is defined as follows,

N∑
n=1

M∑
m=1

pmn

(
1

2

(
xn − (Rym + t)

)T
Σ−1

(
xn − (Rym + t)

)
− κ||(Rŷm)× x̂n||

)
+

1

2
NPlog|Σ|+NPlog(eκ − e−κ)

−NPlogκ

,

(5)

where the sum of the posteriors is NP =
∑N
n=1

∑M
m=1 pmn.

When the objective function Q(Θ) is minimized, two non-
linear constraints have to be satisfied: (1) RRT = 1; (2)
det(R) = +1. Iterative EM technique is adopted to solve the
above optimization problem with the missing data being the
point correspondence probabilities pmn. At the beginning of
the algorithm, the rotation matrix R0 and translation vector
t0 are initialized to be the 3-by-3 identity matrix and 3-by-1
zero vector respectively.
Expectation Step In this step, we compute the correspondence
probabilities pmn given the rotation matrix R, the transla-
tion vector t, the positional covariance matrix Σ and the
concentration parameter κ in the last iterative step. Posterior
probabilities {pmn}n,m=N,M ∈ R are updated based on the
Bayes’ rule as

pmn =
P (m)|p(dn|zn = m,Θ)

p(dxn|Dy,Θ)
(6)

where the expression of is p(dxn|Dy,Θ) is in (4). The posterior
is stored in the new matrix P(m,n) = pmn, where pmn
means the probability that m-th model point (Rym+t,Rŷm)
corresponds to the n-th data point dxn.
Maximization Transformation Step In this step, the rotation
matrix R and translation vector t are updated given the other
parameters. Instead of seeking the parameters R and t directly,
the incremental rotation matrix dR ∈ SO(3) and dt ∈
R3 between two iterative Maximization Transformation steps
(e.g., q and q+1 steps) are estimated. After manipulating the
corresponding derivations, the objective function Q(dR, dt)
related with (dR, dt) to be minimized is as follows

Q(dR, dt) =

N,M∑
n,m=1

(
1

2
pqmnzTmnΣ−1zmn −

1

2
pqmnxT

nΣ−1xn︸ ︷︷ ︸
Positional Part CP,mn∈R

−pqmnκ
∣∣∣∣∣∣(dRRq−1ŷm)× x̂n

∣∣∣∣∣∣︸ ︷︷ ︸
Orientational Part CN,mn∈R

) ,

(7)

where q ∈ N+ represent the index of the current iteration,
zmn = xn − dR(Rq−1ym + tq−1) − dt, pqmn ∈ R is
the posterior probability in the current step. Considering
that dR and dt together denote the transformation matrix
between two iterative steps, the m-th central point at the
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current step Rym + t is the transformed central point at
the last iteration Rq−1ym + tq−1 using dR and dt, i.e.
dR(Rq−1ym + tq−1) − dt. The derivation of (7) from (5)
is simple, using zmn to replace (xn − (Rym + t) in (5). The
term − 1

2p
q
mnxT

nΣ−1xn appears in (7) is because this term
is irrelevant with either dR or dt while the subtracted terms
are either related with dR or dt. The readers should note that
the overall objective function Q(dR, dt) consists of two parts:
CP,mn that is related with the positional vectors {X,Y} and
CN,mn that is related with the orientational vectors {X̂, Ŷ}.
In addition, the incremental rotation matrix dR is represented
using the Rodrigues rotation formula,

R(θ) = I +
sin(ϑ)
ϑ

[θ]× +
1− cos(ϑ)

ϑ2
[θ]2×, (8)

where [θ]× denotes the asymmetrical matrix constructed from
θ ∈ R3.Specifically, dR = R(dθ), where dθ ∈ R3 denotes
the incremental rotation angle, with which Q(dR, dt) is con-
verted into Q(dθ, dt). To optimize one objective function, the
gradient descent method is usually adopted where the gradients
can be either in analytical forms or computed numerically.
Here we present the gradients for improving the computational
speed.
Gradients In order to speed up the computation process, we
compute and provide the gradients of Q(dθ, dt) with respect
to dθ and dt. The computation of the gradients can be divided
into five steps. First, we rewrite the orientational part CN,mn
in (7) as

CN,mn = −pqmnκ
√

1− (ŷT
mRTdRTx̂n)2, (9)

The detailed derivation of (9) is presented in Section. VI-B.
With (9), we can compute the gradient of the orientational part
with respect to dR ∂CN,mn

∂dR as

pqmnκŷT
mRTdRTx̂n

(
1− (ŷT

mRTdRTx̂n)
2
)− 1

2

x̂nŷT
mRT,

(10)
whose detailed derivation is given in Section. VI-C. By sub-
stituting (10) into the following (i.e., the gradient of ∂CN,mn

with respect to dθi )

∂CN,mn

∂dθi
= trace

[
(
∂CN,mn

∂dR
)T
∂dR

dθi

]
, i = 1, 2, 3, (11)

we can compute ∂CN,mn

∂dθi
(i = 1, 2, 3). The readers should note

that ∂CN,mn

∂dti
= 0(i = 1, 2, 3) since that CN,mn is related

with the normal vectors and tangent vectors. The derivations
and expressions of ∂CP,mn

∂dθi
(i = 1, 2, 3), ∂CP,mn

∂dti
(i = 1, 2, 3)

and ∂dR
dθi

(i = 1, 2, 3) are similar with those in [45]. For the
convenience of readers, we include the expressions of ∂dRdθi (i =
1, 2, 3) and ∂CP,mn

∂dt (i = 1, 2, 3) in Section VI-D and Section
VI-E, respectively. Third, the Jacobians of CP,mn with respect
to dθ and dt, and the Jacobians of CN,mn with respect to
dθ(for n = 1 : N and m = 1 :M ) are respectively

JCP,mn,dθ = [
∂CP,mn

∂dθ1
,
∂CP,mn

∂dθ2
,
∂CP,mn

∂dθ3
] ∈ R1×3

JCP,mn,dt = [
∂CP,mn

∂dt1
,
∂CP,mn

∂dt2
,
∂CP,mn

∂dt3
] ∈ R1×3

JCN,mn,dθ = [
∂CN,mn

∂dθ1
,
∂CN,mn

∂dθ2
,
∂CN,mn

∂dθ3
] ∈ R1×3

, (12)

which can be easily constructed. Fourth, the overall gradients
are the transpose of the concatenated Jacobian vectors,{

5CP,mn = [JCP,mn,dθ ,JCP,mn,dt]
T ∈ R6×1

5CN,mn = [JCN,mn,dθ ,01×3]
T ∈ R6×1

, (13)

Finally, the sum of gradients of the objective function C with
respect to the desired parameters dθ, dt are

5C =

N∑
n=1

M∑
m=1

5CP,mn +

N∑
n=1

M∑
m=1

5CN,mn, (14)

With the gradients, we utilize the trust-region method to solve
the optimization problem in (7). After getting the dθ and dt,
we can use (8) to get the incremental rotation dR and dt. The
updated rotation matrix and translation vector are updated as
Rq = dRRq−1 and tq = dRtq−1 + dt in the current step,
where Rq−1 and tq−1 denote the updated rotation matrix and
transaltion vector in the last step.
Maximization Covariance Step In this step, the positional
covariance matrix Σ is updated given other parameters. The
terms of Q(dR, dt) in (7) that are related with Σ, i.e. Q(Σ)
are as follows,

Q(Σ) =

N,M∑
n,m=1

(
1

2
pqmnzTmnΣ−1zmn −

1

2
pqmnxT

nΣ−1xn

)
.

(15)
The positional covariance matrix Σq is updated by solving
∂Q(Θ)
∂Θ = 0:

Σq =
(
Xdiag

(
PT1

)
XT −XPT1tT − t1TPXT + RYP1tT

+ t1TPTYTRT −RYPXT −XPTYTRT + ttTNP

+ RYdiag(P1)YPTRT
)
/NP,

(16)

where 1 is a column vector of all elements being 1 with the
appropriate dimension. For example, the 1 in PT1 is RM×1

since P is RM×N . As another example, the 1 in t1TPTYTRT

is RN×1 in order to the matrix (or vector mulplication) since
P is RM×1.
Maximization κ step In this step, the concentration parameter
κ associated with the orientational vectors X̂ is updated given
other parameters. By retaining the terms that are related with
κ, the objective function Q(dR, dt) in (7) becomes

Q(κ) =− κ
N∑
n=1

M∑
m=1

pmn||Rŷm × x̂n||+NPlog(eκ − e−κ)

−NPlog(κ)

.

(17)

The concentration parameter κ is updated by solving the
equation ∂Q(κ)

∂κ = 0, i.e.,

− 1

κ
+
eκ + e−κ

eκ − e−κ
=

1

NP

M∑
m=1

N∑
n=1

pmn||Rŷm × x̂n||. (18)

The closed-form solution to updating κ, as those in [26], [29],
as

κ = r(3− r2)/(1− r2), (19)
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where r = r1 + r2 with r1 and r2 being the following
r1 =

1

NP

N∑
n=1

M∑
m=1

pmn||Rŷm × x̂n||

r2 =

∑N
n=1

∑M
m=1 pmnx′Tn Ry′m

pmn||Ry′m||||x′n||

, (20)

where x′n and y′m are the demeaned positional vectors as those
in [29]. The above expectation and maximization procedures
are iterated until convergence to acquire the final registration
result [R, t].

III. EXPERIMENTS AND RESULTS

A. Results on the Human Pelvis and Femur Data

In this experiment, we first validate the proposed approach
on the data generated from human femur models in the clinical
background of total hip replacement (THR) surgery [52]. In
the total hip replacement procedure, the femur bone model
is used and the intra-operative points cover a partial region
of the whole pre-operative model (i.e. the femur head). The
intra-operative points can be acquired by optically tracked
surgical pointer or laser range scanner (LRS). The experiments
on the femur model are ’partial’ to ’full’ registrations. We
also perform experiments on the human pelvis model, where
the intra-operative PSs are uniformly sampled from the whole
pre-operative model. The experiments on the human pelvis
model are ’full’ to ’full’ registrations. The pre-operative PS is
assumed as the model PS Y(where M = 1568 points exist)
while the intra-operative PS is considered as the data PS X
(where Ntrial = 100 inlier points exist). The normal vectors Ŷ
are computed using the principal component analysis (PCA)
technique [29]. To test the proposed approach’s robustness
to noise and outliers, noise and outliers are injected into
X and X̂. On one hand, randomly generated isotropic and
anisotropic positional noise vectors are injected into X: Σiso =
diag([ 13 ,

1
3 ,

1
3 ]) and Σaniso = diag([ 1

11 ,
1
11 ,

9
11 ])

1. On the other
hand, the tangent vectors X̂ are corrupted with randomly gen-
erated isotropic orientational error at 1◦ standard deviation (i.e.
κ = 3200). Five different percentages of outliers are injected
into X and X̂: 10%, 30%, 50%, 70%, 90%. As an example, the
number of all intra-operative points is Nall = N × (1 + 10%)
when there exists 10% outliers. The rotational angle and the
translation vector between X and Y before registration are
randomly sampled in [10, 20]◦ and [10, 20]mm, respectively.
The rotational error in degree is computed as

θdegerr =
arccos[ trace(RtrueR

T
err)−1

2 ]

π
× 180◦, (21)

while the translation error in millimeter is computed as

terr = ||ttrue − tcal||2, (22)

where [Rcal, tcal] and [Rtrue, ttrue] are the computed and
Ground-truth rigid transformation matrices. With the human

1Note that the setting of the anisotropic positional noise in the intra-
operative data is realistic since that in the typical stereo camera system such
as the NDI optical tracking system, the position localization error’s standard
deviation is usually three or five times of those in the other two orthogonal
directions [46]

pelvis model, the intra-operative points are uniformly sampled
in the whole model PS while the intra-operative data is only
sampled within the femur head in the case of the human femur
model. Ninliers = 100 inlier points are contained in the intra-
operative PS X. In each registration case, Ntrial = 10000
registration trials are conducted, whose mean registration error
values in each case and with different registration meth-
ods are recorded. Six state-of-the-art registration methods
are compared: ICP[50], Go-ICP [51], CPD[43], ECMPR[42],
JRMPC[41], Ours (Iso). Ours (Iso) denotes the modified
approach of ours by constraining Σ to be σ2I3×3, whose
detailed derivations of EM procedures are omitted.

Results on the Pelvis Bone Model (Full to Full Reg-
istration) Table I includes the rotational error in degree
and translation error in millimeter under both isotropic and
anisotropic positional noise. The lowest error values in each
test case are emphasized with bold fonts. As it can be seen
from Table I, our approaches (Ours or Ours(Iso)) achieve the
best registration performance (i.e., the lowest registration error
values) in almost all cases. All the results have passed the
statistical tests at 5% significance level. It is worth mentioning
that our method owns great robustness to injected outliers
(by comparing results in one same row in Table I), which
is essential since outliers usually exist in the real-world intra-
operative data in CAS.
Results on the Femur Bone Model (Partial to Full Regis-
tration) Table II shows the results on the human femur bone
model under different cases of noise and different percentages
of outliers. As it is shown in Table II, the largest mean
rotational and translational error values are 0.6613◦ and
0.4608mm, respectively. The readers should note that all the
other compared registration methods fail to register the two
PSs. By comparing the results along the same columns in Table
II, we can conclude that our proposed approach is stable with
respect to various percentages of outliers.

(a) Curve 1 (b) After (c) Curve 2 (d) After

Fig. 2. (a) Curve 1, (b) After Registration, (c) Curve 2, (d) After Registration.
It can be seen from the figures that the intra-operative curves can be well
aligned with the pre-operative model using our approach.

B. Registration Without Noise and Outliers

In all the following experiments, the human femur model
is utilized and the intra-operative points only cover a partial
region of the pre-operative model. The Blender software is
used to select intra-operative curve from the condylar region
of the human knee model (in Mesh), which is the typical
region that can be touched by the surgical probe in the ante-
rior cruciate ligament (ACL) reconstruction procedure. In all,
Ncurve = 10 different curves are selected from the knee model.
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TABLE I
THE MEAN REGISTRATION ERROR ON THE PELVIS MODEL DATA, ROTATIONAL ERROR VALUES IN DEGREE AND THE TRANSLATION ERROR IN MM ARE

PRESENTED. ISOTROPIC (DENOTED AS ISO) AND ANISOTROPIC (DENOTED AS ANISO) POSITIONAL NOISE VECTORS ARE INJECTED INTO X,
RESPECTIVELY.

Outliers 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Rotational Error (in degree) Translational Error (in mm)

Iso

ICP[50] 0.342 1.102 1.138 1.211 0.879 0.310 0.620 0.818 1.237 1.026
CPD[43] 2.533 2.778 2.635 3.038 3.112 2.197 2.257 2.411 2.474 2.510

ECMPR[42] 1.863 1.843 1.942 1.549 1.481 1.483 1.375 1.392 1.172 1.153
Go-ICP[51] 0.342 0.729 1.036 1.039 1.155 0.331 0.351 0.721 0.868 1.106
JRMPC[41] 0.431 0.472 0.357 0.443 0.425 0.400 0.441 0.388 0.270 0.402
Ours (Iso) 0.326 0.349 0.285 0.303 0.326 0.307 0.365 0.269 0.260 0.273

Ours 0.342 0.332 0.282 0.290 0.298 0.250 0.252 0.215 0.214 0.218
Outliers 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Rotational Error (in degree) Translational Error (in mm)

Aniso

ICP[50] 0.504 0.615 0.9892 1.560 1.414 0.254 0.561 0.520 1.002 1.123
CPD[43] 2.059 2.256 2.191 2.522 2.715 2.035 2.188 2.276 2.219 2.342

ECMPR[42] 1.562 1.528 1.245 1.297 1.049 1.336 1.251 1.120 1.034 0.924
Go-ICP [51] 0.504 0.606 0.990 1.484 1.767 0.342 0.531 0.547 0.959 1.251
JRMPC[41] 0.336 0.366 0.445 0.415 0.332 0.345 0.390 0.576 0.415 0.433
Ours (Iso) 0.223 0.128 0.258 0.136 0.126 0.348 0.286 0.437 0.254 0.230

Ours 0.234 0.173 0.185 0.156 0.158 0.290 0.231 0.225 0.209 0.207

TABLE II
THE MEAN REGISTRATION ERROR VALUES ON THE HUMAN FEMUR

MODEL. THE ROTATIONAL ERROR VALUES IN DEGREE AND THE
TRANSLATION ERROR IN MILIMETER ARE PRESENTED. BOTH TEST CASES
WHERE ISOTROPIC AND ANISOTROPIC POSITIONAL NOISE VECTORS ARE

INJECTED INTO X ARE PRESENTED.

Rotational Error (in degree) Translational Error (in mm)
Outlier Isotropic Anisotropic Isotropic Anisotropic

10% 0.5420 0.5699 0.4608 0.3266
30% 0.5238 0.5965 0.3792 0.3380
50% 0.6356 0.6466 0.3378 0.3574
70% 0.6613 0.6412 0.3695 0.3551
90% 0.5926 0.6197 0.2865 0.3385

For each curve, hundreds of points are collected to form the
intra-operative curve X (in average, 212 points). For example,
Ncurve 1 = 258 and Ncurve 2 = 171 points exist in X in the
first and second selected curves. The intra-operative tangent
vectors X̂ are estimated for the collected curve with the
standard algorithm such as Frenet frame. In this experiment,
no noise is injected into the Dx since the acquisition of intra-
operative data is not perfect and the estimation of tangent
vectors involves error. For each curve, Ntargets = 10 targets
are selected from the knee model to further compute the target
registration error (TRE) statistics, which is defined as follows,

TRE = Rtruertarget + ttrue −Rcalrtarget − tcal (23)

whose magnitude is denoted by its norm. In addition, the
rotational error in degree defined in (21) and translation
error in millimeter defined in (22) are also computed and
recorded. Fig. 2(a) and Fig. 2(c) show the two individual
intra-operative curves while Fig. 2(b) and Fig. 2(d) show
the qualitative results after the registration. As can be seen
from Fig. 2(c) and 2(d), the intra-operative curve is sampled
from the condylar region of the human knee model (i.e., a
partial region of the whole area). To emphasize, all the other
compared registration methods fail in this challenging test
scenario. As it is shown in Fig.2, the intra-operative curve
and the pre-operative surface is well aligned. Fig. 3(a)-3(c)
show the quantitative results including mean rotational(defined
in (21)), translational (defined in (22)) and TRE (defined in
(23)) values respectively, where Ncurve different curves are
utilized. Fig. 3(c) shows that TRE values smaller than 0.4
milimeters can be achieved with all the sampled intra-operative

points and using our proposed approach. We also test the cases
where only 50% intra-operative points are utilized (randomly
sampled). As shown in Fig. 3(a)-3(c), the error values with
50% intra-operative points (denoted with the blue line) are
smaller than the upper bound error (denoted with the green
dashed line).

TABLE III
THE NUMBER OF INTRA-OPERATIVE POINTS IN DIFFERENT CURVES.

Index 1 2 3 4 5
100% 258 171 200 243 255
50% 129 86 100 122 128
Index 6 7 8 9 10
100% 233 163 168 229 196
50% 117 82 84 115 98

C. Robustness to Outliers of Our Proposed Registration Ap-
proach

In surgical navigation, the acquired intra-operative curve
can easily contain outlier points due to many factors such
as the surgeon’s hand tremor. To further test our proposed
approach’s robustness to outliers, we inject outliers to the
data point set Dx. Five cases of outliers, varying from 10%
outliers to 90% outliers with the interval being 20% outliers,
are tested. For instance, in the case of 10% outliers, there are
Ncurve×10% = 29 outlier points in Dx. Fig. 4 shows both the
qualitative and quantitative results under different percentages
of outliers. Fig. 4(a-j) present the qualitative results, where the
red points denote the intra-operative outliers. As it is shown
in Fig. 4 (b,d,f,h,j), the intra-operative curves corrupted with
different outlier points can be accurately aligned with the pre-
operative model regardless of injected outlier points. Fig. 4
(k) includes the rotational error, the translational error and the
target registration error (TRE) values defined in (21), (22) and
(23) respectively. As can be seen from Fig. 4 (k), the mean
rotational error values, the translation error values, and TRE
values are smaller than 0.3 mm in all test cases of different
outliers percentages. At the same time, the maximum mean
rotational error values are no larger than 0.2 mm in all test
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Fig. 3. (a) Mean rotational error values in degree, (b) Mean translation error values in milimeters, (c) Mean target registration error (TRE) values. In the
three subfigures, the green horizon lines denote the upper error bounds.
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Fig. 4. Robustness to outliers is an essential characteristic to evaluate a registration approach. During surgery, the acquired intra-operative data is often
contaminated with outliers that may come from sensor measurement error, surgeon’s hand tremor. (a,c,e,g,i): The first intra-operative curve with different
percentages of injected outliers from 10%, 30%, 50%, 70%, 90% respectively. More specifically, assume that Ninliers inliers points, Noutliers = Ninliers × 0.9
outliers exist when there is 90% outliers. (b,d,f,h,j): The corresponding registration performances with our proposed approach used. As it can be seen from
(b,d,f,h,j), the pre-operative model can be well aligned with the intra-operative data regardless of the large amount of outliers. (f) The rotational, translational
and target registration error (TRE) values defined in (21), (22) and (23) under different outlier percentages. As it can be see from (f), the maximum TRE
value is under 0.4 milimeters that is satisfactory.

cases. To summarize, the error values associated with test cases
of different outlier percentages are quite stable with small
fluctuations.

D. Robustness to Different Curve Shapes

The readers should note that in real orthopedic surgical
navigation procedures, the intra-operative curves (typically
acquired with an optically tracked surgical pointer in surgical
navigation) could possibly have random shapes. Hence, it is
also necessary to test our proposed approach’s robustness to
different curve shapes. Fig. 5 shows the qualitative results of
registering the other eight intra-operative curves with different
shapes (without outliers). As can be seen from Fig. 5, our pro-
posed approach can well align the curve and model together in
all eight test cases with different intra-operative curve shapes.
Overall, Ncurve = 10 different curves have been tested. Table
III includes the number of inlier points in the Ncurve test intra-

operative curves. To summarize, our algorithm is very robust
to the intra-operative acquired curves’ shapes.

IV. DISCUSSIONS

Results in Section III show that our proposed curve-to-
surface registration method considering anisotropic positional
uncertainties achieves significantly improved performances
comapred to the existing state-of-the-art methods. With the
orientational vectors extracted from two spaces to be reg-
istered, our method demonstrates great robustness to both
noise and outliers. Results in Table I verify the advantage
of considering the anisotropic positional uncertainty since our
proposed approach achieves the best registration performances
in 14 out of all 20 test cases. More importantly, all the methods
that only use the positional information have failed to align
the partial intra-operative curve with the whole pre-operative
model while our approach can still own high accuracy as
suggested by results in Table II. Our method has also been



9

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5. The remaing eight different intra-operative curves (a,c,e,g,i,k,m,o)
and their corresponding registration performances (b,d,f,h,j,l,n,p) with our
proposed registration approach.

validated to own great robustness to noise and outliers, and to
different curves’ shapes. Limitations: The first limitation with
our proposed method is that only a limited range of rotation
angles can be accommodated. In other words, our proposed
registration approach is a locally optimal registration method.
This limitation is because that our proposed algorithm is
developed based on the Gaussian mixture models (GMMs) and
Coherent Point Drift (CPD) theories. One usual strategy can
be used that is, several anatomical landmarks or fiducials can
be used and their physical locations in the pre-operative and
intra-operative spaces are utilized to complete the initial coarse
registration task. The second limitation is that we only consider
the anisotropy in the positional information. The error associ-
ated with the normal vectors is assumed to be isotropic in the
proposed approach. This limitation comes from the use of von-
Mises fisher distribution where the isotropic orientation error
is assumed. The third limitation is the computational speed is
slow with respect to those using only positional information,
despite that we have derived and utilized the matrix forms of
several parameters such as the updated positional covariance
matrix in the maximization step. This limitation also comes
from the use of Gaussian mixture models (GMMs). It should
also be noted that all the experiments have been performed
on simulated or synthetic data. While it gives convenience to

benchmark our proposed registration approach against others,
the improvements on the real-world data may be different to
some extent.

Future Work: The first useful direction is to develop a
global registration approach that eliminates the needs for an
additional coarse registration step. One potential solution is
to select a subset of the position+tangent or position+normal
pairs, and then establish their pair correspondences. After that,
the coarse rigid transformation matrix can be computed using
variant algorithms in the Maxmization Transformation step
in this paper. To overcome the second limitation, the Kent
distribution can be used to model the error associated with the
normal/tangent vectors. To overcome the third limitation, the
Matlab codes can be substituted with C++ version to further
accelerate the algorithm. It will be interesting to adopt the
deep learning technique such as convolution neural networks
(CNNs) to estimate the normal/tangent vectors from the raw
point sets, which has been demonstrated to be more accu-
rate and robust compared to conventional methods [53]. The
estimated normal and tangent vectors can be further readily
incorporated into our registration framework.

V. CONCLUSIONS

In this article, we present a novel registration approach
to compute the rigid transformation matrix between the pre-
operative space and the intra-operative space in computer-
assisted orthopedic surgery (CAOS). In addition to the po-
sitional information, the normal vectors extracted from the
pre-operative surface and the tangent vectors extracted from
the intra-operative curve are utilized in proposed registration
algorithm. The position localization error is assumed to be
anisotropic, which is a generalized assumption of the isotropic
positional error. Our proposed approach has been demonstrated
to be accurate and robust to noise, outliers (e.g., 90% outliers)
with extensive simulated experiments.

VI. APPENDIX

A. Von-Mises Fisher distribution

In this section, we briefly introduce the basics of von-
Mises-Fisher (vMF) distribution that is used to model the
orientation-al error. The probability density function of the
vMF distribution for the random d-dimensional unit vector x̂
(i.e. x̂ ∈ Rd and ||x̂|| = 1, or equivalently x̂ ∈ Sd−1) is given
by

p(x̂|µ̂, κ) = cd(κ)e
κµ̂Tx̂ (24)

where ||µ̂|| = 1, κ ≥ 0 and d ≥ 2. The normalizing constant
cd(κ) is the following:

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
(25)

where Ir(•) denotes the modified Bessel function of the first
kind and order r. The above density function p(x̂|µ̂, κ) is
parameterized by the mean direction µ̂ and the concentration
parameter κ. We remark that larger values of κ indicate
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stronger concentration about the mean direction. More specif-
ically, in our case (where d = 3), the normalizing constant
cd(κ) is the following:

cd(κ) =
κ

2π(eκ − e−κ)
(26)

The vMF distribution is one of the simplest parametric distri-
butions for the orientation-al data.

B. The Derivation of CN,mn in (9)

Recall that the original formulation of CN,mn in (7) is as
the following

CN,mn = −pqmnκ
∣∣∣∣∣∣(dRRq−1ŷm)× x̂n

∣∣∣∣∣∣
= −pqmnκsin(α) = −pqmnκ

√
1− cos2(α)

= −pqmnκ
√
1− (ŷT

mRTdRTxn)2

, (27)

where we denote α ∈ R as the angle between dRRq−1ŷm
and x̂n.

C. The Derivation of ∂CN,mn

∂dR in (11)

For clarity, we present again the full expression of CN,mn

as follows,

CN,mn = −pmnκ
√
1− (ŷmRTdRTX̂n)2 (28)

Let the scalar a be defined as

a = 1− (ŷmRTdRTX̂n)
2 = 1− x̂T

ndRRŷT
mŷmRTdRTx̂n

(29)

With the Chain rule of derivatives, we can easily get the
following expression of ∂CN,mn

∂dR ,

∂CN,mn

∂dR
=
∂CN,mn

∂a

∂a

∂dR
(30)

where
∂CN,mn

∂a
= −pmnκ

1

2
a−

1
2 . (31)

With the formula ∂bTXTDXc
∂b = DTXbcT+DXcbT where

D and X are random matrices, the derivative of a in (29) with
respect to dR ∂a

∂dR is

∂a

∂dR
= −ŷT

mŷmRTdRx̂nx̂T
n. (32)

Now we can get the full expression of ∂CN,mn

∂dR in (10) with
(30), (31), (29) and (32), which is presented as follows,

pmnκ
1

2
(1− (ŷmRTdRTX̂n)

2)−
1
2 ŷT

mŷmRTdRx̂nx̂T
n. (33)

D. The Expressions of ∂dR
∂dθ1

, ∂dR
∂dθ2

, and ∂dR
∂dθ3

in (11)



∂sk(dθ)

∂dθ1
=

0 0 0
0 0 −1
0 1 0


︸ ︷︷ ︸

A1

∂sk(dθ)

∂dθ2
=

 0 0 1
0 0 0
−1 0 0


︸ ︷︷ ︸

A2

∂sk(dθ)

∂dθ3
=

0 −1 0
1 0 0
0 0 0


︸ ︷︷ ︸

A3

. (34)

E. The Expression of ∂CP,mn

∂dt in (12)

∂CP,mn

∂dt
= (Σq−1)−1

(
−xn+ dt+ dR

(
Rq−1ym+ tq−1

))
.

(35)
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