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Generalized Coherent Point Drift with Multi-Variate Gaussian
Distribution and Watson Distribution

Zhe Min, Jianbang Liu, Li Liu, Max Q.-H. Meng, Fellow, IEEE

Abstract—This paper introduces a novel rigid point set regis-
tration (PSR) approach that accurately aligns the pre-operative
space and the intra-operative space together in the scenario
of computer-assisted orthopedic surgery (CAOS).Motivated by
considering anisotropic positional localization noise and utilizing
undirected normal vectors in the point sets (PSs), the multi-
variate Gaussian distribution and the Watson distribution are uti-
lized to model positional and normal vectors’ error distributions
respectively. In the proposed approach, with the above probability
distributions, the PSR problem is then formulated as a maximum
likelihood estimation (MLE) problem and solved under the
expectation maximization (EM) framework. Our contributions
are three folds. First, the rigid registration problem of aligning
generalized points with undirected normal vectors is formally
formulated in a probabilistic manner. Second, the MLE problem
is solved under the EM framework. Third, the gradients of
associated objective functions with respect to desired parameters
are computed and provided. Experimental results on both the
human pelvis and femur models demonstrate the potential
clinical values and that the proposed approach owns significantly
improved performances compared with existing methods.

Index Terms—Image-to-patient registration, computer-assisted
orthopedic surgery (CAOS), anisotropic positional localization er-
ror, watson distribution, maximum likelihood estimation (MLE),
expectation maximization (EM).

I. INTRODUCTION

REGISTRATION finds many applications in real-
world scenarios, including fields of computer vision,

robotics,computer assisted surgery (CAS) and robot-assisted
surgery (RAS) [1]. In computer vision, the shape recon-
struction technique is utilized to reconstruct the entire 3D
surface of an object [2]. More specifically, 2D images with
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depth information captured at different views of an interested
object are first converted into 3D point sets (PSs). After
that, the PSs with partial overlapping are registered together
into a common global coordinate system [2]. In robotics,
the registration between consecutive frames of the camera
in an efficient and accurate way is essential for the robot
to recover its real-time pose with respect to the surrounding
environment [3]. Registration of two PSs is also a fundamental
problem in CAS [4]. In CAS, the pre-operative surgical plan is
tailored within the volumetric medical images (i.e., computed
tomography (CT) images) while the actual surgical operation
is conducted in the patient space [5]. Registration is the central
operation required in a typical surgical navigation system, if
it is not done well, then a guidance system may fail [6]. Thus,
the pre-operative space and the intra-operative space should
be accurately registered [7]–[9]. For example, a root-mean-
square (RMS) error of 2 milimeters of the four controlled
points is reported in the registration between the pre-operative
model and the bone, in the computer-assisted reconstruction
of anterior cruciate ligament (ACL) [10]. In robot-assisted
orthopedic surgery (RAOS), registration is needed to map the
tailored surgical plan in the pre-operative volumetric image
space to the coordinate frame of surgical tool held by a
robot [11]. More specifically, intra-operatively, the robot tool-
tip needs to know where it is, where to go, and how to go
there with respect to the real surrounding tissues. This can
be achieved by identifying and locating several points(e.g.
anatomical landmarks) in the pre-operative images, and the
same corresponding points are touched by the robotic tool-tip.
The corresponding points in the two coordinate frames are
then registered together to estimate the transformation matrix
between the two spaces. The disadvantage of this routine
(so called fiducial-based registration) is that acquiring the
corresponding landmarks can be tedious and error prone. Al-
ternatively, PSs in can be estimated from the surface extracted
from the pre-operative image, and swept over the bone surface
by the robotic tool-tip. Point set registration (PSR) is used in
this scenario, where the correspondences between points in
two spaces are not known.

The transformation to be estimated in the registration prob-
lem can be classified into either rigid [12]–[14] or non-rigid
[15]–[19]. Two iterative sub-tasks are usually involved in the
rigid PSR: (1) estimates the correspondences between points
in two PSs, and (2) estimates the rigid transformation matrix
between two PSs using the Singular Value Decomposition
(SVD) or more advanced methods [20], [21]. Registration
without known point correspondences can be thought of as
a “Chicken and egg” problem, which can be solved by
iteratively estimating one parameter set while keeping the
other parameter set constant. Registration problem is not a
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trivial task since that the acquired PSs are often disturbed with
noise and outliers in real-world scenarios.

This paper introduces a novel rigid registration approach
that utilizes the undirected normal vectors, which can be
readily extracted from the raw PSs. Rigid PSR without known
correspondence is formulated as a maximum likelihood es-
timation (MLE) problem, and solved under the expectation
maximization (EM) framework. Multi-variate Gaussian distri-
bution and Watson distribution are utilized to model the posi-
tion localization error and the estimation error associated with
the normal vectors, respectively [22]. The biggest advantage
of utilizing the Watson distribution is that normal vectors do
not need to point outwards consistently as that in [23].

The remainder of this paper is organized as follows. In Sec-
tion II, the related PSR methods are reviewed. In Section III,
we present the motivations and contributions of this paper. In
Section IV, we formally define the generalized PSR problem
and illustrate our approach with great details. In Section V, the
results are presented. In Section VI, we conclude this paper.

II. RELATED WORK

Registration approaches can be briefly divided into cat-
egories of Correspondence-based and Simultaneous Pose
and Correspondence [24]. Correspondence-based registration
methods first extract 3D keypoints from the raw PSs, from
which the point correspondences can be constructed. For
example, the Fast Point Feature Histogram (FPFH) can be
used as the feature, and is further used to build the putative
correspondence set [25]. Several recent approaches have been
proposed by researchers belong to this category [24]. Gen-
erally speaking, our formulated registration problem and ap-
proach belong to the Simultaneous Pose and Correspondence
Problem [24].

Sampled normal vector  

Central normal vector  

Opposite central normal vector  

Fig. 1. x̂n denotes the sampled normal vector from one probability
distribution, Rŷm denotes the central (or model) normal vector of that
distribution, and −Rŷm represents the opposite central normal vector. It
is more appropriate to utilize the Watson distribution to describe the error
distribution between the un-directed normal vectors.

A. Iterative Closest Point (ICP) Algorithm

Iterative closest point (ICP) method is one of the most
classical registration approaches [26]. Two iterative steps are
involved in ICP (in the case of rigid registration): (1) estimat-
ing the point correspondences given the current transformation
matrix; and (2) estimating the rigid transformation matrix
given correspondences until convergence. The original ICP
method has several drawbacks: (1) suffers from the local
minima; (2) is susceptible to noise and outliers; (3) needs
a good initialization of the rigid transformation matrix [9].
To overcome the local optimum disadvantage of the original
ICP method, the Go-ICP method leverages the Branch and
Bound (BnB) technique [27] On one hand, the axis-angle

representation is used to represent the 3D rotation matrix and
thus all rotations can be compactly represented as solid radius-
π ball in 3D space. On the other hand, the optimal translation
lies in the cube [−ε, ε] where the value of ε could be readily
large at the beginning of the algorithm. The main idea of Go-
ICP, as summarized in [27], is to conduct the BnB search
by taking the current objective function’s value as the upper
bound of following steps. Afterwards, if one better solution
can be found, the original ICP algorithm is conducted to refine
the solution (i.e., by reducing the objective function’s value).

B. Probabilistic Registration Methods

Probabilistic registration methods can potentially improve
the registration’s robustness to noise and outliers with the soft
assignment technique adopted to construct the point corre-
spondences. Coherent point drift (CPD) is one of the classical
probabilistic registration methods due to its robust registration
performance and scalability to large-scale PSs [15]. In CPD,
the source PS Y is assumed to be the centroids of the Gaussian
Mixture Models (GMMs) while the other one X is considered
as the data PS [15]. One recent variant of CPD is the Bayesian
CPD (BCPD), where the registration problem is formulated
in a Bayesian setting [28]. The advantages of BCPD over
the original CPD method include the the follows. First, the
convergence of BCPD is guaranteed theoretically [28]. Second,
both the rigid registration and non-rigid registration steps are
jointly involved in the BCPD [28]. In the expectation condi-
tional maximization for point registration (EMCPR) method,
the anisotropic positional uncertainty is considered [12]. In the
maximization rigid step (i.e., where the rigid transformation
matrix is updated) of the ECMPR method, the optimization of
updating the rotation matrix is formulated as a semidefinite
programming problem. Joint registration of multiple point
clouds (JRMPC) method considers all PSs to be registered as
the generalizations of an underlying mixture model [13]. The
registration problem in JRMPC is formulated as a maximum
likelihood estimation (MLE) problem, where the desired pa-
rameters include the rotation matrices and translation vectors
that align the individual PSs with the underlying one, and
the positional variance associated with the mixtures’ compo-
nents. The isotropic positional error assumption is shared by
all above methods. Deep-learning-based methods first learn
to encode PSs with high-dimensional features, then match
keypoints to generate correspondence and optimize over the
space of rigid transformations [29],[30],[31],[32]. However,
current deep-learning based methods fail to produce acceptable
inlier rates [24].

Normal vectors have been utilized to improve the PSR
approaches’ performances, where the von Mises-Fisher (vMF)
distribution is utilized to model the estimation error associated
with the normal vectors [9], [33]. For example, we have
proposed several feature-based rigid registration approaches by
incorporating the normal vectors into the registration problem
[9], [34]. Joint registration of multiple generalized point sets
was also formulated in a probabilistic manner [23], [35]–[37].
However, in the above methods, a normal vector with a specific
direction is distinguished from its opposite direction, which
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requires the extracted normal vectors for all the points of an
object’s model to be pointing either outwards or inwards of
the object’s surface [23], [35], [36].

III. MOTIVATIONS AND OUR CONTRIBUTIONS

First, in many scenarios, the directions of extracted normal
vectors from the raw PSs are not clear (or fixed) and the
von-Mises Fisher distribution thus cannot be used. In order to
overcome this disadvantage, the Watson distribution is adopted
to model the undirected normal vectors’ localization error. Sec-
ond, most previous registration methods adopt the assumption
that positional localization error is isotropic, which indicates
that the error distribution is the same in three spatial directions.
This paper, as far as we know, is the first one to consider both
the undirected normal vector and anisotropic positional error
simultaneously. Our contributions are summarized as follows:

1) The PSR problem of aligning generalized points with
undirected normal vectors is formally formulated as a
maximum likelihood estimation (MLE) problem, with
the multi-variate Gaussian distribution and Watson dis-
tribution.

2) The MLE problem is solved with expectation maximiza-
tion (EM) technique, where the equations of the updated
involved parameters are derived and presented.

3) To facilitate the computing process, the gradients of
associated objective function with respect to the desired
parameters are computed and provided. The parameters
include these that represent the incremental transfor-
mation matrix, the positional covariance matrix, and
the concentration parameter associated with the normal
vectors’ error.

IV. APPROACH

In our proposed approach, the generalized/oriented points in
two spaces dxn = [xT

n, x̂
T
n]

T ∈ R6 and dym = [yT
m, ŷ

T
m]T ∈ R6

are utilized, where xn ∈ R3 and x̂n ∈ R3 denote the positional
and normal vectors respectively.Let us also denote the two
generalized point sets (PSs) as Dx = [dx1 , ...,d

x
N ] ∈ R6×N

and Dy = [dy1, ...,d
y
M ] ∈ R6×M . By assuming that Dx and

Dy are independent, the probability density function (PDF) of
a generalized data point dxn generated by a generalized model
point dym is given as follows

p(dxn|zn = m,Θ) =

1

(2π)
3
2 |Σ| 12

e−
1
2zT

mnΣ−1zmn︸ ︷︷ ︸
Multi-variate Gaussian

W (
1

2
,
3

2
, κ)−1eκ

(
(Rŷm)Tx̂n

)2
︸ ︷︷ ︸

Watson Distribution

,

(1)

where zn = m indicates that the n-th generalized data
point dxn corresponds to the m-th generalized model point
dym, Σ ∈ S3 is the positional covariance matrix, zmn =(
xn − (Rym + t)

)
∈ R3 is the distance vector between the

n-th data point xn and the m-th rigidly transformed model
point Rym + t, W ( 12 ,

3
2 , κ)

−1 is the normalizing constant
associated with the Watson distribution [22], [38], κ ∈ R
is the concentration parameter associated with the Watson
distribution [22], [38], zTmnΣ−1zmn is the square of the

Mahalanobis distance between xn and Rym + t.
Assume that the angle between Rŷm and x̂n is α ∈ R. As

shown in Fig. 1, (1) (Rŷm)Tx̂n = cos(α) where Rŷm and x̂n
are used;(2) −(Rŷm)Tx̂n = −cos(α) where −Rŷm and x̂n
are used (i.e., −(Rŷm) is the central(or model) normal vector
of the probability distribution). By taking square of cos(α) or
−cos(α), it makes no difference in the PDF value.

With the above analysis, the hybrid mixture model (HMM)
of one generalized data point dxn is, given Dy and Θ,

p(dxn|Dy,Θ) = (1− w)
M∑
m=1

p(dxn|zn = m,Θ) + w
1

N
, (2)

where w ∈ R denotes the weight of outliers, whose distribution
is uniform as p(dxn|zn = M + 1) = 1

N (where zn = M + 1
indicates that dxn is an outlier).

By formulating the negative log-likelihood similar to those
in [9], [34], the overall objective function Q(Θ) is as follows,

Q(Θ) =

N,M∑
n,m=1

pmn
1

2
zTmnΣ−1zmn +

1

2
NPlog|Σ|

− κ
N,M∑
n,m=1

pmn
(
(Rŷm)Tx̂n

)2 −NPlogW (
1

2
,
3

2
, κ)−1,

(3)

where NP =
∑N
n=1

∑M
m=1 pmn ∈ R is the sum of

posterior probabilities, |Σ| denotes the determinant of Σ.
The derivation of Q(Θ) in (3) is presented in Section
VII-B. Q(Θ) is minimized with respect to the parameter
set Θ = (R, t,Σ, κ, {pmn}). The expectation maximization
(EM) technique is used to solve the above maximum likelihood
estimation (MLE) problem with unknown correspondences.

A. Expectation Step
The posterior pmn is updated as follows with the Bayes’

rule,

pmn =
P (m)p(dxn|zn = m,Θ)

p(dxn|Dy,Θ)
, (4)

where p(dxn|zn = m,Θ) is presented in (1), P (m) is the prior
probability, and p(dxn|Dy,Θ) is given in (2). Then the detailed
expression of pmn is

pmn =
ge−

1
2zT

mnΣ−1zmneκ
(
(Rŷm)Tx̂n

)2
∑M
m=1 ge

− 1
2zT

mnΣ−1zmneκ
(
(Rŷm)Tx̂n

)2
+ wM

(1−w)N

,

(5)
where g = 1

(2π)
3
2 |Σ|

1
2
W ( 12 ,

3
2 , κ)

−1, and the derivation is

presented in Section. VII-A.

B. Maximization Rigid Step
The terms in Q(Θ) in (3) that are related with (R, t) is as

follows

Q(R, t) =

N,M∑
n,m=1

pmn
1

2
zTmnΣ−1zmn

− κ
N,M∑
n,m=1

pmn
(
(Rŷm)Tx̂n

)2 − N,M∑
n,m=1

pmn
1

2
xT
nΣ−1xn.

(6)
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Instead of estimating the R and t, we update the incremental
rotation matrix dR ∈ SO(3) and the incremental translation
vector dt ∈ R3 between two iterated M steps, where the
objective function of dR and dt becomes

Q(dR, dt) =

N,M∑
n,m=1

pmn

(
1

2
znew
mn

TΣ−1znew
mn −

1

2
xT
nΣ−1xn

)
︸ ︷︷ ︸

CP,mn∈R

− κ
N,M∑
n,m=1

pmn
(
(dRŷm)Tx̂n

)2︸ ︷︷ ︸
CO,mn∈R

,

(7)

where znew
mn =

(
xn−dR(Rym+t)−dt

)
∈ R3. Two non-linear

constraints have to be satisfied when Q(dR, dt) is minimized:
dRdRT = I3×3, det(dR) = +1.
The Matrix Form of

∑N
n=1

∑M
m=1 CO,mn We first construct

the matrix A ∈ RM×N as follows,

A =


(dRRŷ1)

Tx̂1 ... (dRRŷ1)
Tx̂N

. ... .

. ... .

. ... .
(dRRŷM )Tx̂1 ... (dRRŷM )Tx̂N

 ∈ RM×N ,

(8)
or A = (dRRŶ)TX̂. With A, we can get∑N
n=1

∑M
m=1 CO,mn as follows

N,M∑
n,m=1

CO,mn = −κeTA ◦A ◦P. (9)

We use the Rodrigues formula to represent the incremental
rotation matrix dR between iterative steps,

R(θ) = I +
sin(ϑ)
ϑ

[θ]× +
1− cos(ϑ)

ϑ2
[θ]2×, (10)

which is actually a function that maps a vector θ ∈ R3 into
a 3D rotation matrix R, ϑ = ||θ|| denotes the norm of the
vector θ, and the skew symmetric matrix [θ]× is defined as
follows, [θ]× = [0,−θ3, θ2; θ3, 0,−θ1;−θ2, θ1, 0]. In other
words, the incremental rotation matrix dR in the SO(3) is
now represented by a random vector dθ ∈ R3. Let us also
formulate a new variable φ = [dθT, dtT]T ∈ R6. Thus, we can
convert Q(dR, dt) in (7) into an unconstrained optimization
problem with the objective function Q(φ) being

Q(φ) =

N,M∑
n,m=1

pmn

(
1

2
znew,2
mn

T
Σ−1znew,2

mn −
1

2
xT
nΣ−1xn

)
︸ ︷︷ ︸

CP,mn∈R

− κ
N,M∑
n,m=1

pmn
(
(R(φ(1 : 3))ŷm)Tx̂n

)2︸ ︷︷ ︸
CN,mn∈R

,

(11)

where znew,2
mn ==

(
xn −R(dθ)(Rym + t)− dt

)
∈ R3.

The Gradients of CO,mn with respect to the dR The
derivative of CO,mn with respect to dR is ∂CO,mn

∂dR =

−2κpmnx̂nx̂T
ndRRŷmŷT

mRT. After estimating the incremen-
tal rotation dR and dt, the 3D rotation and translation in
the current step can be updated as Rq = dRRq−1, tq =
dRtq−1 + dt respectively.

C. Maximization Covariance Step

The objective function that is related with Σ is given
as follows Q(Σ) =

∑N
n=1

∑M
m=1 pmn

1
2zTmnΣ−1zmn +

1
2NPlog|Σ|−

∑N
n=1

∑M
m=1 pmn

1
2xT

nΣ−1xn. The matrix form
of the updated positional covariance matrix Σ is(
Xdiag

(
PTe

)
XT −XPTe(tq)T − tqeTPXT + RqYPe(tq)T

+ (tq)eTPTYT(Rq)T −RqYPXT −XPTYT(Rq)T

+ tq(tq)TNq
P + RqYdiag(Pe)YPT(Rq)T

)
/Nq

P,

(12)

where q ∈ N+ represents the index of the iterative EM steps.

D. Maximization Kappa Step

The objective function Q(κ) that is related with κ is given
as follows, Q(κ) = −κ

∑N
n=1

∑M
m=1 pmn

(
(Rŷm)Tx̂n

)2 −
NPlogW ( 12 ,

3
2 , κ)

−1, whose the Gradient is given as follows,

∂Q(κ)

∂κ
= −

N∑
n=1

M∑
m=1

pmn
(
(Rŷm)Tx̂n

)2
+NP

W ′( 12 ,
3
2 , κ)

W ( 12 ,
3
2 , κ)

,

(13)
where W ′( 12 ,

3
2 , κ) denotes the derivative of W ( 12 ,

3
2 , κ) with

respect to κ. The value of the updated κ is acquired by
solving ∂Q(κ)

∂κ = 0.
The updating of κ Let us first construct
r1 =

∑N
n=1

∑M
m=1 pmn

(
(Rŷm)Tx̂n

)2
/NP, r2 =∑N

n=1

∑M
m=1 pmnx′nRy′m∑N

n=1

∑M
m=1 pmn||x′n||||Ry′m||

, where x′n ∈ R3 and y′m ∈ R3

are the demeaned vectors. Then with r = 1
2r1 + 1

2r2, the
updated concentration parameter is κ =

3
2 r−

1
2

r(1−r) +
r

3(1−r) . The
matrix forms of r1 and r2 are in Section. VII-C.

E. Implementation Details

The initial rotation matrix R0 and translation vector t0, at
the beginning of the algorithm, are the three-by-three identity
matrix I3×3 and three-dimensional zero vector 03×1. The
weight w is 0.5. The initial positional covariance matrix Σ0

and κ0, at the beginning of the algorithm, are set to be
Σ0 = diag([100, 100, 100]) and κ0 = 20.

V. RESULTS

In the scenario of computer-assisted surgery (CAS), Y
denote the pre-operative model while X represent the intra-
operative points. In the following experiments, M = 1568
points exist in the model point set (PS) Y while Ninliers = 100
inlier points exist in the data PS X. The inlier points X
can be acquired with optically tracked surgical pointer. The
model PS Y is extracted from the surface segmented from
the pre-operative CT images. X and Y are from one patient.
To test the robustness of our proposed approach with respect
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TABLE I
ROTATIONAL ERROR VALUES IN DEGREE AND TRANSLATION ERROR VALUES IN MM ON THE HUMAN PELVIC MODEL. ISOTROPIC (DENOTED AS ISO)

AND ANISOTROPIC (DENOTED AS ANISO) POSITIONAL NOISE VECTORS ARE INJECTED INTO X, RESPECTIVELY.

Outliers 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Rotational Error (in degree) Translational Error (in mm)

Iso

ICP[26] 0.342 1.102 1.138 1.211 0.879 0.310 0.620 0.818 1.237 1.026
CPD[15] 2.533 2.778 2.635 3.038 3.112 2.197 2.257 2.411 2.474 2.510

ECMPR[12] 1.863 1.843 1.942 1.549 1.481 1.483 1.375 1.392 1.172 1.153
Go-ICP[39] 0.342 0.729 1.036 1.039 1.155 0.331 0.351 0.721 0.868 1.106
JRMPC[13] 0.431 0.472 0.357 0.443 0.425 0.400 0.441 0.388 0.270 0.402

DGR[31] 0.323 0.812 1.076 1.354 1.512 0.296 0.591 0.778 1.063 1.241
HMM(Iso) [40] 0.3886 0.3895 0.4197 0.4012 0.3931 0.3527 0.3515 0.3576 0.3485 0.3552

Ours 0.1490 0.1454 0.1399 0.1405 0.1323 0.1319 0.1291 0.1274 0.1274 0.1224
Outliers 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Rotational Error (in degree) Translational Error (in mm)

Aniso

ICP[26] 0.504 0.615 0.9892 1.560 1.414 0.254 0.561 0.520 1.002 1.123
CPD[15] 2.059 2.256 2.191 2.522 2.715 2.035 2.188 2.276 2.219 2.342

ECMPR[12] 1.562 1.528 1.245 1.297 1.049 1.336 1.251 1.120 1.034 0.924
Go-ICP [39] 0.504 0.606 0.990 1.484 1.767 0.342 0.531 0.547 0.959 1.251
JRMPC[13] 0.336 0.366 0.445 0.415 0.332 0.345 0.390 0.576 0.415 0.433

DGR[31] 0.298 0.516 0.713 1.049 1.120 0.225 0.307 0.528 0.871 1.034
HMM(Iso) [40] 0.2439 0.2635 0.2479 0.2601 0.2252 0.3038 0.2952 0.3051 0.3171 0.2984

Ours 0.0832 0.0871 0.0867 0.0869 0.0857 0.0920 0.0962 0.0941 0.0935 0.0914

TABLE II
THE TARGET REGISTRATION ERROR (TRE) VALUES ON BOTH THE HUMAN PELVIC AND FEMUR MODELS. ISOTROPIC (DENOTED AS ISO) AND

ANISOTROPIC (DENOTED AS ANISO) POSITIONAL NOISE VECTORS ARE INJECTED INTO X WITH DIFFERENT PERCENTAGES OF OUTLIERS.

Pelvis

Outliers 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
TRE statistics Isotropic Positional Noise Anisotropic Positional Noise

Maximum Value 0.7559 0.5243 0.5071 0.5222 0.5052 0.2623 0.2751 0.2637 0.2595 0.2595
Mean Value 0.3082 0.1697 0.1653 0.1643 0.1577 0.1089 0.1191 0.1174 0.1168 0.1146

Minimum Value 0.0121 0.0328 0.0343 0.0366 0.0298 0.0273 0.0268 0.0294 0.0290 0.0271

Femur

Outliers 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
TRE statistics Isotropic Positional Noise Anisotropic Positional Noise

Maximum Value 0.8275 0.7442 0.8168 0.7933 0.7123 0.7493 0.6766 0.6685 0.6314 0.6537
Mean Value 0.3549 0.3368 0.3677 0.3582 0.3238 0.3462 0.3140 0.3051 0.2927 0.3082

Minimum Value 0.0409 0.0540 0.0624 0.0563 0.0589 0.0696 0.0612 0.0489 0.0522 0.0507

Before Registration After Registration

Fig. 2. The qualitative performances of the proposed method on the human
pelvis model point sets (PSs), where 90% outliers exist in the intra-operative
PSs X. The pre-operative PS Y, inlier and outlier intra-operative PSs X are
denoted with black, blue and red dots respectively. (Left) The two PSs before
registration. (Right) The two PSs after registration. As can be seen, the intra-
operative inlier points (blue) are well matched with their corresponding black
points after registration.

to noise and outliers, randomly generated positional and nor-
mal error vectors are injected to X. Five cases are tested
where {10%, 30%, 50%, 70%, 90%} outliers are injected re-
spectively. More specifically, in the case of 10% outliers,

there are N = Ninliers(1 + 10%) = 110 points in X, which
is a common way for producing outliers in the research
of point set registration. Two types of positional error are
tested for each case of certain percentage of outliers. In the
case of isotropic positional noise, Σiso = diag([ 13 ,

1
3 ,

1
3 ]),

and Σaniso = diag([ 1
11 ,

1
11 ,

9
11 ]) in the case of anisotropic

positional noise. For each case of certain percentage of out-
liers and positional error type, Ntrail = 100 registration
trials have been conducted. For each registration trial, (i) the
target registration error (TRE) values are computed, where
we consider all the model points Y is the interested targets
TRE = ||Restri + test − Rtrueri − ttrue||, where ri ∈ R3 is
the interested target in the model frame (i.e., Y); (ii) the
rotational and translation error values are computed as follows:

errrot =
arccos[

trace(RtrueR
T
est)−1

2 ]

π ×180◦, where Rtrue ∈ SO(3) and
Rest ∈ SO(3) denote the ground-truth and estimated rotation
matrices respectively and errtrans = ||ttrue − test||2, where
ttrue and test denote the ground-truth and estimated transla-
tion vectors, respectively. The mean values associated with
the Ntrial registration trials are computed and recorded. We
compare several state-of-the-art (SOTA) registration methods:
ICP [26], CPD [15], ECMPR [12], Go-ICP [39], JRMPC [13],
DGR [31], HMM(Iso) [40]. Among them, (1) HMM(Iso) is the
SOTA registration one that also utilizes normal vectors [40];
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(2) DGR [31] is the state-of-the-art learning-based method.

A. Pelvis Point Set (Full to Full Registration)
Quantitative Results: Table I shows both the rotational and

translational error values on the human pelvis PS.As it can
be seen from Table I, the proposed approach (1) achieves the
lowest values in terms of both rotational and translational error
in nearly all test cases; (2) is robust to increasing percentages
of outliers while others are not. Table II (upper) includes the
corresponding TRE values under various cases of noise and
outliers. It can be seen from Table II, the maximum TRE
value is 0.7559mm among all test cases, which satisfies the
requirement of CAS [6], [10]. Qualitative Results: Fig. 2
shows the qualitative results with our proposed approach. As
it can be seen from Fig. 2 (right), the two PSs were accurately
registered even with very large percentage of outliers in the
data PS (90 outlier points exist in X).

B. Femur Point Set (Partial to Full Registration)
Quantitative Results: In this experiment, the intra-

operative human femur PS covers a partial region of the full
pre-operative model PS. The mean rotational error value of
the five cases of percentages of outliers (i.e., 10%, 30%,
50%, 70%, 90%) is 0.3768◦ and 0.4086◦ while the mean
translational error value is 0.2336mm and 0.4393mm, for
isotropic and anisotropic positional noise respectively. Table
II (below) includes the corresponding TRE values, where the
maximum TRE value is 0.8275mm. Qualitative Results: Fig.
3 show the qualitative results on the femur PS. As it can be
seen from Fig. 3, the two PSs were successfully registered
even with large percentage of outliers in the data PS (i.e.,
90% outliers or 90 outlier points in X) with our proposed
approach while other methods fail.

C. Robustness to w
The proposed approach’s robustness to the weight of outliers

w in the HMM p(dxn|Dy,Θ) in Equation (2) is also tested.
The rotational and translational error values at w = 0.5
are compared with those at w = 0.1, 0.2, 0.3, 0.4 and at
w = 0.6, 0.7, 0.8, 0.9, and paired-t tests are conducted to
see if their differences are significant. Fig. 4 (a) includes the
rotational and translational error values at different w on the
pelvis model with 30% outliers and isotropic noise in Dx.
Fig. 4 (b) includes the corresponding p-values, with eight
values for either rotational (blue) or translation (red) error.
Fig. 5 (a) includes the rotational and translational error values
at different w on the pelvis model with 50% outliers and
isotropic noise in Dx. Fig. 5 (b) includes the corresponding
p-values of the paired t-tests. As can be seen from Fig. 4
and Fig. 5, both the rotational and translational error values
increase with larger w. To emphasize, two further observations
can be made from Fig. 4 and Fig. 5, (1) the differences
between the rotational error values associated with different
w are not statistically different with those at w = 0.5; (2)
the translational error values associated with more than 50%
cases are not statistically different with those at w = 0.5. To
conclude, the values of w will not influence the registration
accuracy significantly.

VI. CONCLUSIONS

This paper introduces a novel normal-assisted rigid regis-
tration approach where the anisotropic positional uncertainty
is considered and normal vectors are undirected. Results on
the human pelvis and femur bone models demonstrate the
proposed approach’s significant improved performances over
the existing methods and potential applications in computer-
assisted surgery (CAS).

VII. APPENDIX

A. Derivation of pmn in (5)

The posteriors pmn is computed based on the Bayes’ rule.

pmn =
w
M ge−

1
2zT

mnΣ−1zmneκ
(
(Rŷm)Tx̂n

)2
∑M
m=1

w
M ge−

1
2zT

mnΣ−1zmneκ
(
(Rŷm)Tx̂n

)2
+ (1− w) 1

N

=
ge−

1
2zT

mnΣ−1zmneκ
(
(Rŷm)Tx̂n

)2
∑M
m=1 ge

− 1
2zT

mnΣ−1zmneκ
(
(Rŷm)Tx̂n

)2
+ (1−w)M

wN

,

(14)

where g = 1

(2π)
3
2 |Σ|

1
2
W ( 12 ,

3
2 , κ)

−1, zmn = xn −Rym − t.

B. Derivation of Q(Θ) in (3)

Following the standard EM procedure, the objective func-
tion Q(Θ) in (3) is formulated by constructing the complete
negative likelihood. By assuming that all data points are
independent, p(Dx|Dy,Θ) =

∏N
n=1 p(d

x
n|Dy,Θ). Then we

take the “ln” operation on both sides, lnp(Dx|Dy,Θ) =∑N
n=1 lnp(dxn|Dy,Θ) =

∑N
n=1((1 − w)

∑M
m=1 p(d

x
n|zn =

m,Θ)+w 1
N ). For clarity, we provide the detailed expression

of lnp(dxn|zn = m,Θ) as − 1
2 ln|Σ| − 1

2zTmnΣ−1zmn −
lnW ( 12 ,

3
2 , κ) + κ

(
(Rŷm)Tx̂n

)2
. The expected negative

log likelihood Q(Θ) to be minimized is the following∑N,M
n,m=1 pmn

(
1
2 ln|Σ| + 1

2zTmnΣ−1zmn + lnW ( 12 ,
3
2 , κ) −

κ
(
(Rŷm)Tx̂n

)2)
.

C. Matrix Forms of r1 and r2
Let us construct the matrix B ∈ RM×N as follows,

B =


(Rŷ1)

Tx̂1 ... (Rŷ1)
Tx̂N

. ... .

. ... .

. ... .
(RŷM )Tx̂1 ... (RŷM )Tx̂N

 ∈ RM×N , (15)

whose matrix form B = (RŶ)TX̂. With B, we can get the
matrix form of r1 in Section. IV-D as r1 = (eTB◦B◦P)/NP.
On the other hand, r2 is computed as, r2 =

trace(PXT
aveRYave)

normT
yYnormT

x
,

where Xave ∈ R3×N and Yave ∈ R3×M denote the de-meaned
positional and normal vectors, Xave = X−µx1T

N ,Yave = Y−
µy1

T
M , where 1N ∈ RN×1 and 1M ∈ RM×1 are vectors with

all elements being 1, and the weighted mean vectors µx ∈ R3

and µy ∈ R3 of X and Y µx = X1N/N,µy = Y1M/M ,
and normx ∈ RN×1 and normy ∈ RM×1 store the norms
of the positional vectors in X and Y.
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Before Registration ICP [30] CPD [18] ECMPR [15] Go-ICP [43] JRMPC [16] Ours

Rot Error:   7.3633°

Trans Error: 4.8338mm
Rot Error:   107.0993°

Trans Error: 39.6400mm
Rot Error:   106.4932°

Trans Error: 31.9341mm
Rot Error:7.6018°

Trans Error: 4.9588mm
Rot Error:   94.4146°

Trans Error: 36.3514mm

Rot Error:   1.0557°

Trans Error: 0.3740mm

(a)                                        (b)                                         (c)                                       (d)                                      (e)                                       (f) (g)

Fig. 3. The registration qualitative performances on the human femur model point sets (PSs). (a) The pre-operative and intra-operative PSs before registration.
The two PSs after registration using (b) ICP, (c) CPD, (d) ECMPR, (e) Go-ICP, (f) JRMPC, (g) our methods. In all sub-figures, the black points represent
the pre-operative model PS, the blue shows the intra-operative inlier points while the red shows the intra-operative outliers. The rotational error in degree and
translational error values in milimeters are shown for all compared methods. As can be seen from the sub-figures, our proposed approach can well align the
partial intra-operative inlier PS (denoted as blue points) with the pre-operative model (denoted as black points) while the other methods fail.
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Fig. 4. In this figure, 30% outliers exist in Dx on the human pelvis model.
(a) The blue and red lines show that the mean rotational and translation error
values with respect to different values of w. Both the rotational and translation
error values increase slightly when w is increased from 0.1 to 0.9. (b) The
p-values of tests by comparing results at w = 0.5 and those eight cases with
those at w = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9 respectively. The blue line
indicates that there is no significant differences between different cases of w
in terms of the translation error. The red line indicates that cases where w =
0.1, 0.2, 0.3, 0.4 are significantly different from that where w = 0.5 while
cases where w = 0.6, 0.7, 0.8, 0.9 are different from that where w = 0.5 in
terms of the rotational error.

[31] C. Choy, W. Dong, and V. Koltun, “Deep global registration,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 2514–2523.

[32] J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan, “Image matching
from handcrafted to deep features: A survey,” International Journal of
Computer Vision, pp. 1–57, 2020.

[33] S. Billings and R. Taylor, “Generalized iterative most likely oriented-
point (g-imlop) registration,” International journal of computer assisted
radiology and surgery, vol. 10, no. 8, pp. 1213–1226, 2015.

[34] Z. Min, J. Wang, S. Song, and M. Q.-H. Meng, “Robust generalized
point cloud registration with expectation maximization considering
anisotropic positional uncertainties,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 1290–1297.

[35] N. Ravikumar, A. Gooya, A. F. Frangi, and Z. A. Taylor, “Generalised
coherent point drift for group-wise registration of multi-dimensional
point sets,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, 2017, pp. 309–316.
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Fig. 5. In this figure, 50% outliers exist in Dx on the human pelvis model.
(a) The blue and red lines show that the mean rotational and translation
error values with respect to different values of w. Both the rotational and
translation error values increase slightly when w is increased from 0.1 to
0.9. (b) The p-values of tests by comparing results at w = 0.5 and those at
w = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9 respectively. The blue line indicates
that there is no significant differences between different cases of w in terms of
the translation error. The red line indicates that cases where w = 0.2, 0.3, 0.4
are significantly different from that where w = 0.5 while cases where
w = 0.1, 0.6, 0.7, 0.8, 0.9 are not significantly different from that where
w = 0.5 in terms of the rotational error.
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