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Abstract

Human decision-making is underpinned by distinct systems that differ in flexibility and

associated cognitive cost. Awidely accepted dichotomy distinguishes between a cheap

but rigid model-free system and a flexible but costly model-based system. Typically,

humans use a hybrid of both types of decision-making depending on environmental

demands. However, children’s use of a model-based system during decision-making

has not yet been shown. While prior developmental work has identified simple build-

ing blocks of model-based reasoning in young children (1–4 years old), there has

been little evidence of this complex cognitive system influencing behavior before ado-

lescence. Here, by using a modified task to make engagement in cognitively costly

strategies more rewarding, we show that children aged 5–11-years (N= 85), including

the youngest children, displayed multiple indicators of model-based decision mak-

ing, and that the degree of its use increased throughout childhood. Unlike adults

(N = 24), however, children did not display adaptive arbitration between model-

free and model-based decision-making. Our results demonstrate that throughout

childhood, children can engage in highly sophisticated and costly decision-making

strategies. However, the flexible arbitration between decision-making strategiesmight

be a critically late-developing component in human development.
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1 INTRODUCTION

To navigate our world successfully, we need to learn which of our

actions lead to desirable outcomes. It is commonly theorized that

reward-related learning in humans is guided by at least two decision-

making systems that compete for control (Daw et al., 2005; Gläscher

et al., 2010; Kahneman, 2003). One is a goal-directed and computa-
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tionally costlymodel-based system,which can flexibly compare actions

and their expected outcomes across contexts. The other is a habit-

ual and computationally cheaper model-free system that ties rewards

to specific cues and contexts, enabling the repetition of previously

reinforced actions (Dickinson et al., 2002). The field of reinforcement

learning provides a useful computational framework to dissociate con-

tributions from these two systems to behavior (Daw et al., 2005; Dolan

& Dayan, 2013; Gläscher et al., 2010). While model-based decision-

making exploits theunderlying hidden structure of an environment and
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matches the rewards attainedwith the appropriate actions,model-free

decision-making relies entirely on previously learned action-outcome

contingencies. Although model-based decision-making can therefore

bemuchmore accurate, it comes at a cognitive cost. On the other hand,

model-free decisions rely on previously learned action-reward out-

comes and are therefore efficient, but cannot quickly adjust to changes

in the environment. Optimally responding to different environmental

demands, within the inherent processing limits of the human cogni-

tive system, consequently requires dynamic arbitration between the

costs and benefits of both decision-making systems (Lieder &Griffiths,

2020). For example, for everyday tasks, the efficiency of a model-free

system might be preferred, while to be successful in novel or complex

scenariosmight require themoredemandingbutmoreaccuratemodel-

based system. Despite a wealth of studies showing that adults use

both systems when making decisions, little is known about if and how

these systems come to contribute to decision-making during human

development.

From a young age onward, children are capable of making simple

value-based decisions by learning which actions lead to positive, and

which lead to negative outcomes. For example, even young infants

have been shown to link actions and reward through gaze following

(Ishikawa et al., 2020) and to learn the underlying hierarchical struc-

ture of a sequential decision-making task (Werchan & Amso, 2021). In

addition, in a task where children were rewarded with cartoon video

clips, preschoolers (3–4 years old) displayed action-outcome learning,

by repeating actions that were rewarded in the past, and stopping

certain actions when they no longer led to the same reward (Klossek

et al., 2008, 2011). While these studies show that children can learn

the relationship between their actions and subsequent reward, it is

unclear whether children simply rely on model-free action-reward

contingencies, or whether they can further employ this value-based

learning to build an internalizedmodel of the world, and use it to guide

goal-directed behavior. Recent developmental studies using sequential

decision-making taskswith 8–12-year-old children found no indication

of contributionsof amodel-based systemto choicebefore theageof12

(Decker et al., 2016; Nussenbaum et al., 2020; Palminteri et al., 2016;

Potter et al., 2017). Instead, the results from these studies suggest

that the use of model-based decision-making strategies emerges in

and increases through adolescence. These findings suggest thatmodel-

based decision-making might be a late-developing process, similar to

other cognitive abilities such as fluid reasoning or inhibitory control

(Otto et al., 2014; Potter et al., 2017).

Likemany other studies investigatingmodel-based decision-making

in humans, these prior studies used a common sequential decision-

making paradigm, often called the “two-step” task. Crucially, in the

traditional version of the two-step task (Dawet al., 2011), usingmodel-

based decision making does not yield more reward than model-free

decision making (Akam et al., 2015; Kool et al., 2016). In short, this

is because the stochastic nature of the rewards and the transitions

in the original two-step task make it difficult for a model-based sys-

tem to effectively plan through the task structure (Kool et al., 2016).

Indeed, recent variations of the traditional two-step task that simpli-

fied the transitional structure, which does allow amodel-based system

ResearchHighlights
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that childrenas youngas fivedisplaymodel-baseddecision

making, in contrast to previous developmental studies
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the world
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to outperform a model-free one, yielded a boost in model-based deci-

sion making in adults (Akam et al., 2015; Kool et al., 2016). Thus, the

prior work reporting a lack of model-based decision making in 8–12-

year-old children is unable to disentangle whether this reflected a

general inability, or whether the stochastic task structure and lack of

incentive stopped children fromutilizingmodel-baseddecisionmaking.

Therefore, in the current work, we investigated whether children aged

5–11 years could engage in model-based decision-making when using

a sequential decision-making task with a deterministic task structure

that allowed for effective planning and greater incentives for using the

model-based system.

In addition to a deterministic task structure, we used a further

reward manipulation in the task to maximally incentivize the use of a

model-based system. Previously, adults have been shown to increase

their degree of model-based decision-making when greater rewards

could bewon (Bolenz et al., 2019; Kool et al., 2017; Patzelt et al., 2019).

To date, it remains unclearwhether or how children engage in effective

and flexiblemetacontrol over distinct decision-making systems. There-

fore, in addition to investigating whether children of this age range

could engage in model-based decisionmaking, we tested whether they

arbitrated between model-free and model-based decision making in

response to changes in the potential magnitude of reward. To this end,

we used an environmental manipulation in the form of “high-stake” tri-

als, where rewards were multiplied by a factor of five, and “low-stake”

trials, where rewardswere notmultiplied. Optimalmetacontrol on this

task entails approximating the relative costs and benefits of using each

system and increasing model-based decision making, which leads to

higher rewards, for high-stake trials (Bolenz et al., 2019; Kool et al.,

2017; Patzelt et al., 2019).

In sum, we address two questions; first, whether children aged 5–

11 years can engage in model-based decision making using a novel

sequential decision-making task; and second, whether children can

demonstrate effective metacontrol over distinct decision-making sys-

tems. In contrast to previous findings, our results suggest that pread-

olescent children can engage in model-based decision-making, which
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we demonstrate using both behavioral and computational methods.

However, optimal metacontrol between goal-directed and habitual

decision-making systems was not yet confidently expressed during

childhood.

2 MATERIALS AND METHODS

2.1 Participants

Children were tested in pairs at a school in Greater London. Parental

consent had been obtained prior to the study. Ethical approval for this

study was obtained from UCL’s Research ethics committee in compli-

ancewithUKnational regulations. Thepresent taskwas part of a larger

battery of tests and was administered at the start of the battery. We

used an a priori power analysis run in G*Power (Faul et al., 2007) to

determine the sample size necessary to achieve similar power as in pre-

vious studies (Decker et al., 2016; Eppinger et al., 2013). Based on this,

we determined thatwith a sample size of at least 60 children, wewould

achieve more than 90% power to detect a true age-related effect of

comparable size (see SupplementaryMaterial for the power analysis).

A total of 114 children were tested. Due to time constraints, some

participants were not able to complete the entire task. We included

children if they had (a) completed at least two thirds of the task, and (b)

fewer than 30% missed trials. This led to the exclusion of 29 children

(22 because of the task being cut short and seven because of missed

trials).Missed trialswere excluded from the analysis as participants did

not receive rewards on these trials and therefore could not learn from

them. On average, childrenmissed 10% of the trials.

The final sample of children consisted of 85 participants (37 girls

(44%), 48 boys). The mean age of children was 8.2 years (SD = 1.6),

ranging from 5.0 to 11.4 years. Adult participants were tested at lab

facilities at University College London. The adult sample consisted of

24 participants (11 females, (46%), 13 males), with a mean age of 25.2

years (SD = 4.7) ranging from 18.7 to 35.3 years. On average, adults

missed 3% of the trials and none had to be excluded from the sample

based on the two inclusion criteria described above. For further details

on both samples, see the SupplementaryMaterial.

2.2 Sequential decision-making task

2.2.1 Task and narrative

We used a modified version of the novel task developed by Kool et al.

(2017),whichwas designed to bemore conducive tomodel-baseddeci-

sion making and to allow testing for the presence of metacontrol via

low and high-stakemanipulation that wasmore salient for children.

Participants were told that theywere space explorers and that their

mission was to collect as much treasure as possible from the two plan-

ets (red and purple) they could travel to. Each planet had one alien,

which gave the participants treasure when they visited their planet.

To be manageable for the younger children in our sample, our task

consisted of 140 trials (compared to 201 trials in Kool et al., 2017).

We conducted parameter recovery analyses of the current task with

100, 140, and 200 trials, to ensure that the model-based contribution

(w) parameter had good recoverability for the trial numbers com-

pleted by participants in our sample. For these results, please see the

SupplementaryMaterial.

Trials consisted of two stages. In the first stage, participants saw a

pair of spaceships andhad to choose one spaceship to travel to a planet.

There were four spaceships in total and spaceships were always dis-

played in the same pairs, of which one spaceship always went to the

red planet, and one spaceship always went to the purple planet, see

Figure 1a. In the second stage, participants had to collect treasure from

the aliens on the planet. The amount of treasure that could be collected

from each planet ranged between 0 and 9 treasure pieces and changed

independently throughout the task following a Gaussian random walk

with a standard deviation of 2, see Figure 1b. Suchdrifting reward rates

have been shown to promote learning and continuous monitoring of

rewards won at each planet, in essence allowing amodel-based system

to capitalize on faster changes in rewards compared to the traditional

two-step task (Kool et al., 2016; for full details on the task such as

timings, see the SupplementaryMaterial).

In this task, the difference between a model-based agent and a

model-free agent is that a model-based agent can generalize between

the spaceships that go to the same planet in each pair. For exam-

ple, if the dark blue and the orange spaceship lead to the red planet,

then a model-based agent should assign the same value to both space-

ships. Thus, if a model-based agent chooses the orange spaceship,

and receives a reward that is higher than expected on the red planet,

the value of choosing both the dark blue and the orange spaceship

increases, while for a purely model-free agent only the value of the

orange spaceship increases. In short, the model-based agent gen-

eralizes reward experiences from one first-stage state (one pair of

spaceships) to the other (other pair of spaceships) because they both

lead to the samegoal (the planet), whereas amodel-free agent does not

(Doll et al., 2015; Kool et al., 2016).

The current task was designed to encourage model-based decision-

making by allowing amodel-based agent to outperform themodel-free

agent in terms of reward gained throughout the tasks. This is accom-

plished due to the faster drifting reward rates, which a model-based

agent can capitalize on by planning through an internal model of the

task structure. This design leads to a positive correlation between the

degree of model-based decision making and rewards earned, which

was absent in previous versions of the task (see Kool et al., 2016 for

a comprehensive overview).

2.2.2 Stakes manipulation

To test whether our participants arbitrate between employing model-

free and model-based systems depending on the rewards available,

we employed low and high-stake trials. During the trials, participants

received rewards in the form of pieces of blue space treasure. On a

low-stake trial, the pieces of treasure won directly translated to the

number of points won on that trial, for example, four pieces of blue

treasure would have a value of four points, see Figure 1c. In contrast,

during a high-stake trial, rewards were multiplied by five; for example,
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F IGURE 1 Task Design. (a) Schematic of the transition structure with arrows displaying deterministic transitions; if a participant chose the dark
blue or the orange spaceship, they would always transition to the red planet. (b) At the planets, participants received rewards in the form of space
treasure ranging between 0 and 9 pieces according to the drifting reward rate per planet. (c) At the start of the trial, participants saw the stake
amplifier, which either showed “1x” for low-stake trials or “5x” for high-stake trials. Next, they saw a pair of spaceships and chose one after which
they transitioned to either the red or the purple planet, where they had the opportunity to win pieces of treasure. During low-stake trials, pieces of
treasure were displayed in blue with a red “1” on every piece, and participants received points equal to the number of treasure pieces shown. (d)
During high-stake trials, the blue treasure was displayed first, and then, after a delay, turned into gold treasure with a red “5” on top of it, and the
number of points receivedwasmultiplied by five

four pieces of treasure would have a value of 20 points. To make this

difference between the stakes more salient for the children, on high-

stake trials the treasure turned from blue to gold treasure after a short

delay and displayed the number “5” in red on top of the gold treasure

pieces, as opposed to “1” on the blue treasure for the low-stake trials.,

see Figure 1d. High- and low-stake trialswere at an approximate 50/50

ratio and occurred randomly. Formore details on the task and the stake

condition, see our SupplementaryMaterial.

Metacontrol was calculated as a difference score in the degree

of model-based decision-making expressed during the low- and high-

stake trials. The degree ofmodel-based decisionmakingwasmeasured

via a weighting parameter, whereby a value closer to 1 indicated more

model-based control, and a value closer to 0 as more model-free con-

trol. Using a model with two weighing parameters, one for each stake

condition, we measured the difference in the values between the two

parameters. A positive value indicated more model-based decision-

making for high-stake trials and a negative value as more model-based

decision-making for low-stake trials. A higher positive value reflects

better metacontrol.

2.2.3 Instruction phase

Before starting the main task, all participants completed an identi-

cal instruction phase, which took approximately 20 minutes. The main

task itself took approximately 25 minutes to complete. During the

instruction phase participants learned (a) the deterministic transition

structure (e.g., that one spaceship always went to the same planet; see

Figure 1a), and participants were required to pass a criterion of four

correct consecutive transitions to the red and purple planet respec-

tively to continue the task; (b) that the amount of treasure changed

over time (the drifting reward rates; see Figure 1b); (c) how to progress

through a trial (e.g., first choose a spaceship, then collect treasure at

a planet); and (d) the difference between high- and low-stake trials.

This phase was identical for children and adults. No rewards were

gained during the instruction phase and practice trials were not used

for further analysis. For more details on the instruction phase, see the

SupplementaryMaterial.

After the instruction phase, participants were told they would

go on four missions to collect treasure during the main part of the

experiment. Children were told that the more treasure they collected

in the game, the bigger their present would be at the end of the

study. Adults were told that for every 200 points, they would receive

50 cents (GBP).

Weexaminedparticipants’ understandingof the taskbyasking them

to report the deterministic transition structure of the spaceships to the

planets after thepreparationphase.Due tomissingdataby testeromis-

sion, written responses from only 44 children were available. 80% of

these children accurately reported the task structure. Of the 24 adults,

75% correctly reported where the spaceships went after practice.
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There was no significant difference in the understanding of the

task structure after the practice phase between children and adults,

(t(66) = 0.43, p = 0.670, 95% CIs [-0.17, -0.26]), suggesting that

the majority of the children learned the deterministic structure of

the task.

2.3 Statistical analysis and corrections

All statistical tests were conducted in R. For general effect sizes we

report 95% confidence intervals and Cohen’s d, and for regression

results, we report the standard error of the mean (SEM). Cohen’s d

was acquired using the Effectsize package (Ben-Shachar et al., 2020).

For t-tests, the default R Welch’s t-tests were used, which do not

assume equal variance across groups for an independent sample t-test,

resulting in fractional degrees of freedom.When groups are compared

for t-tests, the confidence interval reflects the 95% confidence of the

mean difference between the groups. For correlations, the confidence

interval reflects the 95% confidence range of values that contains

the population correlation coefficient. For regression analyses, the

package lme4 in R was used (Bates et al., 2015). When p-values are

represented as “q,” these “q-values” are multiple comparisons (FDR)

corrected p-values using the default R STATS package. Dependent cor-

relations were assessed using the COCOR package (Diedenhofen &

Musch, 2015), and partial correlationswere assessed using the PPCOR

package (Kim, 2015).

We used an established dual-systems reinforcement learning

model, which has been tested previously (e.g., Daw et al., 2011; Kool

et al., 2016, 2017), to estimate the parameter solutions used to deter-

mine the degree of model-based decision making in the behavior of

the participants. Model-fitting was conducted using the mfit package

in Matlab (Gershman, 2016). In computational models, priors can be

used which are values used to initialize the parameters of a model.

If priors are kept “vague,” they do not influence the parameter solu-

tion strongly, and only have a minimal effect on parameter solutions.

Using priors helps with the accuracy ofmodel-fitting, andwe therefore

used the same vague priors as used in a previous study investigating

age effects in model-based decision making and metacontrol in aging

adults (Bolenz et al., 2019; Gershman, 2016). We used Beta(2,2) pri-

ors for all model parameters bounded between 0 and 1 (learning rate

(α), eligibility trace (λ), and themixingweight(s)w), and aGamma(3,0.2)

prior for the inverse Softmax temperature (β), and for the two choice

stickiness parameters (π and), ρ) we used Normal(0,1) priors (Bolenz

et al., 2019). Themodel-fitting procedurewe use to acquire our param-

eter solutions has the potential to introduce noise. To avoid this, we

used model-free simulations to create a baseline to which we could

compare the children (see Results). More details on the dual-systems

reinforcement-learning model used for this study, the model compar-

isons, the model-fitting procedure, and the simulation procedure can

be found in the SupplementaryMaterial.

For the generalized linear mixed model, the package lme4 and

the glmer command with family = binomial(link = “logit”) were used

(Bates et al., 2015). The nested model selection was conducted using

the AICcmodAvg package (Marc, 2020), and to visualize the plots,

the ggeffects package was used (Lüdecke, 2018). For full details on

the model comparison and approach, please see the Supplementary

Material.

2.4 Model-free simulation procedure

An important aim of this study was to investigate whether children

in our sample showed influences of a model-based system in their

behavior. However, since the model-based contribution parameter is

bounded between 0 and 1, estimates of this parameter will always be

larger (or equal) to zero. Meaning that noise in either the model-fitting

procedure or in the behavioral performance of the participants can

only push this parameter over the lower bound, and not under. We,

therefore, created model-free simulations based on the estimated

parameters solutions from the children (inverse temperature, learning

rate, eligibility trace, and two choice stickiness parameters), but

with the model-based contribution fixed to 0 to generate synthetic

model-free behavior using the generative version of the dual-systems

reinforcement learningmodel. Next, we used this syntheticmodel-free

behavior to estimate a new model-based contribution parameter,

which acted as ourmodel-free baseline to compare the children to. For

full details on the simulation procedure, please see the Supplementary

Material.

All data, materials, and code for this paper are publicly available

on Github: https://github.com/ClaireSmid/Model-based_Model-free_

Developmental

3 RESULTS

3.1 Children perform above chance level and are
not random

To assess whether children were sufficiently engaged with and capa-

ble of doing the task, we first compared their performance to chance

level. Performance on the task was calculated as each individual’s cor-

rected reward rate, which reflected the average number of points

a participant earned per trial, corrected for each participant’s pos-

sible rewards based on the drifting reward rates (Figure 1b). This

corrected reward rate tracks task performance against chance level

(which was at 0). Scores lower than 0 indicate performance worse

than chance, and scores higher than 0 indicate better than chance

performance.

The mean corrected reward for children was significantly higher

than chance (t(84)= 3.20, d= 0.35, p= 0.002, 95% CIs [0.003, 0.013]).

Performance was also significantly correlated with age (r = 0.32,

p = 0.003, 95% CIs [0.12, 0.50]). This suggests that the children were

meaningfully performing the task, and that performance improved

throughout childhood.

https://github.com/ClaireSmid/Model-based_Model-free_Developmental
https://github.com/ClaireSmid/Model-based_Model-free_Developmental
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3.2 Computational signatures of model-based
decision making in children

The performance metric shows that children were generally able to

perform the task. However, this above-chance level performance could

arise from both successfully engaging a model-free or a model-based

system. We thus investigated whether children specifically displayed

model-based decision-making by fitting their behavior to an estab-

lished dual-systems reinforcement-learning model (Daw et al., 2011;

Gläscher et al., 2010). This model outputs several parameters that

explain behavior (e.g., inverse temperature and a learning rate) and

includes a weighting parameter that determines the relative contribu-

tion of each decision-making system to behavior, with weights close to

1 indicating a high degree ofmodel-based decisionmaking andweights

close to0asmainly beingmodel-free.As ahigher value reflects ahigher

degree of model-based decision making, we will name this parameter

“model-based contribution” throughout.

For both children and adults, we conducted a formal model

comparison where we assessed four computational models, (1) a

random model, (2) a simplified reinforcement learning model with

three parameters (henceforth 3-parameter model), (3) a 6-parameter

stake-agnostic dual-systems reinforcement learning model (hence-

forth 6-parametermodel), (4) a 7-parametermetacontrol dual-systems

reinforcement learning model with a model-based/model-free weight-

ing parameter that was allowed to differ across stakes (henceforth

7-parameter model). We compared the models using k-fold cross-

validation, Bayesianmodel selection, delta AICs, and parameter recov-

erability in two separate parameter recovery analyses, as well as a

qualitative model assessment. From this comparison, the 6-parameter

stake-agnostic dual-systems reinforcement learningmodel cameout as

the winning model overall. We fit the 6-parameter model to the data

to assess model-based decision-making agnostic of stakes, and we use

the 7-parameter model to assess metacontrol. For the full computa-

tional model, model comparisons, model-fitting details, and parameter

recovery analyses, see the SupplementaryMaterial.

First, we investigated whether children displayed any model-based

decision-making on the task over all trials combined. Children had

an average model-based contribution of 0.52 (SD = 0.17), and given

that this value is significantly larger than 0, (t(84) = 27.40, d = 2.97,

p< 0.001 95% CIs [0.48, 0.56]), it suggests that children used a model-

based system during the task. However, because the model-based

contribution parameter is bounded between 0 and 1, there is a possi-

bility that noise (introduced during task performance or model fitting),

could elevate the value of the model-based contribution to be greater

than zero, even if the children only usedmodel-free decisionmaking.

To resolve this, we created model-free simulations based on the

children’s data. This resulted in a mean model-based contribution

parameter of 0.28 (SD = 0.02) from these model-free simulations.

Thus, a mixing weight value of 0.28 cannot be distinguished from pure

model-free decision-making on the task and should be perceived as

the baseline for testing the presence of model-based control. For full

details on the simulation procedure, see the SupplementaryMaterial.

Critically, children’s mean model-based contribution was in the

100th percentile of the model-free simulation’s model-based contri-

bution mean (100th model-free percentile: w = 0.33). This means that

the mean of the children was larger than any mean value observed

in the model-free simulations, indicating that children between 5

and 11 years of age show significant model-based decision making,

(t(84.22)= 12.47, d= 3.49 p< 0.001, 95%CIs [0.20, 0.27]).

Additionally, we investigated whether the degree of model-based

decision-making increased with age for the children. We found that

there was a positive relationship between the degree of model-based

decision-making and age (r= 0.22, p= 0.042), see Figure 2a.

Furthermore, we investigated whether the youngest children also

showed significant model-based decision making. We conducted t-

tests, separately for each year of age, correcting the p-values for false

discovery rate. Every binned year of age showed a higher degree of

model-based decision making than the model-free simulations, see

Figure 2b (5-year-olds: N = 7, t(6.00) = 4.28, q = 0.005, d = 10.36,

6-year-olds: N = 18, t(17.01) = 6.53, q < 0.001, d = 7.32, 7-year-

olds: N = 15, t(14.00) = 5.21, q < 0.001, d = 7.11, 8-year-olds:

N = 15, t(14.00) = 3.95, q = 0.002, d = 5.41, 9-year-olds: N = 17,

t(16.00) = 4.47, q = 0.001, d = 5.62, 10 (N = 11) and 11-year-olds

(N= 2): t(12.00)= 8.65, q< 0.001, d= 13.39).

One of themain aspects of the current task designwas that a higher

degree of model-based decision-making leads to higher performance.

To confirm this, we investigated the relationship between performance

(the corrected reward rate) and the degree of model-based decision-

making for the participants. Performance on the task was correlated

to the degree of model-based decision making for the whole sample

(r = 0.51, p < 0.001), showing that a higher degree of model-based

decisionmakingwas significantly related to better performance on the

task. This effect remained significant after controlling for age (r= 0.37,

p< 0.001).

3.3 Metacontrol of decision making for children
and adults

In the current task, every trial is preceded by a “treasure amplifier”

that indicates whether the current trial is a low or high-stake trial, see

Figure 1c,d. During high-stake trials, any reward obtained on the trial

is multiplied by five, while on low-stake trials, the reward is multiplied

by 1 and therefore does not change in value. The current task entailed

changes to a previously used task with adults (Kool et al., 2016, 2017)

in the number of trials (140 as opposed to 201), the visualization of

the stake condition, aswell as a different testing environment (Amazon

Mechanical Turk versus in-person testing). We therefore first tested

whether we could replicate a stakes effect in an in-person adult sam-

ple. To investigate this, we fitted a reinforcement-learning model that

included a model-based contribution parameter that differed for each

stake condition to the adult data (Kool et al., 2017). There were thus

twomodel-based contribution parameters, one for behavior during the

low-stake trials and one for behavior during the high-stake trials. We
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F IGURE 2 Model-based decision-making over age for children with the simulated model-free baseline. (a) The degree of model-based
decision-making significantly increasedwith age for the children. The dashed line represents the grandmean of themodel-free simulations, which
acts as the simulatedmodel-free baseline. The shaded area around the regression line represents the standard error of themean. Adults are
plotted separately. (b) Boxplots per rounded year of age for the children. As there were only two 11-year-olds, we combined these childrenwith
the 10-year-olds (10+). The dashed line represents the simulatedmodel-free baseline. Asterisks indicate significance level, *p< 0.05; **p< 0.01;
***p< 0.001. For Panel b, significance indicates the highest q-value of each binned year of age against themodel-free simulations

conducted k-fold cross-validation to investigate whether both models

could reliably predict choices made by the children and adults. Both

models predicted behavior for children and adults significantly better

than chance, but there was no significant difference in accuracy for

either model (for details, see the SupplementaryMaterial).

Adults showedahigher degreeofmodel-baseddecisionmakingdur-

ing high-stake trials (M=0.71, SD=0.19), compared to low-stake trials

(M= 0.61, SD= 0.18; t(23)= 2.10, p= 0.047, d= 0.43, 95% CIs [0.001

0.185]) see Figure 3a. This replicates previous findings of a stake effect

on model-based decision making in adults (Bolenz et al., 2019; Kool

et al., 2017; Patzelt et al., 2019).

Next, we assessed whether children’s use of model-based decision-

making was also affected by the rewards at stake. To investigate

this, same as the adults, we fitted children’s data to a reinforcement-

learning model that included separate model-based contribution

parameters for each stake condition (Kool et al., 2017).

Accordingly, we found no significant difference in model-based

decision making between the low-stake (M = 0.52, SD = 0.13), and

high-stake (M = 0.52, SD = 0.13) trials (t(84) = -0.25, d = -0.03,

p = 0.803, 95% CIs [-0.03, 0.03]) for the children. This suggests that

children did not show a stake effect like the adults, see Figure 3a.

When we compared children and adults directly, adults had higher

model-based decision making than the children both during low-stake

(t(30.16) = −2.36, d = 0.65, p = 0.025, 95% CIs [-0.18, -0.01]), and

high-stake trials (t(30.00)=−4.35, d= 1.21, p < 0.001, 95% CIs [-0.27,

-0.10]).

We next tested whether an effect of stakes on model-based

decision-makingmight emergewith age for the children. Therefore, we

correlated the model-based contribution parameters for the low and

the high-stake trials of the children separately with age and controlled

the age-related slopes during high and low-stake trials for the correla-

tion between the two contribution parameters. See Figure 3b for the

age-related slopes over the two stakes. The difference between the

slopes was not significant (z = −0.50, p = 0.616). We also plotted the

group distributions and the differences in the individual participants’

model-based decision making across the stakes, visualising the pres-

ence of a stakes effect for adults, and the lack of a stakes effect as

a group for the children, see Figure 3c. Thus, a stakes effect was not

apparent in the behavior of the children, suggesting that this ability

may emerge later during development.

No other parameters (inverse temperature, learning rate, eligibil-

ity trace, or choice stickiness parameters) from the reinforcement-

learningmodel were related to age for the children, see the Supplemen-

taryMaterial.

3.4 Behavioral signatures of model-based
decision making for children and adults

To complement the computational modeling analyses, we used gener-

alized linear mixed models to approximate a behavioral model-based

decision-makingmeasure,whichwas theprobability of repeating a visit

to a planet (stay probability) as a function of reward on the previous

trial. We used the same regression method as in a previous version of

the task (Kool et al., 2016). Using thismethod, themodel-based compo-

nent consists of amain effect of the previous reward on the probability
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F IGURE 3 Model-based decision-making over stakes for adults and children. (a) Adults displayed a significantly higher degree of model-based
decision-making for the high-stake trials, while children did not show a difference in the degree of model-based decision-making used over stakes.
(b) this did not change over age for the children. The dashed line represents themodel-free baseline. (c) connecting lines for participants’
model-based decision-making across stakes plotted over the distributions for children and adults separately. Error bars depict 95%Confidence
intervals, and shaded areas indicate SEM. Asterisks indicate significance level, *p< 0.05; **p< 0.01; ***p< 0.001

of staying, whereas the reduced effect of previous reward when the

starting state is different (compared to when it is the same) indicates

a model-free component (Kool et al., 2016). Previous reward refers to

the continuous points won by the participant on the previous trial and

starting state similarity refers to whether the current starting state

(the rocket pair) is the same as on the previous trial. The influence

of previous reward on staying behavior approximates the transfer of

experience from one starting state to the other, while the differential

influence of previous reward on starting state similarity or difference

can reflect a lack of transfer of experience between the starting states.

Model-free and model-based systems should therefore generate dif-

ferent influences of starting state, as only the model-based system can

effectively generalize over states, see Figure 4a.

First, we fitted an identical model to both children and adults that

only looked at the influence of starting state similarity (whether partic-

ipants saw the same spaceship pair as on the previous trial or the other

pair) and previous reward on stay behavior. For children, there was a

main effect of previous reward on the probability to stay, indicating a

model-based component (β = 0.12, se = 0.02, z = 5.56, p < 0.001). The

interaction between previous reward and starting state similarity was

not significant, showing that previous reward increased the probability

to stay for both starting states similarly (β = -0.003, se = 0.02, z = -

0.14, p = 0.892). In addition, there was a main effect of starting state

(β = 0.05, se = 0.02, z = 2.35, p = 0.02). Thus, these results suggest

that children could generalize successfully over starting states, and

indicated amodel-based component in their behavior, see Figure 4b.

For adults, there was also a main effect of reward on staying prob-

ability (β = 1.09, se = 0.05, z = 22.81, p < 0.001). There was no main

effect of starting state (β = 0.06, se = 0.05, z = 1.44, p = 0.149), how-

ever, there was a small but significant interaction between starting

state and previous reward (β= 0.10, se = 0.05, z = 2.22, p = 0.026),

see Figure 4c. To be able to compare children and adults, we also
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F IGURE 4 Model-free andmodel-based contributions to stay probability. Stay probability meant repeating a visit to the same planet (red or
purple, see Figure 1a). (a) Examples of influences of puremodel-free andmodel-based decisionmaking on stay probability following previous
reward. For a puremodel-free system, stay probability only increases when the starting state (pair of spaceships) is the same. (b) Predicted results
from amodel investigating the influence of starting state. For children, across starting states, stay probability increased similarly with increasing
previous reward, indicating amodel-based effect. Note that the y-axis for children differs, as children generally showed a lower propensity to
“stay.” (c) For adults, across the starting states the probability to stay also increased, indicating amodel-based effect. The dotted lines for children
and adults indicate the chance level of stay probability (50%). Continuous predictors in themodels have been z-scored (e.g., Previous reward)

included groups in the models. the model-based predictor, previous

reward, remains significant for the whole sample (β = 0.12, se = 0.02,

z = 5.55, p < 0.001). We found that adults had a stronger effect of the

model-based predictor on staying probability, indicated by an interac-

tion between group and previous reward (β= 0.98, se= 0.5, z= 18.67,

p < 0.001), as well as a higher probability to stay overall, based on a

maineffect of group (β=0.44, se=0.10, z=4.41,p<0.001). Adults also

had a higher raw behavioral stay probability overall than the children,

(F(1,12631)= 120.9, p< 0.001).

Thus, this suggests that adults also successfully generalize over

starting states and that the effect of the model-based predictor was

stronger for the adults than the children. The results from the regres-

sion models thus mirror the computational results. For further details

on the regressionmodels, see the SupplementaryMaterial.

3.5 Best-fitting behavioral models for children
and adults

Next, we conducted a nested model selection to find the best model

to predict stay probability for both children and adults separately. In

a previous logistic regression model, to more closely approximate the

computational models, additional predictors were included alongside

previous reward (the model-based component) and starting state sim-

ilarity (same or different spaceship pairs). Namely, the difference in

available rewards across the two planets on the previous trial (a proxy

of reward history) and stake (high and low stakes), allows for inves-

tigating the influence of stake on choice behavior (Kool et al., 2016).

For the current study, we also included age for the children. For both

children and adults, we included a null model with only an intercept
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F IGURE 5 Best fitting generalized linear mixed models of stay probability for the children and adults. Stay probability meant repeating a visit to the
same planet (red or purple, see Figure 1a). (a) Predicted results from the best-fitting model for children. Previous reward—themodel-based
component—was a significant predictor of stay probability, showing that children displayedmodel-based influences in the choice data. In addition,
there was an interaction between previous reward and age (z-scored) showing that older children (Age z-scored= 1) showed a stronger increase in
stay probability with reward than the younger children (Age z-scored=−1). Note that the y-axis for children differs, as children generally showed
a lower propensity to “stay.” (b) For adults, previous rewardwas also a significant predictor, as well as stake. The interaction between previous
reward and stake was also significant, showing that adults increased their stay probability during the high stakes for more reward. The dotted lines
for children and adults indicate the chance level of stay probability (50%)

and no slope. For neither children nor adults was this null model the

best fit.

For the children, the best-fitting model included previous reward

(the model-based component) and age as fixed effects as well as their

interaction (AIC weight (model probability) = 0.38; see Supplementary

Material). Previous reward had a significant main effect on staying

probability (β = 0.12, se = 0.02, z = 5.60, p < 0.001), while age was

not a significant main effect (β= -0.00, se= 0.04, z= -0.04, p= 0.967),

but the interaction between previous reward and age was significant

(β= 0.070, se= 0.02, z= 3.17, p= 0.002), see Figure 5a. Thus, previous

reward had amain effect on staying probability, indicating a significant

model-basedeffect in the children’s choicebehavior. Thepositive inter-

action with age shows that the influence of previous reward on staying

probability increases with age.

For adults, the best-fittingmodel included previous reward, starting

state and stake, as well as their interactions (AIC weight (model prob-

ability)= 0.83). There were significant fixed effects of previous reward

(themodel-based component) (β=1.14, se=0.05, z=22.78, p<0.001)

and stake (β = 0.22, se = 0.05, z = 4.88, p < 0.001). Additionally, the

interaction between previous points and stake was significant, indicat-

ing a stake effect (β=0.35, se=0.05, z=7.08, p<0.001), see Figure 5b.

The interactions between previous points and state similarity was also

significant (β= 0.13, se = 0.05, z = 2.56, p= 0.010), and the three-way

interaction between previous points, starting state and stake (β= 0.11,

se= 0.05, z= 2.25, p= 0.025), showed that there was a small effect for

adults to be more likely to “stay” when the starting state was the same

(same spaceship pair) during high stake trials.

Lastly, we tested whether using this approach we would also find

that adults showed a higher degree of metacontrol than children.

We, therefore, fitted a model where we included group and stake as

predictors, alongside the model-based (previous reward) and model-

free (previous reward * starting state) predictors. The main effect of

the model-based predictor remained significant, (β = 0.12, se = 0.02,

z = 5.54, p < 0.001), and we saw that there was a significant three-

way interaction between previous reward (themodel-based indicator),

stake and group (β = 0.34, se = 0.05, z = 6.40, p < 0.001), indicating

that adults showed more model-based control during high stake trials.

Thus, we see a stake effect repeated for the adults using the regression

methods, and an absence of a stake effect for the children. This again

mirrors the results from the computational models. For a full overview

of themodels and the results, see the SupplementaryMaterial.

4 DISCUSSION

We investigated thedevelopment ofmodel-baseddecision-making and

how this is used adaptively across contexts in children aged5–11years.

We report that when using a two-step task that encourages the use

of computationally costly decision-making strategies, children aged 5–

11 years demonstrated significant model-based decision making. This

findingwas supported by both computational and behavioralmeasures

of model-based decision-making. Crucially, we found that even 5-year-

old children showed robust model-based decision making, while the

degree with which it was expressed increased further with age. How-

ever, whereas adults showed indicators of metacontrol by selectively

increasing model-based decision-making for higher rewards, children

did not. Combined, these findings demonstrate that children from

as young as 5-years-old can engage in sophisticated decision-making



SMID ET AL. 11 of 14

strategies on a sequential choice task, but that the optimal arbitration

between strategies may be late-developing.

Our finding that children younger than 12-years-old display model-

based decision making on a sequential decision-making task contrasts

with prior studies reporting an absence of markers of model-based

decision making before adolescence (Decker et al., 2016; Potter et al.,

2017). Theseprior studies revealedadevelopmental increase inmodel-

baseddecisionmaking fromchildhood toadulthood, however, they also

indicated that children as a group consistently showed signatures of

model-free but not model-based decision making (Decker et al., 2016;

Palminteri et al., 2016; Potter et al., 2017). In this study, using both

computational and generalized linear models of choice behavior, the

findings show that contributions of a model-based system to behavior

are present before adolescence, and in children as young as 5-years-

old.Weattribute thediscrepant findingsbetween the current andprior

work to task differences.

Compared to the original and commonly used two-step task (Daw

et al., 2011), the present task encourages the use of model-based

decision making by allowing a higher certainty in planning due to its

deterministic transitions, andan increased rateof change in rewarddis-

tributions (for an overview of all changes to incentivize model-based

decision making, see Kool et al., 2016). The high complexity and uncer-

tainty in the original two-step task, combined with the fact that more

effortful model-based decision making did not lead to more rewards,

may have hampered uncovering model-based decision making in chil-

dren aged 8–12 years previously. Indeed, studies that employed an

alternative two-step task with reduced transition complexity found

increases inmodel-based decision-making in adults (Akamet al., 2015).

It is not uncommon in developmental psychology that the removal

of confounding variables and reduction of task complexity triggers

competence shifts to younger ages (Scott & Baillargeon, 2017). Fur-

thermore, our account is in line with previous findings of goal-directed

behavior in infants and preschool-aged children in simple decision-

making tasks (Klossek et al., 2008, 2011), showing that evenvery young

children have the capacity to engage in sophisticated decision-making

strategies when the task allows for this.

Contrarily, we found that, unlike adults, children did not prior-

itize model-based decision-making during high-stake compared to

low-stake trials. Potentially, flexibly and swiftly arbitrating between

decision-making strategies and anticipating which one is best suited to

a certain situationmight be the true late-developing skill (Nussenbaum

& Hartley, 2019). For example, previous studies found that younger

children are less aware of different environmental demands, and fail

to respond to them proactively, for example by avoiding a more dif-

ficult condition (Chevalier, 2015; Niebaum et al., 2019). In addition,

children, even up to late adolescence, might be less able to detect and

assign values to relevant cues in the environment compared to adults,

leading them to respond similarly to rewards of different magnitudes

(Davidow et al., 2018; Insel et al., 2017). However, while the absence

of metacontrol may reflect a genuine developmental effect in our sam-

ple, alternative interpretations are that children did not credit the high

and low-stake conditions accurately enoughor that the incentives used

were not strong enough to uncover differences between the stakes

(Habicht et al., 2021; Veselic et al., 2021). Future work may wish to

extend to using incentives that are evenmore salient to the present age

group in order to establish whether metacontrol is genuinely absent

in middle childhood. Another paper investigating the development of

metacontrol in the form of prioritization of model-based decisionmak-

ing for high stakes over low stakes from adolescence to adulthood

(ages 12–25) found that metacontrol continued to increase with age

(Bolenz & Eppinger, 2021), but that in a sample between younger

(ages 18–30) and older adults (ages 57–80), metacontrol declined for

older adults(Bolenz et al., 2019). Thus, metacontrol might be particu-

larly sensitive to developmental changes, peaking in early adulthood,

and tapering off with advanced age. Exactly what drives this progres-

sion, for example, whether metacontrol is a unique stand-alone ability

or whether it is reliant on executive functions or memory storage or

manipulation, remains unclear.

While model-based decision-making was present throughout the

age ranges in our sample, the display of model-based decision-making

was still variable in this group and further increased with age. Individ-

ual differences in processes linked to model-based decision making,

such as fluid reasoning, cognitive control, or working memory may

well be able to account for an increase in the display of model-based

decision making (Otto et al., 2013, 2014; Potter et al., 2017). Fur-

ther research investigating such individual differences could shed light

on the neurocognitive mechanisms underlying model-based decision-

making in development. However, it remains important to consider

the task context in which decision-making and cognitive control are

studied (Plonsky & Erev, 2021), especially in developmental research.

When investigating the behavioral data, children showed a lower

propensity overall to repeat a visit to the same planet, although the

behavioral data indicated a higher probability to stay with higher

previous reward, which indicates a model-based component in their

behavior. The behavioral data lends itself to interpreting model-based

decision making as it signals that starting state similarity did not lead

to different behaviors of stay behavior similar to a pure model-free

agent. Therefore, in their behavioral data, children also displayed that

they generalized across starting states in the current task. However,

our finding that children showed less overall likelihood to repeat a

visit indicates one of the largest behavioral differences between chil-

dren and adults. This might be due to children being less successful

to exploit highly rewarding previous choices, or placing less impor-

tance on recent information, which is also reflected in their lower

average values for inverse temperature and learning rate compared to

adults (see the Supplementary Material). Thus, while children showed

strongbehavioralmarkers ofmodel-baseddecisionmaking in that their

behavior did not differ across starting states, their behavior was dif-

ferent from adults, mainly due to being less likely to repeat visits to

the same planet.

Additionally, we observed that children on average missed 10%

of the trials, while adults missed 3%. While there were no differ-

ences in average reaction timebetween children andadults (suggesting

the children were not at ceiling for responding), this could indicate

that the 2-second response window for the first-stage state was fast

for children of this age. Future studies might want to increase the
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response window with the goal to limit timed-out trials for younger

developmental samples.

Even though the current task is optimized to detect model-based

decision-making compared to the Daw two-step task, it has less

pronounced behavioral assessments of model-based decision-making.

Future studies incorporating younger developmental samples may

therefore also want to assess other two-step tasks that include a clear

behavioral indicator of model-based control, for example, by using

more conventional binary probabilistic rewards, and how this may

changewith age across childhood.

Lastly, while the dissociation between model-free and model-based

decision making has been widely studied and supported (Bolenz &

Eppinger, 2021; Bolenz et al., 2019; Doll et al., 2015; Gläscher et al.,

2010; Kool et al., 2016; Kool et al., 2017 Otto et al., 2013, 2014;

Patzelt et al., 2019), recent studies suggest that this dichotomy might

be oversimplified, as well as potentially underestimating the ability

of model-free control to approximate model-based control, for exam-

ple via contextual learning or compound representations (Collins &

Cockburn, 2020). Additionally, how distinct model-free and model-

based prediction errors are in the brain remains under discussion,

with some papers suggesting they might not be neurally distinct (Daw

et al., 2011; Sanfey & Chang, 2008), and other studies reporting that

distinct brain areas are involved for model-free and model-based pre-

diction errors (Doll et al., 2015; Gläscher et al., 2010; Sambrook et al.,

2018). Alternatively, new theories instead propose a more nuanced

viewofboth reflexivehabits andplanning, combining them intoamodel

that combines predictions about future eventswith flexibility following

changes to rewards, dubbed successor representation (Momennejad

et al., 2017). It seems likely that human decision-making is more com-

plicated than a simple dichotomy of two opposing strategies that vie

for control, and future models will likely become increasingly nuanced.

However, in our current study, we believe that the dichotomy has aided

us in understanding whether children aged 5–11 years old were able

to apply an underlying transitional structure to their decisions and feel

the current work is a valuable contribution to the field in including a

wider range of developmental samples.

In summary, this study demonstrates the presence of sophisticated

value-based decision-making strategies during childhood. We found

that in a task where model-based decision making was tied to reward,

and where the transitional structure was deterministic, children aged

5–11 years were able to engage in model-based decision making.

The current study thus provides a crucial link between early goal-

directed research on preschoolers and the computational modeling of

model-based decision-making in adolescence. Interestingly, the abil-

ity to selectively amplifymodel-based decision-making during contexts

with increased incentives was absent during childhood, indicating that

metacontrol, rather than model-based decision making, might be the

cognitive process undergoing delayed development throughout child-

hood and adolescence. Future work spanning a range of paradigms,

ages, and methodologies will be instrumental in charting the emer-

gence and development of model-based control and its arbitration

and link this to performance and competency-based developmental

mechanisms.
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