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Abstract 

Background: Majority of research and commercial efforts have focussed on use of artificial intelligence (AI) for 
fracture detection in adults, despite the greater long-term clinical and medicolegal implications of missed fractures 
in children. The objective of this study was to assess the available literature regarding diagnostic performance of AI 
tools for paediatric fracture assessment on imaging, and where available, how this compares with the performance of 
human readers.

Materials and methods: MEDLINE, Embase and Cochrane Library databases were queried for studies published 
between 1 January 2011 and 2021 using terms related to ‘fracture’, ‘artificial intelligence’, ‘imaging’ and ‘children’. Risk of 
bias was assessed using a modified QUADAS-2 tool. Descriptive statistics for diagnostic accuracies were collated.

Results: Nine eligible articles from 362 publications were included, with most (8/9) evaluating fracture detection on 
radiographs, with the elbow being the most common body part. Nearly all articles used data derived from a single 
institution, and used deep learning methodology with only a few (2/9) performing external validation. Accuracy 
rates generated by AI ranged from 88.8 to 97.9%. In two of the three articles where AI performance was compared to 
human readers, sensitivity rates for AI were marginally higher, but this was not statistically significant.

Conclusions: Wide heterogeneity in the literature with limited information on algorithm performance on external 
datasets makes it difficult to understand how such tools may generalise to a wider paediatric population. Further 
research using a multicentric dataset with real-world evaluation would help to better understand the impact of these 
tools.
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Key points

• Most artificial intelligence tools for fracture detec-
tion on children have focussed on plain radiographic 
assessment.

• Almost all eligible articles used training, validation 
and test datasets derived from a single institution.

• Strict inclusion and exclusion criteria for algorithm 
development may limit the generalisability of AI tools 
in children.

• AI performance was marginally higher than human 
readers, but not significantly significant.

• Opportunities exist for developing AI tools for very 
young children (< 2  years old), those with inherited 
bone disorders and in certain clinical scenarios (e.g. 
suspected physical abuse).
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Background
It is estimated that up to a half of all children sustain a 
fracture at some point during childhood [1, 2] (~ 133.1 
per 10,000 per annum). Fractures also represent a leading 
cause for long-term disability in children [3] and are pre-
sent in 55% of children who have been physically abused 
[4]. Given the differences in children’s bone appearances 
on imaging compared to adults (including differences 
at varying stages of bone maturation), and the different 
patterns of injury (such as buckle/torus fractures, corner 
metaphyseal injuries, bowing deformities), emergency 
physicians, who are the frequently the first to review and 
act upon imaging findings, can miss up to 11% of acute 
paediatric fractures, compared to a specialist paediatric 
radiologist [5–8]. Of these, the majority (7.8%) could lead 
to adverse events and changes in management [8]. This is 
particularly concerning given that over half (57%) of all 
UK paediatric orthopaedic-related litigation cases relate 
to undetected or incorrectly diagnosed injuries, costing 
£3.5 million, with an average pay-out of between £28,000 
and £57,000 per case [9, 10]. These results are not limited 
to UK practice, with similar results from Norway [11] 
and the USA [12, 13], where paediatric claims resulted in 
higher indemnity paid per case compared with adults [12, 
14].

One potential solution would be the use of artificial 
intelligence (AI) algorithms to rapidly and accurately 
abnormalities, such as fractures, on medical imaging. 
Such algorithms could be useful as an interpretative 
adjunct where specialist opinions are not always avail-
able. A systematic review of AI accuracy for adult long 
bone fracture detection on imaging reported pooled sen-
sitivity and specificity rates of 96 and 94%, respectively 
[15]. Another systematic review [16] reported that sev-
eral AI algorithms [17–21] were either as good or better 
at detecting limb fractures on radiography compared to 
general physicians and orthopaedic surgeons. Whilst a 
minority of studies included any paediatric cases within 
their training dataset for algorithm development [22, 23], 
few have analysed how well these perform specifically 
and solely for the paediatric population.

The objectives of this systematic review are to assess 
the available literature regarding diagnostic performance 
of AI tools for paediatric fracture assessment on imaging, 
and where available, how this compares with the perfor-
mance of human readers.

Materials and methods
Ethical approval was not required for this retrospec-
tive review of published data. This study was registered 
in PROSPERO International prospective register of sys-
tematic reviews, CRD42020197279 [24]. The updated 

PRISMA (Preferred Reporting Items for Systematic 
reviews and Meta-Analyses) statement guidelines were 
followed [25] (Additional file 1).

Literature review
MEDLINE (Ovid), EMBASE, Web of Science and the 
Cochrane Library databases were searched for eligi-
ble articles published between 1 January 2011 and 31 
December 2021 (11 years range), using database specific 
Boolean search strategies with terms and word variations 
relating to ‘fracture’, ‘artificial intelligence’, ‘imaging’ and 
‘children’. The full search strategy was conducted on 1 
January 2022 (Additional file 1: Tables S1–S4). A repeat 
search was conducted on 18 February 2022 and again on 
30th April 2022 to assess for interim publications since 
the original search.

Eligibility criteria
Inclusion criteria encompassed any work investigating 
the diagnostic accuracy for classification, prediction or 
detection of appendicular fractures on any radiological 
modality in children, using one or more automated or 
artificial intelligence models. Expert radiological opin-
ion, follow-up imaging or surgical/histopathological find-
ings were all considered acceptable reference standards. 
Studies were limited to human subjects aged 0–20 years, 
to include adolescents. No restrictions were placed on 
method of imaging, dataset size, machine vendor, type 
of artificial intelligence/computer-aided methodology or 
clinical setting.

Exclusion criteria included conference abstracts, case 
reports, editorials, opinion articles, pictorial reviews and 
multimedia files (online videos, podcasts). Articles with-
out a clear reference standard, clear subgroup reporting 
(to assess whether a paediatric cohort was analysed) or 
those relating to robotics or natural language process-
ing (NLP) rather than image analysis were excluded. 
We excluded any animal studies and those referring to 
excised bone specimens.

All articles were independently searched by two 
reviewers (both paediatric radiologists with prior experi-
ence of conducting systematic reviews and meta-analy-
ses). Abstracts of suitable studies were examined, and full 
papers were obtained. References from the retrieved full 
text articles were manually examined for other possible 
publications. Disagreements were resolved by consensus.

Methodological quality
Given the lack of quality assessment tools specifically 
designed for artificial intelligence methodology [26], we 
used the modified Quality Assessment of Diagnostic 
Accuracy Studies (QUADAS-2) criteria [27] with con-
sideration of several items outlined from the Checklist 
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for Artificial Intelligence in Medical Imaging (CLAIM) 
guideline [28].

These are as follows:

(1) Patient Selection, risk of bias: consideration regard-
ing appropriate patient selection for the intended 
task, collating a balanced data set, suitable data 
sources, unreasonable/extensive exclusion criteria

(2) Patient Selection, applicability: how applicable/
useful the algorithm for intended usage, given the 
patient selection.

(3) Index test, risk of bias: consideration of measures of 
significance and uncertainty in the test;

(4) Index test, applicability: information on validation 
or testing of the algorithm on external data;

(5) Reference Standard, risk of bias: sufficient detail to 
allow replication of ground truth/reference stand-
ard, whether reader was blinded to clinical details;

(6) Reference Standard, applicability: appropriateness 
for clinical practice.

This combined assessment using QUADAS-2 and 
CLAIM has been previously employed by other authors 
for systematic reviews evaluating artificial intelligence 
studies [29]. Due to the low number of studies fulfill-
ing our inclusion criteria, it was decided a priori to not 
exclude any studies on the basis of quality assessment 
to allow as complete a review of the available literature 
possible.

Data extraction and quantitative data synthesis
Two reviewers independently extracted data from the 
full articles into a database (Excel, Microsoft, Redmond 
WA, USA). A descriptive approach was used to synthe-
sise the extracted data. Information regarding the data-
sets in terms of the number of images, types of images, 
and number of diagnostic classes within the data set was 
collected and recorded. The evaluation metrics (i.e. diag-
nostic accuracy rates) used in each dataset for each study 
were described. Due to the heterogeneity of data and 
body parts assessed, it was planned a priori to provide a 
narrative description of the results.

Results
Eligible studies
The initial search performed on 1 January 2022 yielded 
362 articles, after the removal of duplicate studies. On 
the basis of study title and abstract, 318 articles were 
excluded or irretrievable. After review of the full text 
(n = 44), eight studies were eventually included [17, 30–
36]. An additional search of the medical literature on 18 
February 2022 revealed one additional study. A PRISMA 
flowchart is shown in Fig. 1.

Methodological quality assessment
The risk of bias and applicability of the various studies 
are outlined in Fig. 2. In two studies, there was a high 
risk of bias and applicability concerns regarding patient 
selection [32, 35]. In one of these [35], a 3-dimensional 
ultrasound sweep of the distal radius was performed by 
medical students on a ‘convenient sample’ of children 
attending the emergency department with wrist inju-
ries. Patients were neither consecutive, nor randomly 
sampled; therefore, it was questionable as to how gener-
alisable the study results could be. In the second study 
[32], children were only included if they had a con-
firmed lower limb fracture, and were labelled as having 
either normal fracture healing time or delayed fracture 
healing (> 12  weeks). The mechanism for follow-up 
to determine fracture healing time, or the reason for 
choosing a 12-week time frame, was not specified, and 
furthermore it was not stated whether children with 
pre-existing bone fragility disorders were included.

Almost half of all studies had unclear/moderate con-
cerns regarding applicability of patient selection (4/9, 
44.4%) [31, 34, 36, 37], and most had concerns regard-
ing applicability of index test (6/9, 66.7%) [31–36]. This 
was predominantly due to studies imposing strict exclu-
sion criteria in their patient selection (e.g. exclusion of 
patients with healing bones, certain types of fractures, 
and treatment with cast or surgical correction devices) 
which would limit the application of the algorithm in 
clinical practice. In four studies the risk of bias for the 
reference standard was considered unclear/moderate 
as the radiology readers were unblinded to the clini-
cal history, which may have influenced their report-
ing of findings and subsequent algorithm performance 
[33–35]. Only two studies reported results for external 
validation of their algorithm using a dataset which was 
distinct to the training and validation datasets [17, 30].

Patient demographics and study setting
The list of studies included, study aims, and patient 
inclusion/exclusion criteria are provided in Table  1. 
Patient demographics, type of centre and ground truth/
reference levels are covered in Table 2. The majority of 
the studies (5/9, 55.6%) involved assessment of paediat-
ric upper limb trauma, with three assessing the elbow 
and two assessing the forearm. One study assessed any 
fracture of the appendicular skeleton, and the remain-
ing three assessed trauma of the lower limb.

In three of the studies, children below the age of 
1 year were not included in the study dataset and in one 
study the age range was not provided. In three studies, 
the gender split of the dataset was not reported, and 
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none of the studies provided details regarding the eth-
nicity or socio-economic class of the patients.

The majority of studies (8/9, 88.9%) used datasets 
which were derived from the author’s own institution 
(i.e. a single centre study), and analysed fractures on plain 
radiography. Only one study reported the development of 
an AI algorithm for fracture detection using ultrasound. 
The ground truth/reference level for fracture assessment 
was from the radiology report (7/9, 77.8%), the opinion of 
an orthopaedic surgeon (1/9, 11.1%) and in the one study 
related to ultrasound assessment, the corresponding 
plain radiography report acquired within 30 days of the 
ultrasound acted as the reference standard for presence 
of forearm fracture.

Imaging dataset sizes
The total datasets within the articles were described in 
different ways, some in terms of number of patients or 
number of examinations (where each consisted of mul-
tiple images) and some in terms of the total number of 

images. Datasets ranged from between 30 and 2549 
patients; 55–21,456 examinations; and 226–58,817 
images. Depending on the aims and objectives of each 
study, some provided a breakdown of the number of 
examinations (and the split between normal and abnor-
mal examinations) as well as the number of images allo-
cated to training, validation and testing. Full details are 
provided in Table 3.

Imaging algorithm methodology
Technical details regarding methodology and hyperpa-
rameters used in the computer-aided/ artificial intel-
ligence algorithm development are summarised in the 
Additional file 1: Table S5.

In one study, a computer-aided detection (CAD) 
method was used to generate a graphical user interface 
(GUI) to automatically extract/segment forearm bones 
on an image, analyse the curvature and determine pres-
ence of underlying bowing/buckling fractures [36]. In 
another study, a commercially available AI product 

Fig. 1 PRISMA flow chart for the study search and selection
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Fig. 2 Methodological quality assessment of the included studies using the QUADAS-2 tool. Risk of bias and applicability concerns summary about 
each domain are shown for each included study
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utilising a deep convolutional neural network (Rayvolve®) 
[30] was employed. The remainder either developed or 
re-trained existing convolutional neural networks. One 
study evaluated the use of self-organising maps (SOM) 
and also convolutional neural networks in the evaluation 
of fracture healing [32].

In terms of neural network architecture, the com-
mercially available product (Rayvolve®) was based on 
a RetinaNet architecture [30], two studies based their 
neural network on the Xception architecture [33, 34] 
and one study used the ResNet-50 architecture [17]. For 
the remainder, the neural network architecture was not 
described in the study.

Algorithm diagnostic accuracy rates
The diagnostic accuracy rates for each study are listed 
according to body part and also data set (e.g. validation 
or test set) in Table 4. For the most common paediatric 
body part assessed (elbow), the algorithms tested on the 
test dataset achieved sensitivities of 88.9–90.7%, with 
specificity of 90.9–100%. The only study that evaluated 
fracture detection rate for the whole appendicular skel-
eton (across multiple body parts) achieved 92.6% sensi-
tivity and 95.7% specificity [30].

In three studies, the performance of the final AI algo-
rithm was tested against independent human readers 
on the same dataset [17, 31, 35]. The differences in diag-
nostic accuracy rates are provided in Table  5. England 
et al. [31] reported their AI algorithm to have a margin-
ally lower diagnostic accuracy rate than a senior emer-
gency medicine trainee in detecting elbow effusions 
(diagnostic accuracy 90.7% compared to 91.5%), but a 
greater sensitivity (90.9% versus 84.8%). Zhang et al. [35] 
reported their AI algorithm to perform better than a 
paediatric musculoskeletal radiologist in detecting distal 
radial fractures on ultrasound (92% diagnostic accuracy 
versus 89%). Choi et  al. [17] examined an AI algorithm 
for supracondylar fracture detection which achieved a 
greater sensitivity than the summation score of three 
consultant radiologists (100% versus 95.7%). When 
this algorithm used as an adjunctive measure for image 
interpretation, it was able to demonstrate an improved 
performance for the lowest performing of the three radi-
ologists, with sensitivity rates improving from 95.7% 
(radiologist acting alone) to 100% (same radiologist with 
AI assistance). Despite these slight differences in perfor-
mance across the studies, there was an overlap in the 95% 
confidence intervals provided suggesting the changes 
were not statistically significant.

Discussion
Almost all published literature relating to AI assessment 
for acute appendicular fractures in children is based on 
radiographic interpretation, with fractures of the upper 
limb (specifically the elbow) being the most common 
body part assessed. Nearly all articles used training, vali-
dation and testing data derived from a single centre, with 
few performing external validation. When AI tools were 
compared to the performance of human readers, the 
algorithms demonstrated comparable diagnostic accu-
racy rates and in one study improved/augmented the 
diagnostic performance of a radiologist.

In this review, we focussed on the assessment of com-
puter-aided/artificial intelligence methods for paediat-
ric appendicular fracture detection, given that these are 
the most commonly encountered fractures in an oth-
erwise healthy paediatric population (accounting for 
approximately 70–99% of paediatric fractures [37–39], 
with less than 5% of fractures affecting the axial skel-
eton [40–42]). Publications related to the application of 
computer-aided/AI algorithms for paediatric skull and 
spine fractures have been described. One developed an 
AI algorithm for detection of skull fractures in children 
from plain radiographs [43] (using CT head report as 
reference standard) and reported high AUC values both 
on their internal test set (0.922) and external validation 
set (0.870), with improvements in accuracy of human 
readers when using AI assistance (compared to with-
out). Whilst demonstrating proof of concept, since most 
radiology guidelines encourage the use of CT over radio-
graphs for paediatric head trauma [44–46], clinical appli-
cability is limited.

In two articles pertaining to spine fractures [48, 49], the 
authors applied commercially available, semi-automated 
software tools designed for adults to a paediatric popula-
tion for the detection of vertebral fractures on plain radi-
ography or dual-energy X-ray absorptiometry (DEXA). 
They reported low sensitivity for both software (36 and 
26%) not sufficiently reliable for vertebral fracture diag-
nosis. This finding raises an important general issue 
regarding the need for adequate validation and testing 
of AI tools in specific patient populations, in this case 
children, prior to clinical application to avoid potentially 
detrimental clinical consequences. This was conducted in 
the current systematic review for one commercially avail-
able product (Rayvolve®, AZMed) which demonstrated 
high diagnostic accuracy rates, particularly for older chil-
dren (sensitivity 97.1% versus 91.6% for 5–18-year-olds 
versus 0–4-year-olds; p < 0.001). Whilst other fracture 
detection products are now commercially available (e.g. 
BoneView, Gleamer [49]), peer-reviewed publications of 
such products to date relate only to diagnostic accuracy 
rates in adults [50] (although paediatric outcomes are 
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available as a conference abstract on the company web-
site [51]).

Most studies in this review specifically chose to develop 
and apply their AI algorithm for one specific body part, 
rather than all bones of the paediatric skeleton. Taking 
the commonest body part for assessment (i.e. the elbow), 
dedicated algorithms yielded higher diagnostic accuracy 
rates than the commercially available product for the 
same body part (which was trained to detect fractures 
across the entire appendicular skeleton). In this example, 

the improvement in sensitivity was between 89.5 and 
90.7% (for test data, using dedicated algorithms) versus 
88% for the generalised tool. Whilst the difference may 
be small, it could vary across other body parts which we 
have insufficient dedicated algorithm information for. 
It will therefore be important to better understand the 
epidemiology of fractures across different population 
groups, and whether algorithms that have increased diag-
nostic accuracies for certain commonly fractured body 

Table 3 Input data demographics and study dataset sizes, organised by publication date

Author, year Body part Total 
dataset 
(patients)

Total dataset (exams 
and images)

Training set Validation set Test set

Zhou [36] Forearm 226 226 radiographs (59 
bowing fractures)

226 radiographs (59 
bowing fractures)

N/A N/A

Malek [32] Lower limb (femur, 
tibia, fibula)

57 Unclear, presumed 57 
exams. No mention 
of projections or total 
images. (25, 50% 
normal healing time; 
25, 50% delayed heal-
ing time)

39 exams
(18, 50% normal; 18, 
50% abnormal)

9 exams
(4, 44.4% normal; 5, 
55.6% abnormal)

17 exams
(11, 64.7% normal; 6, 
35.3% abnormal)

England [31] Elbow 882 901 lateral radio-
graphs (images)

657 images
(500, 76.2% normal; 
157, 23.8% abnormal)

115 images
(82, 71.3% normal; 33, 
28.7% abnormal)

129 images
(96, 74.4% normal; 33, 
25.6% abnormal)

Rayan [33] Elbow Not stated 21,456 exams; 58,817 
images

20,350 exams; 55,721 
images
(4966, 24% normal, 
15,384, 76% abnor-
mal)

1106 exams; 3096 
images
(516, 47% normal, 
590, 53% abnormal)

N/A

Choi [17] Elbow 810 1619 elbow exams; 
3238 images

1012 exams
(780, 77.1% normal; 
232, 22.9% abnormal)

254 examinations
(196, 77.2% normal; 
58, 22.8% abnormal)

Temporal set: 258 
exams
(192, 74.4% normal; 66, 
25.6% abnormal) Geo-
graphic set: 96 exams 
(72, 75.8% normal, 23, 
24.2% abnormal)

Starosolski [34] Distal tibia 490 490 exams; 245, 50% 
abnormal 245, 50% 
normal

Not stated Not stated 98 images (49, 50% 
normal; 49, 50% 
abnormal)

Dupuis [30] Appendicular skel-
eton

2549 2634 exams; 5865 
images

N/A N/A 1825, 69.2% normal; 
809, 30.8% abnormal 
exams

Zhang [35] Distal radius 30 55 × 3D ultrasound 
‘sweeps’ of both 
wrists (injured and 
contralateral); Each 
‘sweep’ having ~ 382 
image slices Overall 
19 cases of distal wrist 
fracture

21 sweeps (~ 6000 
images) Abnormal: 
Normal split not 
stated

1640 image slices 
selected from 
72 sweeps of 36 
patients.23, 64% 
normal; 13, 36% 
abnormal cases 990, 
60% normal; 650, 40% 
abnormal images 
Unclear how this 
validation dataset was 
acquired

N/A

Tsai [58] Distal tibia 124 patients 
(35 abnor-
mal, 89 
normal)

250 radiographs (177 
normal, 73 abnormal)

187 radiographs 13 radiographs 50 radiographs
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parts would need to be additionally implemented for cer-
tain institutes.

Another aspect highlighted by the present study 
relates to patient selection, with variable inclusion and 
exclusion criteria amongst the different studies, a broad 
range of patient ages (with heterogeneity in bone matu-
ration and mechanisms of injury), with few assessing 
fractures in children under 2 years (who are more likely 
to be investigated for suspected physical abuse [52]), or 
those with inherited bone disorders (e.g. osteogenesis 
imperfecta). This could be due to fewer children within 
these categories attending emergency departments 
to provide the necessary imaging data for training AI 
models, but the result is that specific paediatric popu-
lations may be unintentionally marginalised or poorly 
served by such new technologies and raises potential 
ethical considerations about their future usage par-
ticularly when performance characteristics are extrap-
olated beyond the population on which the tool was 
developed and validated [53]. An example would be 
an AI tool which could help to evaluate the particular 
aspects of fractures relating to suspected physical abuse 
as an adjunct to clinical practice given that many prac-
tising paediatric radiologists do not feel appropriately 
trained or confident in this aspect of imaging assess-
ment [54–57]. Whilst data are limited, one study did 
address the topic of using AI for identifying suspected 
physical abuse through the detection of corner meta-
physeal fractures (a specific marker of abuse) [58] with 
a high diagnostic accuracy. Future studies addressing 
these patient populations, and with details regarding 
socio-economic backgrounds of cases used for train-
ing data, would be helpful to develop more inclusive 
and clinically relevant tools. Expanding the topic of 
fracture assessment to address bone healing and post-
orthopaedic complications may be another area for fur-
ther development given that most articles also excluded 
cases with healing fractures, presence of casts or 
indwelling orthopaedic hardware.

With the exception of one study, all methods for devel-
oping artificial intelligence for fracture detection identi-
fied in this review relied on creating or retraining deep 
convolutional neural networks with the ability to ‘learn’ 
features within an image to better provide the most 
accurate desired output classification. Only one study 
exclusively adopted a more traditional machine learn-
ing method using stricter, rule-based computer-aided 
detection methods for identifying bowing fractures of the 
forearm [36]. It is unclear whether using a convolutional 
neural network was unsuitable or less accurate for the 
detection of these specific fractures or was not attempted 
due to lack of capability; however, differences in perfor-
mance of various methods should be compared within 

the same dataset in relation to not only performance but 
also resource requirements/costs and other aspects such 
as ‘exploitability’ of features used by the algorithm. It 
is likely that the trend for future AI tools for paediatric 
fracture detection will include development of single or 
an ensemble of convolutional neural networks to provide 
optimal performance. Nonetheless, one should not com-
pletely disregard simpler machine learning methods, and 
consider how they can be best employed given the sig-
nificant computational power and thus carbon footprint 
produced from training deep learning solutions, espe-
cially in the light of current global efforts for creating a 
more sustainable environment [59].

Although there are fewer publications relating to AI 
applications for paediatric fractures than in adult imag-
ing, these data have demonstrated that several solutions 
are being developed and tested with children in mind. 
Given the current crisis in the paediatric radiology work-
force and restricted access to specialist services [60–65], 
an immediate, accurate fracture reporting service could 
potentially confer a cost-saving effect [66] and neutralise 
healthcare inequalities. Nevertheless, there were many 
limitations to the published literature. For example, 
health economic analyses and studies assessing whether 
such algorithms do actually translate into real improve-
ments in patient outcomes are lacking, and it is unclear 
how generalisable many of the algorithms may be given 
that most have been tested in a single centre, without 
external validation and without appropriately powered 
studies for those that have used multi-reader studies 
to compare human versus AI performance. Therefore, 
although this review found that in a subset of the studies 
the performance of AI algorithms was not significantly 
different from human performance, this may be due to 
an under powered sample size. Furthermore, in practice, 
paediatric radiographs may be interpreted by a range of 
different healthcare professionals working at different 
experience levels and with varying subspecialty back-
grounds (e.g. general radiologists, paediatric radiologists, 
musculoskeletal radiologists, paediatricians, orthopaedic 
surgeons). The current literature only reviews the com-
parison between AI performance and one kind of health-
care professional. This limits our understanding of who 
such AI algorithms may best serve and thus how best to 
implement them.

It should also be recognised that there may be great dif-
ferences between optimised test performance in valida-
tion sets versus the ‘real-world’ impact of implementing 
such a tool into routine clinical workflows, not only as a 
consequence of differences/variations in input data, but 
also usability aspects and pragmatic ability to incorporate 
such tools into existing workflows. These factors raise 
questions regarding future widespread implementation 
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and funding of AI solutions as individual hospitals and 
healthcare systems will require return on their invest-
ment at the level of clinical/operational impact rather 
than pure ‘test performance’[67]. Due to these reasons, 
it will be necessary for economic analyses and cost and 
clinical effectiveness studies to be performed to under-
stand whether AI algorithms for fracture detection in 
children do offer improved benefits.

Improved methods of secure data sharing (possibly 
with public datasets of paediatric appendicular radio-
graphs) and greater collaboration between hospitals and 
industrial and academic partners could be beneficial 
in terms of developing and implementing novel digital 
tools for paediatric imaging at a lower cost, with future 
real-world implementation studies. Further research 
on the topic of AI for paediatric fracture detection 
should consider aspects that would be helpful to hospi-
tal decision-makers, but also consider the uncertainties 
and bias within test datasets such as the wide age range 
of patients included, range of different pathologies and 
injury patterns sustained by children at different stages 
of maturation which may not all be as accurately evalu-
ated. Improved transparency and subgroup analyses of 
these, with more robust external validation of emerg-
ing and commercially available tools, would provide the 
necessary evidence for clinicians and hospital managers 
to better understand whether such technology should be 
integrated into their own healthcare systems.

There were several limitations to the present study. 
During the literature review, we included studies that 
specifically related to paediatric fracture detection. It 

is possible that some studies may have included chil-
dren within their population dataset, but did not make 
this explicit in their abstract or methodology and there-
fore may have been excluded. Secondly the AI literature 
is expanding at a rapid rate, and it is likely by the time 
of publication that newer articles may be available. In 
order to minimise this effect, an updated review of the 
literature using the same search strategy was performed 
immediately before initial article submission and after 
reviewer resubmission to ensure the timeliness of the 
findings. We also acknowledge that articles relating to AI 
applications may be published in open source, but non 
peer-reviewed research sharing repositories (e.g. arXiv) 
which were not searched and therefore excluded since 
only adequately peer-reviewed articles were included. 
Finally, it proved difficult to consistently extract the 
required information from the available literature. When 
assessing for bias, we used a slight adaptation of the 
QUADAS-2 guideline (whilst future tools are developed 
[68]) and in some cases the study methodology appeared 
incomplete or incomprehensible, particularly those writ-
ten prior to published AI reporting guidelines [69–71]. 
Accordingly, we included the AI algorithm methodol-
ogy as an Additional file 1 table due to wide variations in 
reporting making direct comparisons challenging.

Conclusions
In conclusion, this review has provided an overview of 
the current evidence pertaining to AI applications of 
paediatric appendicular fracture assessment on imaging. 

Table 5 Studies comparing artificial intelligence algorithms versus (or combined with) human reader, organised by publication date

95% confidence intervals are omitted where these are not provided in the publication

NS not stated. CI confidence interval. AUC  area under the curve, PPV positive predictive value, NPV negative predictive value, TP true positive, FP false positive, FN false 
negative, TN true negative, PGY postgraduate year

Author, year Human/AI Accuracy, % (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI) TP FP FN TN

England [31] AI 0.907
(0.843–0.951)

0.909
(0.788–1.000)

0.906
(0.844–0.958)

87 9 3 30

PGY5 emergency medicine trainee 
(non-radiologist)

0.915
(0.852–0.957)

0.848
(0.681–0.949)

0.938
(0.869–0.977)

90 6 5 28

Choi, [17] AI (Geographical test set) 0.895
(0.817–0.942)

1.000
(0.852–1.000)

0.861
(0.759–0.931)

23 10 0 62

Summated score of three radiolo-
gists (2–7-year experience) from 
different institution to test dataset

0.975
(0.950–0.988)

0.957
(0.880–0.985)

0.981
(0.953–0.993)

66 4 3 212

Lowest performing radiologist alone NS
(AUC 0.977 (0.924–0.997))

0.957
(0.781–0.999)

0.972
(0.903–0.997)

NS NS NS NS

Lowest performing radiologist with 
AI assistance

NS
(AUC 0.993 (0.949–1.000))

1.000
(0.852–1.000)

0.972
(0.903–0.997)

NS NS NS NS

Zhang [35] AI (Test set—data undefined) 0.920 1.000 0.870 NS NS NS NS

Human: paediatric musculoskeletal 
radiologist

0.89
(0.782–0.949)

1.000
(0.833–1.000)

0.833
(0.681–0.921)

19 6 0 30
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There is a wide heterogeneity in the literature with 
respect to paediatric age ranges, body parts assessed 
by AI for fracture detection and limited information on 
algorithm performance on external validation.

Further work is still required, especially for testing 
solutions across multiple centres to ensure generalis-
ability, and there are currently opportunities for the 
development of AI solutions in assessing paediatric 
musculoskeletal trauma across other imaging modali-
ties outside of plain radiography and in certain at risk 
fracture populations (e.g. metabolic or brittle bone 
diseases and suspected child abuse cases). Improved 
research methodology, particularly by using a multi-
centric dataset for algorithm training with external 
validation and real-world evaluation, would help to bet-
ter understand the impact of these tools for paediatric 
healthcare.
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