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Brain tissue segmentation plays a crucial role in feature extraction, volumetric

quantification, and morphometric analysis of brain scans. For the assessment of

brain structure and integrity, CT is a non-invasive, cheaper, faster, and more widely

available modality than MRI. However, the clinical application of CT is mostly limited

to the visual assessment of brain integrity and exclusion of copathologies. We have

previously developed two-dimensional (2D) deep learning-based segmentation networks

that successfully classified brain tissue in head CT. Recently, deep learning-based

MRI segmentation models successfully use patch-based three-dimensional (3D)

segmentation networks. In this study, we aimed to develop patch-based 3D

segmentation networks for CT brain tissue classification. Furthermore, we aimed to

compare the performance of 2D- and 3D-based segmentation networks to perform

brain tissue classification in anisotropic CT scans. For this purpose, we developed

2D and 3D U-Net-based deep learning models that were trained and validated on

MR-derived segmentations from scans of 744 participants of the Gothenburg H70

Cohort with both CT and T1-weighted MRI scans acquired timely close to each other.

Segmentation performance of both 2D and 3D models was evaluated on 234 unseen

datasets using measures of distance, spatial similarity, and tissue volume. Single-task

slice-wise processed 2DU-Nets performed better thanmultitask patch-based 3DU-Nets

in CT brain tissue classification. These findings provide support to the use of 2D U-Nets

to segment brain tissue in one-dimensional (1D) CT. This could increase the application

of CT to detect brain abnormalities in clinical settings.
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INTRODUCTION

X-ray CT and MRI are the most frequently used modalities for
structural assessment in neurodegenerative disorders (Wattjes
et al., 2009; Pasi et al., 2011). MRI scans are commonly
used for image-based tissue classification to quantify and
extract atrophy-related measures from structural neuroimaging
modalities (Despotović et al., 2015). Many software tools exist to
perform automated brain segmentation in MR images, mainly
for research purposes (Zhang et al., 2001; Ashburner and
Friston, 2005; Cardoso et al., 2011; Fischl, 2012). Currently, CT
scanning is used for the visual assessment of brain integrity
and the exclusion of copathologies in neurodegenerative diseases
(Musicco et al., 2004; Rayment et al., 2016). However, several
studies suggest that visual assessment of brain volume changes
derived fromCT could also be used as the predictors of dementia,
displaying comparable diagnostic properties to visual ratings of
MRI scans (Sacuiu et al., 2018; Thiagarajan et al., 2018). In
comparison with MR imaging, CT scanning is faster, cheaper,
and more widely available. Despite these advantages, automated
tissue classification in head CT is largely underexplored.

Brain tissue segmentation on CT is a challenging task due
to lower soft-tissue contrast compared to MRI. Many existing
CT data and some scanners collect anisotropic CT data or one-
dimensional (1D) CT images. Several studies have recommended
the quantification of brain tissue classes in CT using MR
segmentation methods (Manniesing et al., 2017; Cauley et al.,
2018), general image thresholding (Gupta et al., 2010) or
segmentation methods (Aguilar et al., 2015), or probabilistic
classification using Hounsfield units (HU) (Kemmling et al.,
2012).

More recent studies have also started exploring the usage of
deep learning in brain image segmentation (Akkus et al., 2017;
Chen et al., 2018; Henschel et al., 2020; Zhang et al., 2021) mainly
using MR images. For this purpose, fully convolutional neural
networks (CNNs), residual networks, U-Nets, and recurrent
neural networks are commonly used architectures. U-Net,
developed in 2015, is a CNN-based architecture for biomedical
image segmentation that performs segmentation by classifying at
every pixel/voxel (Ronneberger et al., 2015). Many studies have
used U-Nets to perform semantic segmentation in MRI (Wang
et al., 2019; Wu et al., 2019; Brusini et al., 2020; Henschel et al.,
2020; Zhang et al., 2021) and few in CT (Van De Leemput et al.,
2019; Akkus et al., 2020). An influential and challenging aspect of
deep learning-based studies, especially segmentation-based tasks
is the selection of data and labels used for training (Willemink
et al., 2020).

The two-dimensional (2D)-based deep learning models use
2D functions to train and predict segmentation maps for a single
slice. To predict segmentation maps for full volumes, 2D models
take predictions one slice at a time. The 2D model functions
can capture context across the height and width of the slice
to train and make predictions. The three-dimensional (3D)-
based deep learning architectures can capture interslice context.
However, this comes at a computational cost due to the increased
number of parameters used by the models. To accommodate
computational needs, patches are processed instead of whole 3D

volumes (Alom et al., 2019). The 3D patch-based processing is
a useful method for processing large 3D volumes in 3D image
classification and segmentation using deep learning, especially in
MR image processing for deep learning (Baid et al., 2018; Largent
et al., 2019).

Previously, we conducted a study exploring the possibility
of using MR-derived brain tissue class labels to train deep
learning models to perform brain tissue classification in head
CTs (Srikrishna et al., 2021). We showed that 2D U-Nets could
be successfully trained to perform automated segmentation of
gray matter (GM), white matter (WM), cerebrospinal fluid
(CSF), and intracranial volume in head CT. In this study, we
planned to explore if incorporating interslice information using
3D deep learning models could improve CT brain segmentation
performance. Patch-based 3D segmentation networks have been
successfully used to develop 3D deep learning-based MRI
segmentation models. In this study, we aimed to develop 3D
U-Nets for the tissue classification of anisotropic head CT, with
larger slice thickness (∼5mm), and compared its CT brain tissue
classification performance with 2D U-Nets. We trained both
models using MR-derived segmentation labels and assessed the
accuracy of the model by comparing CT segmentation results
with MR segmentation results.

MATERIALS AND METHODS

Datasets
We derived paired CT and MR datasets from the Gothenburg
H70 Birth Cohort Studies. These multidisciplinary longitudinal
epidemiological studies include six birth cohorts with baseline
examinations at the age of 70 years to study the elderly population
of Gothenburg in Sweden. For this study, we included same-
day acquisitions of CT and MR images from 744 participants
(52.6% female, mean age 70.44 ± 2.6 years) of the cohort born
in 1944, collected from 2014 to 2016. The full study details are
reported elsewhere (Rydberg Sterner et al., 2019). CT images were
acquired on a 64-slice Philips Ingenuity CT system with a slice
thickness of 0.9mm, an acquisition matrix of 512 × 512, and a
voxel size of 0.5 × 0.5 × 5.0mm (Philips Medical Systems, Best,
Netherlands). MRI scanning was conducted on a 3-Tesla Philips
Achieva system (Philips Medical Systems) using a T1-weighted
sequence with the following parameters: field of view: 256 ×

256 × 160 voxels, voxel size: 1 × 1 × 1mm, echo time: 3.2ms,
repetition time: 7.2ms, and flip angle: 9◦ (Rydberg Sterner et al.,
2019).

Model Development and Training
Image Preprocessing
We preprocessed all paired CT and MR images using SPM12
(http://www.fil.ion.ucl.ac.uk/spm), running on MATLAB 2020a
(Figure 1), after first converting CT and MR images to NIfTI
format and visually assessing the quality and integrity of all
the scans. After that, each image was aligned to the anterior
commissure- posterior commissure line.

We segmented MR images into GM, WM, and CSF labels
using the unified segmentation algorithm in SPM12 (Ashburner
and Friston, 2005). MR labels were used as training inputs to
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FIGURE 1 | Pre-training stages of slice-wise processed 2D U-Nets (A) and patch-based 3D U-Nets (B): CT and T1-weighted MR scans from 734 70-year-old

individuals from the Gothenburg H70 Birth Cohort Studies were split into training (n = 400), validation (n = 100), and unseen test datasets (n = 234). In the

pre-processing stage, MR images were segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) tissue classes. CT and MR labels were

co-registered to each other. To create labels for multi task learning using 3D U-Nets, the MR labels were merged into a single label mask with 0 as background, 1 as

GM, 2 as WM and 3 as CSF (B). After splitting the datasets, the 3D CT and paired MR merged label volumes were split into smaller patches in a sliding fashion with a

step of 64 in x and y direction (as indicated by the 2D representation of patch extraction shown by the yellow, red, and blue boxes). To create labels for single task

learning using 2D U-Nets, after coregistration, the MR derived labels were organized slice wise (A). Then, we created 3 group from the slices; input CT and paired

MR-GM, input CT, and paired MR-GM, and finally, input CT and paired MR-CSF to train three separate 2D U-Net models for each tissue class.
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develop our models. To represent the CT images and MR labels
in a common image matrix, MR images were coregistered to
their paired CT images using SPM12 (Ashburner and Friston,
2007). One of the most decisive steps in our study is the
coregistration between MRI and CT. A successful coregistration
of MRI labels to CT scans enables MRI-derived labels to be used

as training inputs. The difference in resolution affects the scaling
and selection of starting points for the cost functions. SPM12
coregistration module optimizes the rigid transformation using
a cost function, in our case, the normalized mutual information
(Ashburner and Friston, 2007). Furthermore, the coregistration
of each CT-MR pair was visually assessed, and 10 pairs were

FIGURE 2 | Model architectures. Overview of internal layers in 2D (A) and 3D U-Net (B) utilized to perform brain segmentation. A two or three-dimensional version of

internal layers is used depending on slice-wise or patch-wise inputs. The output layer(s) depends on single or multi-task learning. For 2D U-Nets we used single-task

learning, hence there was a single output layer. For 3D U-Nets, three tissue classes were trained at a time along with background hence there were four output layers.
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excluded based on faulty coregistration due to rotational or
translational misregistration.

We developed 2D U-Nets to perform single-task learning
and 3D U-Nets to perform multitask learning. To enable this,
for 2D U-Net training, we paired each CT image with its
corresponding MR-based GM, WM, and CSF labels (Figure 1A).
For the 3D U-Net training, all the labels were merged into a
single image and assigned the values 0 to the background, 1 to
GM intensities, 2 to WM intensities, and 3 to CSF intensities
(Figure 1B).

Data Preparation
We split the 734 processed datasets consisting of CT images
and their paired, coregistered MR-label images into 500 training
and 234 test datasets. We implemented a three-fold cross-
validation in the training routine. The model hyperparameters
were trained using the training datasets and fine-tuned with
the validation dataset after each cycle or epoch and fold. The
overall performance of the model was analyzed on the unseen
test datasets. We used the same training and test dataset IDs
for 2D and 3D U-Nets. Prior to the training routine, we
thresholded all images within a 0–100 HU range, which is
the recommended HU brain window. We resized the images
to ensure that the length and width of the images remained
512, to accommodate the input size requirements of the U-
Nets.

3D U-Net Structure and Training
We performed all the patch-based processing steps (Figure 1A)
in Python 3.7. The MR-merged labels were converted into
categorical data to enable multitask learning. The 3D 512 × 512
× 32 sized CT images and categorical MR-merged labels were
split into smaller 3D patches of size 128 × 128 × 32 by sliding
through various layers in the image. For each paired image/label,
we obtained 49 pairs of patches, thus obtaining 24,500 patches in
the training routine.

We trained the 3D U-Nets using an Nvidia GeForce RTX
2080 Ti graphical processing unit (GPU), 11 GB of random
access memory (Nvidia Corp., Santa Clara, CA, USA). The model
architectures were developed and trained in Python 3.7, using
TensorFlow 2.0 and Keras 2.3.1. The 3D U-Nets were developed
to accept 3D patches of size 128× 128× 32.

The architecture of the 3D U-Net-based network is shown in
Figure 2B. We resized all images to 512 × 512 × 32 to ensure
that the spatial dimension of the output is the same as the input
and to reduce the number of blank or empty patches. The U-
Net architecture consisted of a contracting path or encoder path
to capture context and a symmetric expanding path or decoder
path that enables localization. In the first layer, the CT data
were provided as input for training along with the corresponding
ground truth, which in our case were the MR-merged labels.
For 3D U-Nets, we programmed the internal functional layers
using 3D functions. Each encoding block consists of two 3D
convolutional layers with a kernel size 3 and a rectified linear unit
(ReLU) activation function (Agarap, 2018), followed by 3D max-
pooling and batch normalization layers. The number of feature
maps increased in the subsequent layers to learn the structural

features of various tissue classes. Dropout layers were added with
a ratio of 0.2 to the last two encoding blocks.

We used symmetric decoding blocks with skip connections
from corresponding encoding blocks and concatenated features
to the deconvolution outputs. The final output layers were
expanded to accommodate the multiclass nature of the ground
truth labels. Categorical cross-entropy was used as the loss
function, and a uniform loss was applied across all classification
labels.We balanced the number of encoding/decoding blocks and
patch size to accommodate the GPUmemory constraints. Finally,
four output maps with a 3D convolutional layer and a softmax
activation (Dunne and Campbell, 1997) corresponding to the
background, GM, WM, and CSF were generated. For this study,
the learning rate was initialized to 0.0001. The adaptive moment
estimation (Adam) optimizer (Kingma and Ba, 2014) was used,
and all weights were initialized using a normal distribution with
a mean of 0, an SD of 0.01, and biases as 0. After every epoch of
the training routine, the predicted probability map derived from
the validation is compared with its corresponding MR-merged
label. Each voxel of the output segmentation maps corresponds
to the probability of that voxel belonging to a particular tissue
class. It calculates the error using the loss function, and it is
backpropagated to the training parameters of the 3D U-Net
layers. The learning saturated after 40 epochs and after this early
stopping was implemented. The training time was approximately
25 h.

2D U-Net Structure and Training
We developed and trained the 2D U-Net models using the
procedures described in our previous study (Srikrishna et al.,
2021). The architecture of the 2D U-Net-based network is shown
in Figure 2A. We derived three models for GM, WM, and CSF
tissue classification, respectively, using 2D U-Nets. In brief, we
trained 2D U-Net-based deep learning models to differentiate
between various tissue classes in the head CT. The segmentation
patterns were studied from their paired MR labels. The 2D
U-Net-based deep learning models were created and trained
to accept CT scans and MR labels as input. The 2D U-Net
follows the same structure as shown in Figure 2 with the internal
functional layers programmed using 2D functions. The 2D U-
Net was designed to perform the slice-wise processing of input
data where each input image was processed as a stack of 2D
slices with a size of 512 × 512 pixels. In total, 12,000 training
slices and 3,000 validation slices were used to train 1,177,649
trainable hyperparameters. The inputs were fed into the model,
and learning was executed using the Kerasmodule. The batch size
was 16. The callback features were used such as early stopping
and automatic reduction of learning rate with respect to the
rate of training. The model was trained for 50 epochs with 750
samples per epoch in approximately 540min. We trained the
2D U-Nets also on an Nvidia GeForce RTX 2080 Ti GPU using
TensorFlow 2.0 and Keras 2.3.1.

Quantitative Performance Assessment and
Comparison
For the quantitative assessment of the predictions from 3D U-
Nets and 2D U-Nets trained on MR labels on the anisotropic
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FIGURE 3 | Comparison of MR labels (a) with respective input CT images and predicted tissue class maps (GM, WM, and CSF) generated with 2D U-Net (b) and 3D

U-Net (c) models from a representative dataset. Panel (d) shows the 3D visualization of input CT and 3D U-Net predicted tissue class maps. In comparison to 2D

U-Nets, 3D U-Nets was not able to resolve the finer details of all three tissue classes, especially WM.

CT data, we derived segmentation maps from both the deep
learning models on the test datasets (n = 234) in Python 3.7,
using TensorFlow 2.0 and Keras 2.3.1. The segmentations from
test CTs were derived using deep learning models without the
intervention of MRI and any preprocessing steps. Both models

took <1min to acquire prediction tissue class maps for one
dataset; however, 2D U-Nets were 45 s faster than 3D.

For the comparative study, we used the same test datasets
for both the 2D U-Nets and 3D U-Nets. We compared
the predictions to their corresponding MR labels, which we
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TABLE 1 | Quantitative performance metrics in test datasets (n = 234).

Assessment metrics Model GM WM CSF

dc 2D U-Nets

3D U-Nets

0.80 ± 0.03

0.59 ± 0.02

0.83 ± 0.02

0.65 ± 0.03

0.76 ± 0.06

0.55 ± 0.05

r 2D U-Nets

3D U-Nets

0.92

0.85

0.94

0.73

0.9

0.73

VE 2D U-Nets

3D U-Nets

0.07 ± 0.03

0.09 ± 0.08

0.03 ± 0.03

0.04 ± 0.12

0.07 ± 0.06

0.11 ± 0.13

AHD (mm) 2D U-Nets

3D U-Nets

4.60 ± 1.6

7.03 ± 2.6

4.10 ± 1.8

13.49 ± 6.1

4.43 ± 1.5

8.34 ± 7.2

MHD (mm) 2D U-Nets

3D U-Nets

1.67 ± 1

2.59 ± 1.4

1.19 ± 0.8

4.29 ± 2.9

1.42 ± 0.6

4.65 ± 3.9

VCT (liters) 2D U-Nets

3D U-Nets

0.55 ± 0.07

0.81 ± 0.11

0.52 ± 0.08

0.64 ± 0.12

0.27 ± 0.05

0.44 ± 0.09

Continuous Dice score (dc ) expresses the extent of spatial overlap between CT predictions from 2D U-Nets/3D U-Nets and MR labels, Pearson’s correlation coefficient (r) measures the

linear relationship between volumetric measures, AHD andMHD are distance measures, and volumetric error (VE) expresses the absolute volumetric difference between CT segmentation

maps and MR labels. The volumes of CT predictions are given by VCT , respectively.

employed as the standard or reference criterion. We adopted the
approach suggested by the MRbrainS challenge (Mendrik et al.,
2015), for the comparison of similarity between the predicted
masks and standard criterion. We assessed the predictions
using four measures, namely, continuous Dice coefficient (dc),
Pearson’s correlation of volumetric measures (r), Hausdorff
distance (HD), and volumetric error (VE). The prediction maps
from 2D U-Nets were obtained slice-wise. We stacked the slices
to obtain 3D prediction maps for further comparison. We used
the 3D version of all measures for the comparison of both 2D U-
Net prediction maps and 3D U-Net predictions maps with their
respective MR-derived labels.

To assess the spatial similarity between predicted probability
maps and binary MR labels, we used the continuous Dice score, a
variant of the Dice coefficient (Shamir et al., 2019). For distance
similarity assessment, we used the average HD (AHD) and
modified HD (MHD) (Dubuisson and Jain, 1994). We assessed
the volumetric similarity using Pearson’s correlation coefficient
(Benesty et al., 2009) and VE. For this purpose, we binarized
the prediction maps derived from both models. As the 3D
U-Nets were trained using MR-merged labels, we used global
thresholding with a threshold of 0.5 to binarize the predictions.
For the prediction maps derived from 2D U-Nets, we used a
data-driven approach for binarization. For image I, we derived
segmentation maps IGM , IWM , and ICSF using the 2D slice-wise
predictions and stacked them to derive a 3D image. At each voxel
(x,y,z), we compared the intensities of IGM(x,y,z), IWM(x,y,z),
and ICSF(x,y,z). We assigned the voxel (x,y,z) to the tissue class
with maximum intensity at that voxel. This method ensures that
there are no overlapping pixels among various tissue classes.
We measured VE by deriving the absolute volumetric difference
divided by the sum of the compared volumes.

RESULTS

The representative predicted segmentations of different tissue
classes derived from test CTs by 2D U-Nets and 3D U-Nets

are shown in Figure 3. Table 1 presents the resulting metrics
obtained from our comparative analysis. We compared the
predictions from 2D U-Nets and 3D U-Nets separately with
MR-derived labels.

In comparison with 3D U-Nets, 2D U-Nets performed better
in the segmentation of all three tissue classes. The 2D U-
Nets yielded dc of 0.8, 0.83, and 0.76 in GM, WM, and CSF,
respectively. The boundary measures expressed by AHD, MHD
(in mm) were found to be (4.6, 1.67), (4.1, 1.19), and (4.43,
1.42) for GM, WM, and CSF, respectively. Pearson’s coefficient
for volumetric measures was observed to be 0.92, 0.94, and 0.9
for GM, WM, and CSF, respectively, with a VE of 0.07, 0.03,
and 0.07. In the case of 3D U-Nets, we yielded dc of 0.59, 0.65,
and 0.55 in GM, WM, and CSF, respectively. The boundary
measures expressed by AHD, MHD (in mm) were found to be
(7.03, 2.59), (8.49, 4.29), and (8.34, 4.65) for GM, WM, and
CSF, respectively. Pearson’s coefficient for volumetric measures
was observed to be 0.85, 0.73, and 0.73 for GM, WM, and CSF,
respectively, with a VE of 0.09, 0.04, and 0.11. Figure 4 shows the
comparative performance of Dice scores and volumes between
2D U-Nets and 3D U-Nets. Volume predictions from 3D U-
Nets were overestimated in comparisonwith predictions from 2D
U-Nets in all tissue classes.

DISCUSSION

Our previous study showed that 2D deep learning-based
algorithms can be used to quantify brain tissue classes using only
CT images (Srikrishna et al., 2021). In this study, we explored
the possibility of using 3D-based deep learning algorithms for CT
brain tissue classification and compared the performance of 2D-
and 3D-based deep learning networks to perform brain tissue
classification in CT scans. Our CT images are anisotropic, with
low resolution (5mm) along the z-axis. This study shows that
2D segmentation networks are appropriate to deal with datasets
of this nature. This is the only study that compares 2D and 3D
segmentation networks for 1D CT data showing that the type of
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FIGURE 4 | Box plots showing differences in dice scores (A) and volumes (B). CT-derived segmentations produced by 2D U-Nets had much better spatial overlap

with its paired MR labels in comparison to CT-derived segmentations from 3D U-Nets. With respect to the MR-derived volumes, 3D U-Nets over estimated volumes in

all tissue classes in comparison to 2D U-Nets.

model architecture and learning approach is dependent on the
nature of the input CT datasets.

To process our CT datasets with 3D networks, either we would
have to downsample the whole CT image to a size to suit the
available memory or we would process the image in smaller

patches. In modalities such as MRI, where the contrast resolution
is high, resizing would not affect the images. However, in the
case of CT, where the contrast resolution is lower, we observed
that resizing further reduced the contrast resolution of the CT
images. Hence, we concluded that downsampling CT images
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sacrifice potentially important information in the model training.
Therefore, we opted for sliding patch-wise 3D processing. For our
patch-based 3D U-Nets to train effectively, we attempted various
patch sizes and U-Net depth. We opted for the patch size of 128
× 128× 32, given that a lower patch size limits the receptive field
the deep-learning network can notice, whereas a higher patch size
has more memory requirements.

We compared the performance of 2D and 3D CT-based
segmentation networks with respect to MR-derived labels using
measures of distance, overlap, and volume. Overall, 2D U-
Nets performed better than 3D U-Nets in all measures and
all tissue classes. In terms of volume, the 2D and 3D U-Nets
showed comparable performance (Table 1). However, 3D U-Net
generally overestimated volume predictions for all tissue classes
in comparison with 2D U-Nets. In terms of spatial overlap and
distance measures, the single-task-based, slice-wise processed 2D
U-Nets performed much better than multitask- and patch-wise
processed 3D U-Nets. We attributed this to the nature of the
dataset. The main purpose of using 3D U-Nets for 3D data is
to capture contextual information in all planes and directions.
However, for our datasets, where the thickness along the z-axis is
large (5mm), only limited contextual information can be derived
from the z-axis. For such data, maximum information is present
in one plane, in our case, the axial plane. Therefore, processing
the data slice-wise and segmenting using 2D segmentation
networks are more useful than processing patch-wise with 3D
segmentation networks. In future, we aim to test this further by
slicing the volume along 1D coronal or sagittal CT scans and by
comparing the resulting U-Nets.

Various automated approaches and evaluation methods for
CT segmentation have been described previously. Gupta et al.
(2010) used domain knowledge to improve segmentation by
adaptive thresholding, and Kemmling et al. (2012) created
probabilistic atlas in standard MNI152 space from MR images.
These atlases were transformed into CT image space to extract
tissue classes. Cauley et al. (2018) explored the possibility of
direct segmentation of CT using an MR segmentation algorithm
employed in FSL software. CT segmentations derived from these
algorithms lacked sharpness, and some of these results were
not validated against manual or MR segmentations or using
standard segmentation metrics for comparison. Our 2D U-
Net model outperforms the study by Manniesing et al. (2017),
which uses four-dimensional (4D) CT to create a weighted
temporal average CT image, which is further subjected to
CSF and vessel segmentation followed by support vector-based
feature extraction and voxel classification for GM and WM
segmentation, in terms of Dice coefficients and HDs. Our
3D U-Nets outperforms this study in terms of HDs, which
were 14.85 and 12.65mm for GM and WM, respectively, but
underperformed in terms of Dice coefficients.

One of the unique features of our study is the nature of the
datasets and the usage of MR-derived labels from MR-based
automated segmentation tools as the standard criterion. Even
though manual annotations are considered the “gold standard”
for CT tissue classification, manual annotations are labor-
intensive, rater-dependent, time-consuming, and challenging to
reproduce. In the case of our study, we had access to a unique

cohort with a large number of CT and MRI datasets collected
close to each other in time. The MR-derived labels are apt for
the localization and classification of brain tissue. They are easy
to extract using reliable and readily available automated software
such as FreeSurfer, SPM, and FSL even for large cohorts such as
the H70 Birth Cohort.

In terms of neurodegenerative disease assessment, CT and
structural MRI are both commonly used for visual assessments.
However, even though both of these modalities are commonly
used, we cannot ensure that deep learning networks, which have
performed successfully in MR-based segmentation, can show
similar performance in CT-based segmentation. For instance,
in a few studies, patch-based 3D U-Nets have been successfully
used for MR-based segmentation (Ballestar and Vilaplana, 2020;
Qamar et al., 2020); however, in the case of anisotropic CT-based
brain segmentation, 2D U-Nets performed better.

In addition to all these strengths, our study also has some
limitations. The choice of using MR-based labels as training
inputs has its advantages and disadvantages. In our previous
study (Srikrishna et al., 2021), we attempted to understand the
difference in the segmentations derived from the two modalities.
Our previous studies show that performing brain segmentation
with CT instead of MRI incurs a loss of accuracy similar
to or less than that of performing brain segmentation on an
MR image that has been degraded through the application of
Gaussian filtering with an SD of 1.5. The effect of this difference
on the development of segmentation models and comparison
of MR labels and manual labels as training inputs for these
segmentation models needs to be further explored. However, it
is a challenging task to derive manual labels for tissue classes
such as GM, WM, and CSF in large cohorts. Currently, we
only compared U-Net-based segmentation networks. In future
studies, we aim to train and compare various state-of-the-art
2D segmentation networks for CT datasets. We also plan to
compare various 2D segmentation network architectures, loss
functions, and learning methods, as well as find the optimum
features for brain tissue class segmentation in CT. We also plan
to increase our training data and validate our study in several
cohorts since the training on one cohort might not necessarily
give the same results in another (Mårtensson et al., 2020).
We plan to explore the possibility of using 2.5D segmentation
networks for 1D CT brain tissue classification and study the effect
of a skull in the segmentation performance in CT scans. We
plan to conduct the clinical validation of CT-derived measures
for neurodegenerative disease assessment and compare the
diagnostic accuracy of CT-based volumes derived using various
segmentation algorithms.
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