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Species  distribution  models  are  valuable  tools  for  conservation  management.  However,

there remain challenges in developing and interpreting these models in the marine environ-

ment, such as the nature of the species used for the modelling process. When working with

mobile species in dynamic environments,  lack of observation is usually interpreted as an

observation of absence, which can result in the introduction of biases by methodological

(false) absences.  Here, we explore the role of absences when modelling marine megafauna

distributions. To better understand how the use of absences (or equivalent) affects the niche

modelling algorithms,  we used a set of 20 virtual species with different relations to the

habitat (generalist static, specialist static, generalist dynamic and specialist dynamic) with

different encounter rates. We tested six different modelling techniques divided into three

distinct groups: presence-only, presence-background and presence-absence. We compared

the outputs of the models using traditional validation metrics and overlap metrics in the

geographical and environmental spaces. Algorithms characterized the ecological niche for

the  simulated  species  differently.  Approaches  using  background  data  generally  outper-

formed the other methods, suggesting that the non-observation of a species in a given loca-

tion and time should not be considered as an absence.  A very intense (practically unreal-

istic)  sampling  schema would  be  required  to  obtain  a  genuine  unbiased  absence  when

working with these species and habitats. For highly mobile species, a precautionary ap-

proach would be to consider the non-observation of a species as part of the background (a

sample of the conditions available in the study area) rather than an absence. A good starting

point would be to use presence-background models, complemented with presence-absence

and/or presence-only models, comparing outputs from the different algorithms tested in the

geographic and environmental space. Improving model performance for highly mobile ma-

rine species should lead to better-informed decision making for conservation.
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INTRODUCTION

A  good  understanding  of  species  distributions  is  crucial  to  supporting  conservation

management. Improving access to technology and species occurrences data has expanded

the use of modelling procedures to provide distribution estimates, using various techniques

commonly  termed  Ecological  Niche  Models  (ENMs)  or  Species  Distribution  Models

(SDMs) (Sillero 2011; Sillero et al 2021). Over the past 20 years, more than 6000 studies

have used these tools, using a wide variety of methods and protocols. This wide variation of

applications has led to a set of best practices for guiding the building of the models and

evaluating  the  models'  adequacy  to  feed  biodiversity  assessments  (Araujo  et  al.,  2019;

Sillero  et  al.,  2021).  One  of  the  most  discussed  topics  is  the  relative  performance  of

different modelling algorithms in calculating distributional estimates. Previous studies tried

to rate the algorithms available to select the best performing' methods (e.g. Brotons et al.,

2004,  Elith  et  al.,  2006).  There  are  three  basic  modelling  approaches  to  estimate

distributions available according to the nature of the characteristics of the occurrence data

(Sillero et al 2021): (1) using presence-only data; (2) using presence-absence data when

available  (or ‘pseudo-absences’,  when not available)  and (3) using presence data  and a

sample of background data. According to Phillips et al. (2009), background data is a sample

from the study area as a whole, used to characterize the environmental conditions across the

study region,  including  the  sites  where  the  species  could  also  be  sighted.  However,  a

"pseudo-absence" record intends to mimic absence data, and it might include locations that
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the species does or could occupy, contrary to the methodology's purpose. In fact, pseudo-

absences  can  be  considered  a  biased  sample  of  the  background  data  (Franklin  2010).

Modelling algorithms using presences and true-absences calculate the actual probability of

the species'  presence  and estimate  the actual  distributional  area,  distinguishing between

occupied and non-occupied areas by the species, something similar to the realized niche

(RN). Conversely, background or presence-only data methods provide information on how

to  classify  sites  by  their  similarity  to  known  occupied  regions  (Sillero  et  al  2021).

Consequently, background or pseudo-absence data methods will predict an area between

the actual occupied area and the abiotic niche (Jiménez-Valverde et al 2008; Soberon &

Nakamura 2009), somehow closer to the fundamental niche concept (FN).

Soberon & Peterson 2005 define the RN as the set of locations where abiotic conditions are

suitable for positive population growth, and the required biotic conditions (e.g. mutualists,

competitors, predators…) will lead to positive fitness. On the other side, the FN represents

the conditions where the conditions are suitable for the species. In the case of cetaceans,

one might argue that due to their mobility and dispersion capacity, all the suitable areas will

be accessible. However, the optimal biotic conditions for the species will be only present in

a small range of the suitable area. Therefore, a good amount of occurrence points in the

areas with suitable abiotic conditions would be needed to estimate the FN, while the RN

calculation would require much more information regarding the biotic interactions. 

The  best  choice  to  produce  accurate  distribution  estimates  for  current  biodiversity

assessments would appear to be presence-absence algorithms. However, this statement is

more complex than it looks: it is necessary to consider the nature of the species data used in

the modelling  processes.  While  the concept  of  presence  is  relatively  straightforward  (a
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place where the organism has been directly observed), absence is a more complex concept.

They  can  be  classified  into  three  types:  environmental,  contingent  and  methodological

(Lobo et al., 2010). The first two kinds of absences are related to natural processes shaping

species  distributions  (Soberon  &  Nakamura  2009)  and  linked  with  the  available

environmental  conditions.  Environmental  absences are more probable in those localities

showing environmental conditions very different from the environmental universe defined

by the presence localities (e.g. a polar habitat for a tropical species).

In contrast, contingent absences correspond to environmentally suitable areas not occupied

due to biotic, historical and dispersal reasons (Lobo et al., 2010). However, methodological

absences  (created  by  biased  surveys)  are  a  consequence  of  the  very  nature  of  the

biodiversity distribution information, which frequently is incomplete and biased. It can be

challenging  to  interpret  the  absence  of  observation  as  an  observation  of  absence (e.g.

Dennis et al., 1999, Graham et al., 2004, Soberon & Peterson, 2004, Hortal et al., 2008,

Lobo et al., 2007, Peterson et al., 2011, Kramer-Schadt et al., 2013, Boira et al., 2014).

Methodological absences constitute the most important source of uncertainty for analysing

patterns and processes underlying the geographic distribution of biodiversity (the so-called

Wallacean shortfall; Whittaker et al., 2005). Therefore, while environmental absences will

be prevalent in areas less environmentally suitable for the species, methodological absences

can be found everywhere and are generally higher in suitable environmental locations close

to the  recorded presences  (Lobo et  al.,  2010)  because survey effort  is  naturally  biased

towards areas of expected presence. Other problems can arise even in a stable terrestrial

ecosystem with a very intense sampling program (where confidence in ‘absences’ is high).

Maybe the species is not present because the area is outside the dispersal range, or the
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species was not present at the time of sampling due to temporary occupancy (migration) or

temporal inactivity (diurnal species, nocturnal species, estivation, hibernation), or present

nearby but not observed (Soberón and Peterson 2005). 

When looking at the marine environment, these issues become even more complex. Marine

environments are more dynamic than terrestrial ecosystems (Fernandez et al., 2017). The

environmental suitability can rapidly change in a specific location (e.g. due to changing

ocean currents), which intrinsically implies that species might move to track favourable

conditions. Marine physical processes (such as eddies, upwellings and surface currents) are

highly dynamic, requiring a careful selection of the predictor variables, and many times

resulting in temporal or spatial lags between physical and biological processes (Redfern et

al. 2006). Moreover, some marine species (such as cetaceans) are highly mobile, with daily

ranges of 100+ km (Leatherwood & Ljungblad 1979; Perrin et al., 1979; Scott et al., 1993).

The environmental variability and high motility of species create difficulties for obtaining

complete and unbiased datasets. Therefore, methodological absences are often present in

the dataset, even if assuming a perfect detectability scenario (improbable in most marine

settings). For example, an area sampled at a specific time t+1 might be noted as an absence;

however, the species could be present at that exact location at time t (Fig. 1). While this set

of environmental conditions would be noted as not favourable for the species, they could be

highly favourable but simply not visited when the species was present. It is essential to

highlight that modelling algorithms use surface sightings of marine species as presences.

However, the species might be present at that location but simply below the surface. In

such cases, the species is present but noted as absent.
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Figure 1. Example of a simulated transects survey for cetaceans, where the boat follows a

pre-designed transect. Two potential encounters are represented (symbolized as dolphins

and a whale). As time changes from t to t+1, the animals and the boat moves, mimicking a

hypothetical situation in a real-world scenario. Red cells represent true-absence, red pointed

cells represent methodological absences and green cells observed presences. 

Occurrence  datasets  for  cetacean  habitat  modelling  studies  may  come  from  carefully

designed, standardised field studies, including ship, aerial and acoustic surveys (Redfern et

al.,  2006).  Those  surveys  are  generally  based  on  transect  distance  sampling  methods

(Buckland et al., 2001) to estimate quantitative abundance. Surveys are typically designed

to ensure equal sampling probabilities throughout the study area. Moreover, there are tools

to  correct  the  errors  related  to  the  perception  bias,  survey  conditions  (e.g.  sea  state,

visibility), and availability bias (proportion of time spent by the animals at the surface). The

use  of  detectability  functions,  independent  observers  and  dual-platform  methods  (two

observers  searching for and counting animals  simultaneously,  ensuring they do not cue

each other on the locations of the animals) are generally used to minimize biases (Buckland
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et al., 2001). These correction methods analyse the observer's probability of detecting the

species if it was present at the sampling moment; however, generally, they do not consider

the habitat dynamism or the species motility. This is not a problem for species with a low

dynamism,  but  it  is  for  many  oceanic  species,  such  as  cetaceans.  Using  absences  in

modelling algorithms may not forecast the potential distribution of oceanic species but the

sampling effort  of the surveys.  Therefore,  datasets  collected following these procedures

could present a high rate of methodological absences. Recently, Glennie et al. 2020 built a

theoretical  framework  to  incorporate  the  mobility  factor  in  the  detectability  indices;

however, there are still many challenges. The method proposed by the authors assumed that

animals have a spatially-invariant movement, not taking into account other relevant factors,

such as behavioural changes or habitat preferences of the species. 

As  distance  sampling  methods  are  based  on  collecting  "real"  absence  data,  cetacean

distributional estimates are generally calculated using presence-absence algorithms. Some

algorithms are widely used, such as Generalized Linear Models (GLMs) or Generalized

Additive Models (GAMs) (e.g. Becker et al., 2014, Cañadas & Hammond, 2008, De Segura

et al., 2008, Tepsich et al., 2014, Virgili et al., 2017). However, only recently, Fiedler et al.

(2018)  compared  the  use  of  algorithms  using  background  data  (Maxent)  with  the

performance of GAMs to calculate  distributional  estimates  of cetaceans  in  the Tropical

Pacific Ocean area, finding non-significant differences between both approaches. 

In  the  present  study,  we use  20  cetacean-based  virtual  species  with  distinctive  habitat

preferences and encounter rates to study how the use of different kinds of absences (or

equivalent) affects modelling algorithms' performance. We aim to understand better how

the presence of methodological absences in standardized survey datasets might influence
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the  accuracy  of  the  predictions  when  using:  (1)  presence-absences,  (2)  presence-

background and (3) presence-only modelling approaches. The study's goal is to describe

potential method-biases and provide recommendations on how to account for them.

METHODS

Study area

The study area is located in the Azores archipelago, a group of North Atlantic oceanic is-

lands located approximately 1,800 km west of Lisbon, Portugal. The region is strongly in-

fluenced by the Gulf Stream and all its branches, creating a complex and highly dynamic

structure. The system is affected by incoming meanders and filaments originating in the

Gulf  Stream  and  westward  propagating  eddies  pinching  off  from  the  Azores  Current

(Caldeira & Reis 2017). Other factors, such as the archipelago's importance for retaining in-

coming particles, might also play a role in local biological systems (Sala et al., 2015). 

Environmental variables

A set of actual marine environmental variables was selected to represent the variability and

dynamism of an oceanic system. Only three variables were chosen to facilitate the model-

ling processes based on their reported influence on previous cetacean distribution studies in

the area (e.g. Fernandez et al., 2019). These were divided into two thematic groups: static

(little or no short-term variation—topographic variables) and dynamic (rapidly changing

variables, such as sea surface temperature). 

Two static  variables  were used: depth (derived from the digital  elevation model  of the

EMODnet Bathymetry portal); and slope, calculated from the digital elevation model using
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QGIS 3.2. All static variables were initially calculated at a spatial resolution of 0.5×0.5 km.

Daily  dynamic  variables  were  derived  from NASA's  Multi-scale  Ultra-high  Resolution

(MUR) Sea Surface Temperature (SST) dataset (downloaded on 01/12/2018 from https://

mur.jpl.nasa.gov/), which merges many infrared and passive microwave datasets, gathered

from satellites, into daily global maps at 1 km resolution corresponding to the sampling

period (see survey design for further details). For the present study, we calculated 8-day es-

timates using the means of SST daily values. Finally, all the layers were aggregated to 2×2

km resolutions using a bilinear interpolation. We applied a variance inflation factor (VIF)

approach as implemented in the R package usdm (Naimi, 2015) to test for collinearity, no

issues were found.

Survey design

The virtual species' environmental and effort data mirrored the time frame of a simulated

cetacean detection survey for the Azores archipelago. Surveys were performed around the

islands and other vital areas, covering 39,316.9 km2 per year. We used the transects de-

signed by Faustino et al. (2010) (Fig 2) to last four months (12 weeks) per year, with four

days of sampling per week over four years (2013-2016). Cruise speed was defined as 7.5

knots during 8 hours each sampled day to avoid any area's resampling. Survey transects

were mapped onto the 2 km grid that matched the environmental data. 
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Figure 2. Survey design with lines and complete study (Azores Archipelago) area used for

the models' projections and overlap metrics. Different colors refer to substrata to be sam-

pled (adapted from Faustino et al. 2010).

Virtual species

Species definitions

A total of 20 virtual species were created. Four different relationships with the environment

variables were used: (1) generalist species highly influenced by static variables; (2) special-

ist species highly influenced by static variables; (3) generalist species highly influenced by

dynamic variables; (4) specialist species highly influenced by dynamic variables. The spe-

cies were created using the Virtualspecies R package (Leroy et al., 2015) based on their (as-

sumed) relationship with daily environmental variables. For simplicity, bell-shaped func-
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tions (Gaussian functions) and logistic functions were used to define the relations with the

environmental  parameters  (for  full  details  of  construction,  see Appendix S1).  Response

functions were combined using an additive approach with different weights for each vari-

able (Tab. 1), based on results found for other species in the same area by Fernandez et al.

(2018). Habitat suitability for each of the four general kinds of species (generalist static,

specialist static, generalist dynamic and specialist dynamic) was calculated every 8 days.

Table 1. Description of the different species with the information regarding their relation-

ship with the environmental variables and the encounter rates (encounters per 100km) used

for each scenario.

Species Variable weights
Encounter rates (enc./

100km)

Generalist static (group 1) 6Depth+3Slope+SST 1.4,1,0.8,0.6,0.2
Specialist static (group 2) 8Depth+Slope+SST 1.4,1,0.8,0.6,0.2
Generalist dynamic (group 3) 5SST+4Depth+Slope 1.4,1,0.8,0.6,0.2
Specialist dynamic (group 4) 6SST+2Depth+2Slope 1.4,1,0.8,0.6,0.2

Each day, environmental suitability was converted into presence/absence areas for all the

sampled regions, using a probabilistic approach suggested by Meynard and Kaplan (2013).

To perform this conversion, we calculated a logistic curve with β=0.6 (representing the

curve's inflexion point) and α=-0.05 (which creates a logistic shape for the curve). Using

this approach, we forced the presences to be more likely in areas with suitability values

around or higher than 0.6 and allowed some individuals to occur in areas with low suitabil-

ity (sometimes even at values lower than 0.3). This represents a realistic scenario where
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species can be observed moving through environmentally sub-optimal areas to access other

suitable locations.

For each species, five different groups of sampling encounter rates were used per 100 km:

1.4,  1,  0.6,  0.4 and 0.2,  based on real-world data  observations obtained by Silva et  al.

(2014) in the Azores. We assumed a perfect presence/absence detection scenario to sim-

plify the analysis: all the groups present during the sampling were detected, although this is

unusual for marine species (Katsanevakis et al., 2012). Assuming a value of 1 for the de-

tectability, the encounter rate values could be linked with the species prevalence or how the

species uses the suitable habitat. Even if the prevalence is a property of the data, it usually

covaries with species ecology and range size, i.e., data for rare species usually show low

prevalence scores, while widely-distributed species show the opposite (Jimenez-Valverde et

al. 2009). Therefore, species with higher encounter rates will occupy more suitable grid

cells (representing widely-distributed species) than those with lower encounter rates (rep-

resenting rare species).

Sample occurrences

Once presence/absence areas were delimited, we performed the last step of the virtual spe-

cies generation process: sampling species occurrences. The occurrences points were calcu-

lated based on the presence/absence areas previously delimited, each case's encounter rates,

and the weighted environmental suitability values. Following Fernandez et al. (2017), we

allowed the encounter rate to change through time related to the amount of suitable daily

habitat per kilometre. This creates a more realistic scenario where, for dynamic species, en-

counter rates will  increase with appropriate  conditions, simulating dynamic populations,

where species are primarily present when conditions are good.  
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According to the niche modelling temporal resolution, daily presence points were pooled

together with the effort and the consequent environmental variables (with 8-day means of

SST) for each grid cell. A value of 1 was assigned for each sighting; when more than one

sighting was found in a segment, only one presence point was used. 

Modelling techniques

To understand how different  types  of absences affect  the modelling  processes,  we per-

formed the analysis using six different approaches, divided into three distinct groups related

to the occurrences data sources' nature: presence-only, presence-background and presence-

absence. Moreover, as characteristics of target species might also influence model perform-

ance (Qiao et al., 2015), we used different algorithms to minimize this problem. 

Presence-absence algorithms (PA)

In this case, observed absences were treated as true absences. We used two kinds of pres-

ence-absence algorithms:  Generalized Linear  Models (GLMs) and Generalized Additive

Models (GAMs). Both methods are based on the correlation of presences and genuine the-

oretical absences (or pseudo-absences) with environmental variables. Therefore, these mod-

els assume that environmental conditions were not suitable for survival if the species were

not found. We fitted binomial GLMs with quadratic terms using a logit link using R (ver-

sion 3.4.0; R Core Team, 2017). Two different approaches were used for the GAMs fitting

process using the "mgcv" package (Wood, 2011): (1) using all presences and all theoretical

absences pooled together, and (2) running ten iterations with all presences and 1000 theor-

etical absences selected randomly on each run, mimicking the “absences zones” approach
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used by Derville et al. 2016. We used a logit link for both approaches and allowed a max-

imum of three degrees of freedom for each spline to limit over-fitting (Becker et al., 2014).

Furthermore, the model's effort was included as an offset term to account for variations in

segment length. 

Presence-background algorithms (PB)

For this scenario, observed absences were treated as a sample of the conditions available in

the region. Maxent uses presence points and background samples pooled together with en-

vironmental  variables to calculate  the potential  habitat  suitability  (Phillips et  al.,  2017).

Background points represent environmental conditions available for the species (Phillips et

al., 2009). Background includes randomly selected pixels where the species have been ob-

served and pixels where the species was not observed (Phillips et al., 2009). Maxent (ver-

sion 3.4.1) was implemented using the R package "dismo" (Hijmans et al., 2017). We fitted

two different Maxent approaches: (1) a classical approach with automatic features and (2) a

more simplistic approach with only linear and quadratic features. We decided to test the

second approach due to  the  virtual  species  simplistic  response curves  designed for  the

present study. We applied a regularization factor of 2 to avoid over-fitting (Fiedler et al.,

2018). Occurrences and background data were pooled into a table in the sample-with-data

format to input Maxent in a Sightings With Data (SWD) format.

Presence-only algorithms (PO)

Presence-only algorithms are solely based on the observed occurrences, not considering the

absences registered. For the present study, we used the BIOCLIM (Busby, 1986, Booth et
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al.,  2014)  and  DOMAIN  (Carpenter  et  al.,  1993)  implementation  on  the  R  package

"dismo". 

Validation techniques

To assess the accuracy of the models produced, we used a variety of validation techniques:

one index based on the Area Under the Curve (AUC), the response curves plots from the

different modelling algorithms (a plot of species presence in relation to a changing environ-

mental variable) and a group of indices based on the comparison of models predictions with

the suitability of the virtual species, in geographic and environmental space. Ideally, dis-

crimination measures such as AUC should be obtained with the use of an independent data-

set (Peterson et al., 2011) or at least with the use of spatial (or temporal) bins to perform a

binned cross-validation (Radosavljevic & Anderson 2014). However, this is still not com-

mon practice, and there are many examples of cetacean studies using AUC based on ran-

domized testing fold selection (e.g. Fiedler et al., 2018, Virgili et al., 2017). Therefore, to

understand how these metrics explain the model accuracy, we calculated the test AUC with

a random 5-fold approach (approx. 25% of dataset for testing). These metrics were calcu-

lated using the R "dismo" package.

The other two validation techniques were based on the niche overlap between virtual and

modelled  virtual  species,  both  in  geographic  and  environmental  space.  These  analyses

quantify the accuracy of the model predictions in comparison with "real" virtual species

niches. Firstly, we calculated the Schoener's D (Schoener, 1968) in the geographical space

(G-space) using the R package ENMtools (Warren et al., 2017). Schoener’s D ranges from

0 (dissimilarity) to 1 (similarity) (Warren et al., 2017). The comparison of the model's geo-
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graphical projections measures the predictions’ accuracy using the observed environmental

conditions. This analysis was performed using the comparison of the models' projection

with the actual theoretical suitability for each species in all the study area (including many

places outside the surveyed regions but with similar environmental conditions). A fuzzy

similarity  index was applied to the G-space to find differences  between projection out-

comes. These indices consider the fuzziness of the location, going beyond site-by-site com-

parison and giving partial credit to neighbouring sites (Barbosa, 2015). We used a fuzzy

similarity index based on Baroni‐Urbani & Buser's (1976) index, which accounts for both

shared presences and shared absences but gives greater weight to presences. Analysis was

implemented using the fuzzySim R package (Barbosa, 2015).

Working in the geographical dimension can be problematic because the measured niche

overlap is likely to vary depending on the extent and distribution of environmental gradi-

ents in the study area and unquantified statistical artefacts related to model fitting (Broenni-

mann et al., 2012). To overcome the biases associated with the geographical dimension,

Broennimann et  al.  (2012) proposed to perform niche overlap tests  directly  in  environ-

mental space, allowing the use of all potential combinations of variables in an n-dimen-

sional space. This process was applied using the ENMTools (Warren et al., 2021), drawing

Latin hypercube samples from the space of all  possible  combinations  of environmental

variables given the minimum and maximum of each variable  within the training region

(Warren et al., 2019). The Schoener's D index and the Spearman correlation rank were ap-

plied to test for differences between modelling scenarios.
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RESULTS

A total of 14000 models were constructed corresponding to the 20 virtual species, 7 algo-

rithms types, and 100 iterations for each scenario.  We found differences in the results ac-

cording to the species analysed, the encounter rates and the validation metric used. In con-

trast, similar results between algorithms were obtained when using the AUC test metric

(Fig. 3).  Nevertheless, higher variability in the accuracy was observed in the results with

lower encounter  rates. The same effect  is  noticeable  when using other  validation  tech-

niques, especially  for  the  lowest  encounter-rate  scenarios  (0.2  encounters  per  100km).

Moreover, AUC test values for specialists are higher than for generalist species, particularly

in static species.
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Figure 3. Area Under the Curve (AUC) using testing dataset values for 4 different species

(generalistic static, specialist static, generalist dynamic, specialist dynamic) with different

encounters rate (1.4, 1, 0.8, 0.6 and 0.2 encounters per 100km sampled; values go from left

to right). Mean and standard deviation values are presented for each of the six modelling

approaches tested (BIOCLIM, DOMAIN, GLM, GAM1, GAM2, Maxent1 and Maxent2). 

 

The two tests performed on the geographical space highlighted differences between model-

ling techniques (Fig 4). Schoener’s D index presented lower overlap values for the special-

ist species than the generalists. However, this pattern is not present when using the Fuzzy
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similarity test. For the different algorithms, the lowest overlap values were consistently ob-

tained for BIOCLIM, while the use of DOMAIN resulted in high overlap values for both

indexes (Fig 4). Together with DOMAIN, the MAXENT algorithm predictions resulted in

higher overlap and similarity indexes than presence-absence algorithms (GAM2, GAM2

and GLM). Nevertheless, this trend is not so evident in the Dynamic specialist  species,

where overlap indexes for all models in G-space are highly variable.

Figure 4. Fuzzy similarity and Schoener’s D overlap index values on the geographic space

between  the  model  projections  and  the  theoretical  “real”  suitability  maps.  Results  are

grouped by species type (static  generalist,  static specialist,  dynamic generalist,  dynamic

specialist). Each bar indicates the results for the different encounter rates tested (1.4, 1, 0.8,
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0.6 and 0.2 encounters per 100km sampled; values go from left to right) for each kind of

modelling algorithm specified on the X-axis. 

The projected maps for the 4 selected species (Fig 5) depict the poorer performance of the

predictions made using the BIOCLIM algorithm. On the other hand, the DOMAIN algo-

rithm over-predicts some areas. The PA models (GLM, GAM1 and GAM2) tend to under-

predict suitable areas while MAXENT produced the best results (but still with some areas

over-predicted). All the algorithms showed difficulties predicting the low suitability ranges

gradient, which is especially clear when looking at the lower suitability values (blue gradi-

ent) for static species (Fig 5a and 5b).
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Figure 5. Predicted suitability values for four different species (the species with an en-

counter rate of 1.4 encounters per 100km sampled for each type) on a randomly selected

week, comparing all the modelling techniques used. (a) (top left) species 1, a static general-

ist species; (b) (top right) species 6, a static specialist species; (c) (bottom left) species 11, a

dynamic generalist  species;  (d)  (bottom right)  species  16,  a  dynamic  specialist  species.

Suitability ranges from 0 (white) to 1 (red).
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In the environmental space (E-space) evaluation, models constructed using MAXENT pro-

duced higher Schoener’s D overlap indexes (Fig. 6).  Only the Dynamic specialist species

values seem similar among all algorithms tested; nevertheless, MAXENT models had much

lower standard deviation values. DOMAIN predictions were equal or worse than those of

PA algorithms. Species with lower encounter rates produced the worst results, resulting in

higher standard deviation values.

Figure 6. Schoener’s D overlap index values for the environmental space between the 

model outputs and the theoretical “real” species relation with environmental variables. Re-
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sults are grouped by species type (static generalist, static specialist, dynamic generalist, dy-

namic specialist). Each bar indicates the results for the different encounter rates tested (1.4, 

1, 0.8, 0.6 and 0.2 encounters per 100km sampled; values go from left to right) for each 

kind of modelling algorithm specified on the X-axis.

The response curves (Fig. S5-S24) reflect a similar pattern to those observed in the other

validation  analysis.  When  considering  the  weighting  of  the  variables  for  the  different

species, the MAXENT approaches performed better in general, with lower variability in the

results and curves more similar to those expected. Nevertheless, for the specialist species

(Figs.S10-S14 and Figs.S20-S24) the curves for the regression methods (GLM and GAMs)

also showed a good performance. Curves for DOMAIN and BIOCLIM were, in general,

overestimated and unable to detect the different weighting of the variables. 

Finally, the linear approach for MAXENT (MAXENT2 in the figures) for the static special-

ists' species produced better estimates. In contrast, the classic MAXENT approaches varied,

producing similar results to the PA algorithms when working with high encounter rates. PB

approaches and PA produced similar results for the dynamic specialists' species when using

high encounter rates. However, with low encounter rates, the standard deviation values for

the PB were lower than all the other approaches.

The use of different settings for GAMs (GAM1 and GAM2) and MAXENT (MAXENT1

and MAXENT2) proved to be effective in some cases, with different results observed de-

pending on the settings used, as can be observed in all the results obtained (Fig. 4, 5 and 6).
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DISCUSSION

Overall, depending on how observed absences were treated, analyses showed apparent dif-

ferences when using distinct algorithms to characterize the ecological niche for the simu-

lated species. The different validation techniques allowed us to obtain an accurate idea of

the methods' weaknesses and strengths. For example, the two metrics calculated in G-space

(Fig. 4), a more classical approach (Schoener's D index) and a more complex approach

(Fuzzy similarity),  permitted us to understand the models'  projections differences better.

Using E-space  for  validation  proved beneficial  as  it  reinforced  some subtle  tendencies

barely visible with the G-space methods. 

The overlap tests (both in environmental and geographical space) indicate that the model-

ling approaches treating observed absences as background data could equally (or better) de-

termine the species niche than when considering the non-observation as a real absence (PA

methods) or when considering no absences at all (PO approach).  This might be related to

specific ecological traits; highly mobile species, such as cetaceans or other pelagic marine

megafauna, might use the habitat versatilely. Oceans are in constant flux; the physical forc-

ing of  the  oceanographic  seascape  spans  multiple  spatial  and temporal  scales.  Oceano-

graphic features that both predators and preys follow, like fronts and eddies, move dynami-

cally across similar scales (Steele, 1991). Therefore, even the so-called specialists’ large

marine  predators  might  have  flexible  and  dynamic  habitat  use  when  looking  for  prey

patches. Moreover, animal migrations and foraging or breeding aggregations track dynamic

oceanographic features across multiple scales (Block et al. 2011). Consequently, the non-

observation of a species in a specific location and time might easily constitute a methodolo-
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gical absence. As Lobo et al. (2010) suggested, this can lead to obtaining absences in suit-

able environmental locations, especially in areas close to recorded presences. Therefore, a

very intense sampling schema (unrealistic) would be required to obtain a genuine unbiased

absence when working with these species. 

Ideally, when trying to unveil or predict the occupied niche (or the distribution) of a spe-

cies,  actual  absence  data  and PA models  might  be  the  best  theoretical  option  (Sillero,

2011). As we discussed, our results suggest that PA models should not be applied when

true absences are not available. PA models attempt to calculate accurate distribution estim-

ates  (distinguishing  between  occupied  and  non-occupied  habitats),  producing,  in  some

cases, unrealistic and over-fitted predictions. While other methods, such as presence-back-

ground methods, are more flexible (Peterson et al., 2011). It is precisely this flexibility that

might be a better choice when working with highly motile species, as when working in dy-

namic environments and mobile species, the non-observation of a species in a given loca-

tion and time should not be considered as an absence but instead considered as a sample of

the whole study area; which agrees with the definition of a background sample (Phillips et

al., 2009).  Summing the G and E space results resulted in a better (or at least equal) per-

formance of PB approaches over all the other methods tested. Interestingly, Fiedler et al.

(2018) found that Maxent can produce models similar to GAM presence-absence models

when background data points are selected from observed absences. It is important to notice

that the cited study only used AUC metrics and a point biserial correlation to compare the

outputs. Instead, we decided to use a broader set of metrics (in the G and E space) to com-

pare the model predictions, which allowed us to find some differences between modelling

approaches that might be missed when using more simplistic comparison methods. 
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Interpretations based solely on geographic space hold relatively limited information and

should be taken with caution; models should instead be analysed in environmental and geo-

graphic spaces (Escobar et al., 2018). Comparing predictions in environmental space (Fig.

6) allowed us to overcome some of the limitations derived from the structure and composi-

tion  of  environmental  variables  in  the  specific  region of  study highlighting  differences

between modelling approaches that would otherwise remain invisible (Warren et al., 2019).

Summing the G and E space results resulted in a better (or at least equal) performance of

PB approaches over all the other methods tested. 

An interesting pattern observable in E-space is that, for generalist species, treating the ob-

served absences as background data seemed to perform consistently  better  (with higher

overlap values and lower standard deviations), agreeing with Evangelista et al. (2018) find-

ings. However, different patterns emerge for specialist species, with different results de-

pending on the species, encounter rate, and modelling algorithm used.  

Some of the differences observed between modelling techniques might be related to the

niche breadth of the target species. Broad realised niches (generalist species; species 1 and

3) are more challenging to model than narrow niches (specialist species; species 2 and 4),

with marked differences in performance when using different algorithms (Qiao et al., 2015,

Connor et al., 2018). The present study found that the differences between algorithms are

less visible for specialist species, especially for static ones (species 4). When the available

suitable area is more restricted and stable through time, the sampling effort needed to ob-

tain genuine environmental or contingent absences is lower. For example, suppose a ceta-
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cean species occurs only in coastal areas, and we sample coastal and non-coastal areas. In

that case, the chance of obtaining true absences is higher than if the species occur over a

broader range of conditions. Therefore, using observed absences as real absences and ap-

plying presence-absence models might be a good choice in this scenario. Nevertheless, our

results showed that even if PA models performed well, PB methods (and even PO in some

cases) performed equally well. 

Furthermore, our results agree with other findings on the importance of model settings and

calibration (Warren et al., 2014). We obtained different results when using the same type of

algorithm but with different settings or parameter combinations. Parameter choice can pro-

duce dramatic influences on model output. We found that using the GAM2 approach (using

the  sampling  approach  from “absences  zones”)  produced better  results  than  a  classical

GAM approach. The same was observed with the two settings used for MAXENT models.

Hence, besides testing different algorithms, it is also critical to build models with different

settings, using tools to perform detailed development of ecological niche models, such as

kuenm (Cobos et al., 2019) or ENMeval (Kass et al., 2021).

Conclusion

As a result  of the experiences and analysis performed here, we cannot recommend one

unique way of  considering  observed absences  for  niche  modelling  when working with

highly mobile species. Our results suggest that in highly mobile species, an excellent pre-

cautionary approach would be to consider the non-observation of a species as a background

point (a sample of the conditions available in the sampled area) rather than an absence. 
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However, as Quiao et al. (2015) pointed out, there are no silver bullets, and therefore there

is no fixed recipe that will work for all the cases. In some cases (such as working with static

species with high prevalence), the absences encountered during the sampling process might

be a good approximation to real absences. Therefore, PA methods would be an optimal

choice.  However,  sufficient  ecological  knowledge of the species may be unavailable  in

many cases, especially when working with marine megafauna. In such cases, using a PB

method might be a good starting point, which ideally should be complemented with PA and

PO models. Afterwards, evaluation tests should be performed, comparing the outputs from

the different algorithms tested in G and E space, as suggested by previous studies (Escobar

et al., 2018, Warren et al., 2019). 

Ideally, we would like to obtain the probability of finding a species on a specific site when

modelling distributions for management purposes. In the present study, we focused on tran-

sect survey data; however other methods, such as tracking, could help obtain better insights

into the species movements and habitat preferences. Scales et al. (2016) used movement

simulations of blue whales to better investigate the potential of tracking data for predictive

habitat modelling. Fine-scale movement data might provide an excellent opportunity to ob-

tain distributional models at finer temporal resolutions and, therefore, improve management

applications, such as collision risk assessments (Blondin et al. 2020). Moreover, PA mod-

els’ estimates are based on occurrence and absence data collected on a fixed time frame,

and therefore they predict the probability of occurrence. Areas with high suitability values

do not guarantee that the species will always be present. With highly motile species, occu-

pancy rates might vary even more. They have broader home ranges, and these movements
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can be related to many factors, such as competition, food availability or behaviour spe-

cificities. However, including these covariates is highly complex and requires continuous

recording systems and further study. Long-term moored acoustic systems might help an-

swer  some  of  these  questions,  improving  distributional  and  occupancy  estimates  (e.g.

Fraiser et al., 2021).  
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Figure S1: Response curves for the generalist static species, depicting the relation of the 

suitability with the environmental variables used to build the virtual species.
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Figure S2: Response curves for the specialist static species, depicting the relation of the 

suitability with the environmental variables used to build the virtual species.
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Figure S3: Response curves for the generalist dynamic species, depicting the relation of the 

suitability with the environmental variables used to build the virtual species.

46

889

890

891

892

91
92



Figure S4: Response curves for the specialist dynamic species, depicting the relation of the 

suitability with the environmental variables used to build the virtual species.
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Figure S5: Response curves outputs from the different modelling algorithms, together with 
the theoretical curves (at the bottom right) regarding the generalist static species with en-
counter rate 1.4 groups/100km. 
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Figure S6: Response curves outputs from the different modelling algorithms, together with 
the theoretical curves (at the bottom right) regarding the generalist static species with en-
counter rate 1 group/100km. 
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Figure S7: Response curves outputs from the different modelling algorithms, together with 
the theoretical curves (at the bottom right) regarding the generalist static species with en-
counter rate 0.8 groups/100km. 
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Figure S8: Response curves outputs from the different modelling algorithms, together with 
the theoretical curves (at the bottom right) regarding the generalist static species with en-
counter rate 0.6 groups/100km. 
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Figure S9: Response curves outputs from the different modelling algorithms, together with 
the theoretical curves (at the bottom right) regarding the generalist static species with en-
counter rate 0.2 groups/100km. 
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Figure S10: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the specialist static species with 
encounter rate 1.4 groups/100km. 
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Figure S11: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the specialist static species with 
encounter rate 1 group/100km. 
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Figure S12: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the specialist static species with 
encounter rate 0.8 groups/100km. 
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Figure S13: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the specialist static species with 
encounter rate 0.6 groups/100km. 
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Figure S14: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the specialist static species with 
encounter rate 0.2 groups/100km.
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Figure S15: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the generalist dynamic species 
with encounter rate 1.4 groups/100km.

58

950
951
952
953
954

115
116



Figure S16: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the generalist dynamic species 
with encounter rate 1 group/100km.
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Figure S17: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the generalist dynamic species 
with encounter rate 0.8 groups/100km.
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Figure S18: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the generalist dynamic species 
with encounter rate 0.6 groups/100km.
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Figure S19: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the generalist dynamic species 
with encounter rate 0.2 groups/100km.
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 Figure S20: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the generalist dynamic species 
with encounter rate 1.4 groups/100km.
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Figure S21: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the generalist dynamic species 
with encounter rate 1 group/100km.
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Figure S22: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the generalist dynamic species 
with encounter rate 0.8 groups/100km.
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Figure S23: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the generalist dynamic species 
with encounter rate 0.6 groups/100km.
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Figure S24: Response curves outputs from the different modelling algorithms, together 
with the theoretical curves (at the bottom right) regarding the generalist dynamic species 
with encounter rate 0.2 groups/100km.the
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ODMAP 
element Content

OVERVIEW      

Authorship

 Authors: Fernandez, M; Sillero, N; Yesson, C.
 Contact e-mail: marc.fern@gmail.com
 Title: To be or not to be: the role of absences in niche modelling for highly mobile 

species in dynamic marine environments

Model objective
 SDM objective/purpose: ecological inference / explanation

 Main target output:  continuous habitat suitability index

Taxon Highly dynamic marine pelagic species (e.g. sharks, tuna, cetaceans…)
Location Azores archipelago, Portugal.

Scale of analysis

 Spatial Extent (Lon / Lat): Longitude 32ºW-24ºW, Latitude 36ºN-40ºN
 Spatial resolution: 2km
 Temporal extent/time period: May to August (2013-2016)
 Temporal resolution: 8-days
 Type of extent boundary: rectangular

Biodiversity 
data overview

 Observation type: Simulated transect data

 Response/data type: Presence-absence

Type of 
predictors Climatic, topographic

Conceptual 
model

Hypotheses about species-environment relationships: 
Using a set of 20 virtual species and 3 environmental variables we tested how the 
presence of methodological absences in simulated standardized surveys might influ-
ence the accuracy of the predictions when using different modelling techniques. 

Assumptions Species–environment equilibrium, Availability of all important predictors, Perfect de-
tectability

SDM algorithms  Model algorithms: BIOCLIM, DOMAIN, GLM, GAM, MAXENT

69

1028

137
138



 Justification of model complexity: BIOCLIM and DOMAIN were fitted using the de-
fault settings. For the GLM quadratic approach was applied to allow more flexibility 
on the responses. Two different approaches were used for the GAMs fitting process:
(1) using all presences and all theoretical absences pooled together, and (2) running
ten iterations with all presences and 1000 theoretical absences selected randomly 
on each run, mimicking the “absences zones” approach used by Derville et al. 2016. 
We used a logit link for both approaches and allowed a maximum of three degrees 
of freedom for each spline to limit over-fitting (Becker et al., 2014). Furthermore, the
model's effort was included as an offset term to account for variations in segment 
length. We fitted two different MAXENT approaches: (1) a classical approach with 
automatic features and (2) a more simplistic approach with only linear and qua-
dratic features. We decided to test the second approach due to the virtual species 
simplistic response curves designed for the present study. We applied a regulariza-
tion factor of 2 to avoid over-fitting.

Model workflow

We used 8-day grouped datasets to calibrate the models using a variety of modelling 
techniques. We applied a series of techniques to evaluate the model performance 
both in the geographical space and environmental space. We calculated the a test AUC
with a random 5-fold approach (approx. 25% of dataset for testing) and the Schoener's
D (Schoener, 1968) and a fuzzy similarity index based on Baroni‐Urbani & Buser's 
(1976)  in the geographical space to compare model predictions with virtual species 
known predictions. Moreover, a niche overlap was tested in environmental space. The 
Schoener's D index and the Spearman correlation rank were applied to test for differ-
ences between modelling scenarios. All the process was repeated for 100 iterations.

Software, codes
and data

 Specify modelling platform: dismo and mgcv R packages. Maxent 3.4.3

 Specify availability of codes: N/A
 Specify availability of data: N/A

DATA      

Biodiversity 
data

Virtual species, definitions can be found on the main paper and suppl. material. 
 Details on taxonomic reference system: N/A
 Ecological level: population

 Biodiversity data source: N/A

 Sampling design: Surveys were performed around the islands and other vital ar-
eas, covering 39,316.9 km2 per year. We used the transects designed by Faustino et
al. (2010) to last four months (12 weeks) per year, with four days of sampling per 
week over four years (2013-2016). Cruise speed was defined as 7.5 knots during 8 
hours each sampled day to avoid any area's resampling. 

 Sample size per taxon:  Sample sized varied depending on the encounter rates ap-
plied. 5 different encounter rates per 100km were applied (1.4,1,0.8,0.6,0.2), refer-
ring to the number of groups of animals encountered per 100km sampled. 
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 Details on absence data collection: we assumed the no detection of a species dur-
ing the surveys as an absence. 

Data 
partitioning

 Selection of training data: for the AUC validation we used 75% of data of training 
data. 

 Selection of validation data: for the AUC a 25%. Other methods rely on the com-
parison with the already known distribution of the virtual species. 

Predictor 
variables

 Predictor variables: Depth and slope. Sea Surface Temperature (SST).

 Details on data sources:  
Depth: derived from the digital elevation model of the EMODnet Bathymetry portal. 
Slope: calculated from the digital elevation model using QGIS 3.2. 
SST: obtained from the NASA’s Multi-scale Ultra-high Resolution (MUR) downloaded 
on 01/12/2018 from https://mur.jpl.nasa.gov/

 Spatial resolution and spatial extent: all data were interpolated to a 2km grid res-
olution.

 Map projection: WGS84 latlon

 Temporal resolution: 8-day means for sea surface temperature

 Data processing: Depth was extracted from the EMODnet bathymetry and up-
scaled to a 2km resolution. Slope was calculated from the same source using QGIS 
3.2. SST products were downloaded at a daily 1km resolution, we calculated 8-day 
estimates using the means of SST daily values. Finally, all the layers were aggre-
gated to 2×2 km resolutions using a bilinear interpolation. 

MODEL      

Multicollinearity We applied a variance inflation factor (VIF) approach as implemented in the R package 
usdm (Naimi, 2015) to test for collinearity. No warning signs were found. 

Model settings 

We used species presence/absence as the dependent variable, and so the logistic link 
function and binomial error term were used in the GAMs and GLMs. The effort was 
logarithmically transformed and used as an offset term. GLM response functions were
modelled as a quadratic function. Two different MAXENT approaches were used: (1) a 
classical approach with automatic features and (2) a more simplistic approach with 
only linear and quadratic features. To avoid overfitting problems, we used a standard 
regularization parameter of 2. 

Model 
estimates

Assessment of model coefficients: N/A

Details on quantification of uncertainty in model coefficients: N/A

Assessment of variable importance: N/A

ASSESMENT      
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Performance 
statistics 

 Performance statistics estimated on validation data: AUC with 25% for testing 
purposes.

 Performance statistics estimated on test: comparison with "known" virtual 
species projections in the geographic and environmental space, using the ENM-
Tools.

Plausibility 
check

Response plots were calculated and compared with the original response curves for 
the virtual species. 

 Expert judgements: geographic projections were compared with the theoretical 
projected suitability. Visual comparison of predictions and theoretical suitability was
done to better understand the performance of the models. 

PREDICTION      

Prediction 
output Predictions of relative probability of presence expressed on a continuous scale.

Uncertainty 
quantification N/A

72

1029
1030

143
144


