Running head: Absences marine megafauna niche modelling

To be or not to be: the role of absences in niche modelling for highly mobile species in dynamic marine environments

Fernandez $\mathrm{M}^{1,2,{ }^{*}}$, Sillero N^{3}, Yesson C^{4}

1. MARE - Marine and Environmental Sciences Centre, Agência Regional para o

Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal
2. cE3c/Azorean Biodiversity Group, Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
3. CICGE - Centro de Investigação em Ciências Geo-Espaciais, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal
4. Zoological Society of London, Institute of Zoology, London, UK

* Corresponding author

E-mail:
marc.fern@gmail.com

Keywords: Absences, Ecological Niche Modelling, cetaceans, marine megafauna, mobile species, Species Distribution Models.

INTRODUCTION

A good understanding of species distributions is crucial to supporting conservation management. Improving access to technology and species occurrences data has expanded the use of modelling procedures to provide distribution estimates, using various techniques commonly termed Ecological Niche Models (ENMs) or Species Distribution Models (SDMs) (Sillero 2011; Sillero et al 2021). Over the past 20 years, more than 6000 studies have used these tools, using a wide variety of methods and protocols. This wide variation of applications has led to a set of best practices for guiding the building of the models and evaluating the models' adequacy to feed biodiversity assessments (Araujo et al., 2019; Sillero et al., 2021). One of the most discussed topics is the relative performance of different modelling algorithms in calculating distributional estimates. Previous studies tried to rate the algorithms available to select the best performing' methods (e.g. Brotons et al., 2004, Elith et al., 2006). There are three basic modelling approaches to estimate distributions available according to the nature of the characteristics of the occurrence data (Sillero et al 2021): (1) using presence-only data; (2) using presence-absence data when available (or 'pseudo-absences', when not available) and (3) using presence data and a sample of background data. According to Phillips et al. (2009), background data is a sample from the study area as a whole, used to characterize the environmental conditions across the study region, including the sites where the species could also be sighted. However, a "pseudo-absence" record intends to mimic absence data, and it might include locations that
the species does or could occupy, contrary to the methodology's purpose. In fact, pseudoabsences can be considered a biased sample of the background data (Franklin 2010). Modelling algorithms using presences and true-absences calculate the actual probability of the species' presence and estimate the actual distributional area, distinguishing between occupied and non-occupied areas by the species, something similar to the realized niche (RN). Conversely, background or presence-only data methods provide information on how to classify sites by their similarity to known occupied regions (Sillero et al 2021). Consequently, background or pseudo-absence data methods will predict an area between the actual occupied area and the abiotic niche (Jiménez-Valverde et al 2008; Soberon \& Nakamura 2009), somehow closer to the fundamental niche concept (FN).

Soberon \& Peterson 2005 define the RN as the set of locations where abiotic conditions are suitable for positive population growth, and the required biotic conditions (e.g. mutualists, competitors, predators...) will lead to positive fitness. On the other side, the FN represents the conditions where the conditions are suitable for the species. In the case of cetaceans, one might argue that due to their mobility and dispersion capacity, all the suitable areas will be accessible. However, the optimal biotic conditions for the species will be only present in a small range of the suitable area. Therefore, a good amount of occurrence points in the areas with suitable abiotic conditions would be needed to estimate the FN, while the RN calculation would require much more information regarding the biotic interactions.

The best choice to produce accurate distribution estimates for current biodiversity assessments would appear to be presence-absence algorithms. However, this statement is more complex than it looks: it is necessary to consider the nature of the species data used in the modelling processes. While the concept of presence is relatively straightforward (a
place where the organism has been directly observed), absence is a more complex concept. They can be classified into three types: environmental, contingent and methodological (Lobo et al., 2010). The first two kinds of absences are related to natural processes shaping species distributions (Soberon \& Nakamura 2009) and linked with the available environmental conditions. Environmental absences are more probable in those localities showing environmental conditions very different from the environmental universe defined by the presence localities (e.g. a polar habitat for a tropical species).

In contrast, contingent absences correspond to environmentally suitable areas not occupied due to biotic, historical and dispersal reasons (Lobo et al., 2010). However, methodological absences (created by biased surveys) are a consequence of the very nature of the biodiversity distribution information, which frequently is incomplete and biased. It can be challenging to interpret the absence of observation as an observation of absence (e.g. Dennis et al., 1999, Graham et al., 2004, Soberon \& Peterson, 2004, Hortal et al., 2008, Lobo et al., 2007, Peterson et al., 2011, Kramer-Schadt et al., 2013, Boira et al., 2014). Methodological absences constitute the most important source of uncertainty for analysing patterns and processes underlying the geographic distribution of biodiversity (the so-called Wallacean shortfall; Whittaker et al., 2005). Therefore, while environmental absences will be prevalent in areas less environmentally suitable for the species, methodological absences can be found everywhere and are generally higher in suitable environmental locations close to the recorded presences (Lobo et al., 2010) because survey effort is naturally biased towards areas of expected presence. Other problems can arise even in a stable terrestrial ecosystem with a very intense sampling program (where confidence in 'absences' is high). Maybe the species is not present because the area is outside the dispersal range, or the

$t+1$

Figure 1. Example of a simulated transects survey for cetaceans, where the boat follows a pre-designed transect. Two potential encounters are represented (symbolized as dolphins and a whale). As time changes from t to $t+1$, the animals and the boat moves, mimicking a hypothetical situation in a real-world scenario. Red cells represent true-absence, red pointed cells represent methodological absences and green cells observed presences.

Occurrence datasets for cetacean habitat modelling studies may come from carefully designed, standardised field studies, including ship, aerial and acoustic surveys (Redfern et al., 2006). Those surveys are generally based on transect distance sampling methods (Buckland et al., 2001) to estimate quantitative abundance. Surveys are typically designed to ensure equal sampling probabilities throughout the study area. Moreover, there are tools to correct the errors related to the perception bias, survey conditions (e.g. sea state, visibility), and availability bias (proportion of time spent by the animals at the surface). The use of detectability functions, independent observers and dual-platform methods (two observers searching for and counting animals simultaneously, ensuring they do not cue each other on the locations of the animals) are generally used to minimize biases (Buckland

Two static variables were used: depth (derived from the digital elevation model of the EMODnet Bathymetry portal); and slope, calculated from the digital elevation model using

Environmental variables

A set of actual marine environmental variables was selected to represent the variability and dynamism of an oceanic system. Only three variables were chosen to facilitate the modelling processes based on their reported influence on previous cetacean distribution studies in the area (e.g. Fernandez et al., 2019). These were divided into two thematic groups: static (little or no short-term variation-topographic variables) and dynamic (rapidly changing variables, such as sea surface temperature).

QGIS 3.2. All static variables were initially calculated at a spatial resolution of $0.5 \times 0.5 \mathrm{~km}$. Daily dynamic variables were derived from NASA's Multi-scale Ultra-high Resolution (MUR) Sea Surface Temperature (SST) dataset (downloaded on 01/12/2018 from https:// mur.jpl.nasa.gov/), which merges many infrared and passive microwave datasets, gathered from satellites, into daily global maps at 1 km resolution corresponding to the sampling period (see survey design for further details). For the present study, we calculated 8-day estimates using the means of SST daily values. Finally, all the layers were aggregated to 2×2 km resolutions using a bilinear interpolation. We applied a variance inflation factor (VIF) approach as implemented in the R package usdm (Naimi, 2015) to test for collinearity, no issues were found.

Survey design

The virtual species' environmental and effort data mirrored the time frame of a simulated cetacean detection survey for the Azores archipelago. Surveys were performed around the islands and other vital areas, covering $39,316.9 \mathrm{~km}^{2}$ per year. We used the transects designed by Faustino et al. (2010) (Fig 2) to last four months (12 weeks) per year, with four days of sampling per week over four years (2013-2016). Cruise speed was defined as 7.5 knots during 8 hours each sampled day to avoid any area's resampling. Survey transects were mapped onto the 2 km grid that matched the environmental data.

Figure 2. Survey design with lines and complete study (Azores Archipelago) area used for the models' projections and overlap metrics. Different colors refer to substrata to be sampled (adapted from Faustino et al. 2010).

Virtual species

Species definitions
A total of 20 virtual species were created. Four different relationships with the environment variables were used: (1) generalist species highly influenced by static variables; (2) specialist species highly influenced by static variables; (3) generalist species highly influenced by dynamic variables; (4) specialist species highly influenced by dynamic variables. The species were created using the Virtualspecies R package (Leroy et al., 2015) based on their (assumed) relationship with daily environmental variables. For simplicity, bell-shaped func-
species can be observed moving through environmentally sub-optimal areas to access other suitable locations.

For each species, five different groups of sampling encounter rates were used per 100 km : 1.4, 1, 0.6, 0.4 and 0.2 , based on real-world data observations obtained by Silva et al. (2014) in the Azores. We assumed a perfect presence/absence detection scenario to simplify the analysis: all the groups present during the sampling were detected, although this is unusual for marine species (Katsanevakis et al., 2012). Assuming a value of 1 for the detectability, the encounter rate values could be linked with the species prevalence or how the species uses the suitable habitat. Even if the prevalence is a property of the data, it usually covaries with species ecology and range size, i.e., data for rare species usually show low prevalence scores, while widely-distributed species show the opposite (Jimenez-Valverde et al. 2009). Therefore, species with higher encounter rates will occupy more suitable grid cells (representing widely-distributed species) than those with lower encounter rates (representing rare species).

Sample occurrences

Once presence/absence areas were delimited, we performed the last step of the virtual species generation process: sampling species occurrences. The occurrences points were calculated based on the presence/absence areas previously delimited, each case's encounter rates, and the weighted environmental suitability values. Following Fernandez et al. (2017), we allowed the encounter rate to change through time related to the amount of suitable daily habitat per kilometre. This creates a more realistic scenario where, for dynamic species, encounter rates will increase with appropriate conditions, simulating dynamic populations, where species are primarily present when conditions are good.

According to the niche modelling temporal resolution, daily presence points were pooled together with the effort and the consequent environmental variables (with 8-day means of SST) for each grid cell. A value of 1 was assigned for each sighting; when more than one sighting was found in a segment, only one presence point was used.

Modelling techniques

To understand how different types of absences affect the modelling processes, we performed the analysis using six different approaches, divided into three distinct groups related to the occurrences data sources' nature: presence-only, presence-background and presenceabsence. Moreover, as characteristics of target species might also influence model performance (Qiao et al., 2015), we used different algorithms to minimize this problem.

Presence-absence algorithms (PA)

In this case, observed absences were treated as true absences. We used two kinds of pres-ence-absence algorithms: Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs). Both methods are based on the correlation of presences and genuine theoretical absences (or pseudo-absences) with environmental variables. Therefore, these models assume that environmental conditions were not suitable for survival if the species were not found. We fitted binomial GLMs with quadratic terms using a logit link using R (version 3.4.0; R Core Team, 2017). Two different approaches were used for the GAMs fitting process using the "mgcv" package (Wood, 2011): (1) using all presences and all theoretical absences pooled together, and (2) running ten iterations with all presences and 1000 theoretical absences selected randomly on each run, mimicking the "absences zones" approach
used by Derville et al. 2016. We used a logit link for both approaches and allowed a maximum of three degrees of freedom for each spline to limit over-fitting (Becker et al., 2014). Furthermore, the model's effort was included as an offset term to account for variations in segment length.

Presence-background algorithms (PB)

For this scenario, observed absences were treated as a sample of the conditions available in the region. Maxent uses presence points and background samples pooled together with environmental variables to calculate the potential habitat suitability (Phillips et al., 2017). Background points represent environmental conditions available for the species (Phillips et al., 2009). Background includes randomly selected pixels where the species have been observed and pixels where the species was not observed (Phillips et al., 2009). Maxent (version 3.4.1) was implemented using the R package "dismo" (Hijmans et al., 2017). We fitted two different Maxent approaches: (1) a classical approach with automatic features and (2) a more simplistic approach with only linear and quadratic features. We decided to test the second approach due to the virtual species simplistic response curves designed for the present study. We applied a regularization factor of 2 to avoid over-fitting (Fiedler et al., 2018). Occurrences and background data were pooled into a table in the sample-with-data format to input Maxent in a Sightings With Data (SWD) format.

Presence-only algorithms (PO)
Presence-only algorithms are solely based on the observed occurrences, not considering the absences registered. For the present study, we used the BIOCLIM (Busby, 1986, Booth et
al., 2014) and DOMAIN (Carpenter et al., 1993) implementation on the R package "dismo".

Validation techniques

To assess the accuracy of the models produced, we used a variety of validation techniques: one index based on the Area Under the Curve (AUC), the response curves plots from the different modelling algorithms (a plot of species presence in relation to a changing environmental variable) and a group of indices based on the comparison of models predictions with the suitability of the virtual species, in geographic and environmental space. Ideally, discrimination measures such as AUC should be obtained with the use of an independent dataset (Peterson et al., 2011) or at least with the use of spatial (or temporal) bins to perform a binned cross-validation (Radosavljevic \& Anderson 2014). However, this is still not common practice, and there are many examples of cetacean studies using AUC based on randomized testing fold selection (e.g. Fiedler et al., 2018, Virgili et al., 2017). Therefore, to understand how these metrics explain the model accuracy, we calculated the test AUC with a random 5-fold approach (approx. 25\% of dataset for testing). These metrics were calculated using the R "dismo" package.

The other two validation techniques were based on the niche overlap between virtual and modelled virtual species, both in geographic and environmental space. These analyses quantify the accuracy of the model predictions in comparison with "real" virtual species niches. Firstly, we calculated the Schoener's D (Schoener, 1968) in the geographical space (G-space) using the R package ENMtools (Warren et al., 2017). Schoener’s D ranges from 0 (dissimilarity) to 1 (similarity) (Warren et al., 2017). The comparison of the model's geo-

RESULTS

A total of 14000 models were constructed corresponding to the 20 virtual species, 7 algorithms types, and 100 iterations for each scenario. We found differences in the results according to the species analysed, the encounter rates and the validation metric used. In contrast, similar results between algorithms were obtained when using the AUC test metric (Fig. 3). Nevertheless, higher variability in the accuracy was observed in the results with lower encounter rates. The same effect is noticeable when using other validation techniques, especially for the lowest encounter-rate scenarios (0.2 encounters per 100 km). Moreover, AUC test values for specialists are higher than for generalist species, particularly in static species.

Figure 3. Area Under the Curve (AUC) using testing dataset values for 4 different species (generalistic static, specialist static, generalist dynamic, specialist dynamic) with different encounters rate (1.4, 1, $0.8,0.6$ and 0.2 encounters per 100km sampled; values go from left to right). Mean and standard deviation values are presented for each of the six modelling approaches tested (BIOCLIM, DOMAIN, GLM, GAM1, GAM2, Maxent1 and Maxent2).

The two tests performed on the geographical space highlighted differences between modelling techniques (Fig 4). Schoener’s D index presented lower overlap values for the specialist species than the generalists. However, this pattern is not present when using the Fuzzy
similarity test. For the different algorithms, the lowest overlap values were consistently obtained for BIOCLIM, while the use of DOMAIN resulted in high overlap values for both indexes (Fig 4). Together with DOMAIN, the MAXENT algorithm predictions resulted in higher overlap and similarity indexes than presence-absence algorithms (GAM2, GAM2 and GLM). Nevertheless, this trend is not so evident in the Dynamic specialist species, where overlap indexes for all models in G-space are highly variable.

Figure 4. Fuzzy similarity and Schoener’s D overlap index values on the geographic space between the model projections and the theoretical "real" suitability maps. Results are grouped by species type (static generalist, static specialist, dynamic generalist, dynamic specialist). Each bar indicates the results for the different encounter rates tested (1.4, $1,0.8$,
0.6 and 0.2 encounters per 100km sampled; values go from left to right) for each kind of modelling algorithm specified on the X-axis.

The projected maps for the 4 selected species (Fig 5) depict the poorer performance of the predictions made using the BIOCLIM algorithm. On the other hand, the DOMAIN algorithm over-predicts some areas. The PA models (GLM, GAM1 and GAM2) tend to underpredict suitable areas while MAXENT produced the best results (but still with some areas over-predicted). All the algorithms showed difficulties predicting the low suitability ranges gradient, which is especially clear when looking at the lower suitability values (blue gradient) for static species (Fig 5a and 5b).

 week, comparing all the modelling techniques used. (a) (top left) species 1 , a static general-
Figure 5. Predicted suitability values for four different species (the species with an encounter rate of 1.4 encounters per 100km sampled for each type) on a randomly selected ist species; (b) (top right) species 6, a static specialist species; (c) (bottom left) species 11, a dynamic generalist species; (d) (bottom right) species 16, a dynamic specialist species. Suitability ranges from 0 (white) to 1 (red).

433
sults are grouped by species type (static generalist, static specialist, dynamic generalist, dynamic specialist). Each bar indicates the results for the different encounter rates tested (1.4, $1,0.8,0.6$ and 0.2 encounters per 100 km sampled; values go from left to right) for each kind of modelling algorithm specified on the X-axis.

The response curves (Fig. S5-S24) reflect a similar pattern to those observed in the other validation analysis. When considering the weighting of the variables for the different species, the MAXENT approaches performed better in general, with lower variability in the results and curves more similar to those expected. Nevertheless, for the specialist species (Figs.S10-S14 and Figs.S20-S24) the curves for the regression methods (GLM and GAMs) also showed a good performance. Curves for DOMAIN and BIOCLIM were, in general, overestimated and unable to detect the different weighting of the variables.

Finally, the linear approach for MAXENT (MAXENT2 in the figures) for the static specialists' species produced better estimates. In contrast, the classic MAXENT approaches varied, producing similar results to the PA algorithms when working with high encounter rates. PB approaches and PA produced similar results for the dynamic specialists' species when using high encounter rates. However, with low encounter rates, the standard deviation values for the PB were lower than all the other approaches.

The use of different settings for GAMs (GAM1 and GAM2) and MAXENT (MAXENT1 and MAXENT2) proved to be effective in some cases, with different results observed depending on the settings used, as can be observed in all the results obtained (Fig. 4, 5 and 6).
gical absence. As Lobo et al. (2010) suggested, this can lead to obtaining absences in suitable environmental locations, especially in areas close to recorded presences. Therefore, a very intense sampling schema (unrealistic) would be required to obtain a genuine unbiased absence when working with these species.

Ideally, when trying to unveil or predict the occupied niche (or the distribution) of a species, actual absence data and PA models might be the best theoretical option (Sillero, 2011). As we discussed, our results suggest that PA models should not be applied when true absences are not available. PA models attempt to calculate accurate distribution estimates (distinguishing between occupied and non-occupied habitats), producing, in some cases, unrealistic and over-fitted predictions. While other methods, such as presence-background methods, are more flexible (Peterson et al., 2011). It is precisely this flexibility that might be a better choice when working with highly motile species, as when working in dynamic environments and mobile species, the non-observation of a species in a given location and time should not be considered as an absence but instead considered as a sample of the whole study area; which agrees with the definition of a background sample (Phillips et al., 2009). Summing the G and E space results resulted in a better (or at least equal) performance of PB approaches over all the other methods tested. Interestingly, Fiedler et al. (2018) found that Maxent can produce models similar to GAM presence-absence models when background data points are selected from observed absences. It is important to notice that the cited study only used AUC metrics and a point biserial correlation to compare the outputs. Instead, we decided to use a broader set of metrics (in the G and E space) to compare the model predictions, which allowed us to find some differences between modelling approaches that might be missed when using more simplistic comparison methods.
cean species occurs only in coastal areas, and we sample coastal and non-coastal areas. In that case, the chance of obtaining true absences is higher than if the species occur over a broader range of conditions. Therefore, using observed absences as real absences and applying presence-absence models might be a good choice in this scenario. Nevertheless, our results showed that even if PA models performed well, PB methods (and even PO in some cases) performed equally well.

Furthermore, our results agree with other findings on the importance of model settings and calibration (Warren et al., 2014). We obtained different results when using the same type of algorithm but with different settings or parameter combinations. Parameter choice can produce dramatic influences on model output. We found that using the GAM2 approach (using the sampling approach from "absences zones") produced better results than a classical GAM approach. The same was observed with the two settings used for MAXENT models. Hence, besides testing different algorithms, it is also critical to build models with different settings, using tools to perform detailed development of ecological niche models, such as kuenm (Cobos et al., 2019) or ENMeval (Kass et al., 2021).

Conclusion

As a result of the experiences and analysis performed here, we cannot recommend one unique way of considering observed absences for niche modelling when working with highly mobile species. Our results suggest that in highly mobile species, an excellent precautionary approach would be to consider the non-observation of a species as a background point (a sample of the conditions available in the sampled area) rather than an absence.

However, as Quiao et al. (2015) pointed out, there are no silver bullets, and therefore there is no fixed recipe that will work for all the cases. In some cases (such as working with static species with high prevalence), the absences encountered during the sampling process might be a good approximation to real absences. Therefore, PA methods would be an optimal choice. However, sufficient ecological knowledge of the species may be unavailable in many cases, especially when working with marine megafauna. In such cases, using a PB method might be a good starting point, which ideally should be complemented with PA and PO models. Afterwards, evaluation tests should be performed, comparing the outputs from the different algorithms tested in G and E space, as suggested by previous studies (Escobar et al., 2018, Warren et al., 2019).

Ideally, we would like to obtain the probability of finding a species on a specific site when modelling distributions for management purposes. In the present study, we focused on transect survey data; however other methods, such as tracking, could help obtain better insights into the species movements and habitat preferences. Scales et al. (2016) used movement simulations of blue whales to better investigate the potential of tracking data for predictive habitat modelling. Fine-scale movement data might provide an excellent opportunity to obtain distributional models at finer temporal resolutions and, therefore, improve management applications, such as collision risk assessments (Blondin et al. 2020). Moreover, PA models’ estimates are based on occurrence and absence data collected on a fixed time frame, and therefore they predict the probability of occurrence. Areas with high suitability values do not guarantee that the species will always be present. With highly motile species, occupancy rates might vary even more. They have broader home ranges, and these movements
can be related to many factors, such as competition, food availability or behaviour specificities. However, including these covariates is highly complex and requires continuous recording systems and further study. Long-term moored acoustic systems might help answer some of these questions, improving distributional and occupancy estimates (e.g. Fraiser et al., 2021).

Acknowledgements

We thank Claudia Faustino for the shapefiles to simulate the sampling transects used in the manuscript. Cetacean illustrations used in Figure 1 were made by E. Berninsone. This study was partially supported by: (i) INTERTAGUA, MAC2/1.1.a/385 funded by MAC INTERREG 2014-2020, (ii) Oceanic Observatory of Madeira throughout the project M1420-01-0145-FEDER-000001-OOM, and (iii) Fundação para a Ciência e Tecnologia (FCT), Portugal, through the strategic project UID/MAR/04292/2020 granted to MARE UI\&I. NS is supported by a CEEC2017 contract (CEECIND/02213/2017). Authors at ZSL (CY) and their research are supported by funding from Research England.

MF conceived the ideas and designed methodology; MF, NS and CY analyzed the data; MF, NS and CY led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

REFERENCES

Barbosa, A.M. (2015), fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol Evol, 6, 853-858. doi:10.1111/2041-210X. 12372

Baroni U.C., Ruffo, S. \& Taglianti, V.A. (1978). Materiali per una biogeografia italiana fondata su alcuni generi di coleotteri Cicindelidi, Carabidi e Crisomelidi. Memorie della Società Entomologica Italiana, 56, 35-92.

Block, B.A., Jonsen, I.D., Jorgensen, S.J., Winship, A.J., Shaffer, S.A., Bograd, S.J. et al. (2011) Tracking apex marine predator movements in a dynamic ocean. Nature, 475, 86-90.

Blondin, H., Abrahms, B., Crowder, L. B., \& Hazen, E. L. (2020). Combining high temporal resolution whale distribution and vessel tracking data improves estimates of ship strike risk. Biological Conservation, 250, 108757.

Becker, E.A., Forney, K.A., Foley, D.G., Smith, R.C., Moore, T. J., \& Barlow, J. (2014). Predicting seasonal density patterns of California cetaceans based on habitat models. Endangered Species Research, 23(1), 1-22.

Booth T.H., Nix H.A., Busby J.R., \& Hutchinson M.F. (2014) BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers Distrib, 20, 1-9.

Cañadas, A., \& Hammond, P.S. (2008). Abundance and habitat preferences of the shortbeaked common dolphin Delphinus delphis in the southwestern Mediterranean: implications for conservation. Endangered species research, 4(3), 309-331.

Carpenter, G., Gillison, A.N. \& Winter, J. (1993) DOMAIN — A flexible modeling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation, 2, 667-680.

Cobos M.E., Peterson A.T., Barve N. \& Osorio-Olvera L. (2019). kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281

Connor, T., Hull, V., Viña, A., Shortridge, A., Tang, Y., Zhang, J., Wang, F., \& Liu, J. (2018). Effects of grain size and niche breadth on species distribution modeling. Ecography, 41(8), 1270-1282.

Dennis, R.L., Sparks, T.H., \& Hardy, P.B. (1999). Bias in butterfly distribution maps: the effects of sampling effort. Journal of Insect Conservation, 3(1), 33-42.

Derville, S., Torres, L. G., Iovan, C., \& Garrigue, C. (2018). Finding the right fit: Comparative cetacean distribution models using multiple data sources and statistical approaches. Diversity and Distributions, 24(11), 1657-1673.

De Segura, A.G., Hammond, P.S., \& Raga, J.A. (2008). Influence of environmental factors on small cetacean distribution in the Spanish Mediterranean. Journal of the Marine Biological Association of the United Kingdom, 88(6), 1185-1192.

Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, M.J., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R.E., Schapire, R., Soberón, J., Williams, S., Wisz, M.S., \& Zimmermann, N.E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151.

Escobar, L.E., Qiao, H., Cabello, J., \& Peterson, A.T. (2018). Ecological niche modeling re-examined: A case study with the Darwin's fox. Ecology and evolution, 8(10), 4757-4770.

Evangelista, P. H., Kumar, S., Stohlgren, T. J., Jarnevich, C. S., Crall, A. W., Norman III, J. B., \& Barnett, D. T. (2008). Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distributions, 14(5), 808-817.

Faustino, C.E.S., Silva, M.A., Marques, T.A. \& Thomas, L. (2010). Designing a shipboard line transect survey to estimate cetacean abundance off the Azores archipelago. Arquipélago - Life and Marine Sciences, 27, 49-58.

Meynard, C.N., \& Kaplan, D. (2013). Using virtual species to study species distributions and model performance. Journal of Biogeography, 40(1), 1-8.

Naimi, B. (2015). usdm: Uncertainty Analysis for Species Distribution Models. R Package Version 1.

Perrin, W.F., Evans, W.E., \& Holts, D.B. (1979). Movements of pelagic dolphins (Stenella spp.) in the eastern tropical Pacific as indicated by results of tagging, with summary of tagging operations, 1969-76. NOAA Tech. Rep. NMFS No. SSRF-737.

Peterson, A.T., Soberón, J., Pearson, R. G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M., \& Araújo, M.B. (2011). Ecological niches and geographic distributions. Princeton Univ. Press.

Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., \& Blair, M.E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40(7), 887-893.

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., \& Ferrier, S. (2009). Sample Selection Bias and Presence-Only Distribution Models: Implications for Background and Pseudo-Absence Data. Ecol. Appl., 19 (1), 181-197.

Qiao, H., Soberón, J., \& Peterson, A.T. (2015). No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 6(10), 1126-1136.

Redfern, J.V., Ferguson, M.C., Becker, E.A., Hyrenbach, K.D., Good, C., Barlow, J., Kaschner, K., Baumgartner, M.F., Forney, K.A., Balance, L.T., Fauchald, P., Halpin, P., Hamazaki, T., Pershing, A.J., Qian, S.S., Read, A., Reilly, S.B., Torres, L.F. \& Werner, F. (2006). Techniques for cetacean-habitat modeling. Marine Ecology Progress Series, 310, 271-295.

Sala, I., Harrison, C.S., \& Caldeira, R.M. (2016). The role of the Azores Archipelago in capturing and retaining incoming particles. Journal of Marine Systems, 154, 146-156.

Scales, K. L., Hazen, E. L., Jacox, M. G., Edwards, C. A., Boustany, A. M., Oliver, M. J., \& Bograd, S. J. (2017). Scale of inference: on the sensitivity of habitat models for wideranging marine predators to the resolution of environmental data. Ecography, 40(1), 210220.

Sillero, N. (2011) What Does Ecological Modelling Model? A Proposed Classification of Ecological Niche Models Based on Their Underlying Methods. Ecol. Modell., 222, 13431346.

Sillero, N., Arenas-Castro, S., Enriquez-Urzelai, U., Vale, C.G., Sousa-Guedes, D., Martínez-Freiría, F., Real, R., \& Barbosa, A.M. (2021) Want to Model a Species Niche? A Step-by-Step Guideline on Correlative Ecological Niche Modelling. Ecol. Modell., 456

Silva, M.A., Prieto, R., Cascão, I., Seabra, M.I., Machete, M., Baumgartner, M.F., \& Santos, R.S. (2014). Spatial and temporal distribution of cetaceans in the mid-Atlantic waters around the Azores. Marine Biology Research, 10(2), 123-137.

Schoener, T.W. (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49, 704-726.

Scott, M.D., Chivers, S.J., Olson, R.J., \& Lindsay, R.J. (1993). Radiotracking of spotted dolphins associated with tuna in the eastern tropical Pacific. In Abstracts of the 10th Biennial Conference on the Biology of Marine Mammals, Galveston, Texas, 11-15 November 1993. Society for Marine Mammalogy, Lawrence, Kans. p. 97.

Soberón, J., \& Nakamura, M. (2009). Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19644-19650.

Soberon, J. \& Peterson, T. (2004). Biodiversity informatics: managing and applying primary biodiversity data. Phil. Trans. R. Soc. B 359: 689698.

Steele, J. H. (1991). Marine ecosystem dynamics: comparison of scales. Ecol. Res., 6: 175183.

853

854
855
856
857

To be or not to be: the role of absences in niche modelling for highly motile species in dynamic marine environments

Fernandez $\mathrm{M}^{1,2}$, Sillero N^{3}, Yesson C^{4}
1. MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal
2. cE3c/Azorean Biodiversity Group, Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
3. CICGE - Centro de Investigação em Ciências Geo-Espaciais, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal
4. Zoological Society of London, Institute of Zoology, London, UK

Figure S1: Response curves for the generalist static species, depicting the relation of the suitability with the environmental variables used to build the virtual species.

Figure S2: Response curves for the specialist static species, depicting the relation of the suitability with the environmental variables used to build the virtual species.

Figure S5: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist static species with encounter rate 1.4 groups/100km.

Figure S7: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist static species with encounter rate 0.8 groups/100km.

Figure S8: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist static species with encounter rate 0.6 groups/100km.

Figure S9: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist static species with encounter rate 0.2 groups/100km.

Figure S10: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the specialist static species with encounter rate 1.4 groups/100km.

Figure S11: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the specialist static species with encounter rate 1 group/100km.

Figure S12: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the specialist static species with encounter rate 0.8 groups/100km.

Figure S13: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the specialist static species with encounter rate 0.6 groups/100km.

Figure S14: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the specialist static species with encounter rate 0.2 groups/100km.

Figure S15: Response curves outputs from the different modeling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist dynamic species with encounter rate 1.4 groups $/ 100 \mathrm{~km}$.

Figure S16: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist dynamic species with encounter rate 1 group $/ 100 \mathrm{~km}$.

Figure S17: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist dynamic species with encounter rate 0.8 groups $/ 100 \mathrm{~km}$.

Figure S18: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist dynamic species with encounter rate 0.6 groups $/ 100 \mathrm{~km}$.

Figure S19: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist dynamic species with encounter rate 0.2 groups $/ 100 \mathrm{~km}$.

Figure S20: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist dynamic species with encounter rate 1.4 groups/100km.

Figure S21: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist dynamic species with encounter rate 1 group/100km.

Figure S22: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist dynamic species with encounter rate 0.8 groups $/ 100 \mathrm{~km}$.

Figure S23: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist dynamic species with encounter rate 0.6 groups $/ 100 \mathrm{~km}$.

Figure S24: Response curves outputs from the different modelling algorithms, together with the theoretical curves (at the bottom right) regarding the generalist dynamic species with encounter rate 0.2 groups $/ 100 \mathrm{~km}$.the

1008
1009

1010

Supplemental material: Appendix S2
 ODMAP table

To be or not to be: the role of absences in niche modelling for highly motile species in dynamic marine environments

1. MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento
da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal
2. cE3c/Azorean Biodiversity Group, Departamento de Biologia, Faculdade de Ciências e

Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
3. CICGE - Centro de Investigação em Ciências Geo-Espaciais, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal
4. Zoological Society of London, Institute of Zoology, London, UK

ODMAP element	Content
OVERVIEW	
Authorship	- Authors: Fernandez, M; Sillero, N; Yesson, C. - Contact e-mail: marc.fern@gmail.com - Title: To be or not to be: the role of absences in niche modelling for highly mobile species in dynamic marine environments
	- SDM objective/purpose: ecological inference / explanation
Model objective	- Main target output: continuous habitat suitability index
Taxon	Highly dynamic marine pelagic species (e.g. sharks, tuna, cetaceans...)
Location	Azores archipelago, Portugal.
Scale of analysis	- Spatial Extent (Lon / Lat): Longitude $32^{\circ} \mathrm{W}-24^{\circ} \mathrm{W}$, Latitude $36^{\circ} \mathrm{N}-40^{\circ} \mathrm{N}$ - Spatial resolution: 2 km - Temporal extent/time period: May to August (2013-2016) - Temporal resolution: 8-days - Type of extent boundary: rectangular
Biodiversity data overview	- Observation type: Simulated transect data - Response/data type: Presence-absence
Type of predictors	Climatic, topographic
Conceptual model	Hypotheses about species-environment relationships: Using a set of 20 virtual species and 3 environmental variables we tested how the presence of methodological absences in simulated standardized surveys might influence the accuracy of the predictions when using different modelling techniques.
Assumptions	Species-environment equilibrium, Availability of all important predictors, Perfect detectability
SDM algorithms	- Model algorithms: BIOCLIM, DOMAIN, GLM, GAM, MAXENT

	- Justification of model complexity: BIOCLIM and DOMAIN were fitted using the default settings. For the GLM quadratic approach was applied to allow more flexibility on the responses. Two different approaches were used for the GAMs fitting process: (1) using all presences and all theoretical absences pooled together, and (2) running ten iterations with all presences and 1000 theoretical absences selected randomly on each run, mimicking the "absences zones" approach used by Derville et al. 2016. We used a logit link for both approaches and allowed a maximum of three degrees of freedom for each spline to limit over-fitting (Becker et al., 2014). Furthermore, the model's effort was included as an offset term to account for variations in segment length. We fitted two different MAXENT approaches: (1) a classical approach with automatic features and (2) a more simplistic approach with only linear and quadratic features. We decided to test the second approach due to the virtual species simplistic response curves designed for the present study. We applied a regularization factor of 2 to avoid over-fitting.
Model workflow	We used 8-day grouped datasets to calibrate the models using a variety of modelling techniques. We applied a series of techniques to evaluate the model performance both in the geographical space and environmental space. We calculated the a test AUC with a random 5 -fold approach (approx. 25% of dataset for testing) and the Schoener's D (Schoener, 1968) and a fuzzy similarity index based on Baroni-Urbani \& Buser's (1976) in the geographical space to compare model predictions with virtual species known predictions. Moreover, a niche overlap was tested in environmental space. The Schoener's D index and the Spearman correlation rank were applied to test for differences between modelling scenarios. All the process was repeated for 100 iterations.
Software, codes and data	- Specify modelling platform: dismo and mgcv R packages. Maxent 3.4.3 - Specify availability of codes: N/A - Specify availability of data: N/A
DATA	
Biodiversity data	Virtual species, definitions can be found on the main paper and suppl. material.
	- Details on taxonomic reference system: N/A
	- Ecological level: population
	- Biodiversity data source: N/A
	- Sampling design: Surveys were performed around the islands and other vital areas, covering $39,316.9 \mathrm{~km} 2$ per year. We used the transects designed by Faustino et al. (2010) to last four months (12 weeks) per year, with four days of sampling per week over four years (2013-2016). Cruise speed was defined as 7.5 knots during 8 hours each sampled day to avoid any area's resampling.
	- Sample size per taxon: Sample sized varied depending on the encounter rates applied. 5 different encounter rates per 100km were applied ($1.4,1,0.8,0.6,0.2$), referring to the number of groups of animals encountered per 100km sampled.

	- Details on absence data collection: we assumed the no detection of a species during the surveys as an absence.
Data partitioning	- Selection of training data: for the AUC validation we used 75% of data of training data.
	- Selection of validation data: for the AUC a 25%. Other methods rely on the comparison with the already known distribution of the virtual species.
Predictor variables	- Predictor variables: Depth and slope. Sea Surface Temperature (SST).
	- Details on data sources: Depth: derived from the digital elevation model of the EMODnet Bathymetry portal. Slope: calculated from the digital elevation model using QGIS 3.2. SST: obtained from the NASA's Multi-scale Ultra-high Resolution (MUR) downloaded on 01/12/2018 from https://mur.jpl.nasa.gov/
	- Spatial resolution and spatial extent: all data were interpolated to a 2 km grid resolution.
	- Map projection: WGS84 Iatlon
	- Temporal resolution: 8-day means for sea surface temperature
	- Data processing: Depth was extracted from the EMODnet bathymetry and upscaled to a 2 km resolution. Slope was calculated from the same source using QGIS 3.2. SST products were downloaded at a daily 1 km resolution, we calculated 8 -day estimates using the means of SST daily values. Finally, all the layers were aggregated to $2 \times 2 \mathrm{~km}$ resolutions using a bilinear interpolation.
MODEL	
Multicollinearity	We applied a variance inflation factor (VIF) approach as implemented in the R package usdm (Naimi, 2015) to test for collinearity. No warning signs were found.
Model settings	We used species presence/absence as the dependent variable, and so the logistic link function and binomial error term were used in the GAMs and GLMs. The effort was logarithmically transformed and used as an offset term. GLM response functions were modelled as a quadratic function. Two different MAXENT approaches were used: (1) a classical approach with automatic features and (2) a more simplistic approach with only linear and quadratic features. To avoid overfitting problems, we used a standard regularization parameter of 2 .
Model estimates	Assessment of model coefficients: N/A
	Details on quantification of uncertainty in model coefficients: N/A
	Assessment of variable importance: N/A
ASSESMENT	

Performance statistics	- Performance statistics estimated on validation data: AUC with 25% for testing purposes.
	- Performance statistics estimated on test: comparison with "known" virtual species projections in the geographic and environmental space, using the ENMTools.
Plausibility check	Response plots were calculated and compared with the original response curves for the virtual species.
	- Expert judgements: geographic projections were compared with the theoretical projected suitability. Visual comparison of predictions and theoretical suitability was done to better understand the performance of the models.
PREDICTION	
Prediction output	Predictions of relative probability of presence expressed on a continuous scale.
Uncertainty quantification	N/A

