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Abstract— Point set registration (PSR) is an essential problem
in surgical navigation and image-guided surgery (IGS). It
can help align the pre-operative volumetric images with the
intra-operative surgical space. The performances of PSR are
susceptible to noise and outliers, which are the cases in real-
world surgical scenarios. In this paper, we provide a novel point
set registration method that utilizes the features extracted from
the PSs and can guarantee the convergence of the algorithm
simultaneously. More specifically, we formulate the PSR with
normal vectors by generalizing the bayesian coherent point drift
(BCPD) into the six-dimension scenario. Our contributions can
be summarized as follows. (1) The PSR problem with normal
vectors is formulated by generalizing the Bayesian coherent
point drift (BCPD) approach; (2) The updated parameters
during the algorithm’s iterations are given in closed-forms; (3)
Extensive experiments have been done to verify the proposed
approach and its significant improvements over the BCPD has
been validated. We have validated our proposed registration
approach on both the human femur model. Results demonstrate
that our proposed method outperforms the state-of-the-art
registration methods and the convergence is guaranteed at the
same time.

I. INTRODUCTION

Point set registration (PSR) is an essential element in
medical robotics, surgical navigation and computer-assisted
surgery (CAS) [1] [2]. The aim of PSR is to recover
the misalignment or the best transformation between two
point sets (PS). PSR is generally used in CAS to map the
preoperative volumetric image space with the intraoperative
patient space [3].

The iterative closest point (ICP) [4] algorithm is the
most classical and well-known algorithm for solving PSR
problem. An iterative framework is used in ICP to find the
optimal correspondences between points from two point sets
in the first step, and the rigid transformation is updated in
the next step. ICP iterates the correspondence steps and
registration steps until the convergence condition is met.
Although ICP achieves great success in many cases. there are
still disadvantages inlcuding: 1) is susceptible to noises and
outliers; 2) is sensitive to initial parameter values; 3) easily
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trapped in a local minimum [5]. Plenty of work in recent
years has been proposed to improve the ICP’s performances
in variant aspects [6] [7].

This work is motivated by solving the rigid PSR prob-
lem for real-world applications, such as the surgical sce-
narios where the PSs are easily disturbed by noises and
outliers. In this paper, we provide a novel PSR method
that utilizes the features extracted from the PSs and can
guarantee the convergence of the algorithm. Besides the
positional information of each point, our method also utilizes
the orientation information provided by the normal vectors
which can be readily obtained in these ways in practice:
1) using the PCA method in the neighborhood of a point
[8]; 2) utilizing a calibrated probe with a force/torque sensor
or other methods for range imaging [9]. The orientational
information can help to improve the robustness and accuracy
of the registration. An intuitive understanding is that with
great information comes great result. More specifically, we
formulate the point set registration problem with normal
vectors into a variational Bayesian inference (VBI) problem
[10] using a hybrid mixture model (HMM) which consists of
a von-Mises-Fisher (vMF) mixture model (FMM) [11] and
a Gaussian mixture model (GMM). The GMM is chosen to
model the positional information, while the FMM is used
to represent the orientational information (the distribution of
normal vectors). By VBI, we use an alternative distribution to
approximate the maximum of the posterior probability of the
overall HMM, which means that two point sets are optimally
registered. The significant advantage over formulating the
registration as a maximum likelihood estimation problem and
solving with the expectation maximization framework is, the
convergence can be well guaranteed in the Bayesian setting
[12].

In this work, we cast the pairwise PSR problem with
orientational information into a VBI frame for the first
time. Our contributions to this paper can be summarized as
follows.

1) The PSR problem with normal vectors is formulated by
generalizing the Bayesian coherent point drift (BCPD)
approach;

2) The updated parameters during the algorithm’s itera-
tions are given in closed-forms;

3) Extensive experiments have been done to verify the
proposed approach and its significant improvements
over the BCPD has been validated.



II. RELATED WORK

In this section, we first discuss the ICP algorithm and
its variants. Then we review the probabilistic methods, espe-
cially based on the variational Bayesian inference framework
and general EM framework. Finally, we discuss the deep-
learning-based methods and their flaws and limitations.

A. ICP and Its Variants

As we have mentioned in the previous section, ICP is
the most commonly used approach for rigid PSR. However,
the assumptions including appropriate initial transformation
matrix and less noise and outliers, cannot be always satisfied
in real-word application. There are many variants [7] [13] of
ICP to improve the PSR performance. In the category of
3D-3D registrations, two previous studies were conducted
to incorporate both positional and orientational information
into a probabilistic framework to solve the registration Two
studies [9] [14] under the ICP framework propose to in-
tegrate both positional and orientational information into a
probabilistic system to solve PSR problem. Billings et al.
[9] utilize the Gaussian and Kent distributions to represent
the anisotropic positional and orientational data respectively.
However, because of their ICP framework, these improved
algorithms still suffer from noise and outliers heavily.

B. Probabilistic Algorithms

In this paradigm, probabilistic PSR algorithms generally
adopt a soft assignment strategy which means the correspon-
dence confidences in two PS are modeled by the probabilistic
distributions. Coherent point drift (CPD) [15] is one of
the most representative probabilistic methods. In CPD, PSR
problem is formulated as a probability density estimation
problem based on a GMM. EM algorithm is applied to
solve the likelihood estimation problem, in which E step
calculates the posterior of latent variables and M step updates
the parameters of the transformation. JRMPC [16] proposes
a generative model that can jointly registers multiple point
clouds. Its performance exceeds or is comparable to the
classic and SOTA methods, such as GMMReg [17] and CPD
[18]. Moreover, some probabilistic algorithms which utilize
the normal vectors [19]–[22] can improve performances
compared with existing methods. However, these methods
are under the CPD framework and exist some problems on
the convergence, parameter tuning, and robustness.

Very recently, Hirose has proposed a method named BCPD
that reformulates CPD using VBI and achieves rigid and
non-rigid registration in one algorithm [12]. It uses varia-
tional inference to substitute the motion coherence theory of
CPD and improves several problems about the convergence,
parameter tuning, a restricted acceleration scheme.

C. Deep Learning Methods

Along with the development of deep learning on 3D point
clouds, such as PointNet [23], PointCNN [24] and DGCNN
[25], more and more deep-learning-based registration meth-
ods are proposed and have been successful in many PSR
problems. These methods usually map the point clouds to

high-dimensional space to learn features, then learn to find
the correspondences and optimize the transformations for the
best alignment. PointNetLK [26] learn the feature represen-
tations using PointNet and then estimate the alignment using
LK algorithm. PRNet [27] matches the correspondence based
on DGCNN feature and achieves the point set registration
using an end-to-end fashion.

Although deep learning provides some successful and
effective methods to solve the PSR problem, there are still
flaws and limitations. For example, 1) even the state-of-the-
art deep-learning-based approaches still struggle to produce
acceptable inlier rates in real problems [28]; 2) For the appli-
cation of computer assisted surgery, deep-learning methods
cannot guarantee the desired error bounds to surgeons in both
theoretical and practical aspects. In the contrast, some state-
of-the-art probabilistic algorithms can handle the registration
with different noise levels and outliers rates. Moreover,
given the measurement error of the markers such as fiducial
localization error (FLE), there exists developed theory to
accurately estimated the registration error such as Target
Registration Error (TRE) [29] or Total Target Registration
Error (TTRE) [30] model.

III. NOTATIONS AND PRELIMINARIES

Throughout this paper, we obey the following conventions:
• X = (x1, · · · ,xN ) ∈ R3×N - the measured (target)

position point set .
• X̂ = (x̂1, · · · , x̂N ) ∈ R3×N - the measured (target)

orientational vector set , each vector corresponds to one
point in X with the same subscript.

• Y = (y1, · · · ,yM ) ∈ R3×M - the original (source)
position point set , which represents the centroids of
GMM.

• Ŷ = (ŷ1, · · · , ŷM ) ∈ R3×M - the original (source)
orientation unit vector set , which represents the mean
directions of FMM.

• κ ∈ R - concentration parameter of the FMM.
• σ2 ∈ R - isotropic variances of the GMM.
• α = (α1, · · · , αM )T ∈ [0, 1]M - the membership prob-

abilities which represents mixing proportion of HMM
components, s.t.

∑M
m=1 αm = 1.

• c = (c1, · · · , cN )T ∈ {0, 1}N - cn = 0 if the nth point
in X is a outlier, otherwise equals 1.

• e = (e1, · · · , eN )T - the index vector that en = m
represents xn corresponds to ym.

• Θ - the set of all latent variables and parameters
{α, c, e,R, t, σ2, κ}.

• pmn ∈ [0, 1] - the posterior probability which represents
the correspondence probability between ym and xn, and
is defined as pmn = E[cnδm(en)].

• P = (pmn) ∈ [0, 1]M×N - the M×N probability matrix.
In this section, we will review the variational Bayesian

inference (VBI) [10]. The target of VBI is to estimate the
latent variables and parameters, Z, given the observed set,
D. For this purpose, the posterior distribution p(Z|D) or the
expectation E[Z] with respect to p(Z|D) is necessary. How-
ever, it is always impracticable in many practical models due



to the difficult calculation of the expectation and the posterior
distribution. Therefore, we need to apply an approximation
method such as VBI to reduce the computational difficulty. A
tractable distribution q(Z) is chosen to approximate the true
posterior distribution p(Z|D). Generally, we can define the
marginal probability of the model evidence p(D) as follows:

lnp(D) =∫
q(Z) ln

{
p(D,Z)

q(Z)

}
dZ︸ ︷︷ ︸

L(q)

−
∫
q(Z) ln

{
p(Z | D)

q(Z)

}
dZ︸ ︷︷ ︸

KL(q‖p)

(1)

Then, VBI can be regarded as the minimization of the
KL divergence above. It is equivalent to maximizing the
evidence lower bound (ELBO) L(q). To solve the problem
of parametric optimization, q(Z) is decomposed as q(Z) =∏N
i=1 qi (Zi), where each Zi is independent. After some

manipulations, the general solution of posterior approximate
distribution q?j (Zj) is obtained:

ln q?j (Zj) = Ei 6=j [ln p(D,Z)] + const, (2)

where Ei6=j [ln p(D,Z)] =
∫

ln p(D,Z)
∏N
i(6=j) qi dZi and

the additive constant can be set by normalizing the distribu-
tion q?j (Zj). VBI uses coordinate ascent algorithm to update
qj , which guarantees monotonically increasing of ELBO and
the convergence of VBI.

IV. METHODS

A. Problem Formulation

Given two point sets (PSs) X,Y and corresponding nor-
mal vector sets X̂, Ŷ, the points in Y are regarded as the
centroids of GMM while the mean directions of the FMM is
defined as the vectors from Ŷ. Moreover, the points and
normal vectors in the target point set X and orientation
unit vector set X̂ are generated from the GMM and the
FMM respectively. The ultimate goal of our PSR is to find
the optimal rigid transformation matrix that matches (X, X̂)
and (Y, Ŷ). Under the framework of HMM, we define the
probability density function of xn given en = m (nth
observed generalized point is assigned to the mth HMM
component) as follows:

p
(
xn, x̂n | cn = m;R, t, σ2, κ

)
=

κ

2π (eκ − e−κ)e
κ(Rŷm)>x̂n︸ ︷︷ ︸

x̂n∼F(µo(ŷm,Θo),κ)

· 1

(2πσ2)
3
2

e
− 1

2σ2
‖xn−(Rym+t)‖2

︸ ︷︷ ︸
xn∼N(µp(ym,Θp),σ2)

=
κ

(2πσ2)
3
2 · 2π (eκ − e−κ)

e
κ(Rŷm)>x̂n− 1

2σ2
||xn−(Rym+t)‖2

,

(3)
where F(µ̂, κ) and N (µ, σ2) represent a vMF and a

normal distribution respectively. We denote ϕmn as a symbol
of Eq. (3). The outliers is defined as a uniform distribution
pout(xn) = 1/V to satisfy the normalization condition of
pout(xn) , where V is the minimum volume that can contain
all points in X. ω is used to denote the weight of this uniform
distribution, where ω ∈ [0, 1]. We use an explicit definition

δm (en) to indicate the correspondence where if en = m,
δm (en) is 1, otherwise 0.

Therefore, the joint probability density function of
p (xn, x̂n, cn, en) given (Y, Ŷ, α,R, t, σ2, κ) can be written
as follows:

p
(
xn, x̂n, en, cn | Y, Ŷ, α,R, t, σ2, κ

)
= {ωpout (xn)}1−cn

{
(1− ω)

∏M
m=1 (αmϕmn)

δm(en)
}cn

,

(4)
which consists of two mixture distributions: the left item have
two components, and the right item have M components.

Then we will introduce the approach to find the optimal
parameters R, t, σ2, κ using VBI algorithm under the HMM
framework described above.

B. Variational Bayesian Formulation

In this paper, Bayesian inference is used to solve the
problem of parametric optimization. Our task is to find a
distribution q(Θ) to approximate the true posterior distribu-
tion p(Θ|X, X̂,Y, Ŷ). In this section, we introduce the prior
distribution over the items in Θ and the joint probability
distribution to formulate the variational treatment of HMM.

1) Prior Distribution:
In this part, we introduce priors over the parameters.

We define a Dirichlet distribution over the membership
probabilities α as follows:

p(α) = Dir(α | λ1M ) = C(λ1M )

M∏
m=1

αλ−1m , (5)

where 1M is a column vector of all ones with size M .
C(λ1M ) is the normalization constant. The Dirichlet distri-
bution can be used to control the mixture proportion of HMM
components. With smaller λ, the data will further influence
the posterior, and the prior will bring less impact on the
posterior.

To simplify the variational model, we don’t introduce the
priors over the original point and normal vector set (Y, Ŷ),
the variance parameter σ, the concentration parameter κ,
transformation parameters R, t.

2) Joint Probability Distribution: After combining the
prior distribution into the HMM, we can write down the full
joint probability distribution:

p(X, X̂,Y, Ŷ,Θ) ∝

p(α)

N∏
n=1

p
(
xn, x̂n, cn, en | Y, Ŷ, α,R, t, σ2, κ

)
(6)

C. Variational Bayesian Approximate Posteriors

In this section, we will derive the approximated posterior
distributions based on the variational Bayesian inference
described in section III. According to mean field theory and
the conditional independence relation between variables and
parameters, q(Θ) can be factorized as follows:

q(Θ) = q1(α)q2(c, e)q3(R, t, σ2, κ). (7)



This factorization is applied to guarantee our Bayesian hybrid
mixture model to have a reasonably computable solution. We
update q(Θ) in each iteration.

1) q1(α):
Using the general solution (2) and the product rule for

probabilities, we can obtain the optimal solution for q?1(α)
as follows:

ln q?1(α) = Eq2,q3 [ln p(X, X̂,Y, Ŷ,Θ)] + const. (8)

Substituting the decomposition (6) into the solution and
removing the terms that are independent of α into the
normalization constant, we obtain

ln q?1(α) =

N∑
n=1

M∑
m=1

Eq2,q3 [cnδm(en) ln(αmϕmn)]

+

M∑
m=1

lnαλ−1m + const

=

M∑
m=1

lnαλ−1+ρmm + const,

(9)

where ρm =
∑N
n=1 pmn, and pmn = E[cnδm(en)] which

is the posterior that xn corresponds to ym. Taking the
exponential of the equation above, we obtain q?1(α) which
follows a Dirichlet distribution:

q?1(α) = Dir(α | λ1M + ρ) (10)

where ρ = P1N , P = (pmn) is the M × N probability
matrix.

2) q2(c, e):
Similar to the previous step, we continue to derive

the optimal solution of q2(c, e) which represents the shape
correspondence between two point sets. Substituting the joint
distribution (6) into the general solution (2) and removing the
terms that are independent of (c, e) into the normalization
constant, we obtain the optimal q?2(c, e) as follows:

ln q?2(c, e) =

N∑
n=1

[
ln {ωpout (xn)}(1−cn)

+

M∑
m=1

ln {(1− ω) 〈αm〉 〈ϕmn〉}cnδm(en)

]
+ const,

(11)
where 〈αm〉 = exp(E[lnαm]) and 〈ϕmn〉 = exp(E[lnϕmn]).
In the last part, we prove q1(α) is a Dirichlet distribution.
Therefore, making use of the standard results of the Dirichlet
distribution, we obtain :

〈αm〉 = exp[ψ(λ+ ρm)− ψ(λM +Np)], (12)

where we define Np =
∑N
n=1

∑M
m=1 pmn and ψ(·) is the

digamma function. Because the registration is rigid in this
paper and the variance is isotropic, then we have :

〈ϕmn〉 = ϕmn. (13)

Observing the Eq. (11), q?2(c, e) can be written in this form
q?2(c, e) =

∏N
n=1 q

?(n)
2 (cn, en), where

q
?(n)
2 (cn, en) =

1

C
· {ωpout (xn)}(1−cn)

M∏
m=1

{(1− ω) 〈αm〉 〈ϕmn〉}cnδm(en) .

(14)
Because only one component is effective for one pair of
en and cn, the normalization constant C is defined as the
sum of all components in Eq. (14) which can be written as
C = ωpout (xn) + (1 − ω)

∑M
m=1 〈αm〉 〈ϕmn〉 . Finally, we

obtain the solution of q?2(c, e) as the following:

q?2(c, e) =

N∏
n=1

(1− ρ′n)
1−cn

{
ρ′n

M∏
m=1

(
pmn
ρ′n

)δm(en)
}cn

,

(15)
where ρ′ = PT 1M and ρ′n =

∑M
m=1 pmn is the posterior

that xn belongs to a non-outlier. The posterior probability
pmn represents the correspondence probability between ym
and xn, and is computed as follows:

pmn =
(1− ω) 〈αm〉 〈ϕmn〉

ωpout (xn) + (1− ω)
∑M
m=1 〈αm〉 〈ϕmn〉

. (16)

Due to pmn = q
?(n)
2 (cn, en) = E[cnδm(en)], it is consistent

with previous definition. Observing the Eq. (15), we can find
q?2(c, e) consists of a categorical distribution and a Bernoulli
distribution. This part ensures the update of P and the
variables associated with P such as ρ and ρ′, with the Eq.
(16) improves the lower bound.

3) q3(R, t, σ2, κ):
In this part, we assume q3 as a Dirac delta function

[31] which models an idealized point mass at (R, t, σ2, κ).
It means that q3 is only described by the first moment.
Therefore, for the update of q3, we choose to maximize the
ELBO L(q) directly instead of applying the general solution
(2) of VBI. Given the approximated posterior distribution
q1(α) and q2(c, e), we obtain the evidence lower bound as
follows:

L(q) = E[ln p(X, X̂,Y, Ŷ,Θ)] + const =

− 3

2
NP log σ2 −NP log

(
eκ − e−κ

)
+NP log κ

−
N∑
n=1

M∑
m=1

pmn

(
1

2σ2
‖xn − (Rym + t)‖2

−κ
(

(Rŷm)
T

x̂n

))
+ const.

(17)

To maximize the ELBO with respect to R, t, σ2 and κ, the
first step we need is solving the partial derivative of Eq. (17)
with respect to σ2 and setting it to 0. Then the optimal σ2

can be written as:

(σ2)? =

∑N
n=1

∑M
m=1 pmn

(
‖xn − (Rym + t)‖2

)
3Np

(18)

We define the ξ(t) = (σ2)?. According to Eqs. (17) and
(18), we can see that minimizing ξ(t) is maximizing the



L(q). Then, the optimal t? = arg mint ξ(t) can be found by
solving ∂ξ(t)/∂t = 0. After calculations, we can obtain t?

as follows:
t? = x̄−Rȳ, (19)

where

x̄ = 1
Np

∑N
n=1

∑M
m=1 pmnxn = 1

Np
XTPT1M ,

ȳ = 1
Np

∑N
n=1

∑M
m=1 pmnym = 1

Np
YTP1N ,

(20)

represent the expectations of two position point sets respec-
tively.

To find optimal R? which maximizes the lower bound, we
should solve the optimization problem as follows:

R? = arg max
R
L(q)

= arg max
R
−

N∑
n=1

M∑
m=1

pmn

(
1

2σ2
‖xn − (Rym + t)‖2

−κ
(

(Rŷm)
T

x̂n

))
, s.t. RTR = I3, det(R) = 1

(21)
Let us introduce some notations at first as follows:

x̃n = xn − x̄, ỹm = ym − ȳ,

Hp = 1
σ2

∑N
n=1

∑M
m=1 pmnỹmx̃T

n,

Ho = κ
∑N
n=1

∑M
m=1 pmnŷmx̂T

n,
H = Hp + Ho.

Then substitute the optimal t? in Eq. (19) into R? in Eq.
(23), using the above notations, we obtain:

R? = arg max
R

(
1

σ2

N∑
n=1

M∑
m=1

pmnx̃T
nRỹm

+κ

N∑
n=1

M∑
m=1

pmn(Rŷm)Tx̂n

)
= arg max

R
Tr (R(Hp + Ho)) ,

(22)

where Tr(·) denotes the trace of a matrix. Applying the
lemma in [18], the optimal R? can be solved as follows:

R? = Vd(1, 1, det(VUT))UT, (23)

where U and V can be obtained by SVD of H as H =
UH′V

T, and d(·) is the diagonal matrix of a vector.
Then we can update t? and (σ2)? by

t? = x̄−R?ȳ,

(σ2)? =

∑N
n=1

∑M
m=1 pmn

(
‖xn − (R?ym + t?)‖2

)
3Np

.

(24)
For the update of κ, we use the method described in [11]

which divides κ into two parts. One part is produced by the
position error errp which is written as:

errp =

∑N
n=1

∑M
m=1 pmnx̃T

nRỹm∑N
n=1

∑M
m=1 pmn ‖Rỹm‖ ‖x̃n‖

. (25)

The other part is produced because of orientation error erro:

erro =
1

Np

N∑
n=1

M∑
m=1

pmn (Rŷm)
T

x̂n. (26)

Then we define err = εerrp + (1 − ε)erro with ε = 0.5.
Then we can obtain the optimal κ? as the following:

κ? =
err(3− err2)

1− err2
. (27)

D. Implementation Details

The detailed procedures of our method are shown in
Algorithm 1. The model parameters should be first initial-
ized. Besides the parameters which have been illustrated in
Algorithm 1, we set κ to 10 empirically, and the value of
ω is initialized to 0.5. The λ is set to infinity to unify the
related setting of BCPD. One significant consideration is that
κ cannot be large to ensure the calculability of eκ. Therefore,
an upper bound is defined for κ as 100 during the update.
We also use the following conditions to determine whether
the algorithm converges: 1) the difference ∆σ2 between two
iterations is smaller than 10−6; 2) the maximum iterations is
100; 3) σ2 is smaller than the threshold value 10−6.

Algorithm 1 Robust Generalized Point Set Registration
Based on Variational Bayesian Inference

1: Initialization: R = I3, t = 03×1, ω, κ, λ, σ2 =
1

3MN

∑N
n=1 .

∑M
m=1 ‖xn − ym‖2, 〈αm〉 = 1

M .
2: repeat
3: - Update 〈αm〉, ϕmn and P = (pmn) by (12), (13)

and (16) respectively
4: - Update R and t by (23) and (24)
5: - Update σ2 and κ by (24) and (27)
6: until Convergence.
7: return R? and t?.

V. EXPERIMENTS

Two groups of experiments are conducted to validate the
robustness and accuracy of our proposed method. The source
point sets (Y, Ŷ) are generated from the CT model of
the femur bone which is shown in Fig.1. The target point
(X, X̂) are produced by sampling from the CT model point
set (Y, Ŷ). We then add two different noise levels to the
points of (X, X̂) in two groups of experiments respectively.
Furthermore, each group is divided into nine cases where
the different ratio outliers are added to the target point to
produce the final disturbed (X, X̂). We do 100 trials in
every case and define the number of X as 100 (excluding
outliers). The ground-truth value of rigid transformation
matrix [Rtrue, ttrue] in each case is randomly chosen from
[10◦, 25◦] and [10mm, 25mm]. Then the final source point
set misaligned (Y, Ŷ) are generated by applying the real
[Rtrue, ttrue] to (Y, Ŷ).

We use the rotation error and translation error as reg-
istration errors and compute the mean errors among 100
trials in each case to evaluate the performance. We de-
fine the rotation error and translation error as follows:
θerror = arccos

[
tr
(
RtrueR

>
cal − 1

)
/2
]
, and terror =

‖tcal − ttrue‖2, where Rcal and tcal are the transformation
matrix between disturbed (X, X̂) and misaligned (Y, Ŷ)
obtained by our method.



Fig. 1. Registration Process with 50% outliers and 1mm/1◦ noise. The unit of measure is mm. (a)-(d): the registration result in 0th, 5th, 10th and 100th
iteration using the proposed method; (e): ground truth. Blue: inliers in X; Red: outliers in X; Green: points in Y.

TABLE I
ROTATION AND TRANSLATION ERRORS UNDER LOW NOISE LEVEL. DIFFERENT RATIOS OF OUTLIERS ARE ADDED TO (X, X̂).

Error Type Method 10% 20% 30% 40% 50% 60% 70% 80% 90%
Rotation (Degree) ICP 2.6877 3.6509 3.9594 4.5431 4.8543 5.2485 5.3575 4.8144 5.2281
Rotation (Degree) BCPD 0.9949 1.1307 1.0474 1.5096 3.1661 3.4587 4.1637 3.7359 4.1753
Rotation (Degree) Proposed Method 0.9530 1.0261 1.0353 1.0143 1.1096 1.0123 0.9228 1.0080 1.1005
Translation (mm) ICP 1.0479 1.4309 1.6958 1.7979 1.8395 2.0176 2.1533 2.1878 2.0304
Translation (mm) BCPD 1.1007 0.6440 0.5283 0.8482 0.6397 0.5914 0.5633 0.6825 0.6329
Translation (mm) Proposed Method 0.4804 0.5800 0.5228 0.5771 0.5204 0.5696 0.5581 0.5968 0.4781

TABLE II
ROTATION AND TRANSLATION ERRORS UNDER HIGH NOISE LEVEL. DIFFERENT RATIOS OF OUTLIERS ARE ADDED TO (X, X̂).

Error Type Method 10% 20% 30% 40% 50% 60% 70% 80% 90%
Rotation (Degree) ICP 3.5297 4.2803 4.5789 5.0979 5.3169 4.9937 5.2821 5.9766 5.1078
Rotation (Degree) BCPD 2.3523 2.5753 2.8529 3.2450 3.6830 4.2149 3.9536 4.3385 4.3145
Rotation (Degree) Proposed Method 2.2005 2.2277 2.5437 2.3418 2.2074 2.3365 2.1846 2.4130 2.8599
Translation (mm) ICP 1.3525 1.7002 1.9964 1.9823 2.1776 2.0680 2.0100 2.1745 2.0908
Translation (mm) BCPD 1.2486 1.1849 1.8629 1.2522 1.7430 1.9102 1.8588 1.8648 1.8916
Translation (mm) Proposed Method 1.1780 1.1585 1.1992 1.2345 1.1735 1.1423 1.2638 1.3381 1.2843

A. Low Noise Level

In the first experiment, the disturbed (X, X̂) are gener-
ated in two steps: 1) add the low noise 1mm/1◦ standard
deviations (std) to X and X̂ respectively. To obtain 1◦ std,
we define κ = 3200 following the illustration in [9]. 2) Add
nine ratios of outliers from 10% to 90% with an interval of
10%. The number of inlier points is fixed at 100. The outliers
are generated by adding a uniformly distributed displacement
within [20mm, 30mm] to the randomly sampled points from
the CT model point set. Then we obtain the disturbed (X, X̂)
with N = 110 to 190. We compare our method with ICP [4]
and BCPD [12]. One hundred trials are conducted for each
case.

B. High Noise Level

Similar with the last part, we set κ as 800 to obtain the
std of 2◦. Then the high noise 2mm/2◦ stds are added to
(X, X̂). Following the same process described above, we
obtain the second group of disturbed (X, X̂). In this part,
we also evaluate the performance of the proposed method
compared with ICP and BCPD.

VI. RESULTS AND DISCUSSION

A. Two Noise Levels

We summarize the results of the two experiments in Table
I and II respectively. In the first group, the low noise is added
to the target sets (X, X̂). As shown in Table I, both rotation
and translation errors increase for ICP and BCPD methods as
the ratio of outliers becomes larger. On the contrary, the per-
formance of our method is still stable with the increasing of
the outliers. In each case, our proposed method exceeds ICP
and BCPD, especially in the cases with more outliers. In the
second group, the high level of noise is added to (X, X̂). We
can find that every method performs worse with larger noise
by comparing Table II with Table I. However, the proposed
method is still stable like in Table I with the increasing of the
outliers and performs best in the three methods. It indicates
the accuracy and robustness of our proposed method. We also
use the ttest function in MATLAB to calculate the p-value
of our algorithm compared with ICP and BCPD respectively.
Almost all p-values are not more than 0.05 which means
0.05 significance level. It demonstrates that the errors in our
experiments are statistically significant.
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Fig. 2. Convergence speed of three methods with respect to the iterations. 1mm/1◦ noise and 50% outliers are chosen. Left: rotation error. Right:
translation error.
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Fig. 3. Convergence speed of three methods with respect to the iterations. 1mm/1◦ noise and 50% outliers are chosen. Left: rotation error. Right:
translation error.

B. Convergence Speed

Fig. 1(a)-(d) presents the process of registration in 0th,
5th, 10th and 100th iteration using the proposed method.
The Fig. 1(e) shows the ground truth of the registration
with [Rtrue, ttrue]. We can see that the [Rcal, tcal] in 10th
iteration is almost same as the result of the 100th iteration.
We also choose one trial which is added 1mm/1◦ noise and
50% outliers to test the convergence speed of three methods.
Fig. 2 shows the convergence speed of the rotation error and
translation error directly. We can see that our method obtains
the smallest error with a faster convergence speed compared
with the other two methods. ICP also converges fast, but the
final error is bigger. BCPD is just the opposite of ICP, which
has a slower speed with smaller errors.

C. Parameter ω

The parameter ω represents the weight of pout(xn) which
can be regarded as the prior that xn belongs to an outlier.
To find the influence of the ω on the registration results, we
set nine different ω from 0.1 to 0.9 with an interval of 0.1.
For each case, we also conduct 100 trials. As shown in Fig.

3, we can find the parameter ω have a very small influence
on the final registration error in different ω. Therefore, we
set ω = 0.5 in the initialization.

To sum up, our proposed algorithm can outperform the
state-of-the-art algorithms in 1) robustness to noise and
outliers; 2) registration accuracy; 3) convergence speed.

VII. CONCLUSIONS

In this paper, we proposed a robust VBI-based registration
method under the HMM framework. Besides the position
information of points, we also consider the orientation infor-
mation. Our method has a better performance on robustness
and accuracy compared with the state-of-the-art methods. It
has great potential in computer-assisted surgery (CAS) and
other PSR applications. For future work, we will try to intro-
duce the prior distributions over σ and κ, such as Gaussian-
Wishart distribution and Gaussian-Gamma distribution, and
explore the acceleration method for the complexity model.
Besides, we will further consider the anisotropic cases to
reduce related errors.



APPENDIX

A. Derivation of Eq.(17)
To simplify writing, we denote x = (X, X̂), y =

(Y, Ŷ), θ1 = α, θ2 = (c, e), θ3 = (R, t, σ2, κ). Given q(θ1)
and q(θ2), we have:

L(q) =
∫
q(θ) · ln p(x, y, θ)

q(θ)
dθ

=

∫
q (θ1θ2θ3) · ln

p (x, y, θ1, θ2, θ3)

q (θ1θ2) · q (θ3)
dθ1dθ2dθ3

=

∫
q (θ1θ2θ3) ln

p (x, y, θ1, θ2, θ3)

q (θ1 · θ2)
dθ1dθ2dθ3

−
∫
q (θ1θ2) q(θ3) ln q(θ3)dθ1dθ2dθ3

= Eq(θ1θ2θ3)[ln p(x, y, θ1, θ2, θ3)]− Eq(θ1,θ2) [ln q (θ1θ2)]

−
∫
q(θ3) ln q(θ3)dθ3

= Eq(θ1θ2θ3)[ln p(x, y, θ1, θ2, θ3)]−
∫
q(θ3) ln q(θ3)dθ3

+ const,
(28)

Because q3 (θ3) is a Dirac delta function, we can drop the
entropy term −

∫
q(θ3) ln q(θ3)dθ3. Then we obtain the form

of Eq. (17).
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