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ABSTRACT

In this paper we revisit potential biases in cosmic shear power spectra caused by bias terms that multiply up
to quadratic powers of the shear. Expanding the multiplicative bias field as a series of independent spin-B fields
we find terms <B that multiply integer and half-integer powers of the shear. We propagate these biases into
shape measurement statistics and the cosmic shear power spectrum. We find that such biases can be measured
by performing regression on calibration data. We find that for integer powers of shear the impact of quadratic
order terms on the power spectrum is an additional bispectrum dependency; ignoring quadratic terms can lead
to biases in cosmological parameters of up to 2(<2 + <−2 − <6)0.4f for Stage-IV dark energy experiments,
but that the susceptibility to them can be decreased by using methods to remove small-scale sensitivity. We
also find, for half-integer powers of the shear that, for a Stage-IV experiment, biases are required to be known
to better than approximately f[<0 + 15(<1 + <3) + 0.1(<−1 + <5)] ≤ 0.01. In future, Stage-IV dark energy
experiments should seek to measure and minimise such all such bias terms.

1. INTRODUCTION

The weak lensing effect on galaxies images is to induce a change in the third eccentricity or third flattening, known as shear.
But the inference of shear from data can be biased with respect to the true shear by many effects, for example inaccuracies in
the algorithms used to measure galaxy shapes (Heymans et al. 2006; Massey et al. 2007; Bridle et al. 2010; Kitching et al. 2012;
Mandelbaum et al. 2015), the size of the point spread function (PSF) (Hoekstra et al. 2017; Kannawadi et al. 2019; Gatti et al.
2021), detector effects (Antilogus et al. 2014), or detection effects (Hoekstra et al. 2015; Hoekstra 2021). To linear order the two
biases that relate the inferred/measured shear to the true shear are a multiplicative bias (that multiplies the true shear by a value)
and an additive bias (that adds a value to the true shear). The propagation of such biases into cosmic shear power spectra is shown
in Kitching et al. (2019, 2020, 2021), that include multiplicative and additive biases and the impact of masked data sets.

In the majority of weak lensing studies to date (see e.g. Bridle et al. 2010; Mandelbaum et al. 2015; Hildebrandt et al. 2020;
DES Collaboration et al. 2021) a linear multiplicative bias has been assumed (Guzik & Bernstein 2005; Huterer et al. 2006). This
may appear to be a reasonable approximation, because the amplitude of shear is typically small and so quadratic terms may be
even smaller. However, going beyond this assumption Heymans et al. (2006) and Kitching et al. (2012) both fitted a quadratic
term to the available methods at the time, and found values for a coefficient describing this effect of between 0.01 − 1, depending
on the method in question. In this paper we revisit the impact of such quadratic terms.

As discussed in Kitching et al. (2021) the observed shear field, including biases, noise, can be written to linear order, including
only integer powers of shear, in multiplicative bias terms like

W̃(
) = [1 + <0(
)]W(
) + <4(
)W∗(
) + 2(
), (1)

where each of the quantities are dependent on angular coordinates 
 = (\, q), where \ and q are latitude and longitude (or R.A.
and dec). The true spin-2 shear (in this nomenclature, spin-B means spin positive B) is W(
), and the measured spin-2 shear is
W̃(
). <0 (
) and <4(
) are spin-0 and spin-4 position-dependent multiplicative bias terms respectively. We note here that each
term needs to be spin-2, shear is spin-2 so at linear order only a spin-0 multiplicative bias or a spin-4 multiplied by a spin-(-2)
field can contribute to linear order. 2(
) is a spin-2 position-dependent additive bias. Here we do not include the un-lensed
uncorrelated galaxy ellipticity or a survey mask but refer to Kitching et al. (2021) for these generalisations; also any intrinsic
alignment terms are captured in the W(
) term. ∗ is a complex conjugate. In general we use G̃ to mean an observed quantity.

This can be generalised beyond linear order, and beyond integer powers of shear, including new multiplicative bias terms. To
do this we create a geometric series of powers of shear that result in integer-spin fields; because shear is spin-2 this means taking
either integer or half-integer powers1. This results in

W̃(
) = W(
) +


"∑

8=0

#∑

9=0

<
8, 9

2(1−8/2+ 9/2) (
)W8/2(
)W∗, 9/2(
)

, (2)

where 8 and 9 are integers, and the multiplicative bias sum runs up to order # and " respectively. We do not consider 8 < 0

or 9 < 0 because W8 ∈ [−1, 1] hence a negative power would lead to divergence as W8 → 0. The subscript in <
8, 9
B (
) refers to

a series of multiplicative bias terms with spin-2(1 − 8/2 + 9/2), where B = 2(1 − 8/2 + 9/2) ∈ Z (i.e. integer); the superscript

is a label for the term corresponding to a multiplication of W8/2 (
)W∗, 9/2(
), not a power. We note that 2(
) corresponds to

<
0,0
2

(
). In creating this geometric expansion terms with power 8/2 should not be equated with the (8 − 2) edth derivative of the

†t.kitching@ucl.ac.uk, © 2021. All rights reserved.
1 Taking any other power would result in fields that were not symmetric under rotations of 2c.
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shear field (see Castro et al. 2005), although both do have the same spin-weight. We assume that non-integer powers relate to
the positive root of the complex value in question i.e. we assume no additional phases of c(8:) where : ∈ Z (see Markushevich

& Silverman 2005), and assume any sign information of each term in the series is captured by the biases <
8, 9
B . In addition to a

geometric expansion of shear with spin-weighted bias coefficients (as in equation 2), one may also want to expand each bias as a

function of shear under the assumption that the biases are functions of the shear field <
8, 9
B (W, W∗) (e.g. as a Taylor expansion), but

we leave this for a future analysis.
If we expand equation (2) to second order in shear we find that

W̃(
) = W(
)
+<4,0

−2
(
)W2(
)

+<3,0
−1

(
)W3/2(
)
+<3,1

0
(
)W3/2(
)W∗,1/2(
)

+<2,2
0

(
)W(
)
+<1,0

1
(
)W1/2(
)

+<2,1
1

(
)W(
)W∗,1/2(
)
+<2,2

2
(
)W(
)W∗(
)

+<1,1

2
(
)W1/2(
)W∗,1/2(
)

+<0,1
3

(
)W∗,1/2(
)
+<1,2

3
(
)W1/2(
)W∗(
)

+<0,2
4

(
)W∗(
)
+<1,3

4
(
)W1/2(
)W∗,3/2(
)

+<0,3

5
(
)W∗,3/2(
)

+<0,4

6
(
)W∗,2(
)

+ 2(
), (3)

where <
8, 9

2
(
) are spin-2 multiplicative bias fields and similarly for the other terms. We define quadratic/second order as W8W∗, 9

where 8 + 9 ≤ 2. For the remainder of this paper we do not include the 
 in each equation for clarity, however an angular

dependence of each quantity should be assumed unless otherwise stated. Terms above second order O(W3) should be small (we

note the irony of saying this in a paper that is revisiting O(W2) that have been thought to have been unimportant), and we leave
investigation of the impact of these (if any exist) to future work. To simplify the analysis for the remainder of this paper we

make the assumption that <
8, 9
B = <

:,;
B for any 8, 9 , :, ; i.e. that for each spin-weight there is a single multiplicative bias field; this

assumption could be dropped in future. In this case we have

W̃(
) = W(
)
+<−2(
)W2(
)
+<−1(
)W3/2(
)
+<0(
) [W(
) + W3/2(
)W∗,1/2(
)]
+<1(
) [W1/2(
) + W(
)W∗,1/2(
)]
+<2(
) [W(
)W∗(
) + W1/2(
)W∗,1/2(
)]
+<3(
) [W∗,1/2(
) + W1/2 (
)W∗(
)]
+<4(
) [W∗(
) + W1/2 (
)W∗,3/2(
)]
+<5(
)W∗,3/2(
)
+<6(
)W∗,2(
)
+ 2(
), (4)

where we drop the superscripts for each field. We will now consider the integer and half-integer terms in turn, since these
have distinct impacts on the power spectrum. This also serves as a pedagogical exploration of the impact of these various
different biases. In Section 2 we present how integer quadratic terms can impact shape measurement and the cosmic shear power
spectrum; both of which can be understood analytically. In Section 3 we add half-integer quadratic terms and show how then can
impact impact shape measurement and the cosmic shear power spectrum. In Section 4 and 5 we discuss the results and present
conclusions.
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2. THE IMPACT OF QUADRATIC-ORDER INTEGER TERMS ON SHAPE MEASUREMENT

We first consider how biases of integer powers of shear are related to a canonical Cartesian parameterisation of the shear as
W = W1 + iW2 (where W1 are local distortions parallel to a local axes, and W2 are at 45 degrees). In this case we find that

ΔW1 = W̃1 − W1 = (<'
0 + <'

4 )W1 + (<'
2 + <'

−2 + <'
6 )W

2
1 + (<'

2 − <'
−2 − <'

6 )W
2
2

− (<�
0 − <�

4)W2 − 2(<�
−2 − <�

6)W1W2

+ 21

ΔW2 = W̃2 − W2 = (<'
0 − <'

4 )W2 + 2(<'
−2 − <'

6 )W1W2

+ (<�
0 + <�

4)W1 + (<�
2 + <�

−2 + <�
6)W

2
1 + (<�

2 − <�
−2 − <�

6)W
2
2

+ 22 (5)

where we have introduced the notation ΔW8 to mean the difference between the measured and true shear for component 8. Each

spin-B multiplicative bias field is split into its real and imaginary parts <B = <'
B + i<�

B or <B = |<B |exp(B\<) where \< is the
complex angle in the bias’ coordinate frame. Note that we consider <B and <−B to be independent multiplicative bias fields; one
could also assume these are related via <−B = <∗

B (and such a model could be tested against the calibration data). The inclusion
of imaginary parts in the <B fields allows for a rotation of the observed shear with respect to the true shear2.

One can also make a transformation of variables to D = (1/21/2) (W1 + W2) and E = (1/21/2) (W1 − W2), so that equation (5) can
be rewritten

ΔW2 =
1

21/2 (<
'
0 + <'

4 ) (D + E) + 1

2
(<'

2 + <'
−2 + <'

6 ) (D
2 + E2 + 2DE) + 1

2
(<'

2 − <'
−2 − <'

6 ) (D
2 + E2 − 2DE)

− 1

21/2 (<
�
0 − <�

4) (D − E) − (<�
−2 − <�

6) (D
2 − E2)

+ 21,

ΔW2 =
1

21/2 (<
'
0 − <'

4 ) (D − E) + (<'
−2 − <'

6 ) (D
2 − E2)

+ 1

21/2 (<
�
0 + <�

4) (D + E) + 1

2
(<�

2 + <�
−2 + <�

6) (D
2 + E2 + 2DE) + 1

2
(<�

2 − <�
−2 − <�

6) (D
2 + E2 − 2DE)

+ 22. (8)

One may then perform the following regression: ΔW1 vs. W1; ΔW1 vs. W2; ΔW2 vs. W1; ΔW2 vs. W2; and also ΔW2 vs. D (or E). By
taking derivatives of equation (5) we can predict the behaviour of these relationships and how they depend on the multiplicative
bias fields. The non-zero derivatives to second order include (we do not list all of these, but they are indicative):

mΔW1

mW1

=611 = (<'
0 + <'

4 ) + 2(<'
2 + <'

−2 + <'
6 )W1 − 2(<�

−2 − <�
6)W2;

mΔW1

mW2

=612 = 2(<2 − <−2 − <6)W2 − (<�
0 − <�

4) − 2(<�
−2 − <�

6)W1;

m2ΔW1

mW2
1

= @111 = 2(<'
2 + <'

−2 + <'
6 );

m2ΔW1

mW2
2

= @122 = 2(<'
2 − <'

−2 − <'
6 );

m2ΔW1

mW1mW2

= @112 = −2(<�
−2 − <�

6); (9)

for example. We use the notation 68 9 to mean a first derivative of ΔW8 with respect to W 9 i.e. the gradient mW8/mW 9 , and @8 9:
to mean a second derivative i.e. the quadratic term m2W8/mW 9mW: (we also will label @8DD = m2W8/mD2, and similar for E). By
performing regression between all the combinations of ΔW8 vs. W 9 and D (or E), one can fit a quadratic function to each of these,

2 In Kitching et al. (2008) a different approach was taken where a rotation operator was applied to the shear where < = |< |exp(iq), where q is an arbitrary
rotation angle between the bias coordinate frame and the galaxy image’s coordinate frame, so that W̃ = |< | |W |exp(2i(\ + q/2)), where \ = atan(W2/W1). Using
similar notation, in general the multiplicative terms from equation 2 could be rewritten like

<
8, 9
B W8/2W∗, 9/2eiq

= |<8, 9
B | |W |8/2− 9/2e2i( [8/2− 9/2]\+B\/2)eiq

= |<8, 9
B | |W |2e2i\ eiq , (6)

here q is rotation angle between coordinate frames, \ is the angle within a coordinate frame, and B = 2(1− 8/2+ 9/2). In this case the angle q can be incorporated
into the multiplicative bias field like

<
8, 9
B = |<8, 9

B |eBi(\+2q/B) . (7)

In this case \ is the angle within the coordinate of the bias field, and k = 2q/B is a rotation angle. It can then be seen that <'
B = |<8, 9

B | cos(B [\ + k]) and

<�
B = |<8, 9

B | sin(B [\ + k]). For B ≠ 0 a rotation can therefore be incorporated into the multiplicative bias. In this approach we also see that, for B = 0 one can

combine a rotation with the <0 term so that <'
0

= |<8, 9

0
| cos(k) and <�

0
= |<8, 9

0
| sin(k) i.e. an ‘effective’ imaginary term that results from combining the

scalar and rotational biases, even though <0 is itself a scalar.
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and thereby determine the value of the multiplicative bias terms

<'
0 ≃ 1

2
[611 + 622]; <'

4 ≃ 1

2
[611 − 622];

<'
2 =

1

4
[@111 + @122]; <'

−2 =
1

8
[@111 − @122 + 2@221];

<'
6 =

1

8
[@111 − @122 − 2@221]

<�
0 ≃

1

2
[621 − 612]; <�

4 ≃ 1

2
[621 + 612];

<�
2 =

1

4
[@211 + @222]; <�

−2 =
1

8
[@211 − @222 + 2@112];

<�
6 =

1

8
[@211 − @222 − 2@112], (10)

where @221 = @2DD − (1/4) (@211 + @222), and @112 = @2EE − (1/4) (@111 + @122). <'
0

, <'
4

, and <�
4

can only be approximately
determined, but can be solved exactly by subtracting off the quadratic terms from equation (5) once determined and performing
a linear regression. Alternatively a regression can be performed directly on equation (5), i.e. not performing regression in the
individual sub-spaces, by creating a loss-function function that is

j2
=

1

2

∑

6

{
[Δ̃W1,6 − ΔW1 (<B)]2

f2 (Δ̃W1,6)
+
[Δ̃W2,6 − ΔW2 (<B)]2

f2 (Δ̃W1,6)

}
, (11)

where Δ̃W8,6 are the measured deviations from calibration data where each simulated galaxy is labelled 6, and ΔW8 (<B) are given

in equation (5) over the whole (W1, W2) plane. f2 (Δ̃W8,6) are possible uncertainties on the measured deviations. This is simply the

j2 fit to the data, in future work this could be generalised to more sophisticated and Bayesian approaches. One then can minimise
this function with respect to the values of <B. In practice this is the approach that we take in Section 2.2.

This analysis differs from standard approaches that typically regress ΔW1 vs. W1 and ΔW2 vs. W2 and fit a linear relation where

611 = <lin
1

and 622 = <lin
2

, we will compare our more general analysis with this approach. If one fits a linear relation one

should expect that <lin
1

≃ <0 + <4 and <lin
2

≃ <0 − <4. The quadratic parameter @ fit to methods in Heymans et al. (2006)

to W1 is equivalent to (<'
0
+ <'

−2
+ <'

6
). The @ in Kitching et al. (2012) corresponds to a W |W | term, which can be written as

W(WW∗)1/2
= W3/2 (W∗)1/2, which in reference to equation (2) corresponds to a <0 term.

Finally, we note that equation (5) can be written in a compact form like

ΔW8 =<'
0 W8 + (−1)8−1<'

4 W8 +


2∑

9=1

2∑

:=1

[<'
2 |2 − 8 |f0, 9 : + <'

−2f5−28, 9 : + <'
6 (−1)8−1f5−28, 9 : ]W 9W:



+ (−1)8
2∑

9=1

<�
0f1,8 9W 9 +

2∑

9=1

<�
4f1,8 9W 9 +



2∑

9=1

2∑

:=1

[<�
2 |1 − 8 |f0, 9 : + <�

−2f28−1, 9 : + <�
6 (−1)8f28−1, 9 : ]W 9W:


+ 28, (12)

where 8 = 1, 2. We use Pauli matrices as a convenient indexing scheme, where fG, 9: are Pauli matrices with index 9 :, where the

sums pick up f0 =
(

1 0
0 1

)
(the identity matrix), f1 =

(
0 1
1 0

)
and f3 =

(
1 0
0 −1

)
terms.

It is important to note that in order to determine if a shape measurement method has quadratic dependence it is not sufficient
to fit a linear relation over a very small range of W8 (e.g. ≪ 0.1); where quadratic terms may not be measurable in a calibration
procedure, but nonetheless may be present. In such a case <2, <−2, and <6 may still be significantly non-zero (and therefore
lead to a misestimation of the power spectrum, see Section 2.3), but simply not be well-determined by the calibration approach.
In such cases these would be “hidden” biases that were unaccounted for. Throughout we use the range of the distribution from
Massey et al. (2007) of |W8 | ≤ 0.06.

2.1. Test on Gaussian simulations

To investigate the impact of assuming a linear relation between ΔW1 vs. W1 we generate 10,000 samples from a Gaussian

distribution W1 = N(0, f) with mean zero and width f = 0.1. We then construct W̃1 = W1 + (<0 + <4)W1 + (<2 + <−2 + <6)W2
1
+

(<2 − <−2 − <6)W2
2
+ 21 with <0 = 2 × 10−3, <4 = 0, <2 = 1 × 10−2, <−2 + <6 = <2 (in order to remove any W2 dependency

for this simple test) and 21 = 0. We then generate 10,000 realisations where W'
1
= W1 +N(0, f/

√
#sim) this mimic the process of

measuring ΔW1 from #sim simulations, and we generate 10,000 sets of these; we take #sim = 1 × 105. To each realisation we fit

functions ΔW1 = 611W1 + @111W
2
1
+ 21 and ΔW1 = 611W1 + 21.

In Figure 1 we show the result of these tests. As expected if the correct model is fitted (a quadratic form) then the estimated
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Parameter HSM (KSB)

<'
0

−0.00011 ± 0.0007

<�
0

0.00003 ± 0.0007

<'
4

−0.00078 ± 0.0007

<'
2

0.031 ± 0.024

<'
−2

−0.0052 ± 0.012

<'
6

−0.00092 ± 0.0012

<�
4

−0.00078 ± 0.0007

<�
2

−0.022 ± 0.024

<�
−2

0.031 ± 0.012

<�
6

−0.0036 ± 0.0012

21 −0.00011± 0.00004

22 0.00013 ± 0.00004

<lin
1

−0.00096 ± 0.0007

<lin
2

0.00074 ± 0.0007

2lin
1

0.00005 ± 0.00004

2lin
2

0.00004 ± 0.00004

X21 −0.00005± 0.00004

X22 0.00009 ± 0.00004

TABLE 1

Measured biases from GalSim demo 2, using the HSM method with PSF correction ‘KSB’. The top seven rows use a quadratic fit over all the ΔW1

vs. W1; ΔW1 vs. W2; ΔW2 vs. W1; ΔW2 vs. W2 and ΔW2 vs. (W1 + W2)/21/2 planes. The middle four rows assume a linear fit only to the ΔW1 vs. W1; and

ΔW2 vs. W2 planes. The bottom two rows show the different in the additive biases caused by assuming a linear fit relative to the quadratic case.

values for <0, <2 + <−2 + <6 and 21 are unbiased, however if a linear function is fitted the estimates for <0 and 21 are biased.
In particular 21 is biased by X21 ≃ 2 × 10−4. In Figure 1 we also show an example realisation of the ΔW1 vs. W1 plane in this

test setup. In Figure 2 we vary <2 by up to 1.5 × 10−2, keeping <−2 + <6 = <2, and show how the bias in 21 and <0 vary. We
compare these to requirements on <0 and 21 for a Stage-IV (Albrecht et al. 2006) dark energy experiment (Cropper et al. 2013).
We find that (under the assumptions of this simple test) if one assumes a linear fit then this introduces a spurious X21 ≃ 0.02<2

whereas the <0 term is relatively unaffected.

2.2. Test on a real method

To test whether such quadratic terms may be present in a real shape measurement algorithm we use the GalSim (Rowe et al.
2015) demo2 which uses a sheared, exponential profile for the galaxy; convolves it by a circular Moffat PSF; and adds Poisson
noise to the image. The HSM (Hirata & Seljak 2003; Mandelbaum et al. 2005) method is then used to determine the shear values,
and we investigate the PSF correction method ‘KSB’ (Kaiser et al. 1995). We generate #gal = 100,000 realisations where for each
we sample the true W1 and W2 from a uniform distribution between [−0.06, 0.06] with |W | < 0.06. We then minimise the function
in equation (11) over the set of <B values3.

We show the results in Figure 3 in the ΔW1 vs. W1; ΔW1 vs. W2; ΔW2 vs. W1; ΔW2 vs. W2; and ΔW2 vs. planes. It is important
to appreciate that these planes are projections of the 3D (ΔW8 , W1, W2) fit into 2D planes, therefore in each plot we show the
projection of the fitted surface into these planes. We also show the full planes at the bottom of the Figure. We find a reduced

j2
'
− 1 = min[j2/(#gal − #par)] − 1 = −6 × 10−5 where #par = 11.

The individual biases, as well as those found assuming a linear relation are shown in Table 1. The level of spurious additive
bias introduced is similar to that found using the simple Gaussian tests. We find that in particular <2 is significantly non-zero.
The key feature in these results that indicates non-zero quadratic terms is a non-zero ΔW1 vs. W2 dependency, which coupled with
a near-zero ΔW2 vs. W1 indicates a significant non-zero <2 term (see equations 5). These tests are not meant to be a definitive
statement on the amplitude of these biases for the HSM (KSB) method, but are meant to demonstrate that in a simple real context
such biases are non-negligible.

2.3. The Impact of Quadratic-Order Integer Terms on Cosmic Shear Power Spectra

In this Section we investigate how the presence of quadratic-order integer biases may impact the power spectrum of the shear
field. In this derivation we ignore the effect of masks and spatially varying multiplicative bias fields (both of which should be
negligible for propagation of such biases into power spectra, see Kitching et al. 2020, 2021). The two shear components can be

3 This is done using the scipy.optimize.minimize function; throughout we use f (Δ̃W8,6) equal to the standard deviation of the distribution of measured

Δ̃W8,6 point estimates which is f (Δ̃W8,6) ≃ 0.01. The validity of this approach was tested by creating data with known <B values and checking they were
recovered for the noise level matching those in the calibration sample used.
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Fig. 1.— A test on randomly generated W1 values (10,000 realisations of 10,000 galaxies) with W̃1 = W1+(<0+<4)W1+(<2+<−2+<6)W2
1
+(<2−<−2−<6)W2

2
+21

with <0 = 2 × 10−3, <4 = 0, <2 = 1 × 10−2, <−2 +<6 = <2 (in order to remove any W2 dependency for this simple test) and 21 = 0. Shown are the distribution
in the measured values of 611, 211 and @11 assuming a quadratic fit to values ΔW1 = 611W1 + @111W

2
1
+ 21 (top row), and a linear fit to the values ΔW1 = 611W1 + 21

(bottom row). The bottom right plot shows an example realisation.
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Fig. 2.— The biased caused in the inferred 21 and <0 caused by a non-zero <2 term, keeping <−2 + <6 = <2 and <4 = 0. The left plot shows the bias in 21

(blue line) and a shaded region ±1 × 10−4, the right plot shows the bias in <0 (red line) and a shaded region ±2 × 10−3.

combined to extract the E-mode component of the shear field via

�̃U (ℓ) =
∑

8

)8 (ℓ)W̃8,U (ℓ). (13)

Throughout we use Greek subscripts to label tomographic bins U and V, and Roman subscripts to denote shear components 8 and
9 . The trigonometric weighting functions, )8 (ℓ) are defined as: )1 (ℓ) = cos(2qℓ) and )2 (ℓ) = sin(2qℓ), where q; is the angular
component of vector ℓ which has magnitude ℓ. The �-mode auto-correlation and cross-correlation spectra, �

WW

ℓ;UV
can now be

defined as:
�̃U (ℓ)�̃V (ℓ′) = (2c)2X2(ℓ + ℓ

′)�WW

ℓ;UV
, (14)

where X2 is the two-dimensional Dirac delta. Assuming the Limber (Limber 1953; Kitching et al. 2017; Lemos et al. 2017),
flat-Universe (Taylor et al. 2018a), reduced shear (Deshpande & Kitching 2020), and flat-sky (Kamionkowski et al. 1998)
approximations, the �

WW

ℓ;UV
can be related to the three-dimensional matter over-density power spectrum %XX (k, j) by:

�
WW

ℓ;UV
=

(ℓ + 2)!
(ℓ − 2)!

1

ℓ4

∫ jlim

0

dj
,U (j),V (j)

j2
%XX (k, j); (15)

where

,U (j) =
3

2
Ωm

�2
0

22

3�(j)
0(j)

∫ jlim

j

dj′=U (j′) 3�(j′ − j)
3�(j′) , (16)

and j is comoving distance. WU (j) is the lensing kernel for sources in bin U, where Ωm is the dimensionless present-day matter
density of the Universe, 0(j) is the scale factor of the Universe, �0 is the Hubble constant, =U (j) is the probability distribution
of galaxies within bin U, and 2 is the speed of light in a vacuum.

To construct the change in the power spectrum caused by the presence of non-zero <2, <−2 and <6 multiplicative biases we
start with equation (12). We will follow the derivation of Deshpande et al. (2020b) (that is for an analogous problem of reduced
shear) and throughout we will assume that there is no strong spatial dependence of the multiplicative bias terms (which should be
accurate to a good approximation, see Kitching et al. 2020); in the following equations <B should be read as the mean of the real
part of the multiplicative bias fields (the imaginary parts will not contribute to the EE power spectrum). We will also only consider
terms of cubic order or lower in the lens potential (i.e. that depend on matter over-density power spectrum or bispectrum). As an

example of how bispectrum terms arise we consider just <'
−2

contribution where from equation (12) we have

W̃8 (
) = W8 (
) +
2∑

9=1

2∑

:=1

f5−28, 9 :<
'
−2W 9 (
)W: (
), (17)

where 8 = 1, 2, and we include the 
 explicitly. By computing the power spectrum of this quantity we find the uncorrected power
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Fig. 3.— Regression of differences between measured and true shear values in the the ΔW1 vs. W1; ΔW1 vs. W2; ΔW2 vs. W2; and ΔW2 vs. W1; for the HSM (Hirata
& Seljak 2003; Mandelbaum et al. 2005) method using the ‘KSB’ PSF correction method; using GalSim (Rowe et al. 2015) demo2. In each plot we show the
quadratic fit projected into each plane (blue regions lines), and in all cases a linear fit is shown (red lines). The bottom two plots show the (W1 , W2) plane with
colour showing the amplitude of ΔW1 (left) and ΔW2 (right).
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spectrum plus an additional term

(2c)2X2(ℓ+ℓ′)X�<−2

ℓ;UV
= <'

−2

∑

8

∑

9

∑

:

∑

;

)8 (ℓ))9 (ℓ′)f5−28,:; 〈(W:W;)U (ℓ)W 9 ,V (ℓ′)〉+)8 (ℓ′))9 (ℓ)f5−28,:; 〈(W:W;)V (ℓ′)W 9 ,U (ℓ)〉,

(18)
where X�

<−2

ℓ;UV
are the resulting corrections to the angular auto and cross-correlation spectra. Applying the Limber approximation,

and summing over all terms we obtain an expression:

X�
<'

−2

ℓ;UV
= 2<−2

[
(ℓ + 2)!
(ℓ − 2)!

]3/2
1

ℓ6

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (ℓ, ℓ′,−ℓ − ℓ
′), (19)

where the factor 2 comes from
∑

8 9: f5−28, 9 : . The factors of [(ℓ + 2)!/(ℓ − 2)!]3/2 and 1/ℓ6 arise from foregoing the flat-sky
approximation. �^^^

UV
, is the two-redshift convergence bispectrum, given by

�^^^
UV (ℓ1, ℓ2, ℓ3) =

1

2

∫ jlim

0

dj

j4
,U (j),V (j) [,U (j) +,V (j)]�XXX (k1, k2, k3, j), (20)

where kx = (ℓx + 1/2)/j (for G = 1, 2, 3). �XXX (k1, k2, k3, j) is the three-dimensional matter over-density bispectrum.
Going beyond this demonstrative case, by taking the full power spectrum of equation (4), and focussing the real parts of the

multiplicative bias fields, we find the uncorrected standard terms that only depend on <'
0

and <'
4

plus the following correction

X�ℓ;UV = 2(1 + <'
0 )<'

−2

[
(ℓ + 2)!
(ℓ − 2)!

]3/2
1

ℓ6

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (ℓ, ℓ′,−ℓ − ℓ
′)

−2(1 + <'
0 )<

'
6

[
(ℓ + 2)!
(ℓ − 2)!

]3/2
1

ℓ6

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (−ℓ,−ℓ′,−ℓ − ℓ
′)

+ 2(1 + <'
0 )<'

2

[
(ℓ + 2)!
(ℓ − 2)!

]3/2
1

ℓ6

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (ℓ,−ℓ′,−ℓ − ℓ
′)

−2<'
4 <

'
−2

[
(ℓ + 2)!
(ℓ − 2)!

]3/2
1

ℓ6

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (ℓ, ℓ′, ℓ + ℓ
′)

+ 2<'
4 <

'
6

[
(ℓ + 2)!
(ℓ − 2)!

]3/2
1

ℓ6

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (−ℓ,−ℓ′, ℓ + ℓ
′)

−2<'
4 <

'
2

[
(ℓ + 2)!
(ℓ − 2)!

]3/2
1

ℓ6

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (ℓ,−ℓ′, ℓ + ℓ
′). (21)

The varying prefactors come from the sums over the prefectors associated in equation (12), and the differing signs in convergence
bispectrum occur due to the various combinations of complex conjugation that result from the two-point correlation of equation
(4), making use of the fact that ^∗ (ℓ) = ^(−ℓ) since ^ is a real field (see e.g. Schneider et al. 2005). Note that the imaginary terms
do not contribute to the EE power spectrum.

To first order in multiplicative bias terms, and assuming the ℓ-mode dependent prefactor is unity, this reduces to

X�ℓ;UV ≃2(<'
−2)

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (ℓ, ℓ′,−ℓ − ℓ
′)

−2(<'
6 )

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (−ℓ,−ℓ′,−ℓ − ℓ
′)

+ 2(<'
2 )

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (ℓ,−ℓ′,−ℓ − ℓ
′). (22)

It can also be shown the integral over the second and third terms in equation (22) is in fact equal to the first term; because the only
angular dependence comes from the cosine in the outermost integral,and since cos(2(qℓ−[qℓ′+c])) = cos(2( [qℓ+c]−[qℓ′+c])) =
cos(2(qℓ − qℓ′)) (there is no angular dependence in the matter bispectrum because there is only one valid closed triangle for any
given combination of ℓ sides, so the angles between the sides are always the same; see e.g. Takahashi et al. 2020, for details).
Therefore the final expression, to linear order in <B is

X�ℓ;UV ≃ 2[<'
2 + <'

−2 − <'
6 ]

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (ℓ, ℓ′,−ℓ − ℓ
′). (23)

This is equal to the reduced shear approximation (Deshpande et al. 2020b), except with a prefactor 2(<'
2
+ <'

−2
− <'

6
).

Therefore the expected bias on cosmological parameters caused by ignoring quadratic terms in multiplicative biases should be

X\8 = 2(<'
2
+ <'

−2
− <'

6
)X\RS

8
where X\8 is a bias in cosmological parameter \8 , and X\RS

8
are the biases caused by the reduced
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shear approximation, that are given in (Deshpande et al. 2020b) for a Euclid-like Stage-IV dark energy experiment.
The biases on cosmological parameters derived in (Deshpande et al. 2020b), relative to their uncertanties (denoted f) are

XΩm = −0.10f, XΩb = 0.023f, Xℎ = 0.072f, X=s = −0.10f, Xf8 = 0.055f; all of which are relatively small. However,
XΩDE = 0.31f, XF0 = −0.32f, and XF0 = 0.40f, all of which are significant biases. We refer to Deshpande et al. (2020b) for
the full details of these calculations.

A reasonable requirement is X\8/f ≃ 0.25, to ensure 90% overlap between biased and unbiased confidence regions (see e.g.
Massey et al. 2013). Therefore if one wishes the contribution from quadratic terms to be sub-dominant to other sources of
potential bias, and only account for&% of the total budget then a requirement can be set on the sum of the quadratic multiplicative
biases of |<2 + <−2 − <6 | < &(0.25/0.4)/2 = 0.3125& (taking the largest of the potential biases, XF0 = 0.40f). If one chooses
a reasonable& = 0.1, this leads to a requirement that |<2 +<−2 −<6 | < 0.031. If one wishes & be much smaller this would lead
to a proportionately smaller requirement.

2.4. Discussion of Integer Terms

By combining the result from the previous Sections we therefore see that there are two effects of ignoring quadratic biases
of integer power in shear. Firstly that spurious additive biases may be present where X21 ≃ 0.02<2 for example. Because the

requirement for Stage-IV surveys is on the error on the additive bias where f(X28) ≤ 10−4 (Massey et al. 2013; Cropper et al.

2013; Kitching et al. 2021) this implies that f(<B) ≃ 5× 10−3. The exact impact of such a spurious additive term will depend on

the spatial variation of the spurious additive bias field (as shown in Kitching et al. 2021) with X�ℓ;8 9 = 2�
WX2

ℓ;8 9
+� X2X2

ℓ;8 9
, where the

autocorrelation of the additive bias and the cross-correlation with the shear field contribute to the change in the power spectrum.

Secondly, ignoring quadratic dependence can bias cosmological parameters by up to 2(<'
2
+ <'

−2
− <'

6
)0.4f. A reasonable

requirement on the amplitude of these terms is |<'
2
+<'

−2
−<'

6
| ≤ 0.031. However, if <2, <−2 and <6 are significantly non-zero,

and cannot be reduced, but are known accurately then the bispectrum could be included in any inference and the values of <'
2

<'
−2

and <'
6

marginalised over with some associated priors.
To mitigate the impact of these biases it should be noted that methods to remove small-scale sensitivity from the cosmic shear

power spectrum, e.g. k-cut (or x-cut) cosmic shear (Taylor et al. 2018b, 2020), can be used to remove susceptibility to reduced
shear corrections that have the same scale-dependent form as quadratic bias corrections. Using k-cut cosmic shear Deshpande
et al. (2020a) find that reduced shear corrections can be removed at the expense of only a 10% increase in 1f error bars on
cosmological parameters. If k-cut cosmic shear is applied this increase in error would be the total for both effects (i.e. 10% total,
not 20%). This worst-case (removal of problematic scales) should not adversely impact the objective for Stage-IV experiments to
constrain dark energy parameters to have a Figure-of-Merit of more than 400 (Amendola et al. 2013; Euclid Collaboration et al.
2020).

Combining both effects the overall change in the power spectrum caused by ignoring quadratic terms will be

X�UV ≃ 2�
WX2

ℓ;UV
+ � X2X2

ℓ;UV − 2[<'
2 + <'

−2 − <'
6 ]

∫ ∞

0

d2
ℓ
′

(2c)2
cos(2qℓ′ − 2qℓ)�^^^

UV (ℓ, ℓ′,−ℓ − ℓ
′), (24)

where any additional spurious additive bias causes the first two terms (the first of which may be negative), and the third is caused
by misestimation of the power assuming <2 = <−2 = <6 = 0.

3. INCLUDING THE IMPACT OF QUADRATIC-ORDER HALF-INTEGER TERMS ON SHAPE MEASUREMENT

We next turn to the half-integer terms in equation (4). In general these are more complex to understand because they do not
propagate into shape measurement calibration statistics or the power spectrum in a straightforward manner. If we consider the

<1W
1/2 term and express this in W1 and W2 we find for example that

<1W
1/2

= <1

[
(W2

1
+ W2

2
)1/4

[(W1 + (W2
1
+ W2

2
)1/2)2 + W2

2
]1/2

]
(W1 + (W2

1 + W2
2)1/2 + iW2). (25)

Hence, unlike the integer terms the analytic propagation of such biases ΔW1 and ΔW2 is not trivial. However, the prefactor

(W2
1
+ W2

2
)1/4/[(W1 + (W2

1
+ W2

2
)1/2)2 + W2

2
]1/2 is approximately constant over the range |W | < 0.06, with median value of 5 ≃ 5.4.

Therefore, a rule-of-thumb is that <1W
1/2 ≈ 5 <1W1 + i 5 <1W2 + 5 |W |<1, hence <1 introduces both a <0-like term and an additive

bias.
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We can write the change in W1 and W2 including such terms as

ΔW1 = W̃1 − W1 = (<'
0 + <'

4 )W1 + (<'
2 + <'

−2 + <'
6 )W

2
1 + (<'

2 − <'
−2 − <'

6 )W
2
2

− (<�
0 − <�

4)W2 − 2(<�
−2 − <�

6)W1W2

+ 21

+ (<'
1 + <'

3 )R(W1/2) + <'
2 R(W1/2W∗,1/2) + <'

0 R(W3/2W∗,1/2) + <'
4 R(W1/2W∗,3/2)

+<'
1 R(WW

∗,1/2) + <'
3 R(W

1/2W∗) + <'
−1R(W

3/2) + <'
5 R(W

∗,3/2)
− (<�

1 − <�
3)I(W

1/2) − <�
2I(W

1/2W∗,1/2) − <�
4I(W

1/2W∗,3/2)
−<�

1I(WW∗,1/2) − <�
3I(W1/2W∗) + −<�

−1I(W3/2) − <�
5I(W

∗,3/2)
ΔW2 = W̃2 − W2 = (<'

0 − <'
4 )W2 + 2(<'

−2 − <'
6 )W1W2

+ (<�
0 + <�

4)W1 + (<�
2 + <�

−2 + <�
6)W

2
1 + (<�

2 − <�
−2 − <�

6)W
2
2

+ 22

+ (<'
1 − <'

3 )I(W1/2) + <'
2 I(W1/2W∗,1/2) + <'

0 I(W3/2W∗,1/2) + <'
4 I(W1/2W∗,3/2)

+<'
1 I(WW

∗,1/2) + <'
3 I(W

1/2W∗) + <'
−1I(W

3/2) + <'
5 I(W

∗,3/2)
+ (<�

1 + <�
3)R(W

1/2) + <�
2R(W

1/2W∗,1/2) + <�
4R(W

1/2W∗,3/2)
+<�

1R(WW∗,1/2) + <�
3R(W1/2W∗) + <�

−1R(W3/2) + <�
5R(W

∗,3/2) (26)

where R and I refer to the real and imaginary parts of complex numbers respectively.
In total, to second order in shear, this results in 20 free parameters consisting of the real and imaginary parts of the sequence of

multiplicative biases <B with B = −2–5, plus the real and imaginary parts of 2.
In Figure 4 we show this full model fit to the calibration data for the HSB ‘KSB’ method described in Section 2.2. It can be

seen that the surface fit to the (ΔW1,ΔW2) plane is significantly more complex than that described by the fit only including integer
terms, but that it is also a better fit to the data, capturing several features that were not well-fit by the integer terms’ behaviour only.

We find a reduced j2
'
− 1 = min[j2/(#gal − #par)] − 1 = −4 × 10−5 where #par = 20; which represents an improvement over the

integer fit although both are good fits to the data. We find that the best-fit values of the full set of parameters are <'
0
= 0.012,

<'
4
= 0.006, <'

2
= 0.009, <'

−2
= 0.089, <'

6
= 0.043, 21 = −0.034, 22 = −0.019, <'

1
= −0.003, <'

3
= −0.002, <'

−1
= −0.044,

<5 = −0.023, <�
4
= −0.026, <�

2
= 0.011, <�

−2
= 0.064, <�

6
= 0.017, <�

1
= 0.001, <�

3
= 0.002,<�

−1
= −0.011, <�

5
= 0.006; errors

on each parameter are similar in order of magnitude to those in Table 1 (we exclude them here for clarity).
It can be seen that by allowing flexibility in the model to include all terms up to second order that the best fit values can change

significantly compared to the case of fitting only integer terms (see Table 1), in particular the additive bias values. This is a more
general, higher-dimensional, feature that was observed in Section 2.1 i.e. that if a simplified model is fit to calibration data that
the inferred values of the biases can be biased.

3.1. The Impact of Quadratic-Order Half-Integer Terms on Cosmic Shear Power Spectra

Taking all terms to linear order in bias the impact of half-integer terms on the cosmic shear power spectrum is to introduce the
following

X�ℓ;UV = 2[<'
−1�

W (W3/2)
ℓ;UV

+ <'
1 �

W (W1/2)
ℓ;UV

+ <'
3 �

W (W∗,1/2)
ℓ;UV

+ <'
5 �

W (W∗,3/2)
ℓ;UV

+<'
0 �

W (W3/2W∗,1/2)
ℓ;UV

+ <'
1 �

W (WW∗,1/2)
ℓ;UV

+ <'
2 �

W (W1/2W∗,1/2)
ℓ;UV

+ <'
3 �

W (W1/2W∗)
ℓ;UV

+ <'
4 �

W (W1/2W∗,3/2)
ℓ;UV

] + O(<2) (27)

where �
- (. )
ℓ;UV

corresponds to the correlation 〈-. ∗〉.
The impact of half-integer terms on the cosmic shear power spectrum is complicated and not simply a matter of taking a

suitable exponent of the power spectrum or the bispectrum. In general, for a tomographic redshift bin U, the spherical harmonic
representation of the shear can be written:

W̃U;ℓ< =
1

ℓ(ℓ + 1)

√
(ℓ + 2)!
(ℓ − 2)!4c8ℓ

∫ jlim

0

dj,U (j)
∫ ∞

0

d3:

(2c)3
9ℓ (: j)2.

∗
ℓ<( k̂)X̃(k, j), (28)

where X̃ is the matter overdensity of the Universe, and the spatial momentum vector k has magnitude : = |k |; ,U is given in
equation (16).

To construct the power spectrum corresponding to the cross-correlation between shear and a half-integer power 〈WW∗,1/2〉 for
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Fig. 4.— Regression of differences between measured and true shear values in the the ΔW1 vs. W1; ΔW1 vs. W2; ΔW2 vs. W2; and ΔW2 vs. W1; for the HSM (Hirata
& Seljak 2003; Mandelbaum et al. 2005) method using the ‘KSB’ PSF correction method; using GalSim (Rowe et al. 2015) demo2 using all terms up to second
order (equation 26). In each plot we show the fit projected into each plane (blue regions lines), and in all cases a linear fit is shown (red lines). The bottom two
plots show the (W1 , W2) plane with colour showing the amplitude of ΔW1 (left) and ΔW2 (right).
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Fig. 5.— Left: the power spectrum of a Gaussian realisation of a true shear field with �
WW

ℓ
(red line) compared to the input model (black solid line), and the

cross-correlation power spectra �
WW1/2
ℓ

(blue) and �
WW3/2
ℓ

(green) compared to a simple amplitude scaling of ��
WW

ℓ
with � = 6 and � = 0.035 (dashed and

dotted lines respectively). Right: the impact on the power spectrum of the observed bispectrum of Gaussian realisation of a true shear field with �
WW

ℓ
. The red line

shows �
W (WW)
ℓ

, the blue line �
W (WW1/2 )
ℓ

and the green line �
W (WW3/2 )
ℓ

. The solid, dashed and dot-dashed lines show ��
W (WW)
ℓ

with � = 1, 10 and 1 respectively.

example would therefore require a calculation that involved the following correlation in W̃8;ℓ<

X�
WW1/2

ℓ;UV
∝ 1

2ℓ + 1

∑

<

[∫ jlim

0

dj,U (j)
∫ ∞

0

d3:

(2c)3
9ℓ (: j)2.

∗
ℓ<( k̂)X̃(k, j)

]

[∫ jlim

0

dj,V (j)
∫ ∞

0

d3:

(2c)3
9ℓ (: j)2.

∗
ℓ<( k̂)X̃(k, j)

]∗,1/2
, (29)

a similar expression would exist to third order for the bispectrum. It can be seen that the standard factoring of the power spectrum
into kernels multiplied by a matter overdensity power spectrum is not possible in this case.

To understand the magnitude of such effects, rather than calculate such terms explicitly we instead create Gaussian random
fields consistent with a true shear field with a power spectrum described in equation (14), for a single tomographic bin, with
cosmological parameters set to Planck maximum likelihood values (Planck Collaboration et al. 2018) and a Flaugher et al. (2015)
number density (see Deshpande & Kitching 2020, for details). We then take half-integer powers of the generated shear field and

compute �
WW1/2

ℓ
and �

WW3/2

ℓ
. We show the result in Figure 5. We make an ansatz that the functional form of such terms will be

a simple amplitude scaling of the shear power spectrum ��
WW

ℓ
. We find that this ansatz does accurately fit the power spectra

with � = 15 and � = 0.1 for �
WW1/2

ℓ
and �

WW3/2

ℓ
respectively. We also find that �

WW1/2

ℓ
= �

WW∗,1/2

ℓ
and �

WW3/2

ℓ
= �

WW∗,3/2

ℓ
to a good

approximation.
Similarly we find that the second order terms are approximately fit with amplitude scaling of the contribution to the power

spectrum from the integer-shear bispectrum ��
W (WW)
ℓ

with � = 10 and 1 for �
W (WW1/2)
ℓ

and �
W (WW3/2)
ℓ

respectively. We emphasise
that these tests are only using Gaussian random fields and future work should test if such anstaz apply for more realistic simulations.

3.2. Discussion of Half-Integer Terms

We find in general that the inclusion of half-integer terms is much more complex than integer terms for several reasons. First
that the amplitude of such effects may be large – because shear is less than unity, the square root is larger than the original quantity;
secondly the impact on the change in W1 and W2 is highly non-trivial and not open to analytic derivation, as was the case with the
integer terms; thirdly the power spectrum and bi-spectrum terms are also difficult to compute analytically because they do not
factor in the way that integer terms do.

We find for the HSB method that the fit including half-integer terms is in general a better fit to the projected ΔW8 vs. W 9 planes,
but that the shape is complex. Furthermore all 20 free parameters corresponding to the real and imaginary parts of <B (with
B = −2–5) plus the additive terms are non-zero.

Regarding the power spectrum, we find that a simple amplitude scaling of the shear power spectrum is sufficient to capture
the behaviour of linear order half-integer terms, and that a simple scaling of bi-spectrum is sufficient to capture quadratic order
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half-integer terms. If the ansatz for the bispectrum terms is correct then applying :-cut cosmic shear should, in a similar manner
to the quadratic integer terms, remove sensitivity to such terms.

However, the half-integer terms also introduce new half-integer order bias parameters that lead to an overall change in power
spectrum of

X�UV ≃ 2[15(<'
1 + <'

3 )�
WW

ℓ;UV
+ 0.1(<'

−1 + <'
5 )�

WW

ℓ;UV
], (30)

assuming the amplitude scaling ansatz is correct.

4. DISCUSSION

In this section we address the overall impact of quadratic terms including both integer and half-integer terms. We have found
that quadratic terms introduce additional bispectra to the cosmic shear power spectrum. For integer terms these are multiplied by

<'
2

, <'
−2

and <'
6

, in the half-integer case by <'
0

, <'
1

, <'
2

, <'
3

and <'
4

. If no mitigation approach is taken cosmic shear power
spectra will depend on bispectra that include contributions from all these fields. However, as discussed in Section 4 bispectrum
terms can be removed by making scale-dependent cuts to the data vectors. Therefore the important contributions to the power
spectrum, up to second-order in shear, are

X�ℓ;UV ≃ 2[<'
0 + 15(<'

1 + <'
3 ) + 0.1(<'

−1 + <'
5 )]�

WW

ℓ;UV
, (31)

this differs from the usual expression that only includes the <'
0

term. For Stage-IV experiments requirements on <'
0

have been set

such that if f(<'
0
) ≤ 0.01 cosmological constraints should be unbiased (see Kitching et al. 2020; Cragg et al. 2022). We find that

this requirement should be on f[<'
0
+ 15(<'

1
+<'

3
) + 0.1(<'

−1
+<'

5
)] i.e. that <'

0
, <'

1
, <'

3
, <'

−1
and <'

5
need to be determined

with an overall summed uncertainty of 0.01. Assuming equipartition between the five terms would suggest that each term would

need to be constrained to 4 × 10−3. Of the five terms the large prefactor multiplying (<'
1
+ <'

3
) suggested that this is the most

important to constraint. Only <'
0

has been determined in experiments to date. We note that whilst the the metacalibration method
(see e.g. Huff & Mandelbaum 2017; Yamamoto et al. 2022) currently does not correct for non-scalar multiplicative bias fields
that is could be generalised to do so.

Finally, we note that the 20 dimensional parameter fit is very large, and there is considerable flexibility in the model and
degeneracy. Future work should investigate how to incorporate any uncertainties into cosmological inference, and how to place
appropriate priors on each multiplicative bias.

5. CONCLUSIONS

In this paper we revisit potential biases in cosmic shear power spectra caused by quadratic multiplicative bias terms. We find
that such biases can be measured by performing general regression on ΔW8 as a function of W1 and W2.

We find that terms of integer power in shear and first order in bias impact on the power spectrum is the same as that caused
by the reduced shear approximation, an additional bispectrum dependency, except multiplied by 2(<2 + <−2 − <6). Ignoring
quadratic terms can lead to biases in cosmological of up to 2(<2 + <−2 − <6)0.4f. A reasonable requirement on the amplitude
of these terms is |<2 + <−2 − <6 | ≤ 0.031. If one ignores quadratic terms entirely and instead fits only a linear dependence to
calibration data then this can in addition cause spurious multiplicative and additive biases.

Investigating terms of half-integer power in shear we find new linear order terms, and new quadratic terms. The linear order
terms introduce power spectrum changes proportional to the shear power spectrum, and the quadratic order terms introduce power

spectrum changes proportional to the bispectrum. We find that a requirement of f[<'
0
+ 15(<'

1
+<'

3
) + 0.1(<'

−1
+<'

5
)] ≤ 0.01

is needed for cosmological constraints from Stage-IV experiments to be unbiased.
In future therefore Stage-IV dark energy experiment should therefore seek to measure and minimise quadratic bias terms, and

investigation should be done to apply Bayesian parameter estimation and model comparison to find the best model and parameter
combination to apply to calibration data.
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