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Abstract 17 

Acid mine drainage (AMD) is a global issue and causes harmful environmental 18 

impacts. AMD has high acidity and contains a high concentration of heavy 19 

metals and metalloids, making it toxic to plants, animals, and humans. 20 

Traditional treatments for AMD have been widely used for a long time. 21 

Nevertheless, some limitations, such as low efficacy and secondary 22 

contamination, have led them to be replaced by other methods such as the bio-23 

based AMD treatments. This study reviewed three bio-based treatment 24 

methods using algae, biochar, and bacteria that can be used separately and 25 

potentially in combination for effective and sustainable AMD treatment to 26 

identify the removal mechanisms and essential parameters affecting AMD 27 

treatment. All bio-based methods, when applied as a single process and in 28 

combination (e.g. algae-biochar and algae-bacteria), were identified as 29 

effective treatments for AMD. Also, all these bio-based methods were found to 30 

be affected by some parameters (e.g. pH, temperature, biomass concentration 31 

and initial metal concentration) when removing heavy metals from AMDs. 32 

However, we did not identify any research focusing on the combination of 33 

algae-biochar-bacteria as a consortium for AMD treatment.    Therefore, due to 34 

the excellent performance in AMD treatment of algae, biochar and bacteria and 35 

the potential synergism among them, this review provides new insight and 36 
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discusses the feasibility of the combination of algae-biochar-bacteria for AMD 37 

treatment.  38 

  39 

Keywords: Acid mine drainage, treatment, sulfate reducing bacteria, 40 

bioremediation, heavy metal 41 

 42 

Abbreviations 43 

AMD    Acid mine drainage 44 

BET    Brunauer-Emmett-Teller 45 

EDX    Energy Dispersive X-ray Analysis 46 

EPS    Extracellular Polymeric Substances 47 

FTIR    Fourier Transform Infrared 48 

ROS    Reactive Oxygen Species 49 

SEM-EDX   Scanning Electron Microscopy with Energy Dispersive X-ray 50 

Analysis 51 

SRB    Sulfate reducing bacteria 52 

XRD    X-ray Diffraction Analysis 53 

ZVC    Zero-valent copper 54 

ZVI    Zero-valent iron 55 

56 
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1. Introduction  57 

Acid mine drainage (AMD) refers to the deposits and tailings generated by mine 58 

site exploration. These deposits and tailings can be exposed to the natural 59 

environment (water, air and microbial activity) and develop acidic conditions 60 

that lead to the leaching of metals and metalloids (e.g. Fe, Al, Zn, Cu, Cd, Pb, 61 

Hg, Ni, Co, Cr, As, Sb) (Alpers and Nordstorm, 1997; Bogush et al., 2016; 62 

Favas et al., 2016; Hudson-Edwards et al., 2011; Nordstrom, 2011). Generally, 63 

AMD comes from two main sources (Akcali and Kucuksezgin, 2011): 1) Primary 64 

sources include mine rock dumps, tailing impoundment, underground and 65 

open-pit mine works, pumped natural discharged underground water and 66 

construction rocks; 2) Secondary sources include treatment sludge ponds, rock 67 

cuts, and stockpiles.  68 

Acid mine drainage is harmful to humans, animals, plants, and aquatic life 69 

(Bogush and Lazareva, 2011; Kumari et al., 2010). For example, AMD causes 70 

fish death by affecting the function of the gills, and increased turbidity from soil 71 

erosion and precipitation layering on the riverbed can change the habitat for 72 

aquatic organisms (Bogush and Lazareva, 2011; Kumari et al., 2010). Some 73 

metals produced from the mining industry, such as Cd, Pb, Cu, Zn, Ni and Hg, 74 

can accumulate in the human body and cause serious diseases. For example, 75 

high levels of Hg in the body can cause Minamata disease, a neurological 76 

disease that can cause numbness, muscle weakness, and even death. 77 
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Elevated Ni levels can cause a dry cough, chest pain, and nausea. High Pb 78 

levels in humans can damage the nervous system and cause intellectual 79 

disability, and high levels of Zn in the human body can cause vomiting, skin 80 

inflammation and fever (Carolin et al., 2017). The biology of plants and aquatic 81 

life can also be affected by metal toxicity. Furthermore, these organisms not 82 

only act as receptors of the contamination but also as a pathway to humans via 83 

food chains (Kumari et al., 2010). Even if the contamination comes from a single 84 

point source, the impacts are not restricted to the local area but can also affect 85 

distant regions, as water can carry the contamination along rivers or streams 86 

(Bogush and Lazareva, 2011; Kumari et al., 2010).  87 

The mining industry has played a vital role in the economies of many countries 88 

and has supported their development for a long time. The total annual global 89 

mineral production between 2013 and 2017 was approximately 17 billion MT 90 

(Abinandan et al., 2018). Notably, the USA, China, Russia, Australia, and India 91 

are the top five countries in the mining industry (Reichl et al., 2019). For 92 

example, in 2017, China and the USA produced 4.1 and 2.0 billion MT of 93 

minerals, respectively (Reichl et al., 2019). While the UK is, at present, not on 94 

the list of top producers, with no active metal mining industry, it has a rich 95 

mining history as the cradle of the industrial revolution, and therefore it has a 96 

legacy of old mines with associated AMD still affecting large areas of the 97 

country. Some abandoned mining sites in the UK still contribute significantly to 98 
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heavy metal contamination of rivers and streams (Johnston et al., 2008). For 99 

instance, the Parys Mountain copper mine on the Welsh island of Anglesey 100 

discharges 24 tonnes of Zn and 10 tonnes of Cu into the Irish sea every year 101 

(Johnston et al., 2008). Because of these abandoned mining sites, 315 out of 102 

7,816 water bodies in the UK, equating to 2,840 km of rivers, are contaminated 103 

or potentially contaminated by AMD (Abinandan et al., 2018; Johnston et al., 104 

2008; Jones et al., 2016). 105 

There are several established methods for treating AMD such as precipitation, 106 

ion exchange, electrochemical, and membrane separation (Alcolea et al., 2012; 107 

Genty et al., 2012; Taylor et al., 2005). For instance, the open limestone 108 

channels (OLC) method uses a channel filled with limestone fragments to 109 

neutralise and increase the alkalinity of AMD (Alcolea et al., 2012); anoxic 110 

limestone drains (ALD) are buried limestone drainage lines with a gentle slope, 111 

sealed with a low permeability liner and capped with clay to ensure air cannot 112 

flow into the drain during operation (Taylor et al., 2005). These treatments have 113 

advantages, including low cost and ease of management. However, they also 114 

have certain limitations, for example, the need for a high quantity of limestone 115 

and also the generation of a large amount of sludge (secondary contamination), 116 

low efficacy, the inability to remove all metals/metalloids, and the need for a 117 

relatively large area (Alcolea et al., 2012; Bogush et al., 2016; Dufresne et al., 118 

2015). Therefore, bio-based treatment approaches for AMD should be 119 
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considered as an attractive alternative due to their higher efficiency, lower 120 

secondary contamination and potentially lower costs (I. Kim et al., 2014).  121 

Bio-based treatment generally refers to the use of either dead/processed or 122 

living biomass to reduce and remove heavy metals from AMD (I. Kim et al., 123 

2014). The common and suitable bio-based materials usually include algae, 124 

biochar, and bacteria (Cai et al., 2021; Loreto et al., 2021; Orandi et al., 2012). 125 

It is proven that each of these three treatments can remove metals from AMD 126 

effectively and are cost-effective. However, the main bottlenecks of these three 127 

AMD treatments are the lack of industrial AMD water treatment case studies for 128 

algae, the use of rudimentary technologies in biochar recycling and recovery of 129 

metals from biochar, and the need for highly effective carbon sources for 130 

preparing sulfate reducing bacteria (SRB) immobilising (Almomani and Bhosale, 131 

2021; Di et al., 2022; Shirvanimoghaddam et al., 2022). 132 

This paper reviews (database: Scopus, Science Direct and Web of Science) 133 

the use of algae, biochar, and bacteria separately and in combination for AMD 134 

treatment due to their high capacities for metal removal. The paper also 135 

discusses the removal mechanisms, parameters affecting metal removal, 136 

efficacy, and examples of different treatment applications. The limitations and 137 

gaps in existing studies are identified, and the recommendations for future 138 

research are outlined.  139 

 140 
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2. Algae application in AMD treatment  141 

A total of 14 studies were reviewed (screened from 1877 initial literature results 142 

from 2006 to 2022) that focused on the use of algae for AMD treatment. Most 143 

of these studies reported a relatively high removal efficiency, especially two 144 

studies with dry biomass (Bansod & Nandkar, 2016; Khoubestani et al., 2015). 145 

In terms of metal removal, most studies focused on Cu and Zn. The details of 146 

metal removal by algae reported by different authors are summarised in Table 147 

1 and discussed in the following sub-sections. 148 
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Table 1. Algae used for heavy metal removal from AMD. 149 

Algal species Growth method 
AMD composition (mg L-

1) 
Metal removal efficiency Reference 

Klebsormidium sp. 

Algae were collected from 

the mine site and grown in 

Lab, Photo-rotating biological 

contactor (PRBC) 

Cu 80-100, Mn 35-40, Mg 

85-100, Ca 18-2, Ni 2.0-

3.0, Zn 18-20, Na 20-25 

Removal efficiency is 35%-

50% by order 

Cu>Mn>Mg>Ca>Ni>Zn>Na 

Orandi and 

Lewis (2013)  

1.Oedogonium 

crissum 

2.Klebsormidium 

klebsii 

3. Microspora 

tumidula 

Field growth and laboratory 

experiment 

Al 4.8, Fe 79, Mn 51, Zn 

550 

In all study pH conditions, 

Oedogonium crassum was 

considered to have the highest 

metal bioaccumulation rate 

Oberholster et 

al. (2014)  

150 
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Table 1. Algae used for heavy metal removal from AMD. (Continued). 151 

Algal species Growth method 
AMD composition (mg L-

1) 
Metal removal efficiency Reference 

Stichococcus 

bacillaris 

Porous Substrate Bioreactor 

(PSBR) 
Zn 2.0-3.0 Zn 15-19 mg g-1 Li et al. (2015)  

Sargassum sp. Laboratory experiment Cu 20, Cr 20 Cu 71.4 mg g-1 
Jacinto et al. 

(2009)  

Scenedesmus 

quadricauda 

Laboratory experiment with 

dry biomass 
Cr 100 Cr 58.5 mg g-1, Cr 46.5 mg g-1 

Khoubestani 

et al. (2015)  

Chlorella sp. Stabilisation pond system Zn and Pb 5.0-20 Zn 34.4 mg g-1, Pb 41.8 mg g-1 
Kumar and 

Goyal (2010)  

  152 
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Table 1. Algae used for heavy metal removal from AMD. (Continued). 153 

Algal species Growth method 
AMD composition (mg L-

1) 
Metal removal efficiency Reference 

Ulothrix sp. 

Photorotating biological 

contactor (PRBC), algae 

collected from mine site 

Cu 80-100, Ni 2-3, Mn 35-

45, Zn 18-20, Sb 0.005-

0.007, Se 0.03-0.04, Co 

0.3-0.5, Al 0.07-0.09 

The metal removal efficiency is 

20-50% by order 

Cu>Ni>Mn>Zn>Sb>Se>Co>Al 

Orandi et al. 

(2012)  

Nephroselmis sp. 

Pipe Insert Microalgae 

Reactor (PIMR), AMD pre-

treated with active treatment 

Fe 20.5 ± 9.8 Fe 24.2 mg g-1 
Park et al. 

(2013)  

Spirogyra verrucosa 
Laboratory experiment with 

dry biomass 
Mn 50 Mn 40.7 mg g-1 (80.2%) 

Bansod and 

Nandkar 

(2016)  

  154 
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Table 1. Algae used for heavy metal removal from AMD. (Continued). 155 

Algae species Growth method 
AMD composition (mg L-

1) 
Metal removal efficiency Reference 

Nannochloropsis sp.  

Lab-scale growth, 

modified with silica and 

followed by coating with 

magnetite particles  

Cu 6.4-64 Cu 56 mg g-1 (87.5%) 
Buhani et al. 

(2021) 

Nannochloropsis 

oculata  

Laboratory growth and 

experiment 
               Cu 16 

Cu 99.9 ± 0.04% with 89.3 ± 

1.92% by metabolism and 5 g/ 

cell for adsorption 

Martínez-

Macias et al. 

(2019)  
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Table 1. Algae used for heavy metal removal from AMD. (Continued). 157 

Algae species Growth method 
AMD composition (mg L-

1) 
Metal removal efficiency Reference 

1. Phormidium 

ambiguum 

2. Pseudochloroco

ccum typicum  

3. Scenedesmus 

quadricauda var 

quadrispina 

 
Algae isolated from River 

Nile and Ain Helwan 

Spring & laboratory 

experiment 

 
Cd, Pb and Hg are all 0.01 

P. typicum had the highest 

removal efficiency of Hg 15.1 

mg g-1, Cd 5.5 mg g-1 and Pb 

74.5 mg g-1 

Shanab et al. 

(2012) 

Chlorella vulgaris 
Lab-scale growth Fe 788, Al 310, Mn 19.4 

Removal efficacy for all metals 

reached approximate 99.9% 
Brar et al. 

(2022) 

1. Spirulina platensis 

2. Chlorella vulgaris 
Lab-scale growth and 
dried with 100 ˚C oven 

Al, Ni and Cu 2.5-100 

S. platensis Ni 95%, Al 87%, 
Cu 62% 

C. vulgaris Ni 87%, Al 79.1% 
Cu 80% 

Almomani and 
Bhosale 
(2021) 

 158 
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2.1 Mechanism of metal removal by algae 159 

The process of heavy metal sorption by algae is complex. Generally, two stages 160 

are involved (Bwapwa et al., 2017). The first is extracellular sorption, which is 161 

rapid and can be assumed to be passive. This happens immediately after algae 162 

are in contact with metals and involve the following mechanisms: the interaction 163 

between metal ions and anionic cell ligands, micro-precipitation, surface 164 

complexing, covalent bonds between metal ions and proteins and other 165 

polymers. The second stage is intracellular accumulation. This is slower than 166 

the first stage and is assumed to be active. The mechanisms involved are 167 

species-specific and include, for example, phytochelation, which forms a metal 168 

complex. Figure 1 illustrates some of the mechanisms of metal removal by 169 

algae. Heavy metals are incorporated into algal vacuoles and then bonded with 170 

proteins, DNA, and lipids. Also, algae cells, especially some resistance cells, 171 

can effuse toxic metal complex substances, for example, Cu and Cd (da Costa 172 

and de França, 2003; Levy et al., 2008; Worms et al., 2006). In addition, cell 173 

walls, nuclei, mitochondria, chloroplasts, and some other parts of the cell may 174 

be reinforced by the membrane, which works as a barrier in adapted cells (Chen 175 

et al., 2012; Sandau et al., 1996; Tam et al., 1998). In these two stages, some 176 

of the metals are taken by the surface, and others may be taken in the inner 177 

cell due to metals’ type and algae growth preference (Du et al., 2022). Surface 178 

adsorption is essential since it represents the largest portion of the absorption 179 
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process (Chojnacka et al., 2005). Still, the relative importance of surface 180 

adsorption may vary depending on the metals and algae (Du et al., 2022). 181 

Nevertheless, the complexity of the algae surface makes it possible for various 182 

mechanisms to operate simultaneously (Monteiro et al., 2012).  Generally, the 183 

ability to remove metals by different algal groups shows a decreasing order of 184 

Chlorophyta > Phaeophyta > Rhodophyta (Al-Shwafi and Rushdi, 2008). 185 

However, knowledge of the distribution of metals in/on the algal cell and the 186 

stage involved in metal removal processes still needs to be explored.  187 

 188 

Figure 1. The mechanisms of heavy metal removal by algae. Extracellular 189 

accumulation includes surface complexing, micro- precipitation, covalent 190 

bonds, and physical adsorption. 191 
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2.2 Parameters that affect removal capacity by algae 192 

a) pH  193 

In many studies, pH was considered the most critical parameter affecting the sorption 194 

of metals by algae. According to Van Hille et al. (1999), a pH over 8 is required to 195 

enable the precipitation of metals as hydroxides. If the pH decreases, the removal of 196 

Zn is first to be affected, followed by Cu, Pb, and Fe, because different functional 197 

groups can precipitate metals at different pH conditions (Chojnacka et al., 2005). 198 

Monteiro et al. (2012) suggested an optimal pH range of 4.0–5.0 to remove Cu and 199 

Cd and a pH of 2.0 for Co. Similarly, Khoubestani et al. (2015) indicated that the best 200 

pH for Cr adsorption is 6.0, while Bansod and Nandkar (2016) reported that the best 201 

pH condition for Mn removal is 5.0.  202 

 The differing optimal pH values for metal removal found in the different studies reflect 203 

the different metal chemistry and different functional groups involved in the metal 204 

removal process. Each functional group has distinct pH ranges for binding metal 205 

cations (Monteiro et al., 2012). Under acidic conditions, a positive charge and 206 

protonation will happen for specific functional groups associated with H+ because of 207 

the repulsive forces (Khoubestani et al., 2015; Monteiro et al., 2012). Thus, some 208 

functional groups are only available within a specific pH value. For instance, carboxyl 209 

groups dominate at pH 2-5; phosphate becomes the main group at pH 5-9, while when 210 

the pH increases to 9 and then up to 12, carboxyl, phosphate, and hydroxyl/amine 211 
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groups are all available (Bansod and Nandkar, 2016; Monteiro et al., 2012). The 212 

general agreement is that at low pH, positively charged algae surfaces are the main 213 

contributors to biosorption because the binding sites, surrounded by H+, attract metal 214 

ions towards the algal surface. However, when the pH increases above 4.0, some 215 

divalent metals, e.g. Zn and Cu, readily precipitate as hydroxide, thus reducing 216 

biosorption (Bansod and Nandkar, 2016). In most cases, the initial pH of AMD is lower 217 

than 4.0. Thus, strategies on how to reduce the negative effects caused by low pH 218 

when exploring metal removal by algae should be considered, for example, isolation 219 

of superior strains. 220 

b) Initial metal ion concentration  221 

Initial metal ion concentration is another critical parameter that can affect the efficiency 222 

of algae in treating AMD. Most studies suggest that metal uptake positively correlates 223 

with the initial metal ion concentration (Al-Rub et al., 2004; Monteiro et al., 2012, 2009). 224 

This is due to higher initial metals concentration contributing to higher driving force, 225 

which can overcome mass transfer resistances of metal ions between biomass and 226 

solution and promote uptake (Al-Rub et al., 2004; Cruz et al., 2004). Also, collisions 227 

between biomass and metal ions increase under higher metal concentrations, 228 

enhancing the metal uptake process (Al-Rub et al., 2004). Monteiro et al. (2011) found 229 

that the total Zn removal by Scenedesmus obliquus (mg Zn g-1 algae) increased more 230 

than ten-fold when the initial Zn concentration was increased from 10 mg L-1 to 75 mg 231 
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L-1. However, metal absorption is more effective at a lower initial metal concentration. 232 

For example, Monteiro et al., (2009) reported that, although Desmodesmus 233 

pleiomorphus adsorbed and totally removed more Zn at the higher initial Zn 234 

concentration, it had higher removal efficacy of Zn at a relative lower Zn concentration 235 

(1 mg L-1) than higher Zn concentration (5-30 mg L-1). This is because more binding 236 

sites are available when the metal concentration is low (Khoubestani et al., 2015; 237 

Mehta and Gaur, 2005). Nevertheless, the weakness of the two studies conducted by 238 

Monteiro et al. (2011, 2009) is that the Zn concentration set in these studies was 239 

relatively low, which cannot fully explain the relationship between initial ion 240 

concentration and metal removal especially at high metal concentrations.  241 

However, in a study by Bansod and Nandkar (2016) on Mn removal (with Mn 242 

concentration of 10 mg L-1 to 100 mg L-1) by Spirogyra 18errucose, the total uptake 243 

efficiency reached the highest level (40.66 mg g-1) when the Mn concentration was 50 244 

mg L-1. When the concentration was over 50 mg L-1, the percentage removal of Mn 245 

did not continue to increase. Instead, it remained constant and even slightly decreased, 246 

which is different from most of the studies mentioned above. This may be explained 247 

by the research from Monteiro et al. (2012), who reported that this increase tends to 248 

reach saturation after the threshold.  249 

c) Temperature  250 
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Temperature is always considered an important parameter in both physicochemical 251 

and biological reactions. However, based on the available literature, the effect of 252 

temperature on heavy metal removal by algae is inconclusive. Some studies have 253 

shown a positive correlation between heavy metal removal by algae and temperature 254 

(Monteiro et al., 2012). Aksu (2002) reported increased Ni2+ biosorption by Chlorella 255 

vulgaris with increased temperature from 15 to 45 ˚C. One reason for this could be 256 

that increasing temperature may promote several active sites on algae to participate 257 

in the biosorption (Mehta and Gaur, 2005).  258 

On the other hand, several studies report a negative correlation between temperature 259 

and the ability of algae to absorb heavy metals. For example, the biosorption of Cd2+ 260 

by both Oedogonium and Sargassum is reported to have a lower sorption efficiency 261 

with increased temperature (Cruz et al., 2004; Gupta and Rastogi, 2008). The same 262 

result was also reported by Aksu (2001) for Cd removal using Chlorella vulgaris. Cd 263 

adsorption usually is exothermic, and thus the adsorption decreases with increasing 264 

temperature (Aksu, 2001; Cruz et al., 2004).   265 

Another group of studies observed almost no effect of temperature change on algae 266 

sorption. For example, Cossich et al. (2002) reported that the use of Sargassum to 267 

remove Cr showed the effect of temperature was not as significant as the effect of pH. 268 

Likewise, these relationships between temperature and metal removal were also 269 

reported by Mehta and Gaur, (2005). Overall, the general relationship between 270 
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temperature and metal removal effectiveness by algae is still unclear based on the 271 

discussion above. For example, the types of algae and metal may both affect the 272 

results. Also, seasonal parameters, such as precipitation and runoff, may cause the 273 

initial metal ion concentration and temperature to vary with time in AMD sites (Du et 274 

al., 2022). Therefore, a clear relationship between temperature and metal removal 275 

efficiency should be investigated for different combinations of metals and algal species, 276 

especially in practical AMD conditions.  277 

d) Biomass concentration  278 

Biomass concentration of algae can have significant effects on metal removal. Mehta 279 

and Gaur (2005) reviewed several previous studies and indicated that the cell 280 

concentration of Chlorella sp. negatively correlates with the binding of Cd per unit of 281 

mass. Similarly, they reported a decreased sorption capacity per unit of mass of Cu 282 

and Ni by increasing the Chlorella vulgaris concentration and decreased Pb sorption 283 

by increasing Spirulina maxima. Monteiro et al. (2012) reviewed some studies and 284 

reported this negative correlation. According to the literature, in most conditions, the 285 

biomass concentration and metal adsorption capacity negatively correlate per unit 286 

mass. The reason for this may be that the increase of biomass can lead to its partial 287 

aggregation thus reducing the surface area for adsorption, and the increase of 288 

biomass can also decrease the distance between the available adsorption sites 289 

(Monteiro et al., 2012). 290 
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However, increasing biomass concentration may lead to a higher amount of heavy 291 

metal removal (Mehta and Gaur, 2005). For example, Tam et al. (1998) reported that 292 

Cu concentration in solution decreased with increasing algae cell concentration. The 293 

increased metal removal with increasing biomass may be due simply to the increased 294 

availability of metal-binding sites caused by increasing biomass amount (Khoubestani 295 

et al., 2015).  296 

Thus, the general agreement is that increasing biomass concentration can reduce the 297 

algae removal capacity per unit mass. While it is possible that a higher biomass 298 

concentration may increase the total amount of metal removed, this is not a 299 

straightforward relationship (Mehta and Gaur, 2005). 300 

3. Biochar application in AMD treatment  301 

A total of 35 studies were reviewed (screened from 3788 initial literature results from 302 

2006 to 2022) which were concerned with biochar treatments for AMD. These studies 303 

used biochar with different feedstocks, pyrolysis methods, and modification methods. 304 

The studies reported successful removal of heavy metals from AMDs, although with 305 

different performances. The details of biochar used for metal removal from AMD 306 

reported in different studies are summarised in Table 2 and discussed in the following 307 

sub-sections. 308 
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Table 2. Biochar used for heavy metal removal from AMD.  309 

Biochar 

feedstock 

Temperature for biochar 

production (°C) 
AMD composition (mg L-1) 

Metal removal 

efficiency 
Reference 

Hardwood 450 Cu 256, Zn 260 
Cu 6.8 mg g-1, Zn 4.5 mg 

g-1 

Chen et al. 

(2011)  

Corn straw 600 Cu 256, Zn 260 
Cu12.5 mg g-1, Zn 11.0 

mg g-1 

Chen et al. 

(2011) 

Corn straw 400 Cd 20, Pb 20 
Cd 38.9 mg g-1, Pb 29.0 

mg g-1 

Chi et al. 

(2017)  

Hickory wood 
Pre-treated by KMnO4 and 

then 600 °C pyrolysed 
Pb 100, Cu 30, Cd 30 

Pb 153 mg g-1, Cu 34.2 

mg g-1, Cd 28.1 mg g-1 

H. Wang et 

al. (2015)  

Sugar cane 500 Pb 6.0-223 Pb 87.0 mg g-1 

Abdelhafez 

and Li 

(2016)  
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Table 2. Biochar used for heavy metal removal from AMD. (Continued). 311 

Biochar feedstock 
Temperature for biochar 

production (°C) 

AMD composition 

(mg L-1) 
Metal removal efficiency Reference 

Orange peel 500 Pb 6.0-223 Pb 27.9 mg g-1 
Abdelhafez and 

Li (2016)  

Almond shell 650 Ni and Co 50-200 
Ni 22.2 mg g-1, Co 28.1 mg 

g-1 
Kılıç et al. (2013)  

Sewage sludge 550 Pb 100-1000 Pb 30.88 ± 0.95 mg g-1 Lu et al. (2012)  

Peanut straw, soybean 

straw, Canola straw 
400 Cu 15-960 

Cu 37.12-89.6 mg g-1, 

peanut> soybean> canola 

Tong et al. 

(2011)  

White birch, Black spruce 
454, followed by KOH, CO2 

and steam activation 
Cu 100 Cu >99% 

Braghiroli et al. 

(2019)  
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 314 

Table 2. Biochar used for heavy metal removal from AMD. (Continued). 315 

Biochar feedstock 
Temperature for 

biochar production (°C) 

AMD composition 

(mg L-1) 
Metal removal efficiency Reference 

Papermill sludge 270-720 As 22.7, Cd 33.0 As 22.8 mg g-1, Cd 41.6 mg g-1 
Yoon et al. 

(2017)  

Nutshells, Plum stones, 

Wheat straws, Grape 

stalks and Grape husks 

600 
Cd 11.2-168, Pb 

20.7-310.5 

Over 95% removal efficiency for all 

four biochar 

Trakal et al. 

(2014)  

Pistachio green hull 450 Cu 70-270 Cu 19.8 mg g-1 (62%) 
Jalayeri and 

Pepe (2019)  
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Table 2. Biochar used for heavy metal removal from AMD. (Continued). 317 

Biochar feedstock 
Temperature for 

biochar production (°C) 

AMD composition 

(mg L-1) 
Metal removal efficiency Reference 

Olive pomace 
Hydrothermal 300, 

pyrolysis 300 and 600 
Cu 20 Cu 77.8% 

Pellera et al. 

(2012)  

Lolium perenne, Lolium 

perenne fibre, 

Miscanthus x giganteus, 

Salix viminalis, Fraxinus 

excelsior, Picea 

sitchensis 

300, 450 and 600 slow-

pyrolysis process 
Zn 18.5 ± 2.10 

Lolium perenne fibre has the best 

performance removal of Zn 93.0% 

 Hodgson et 

al. (2016) 

Platanus orientalis Linn 

leaves 

400, modified by H2O2, 

KMnO4 and K2Cr2O7 
Cd 50  

KMnO4 modified biochar reached the 

highest removal efficacy of Cd 54.7 

mg g-1 

Yin et al. 

(2022) 
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Table 2. Biochar used for heavy metal removal from AMD. (Continued). 319 

Biochar 

feedstock 

Temperature for biochar 

production (°C) 
AMD composition (mg L-1) Metal removal efficiency Reference 

Rice straw & 

Fe3O4 & CaCO3 
400 Cd and As 10-60  

Cd 6.34 mg g-1, As 10.1 mg 

g-1 

Wu et al. 

(2018)  

Rice husks 300, 500 and 700 Pb (concentration unknown) 

Pb RH300 14.1 mg g-1, 

RH500 21.7 mg g-1, RH700 

26.7 mg g-1 

Shi et al. 

(2019)  

Jarrah and pine 

wood chips 
700 Cu 17.3-195, Zn 17.6-173 

Cu 4.39 mg g-1, Zn 2.31 mg 

g-1 

Jiang et al. 

(2016)  

Oakwood, Oakbark 
400 and 450, followed by 

magnetic activation 
Pb and Cd 1.0-100  Pb 100%, Cd 53%-99% 

Mohan et 

al. (2014)  
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Table 2. Biochar used for heavy metal removal from AMD. (Continued). 321 

Biochar 

feedstock 

Temperature for biochar 

production (°C) 
AMD composition (mg L-1) Metal removal efficiency Reference 

Orange peel 400, 500, 600, 700, 800 Cd 100 Cd 115 mg g-1 
Tran et al. 

(2016)  

Sewage sludge 

500 (for sewage sludge (Cs)), 

ZnCl2 activated (for sludge-

based active carbon (SBAC)), 

modified by nitric acid at 

different concentration and 

temperature (MSBACs) 

Pb 100-200 

Pb MSBAC 26.6 mg g-1, 

SBAC 17.0 mg g-1, CS 4.42 

mg g-1 

Li et al. 

(2019) 
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Table 2. Biochar used for heavy metal removal from AMD. (Continued). 323 

Biochar feedstock 
Temperature for biochar 

production (°C) 

AMD composition (mg 

L-1) 
Metal removal efficiency Reference 

Dairy manure 350 
Cu 0-320, Zn 0-325, Cd 

0-560 

Cu 54.4 mg g-1, Zn 32.8 mg g-1, 

Cd 51.4 mg g-1 

Xu et al. 

(2013)  

Poultry litter 400 Al 51, Cu 30.7, Zn 26.8 Al 100%, Cu 100%, Zn 99% 

Oh and 

Yoon 

(2013)  

Sesame straw 700 
Pb, Cu, Cd, Zn and Cr 

are all 2.5-320  

Pb 102 mg g-1, Cu 55.0 mg g-1, 

Cd mg g-1, Zn 34.0 mg g-1, Cr 65 

mg g-1 

Park et al. 

(2016)  
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Table 2. Biochar used for heavy metal removal from AMD. (Continued). 325 

Biochar feedstock 
Temperature for biochar 

production (°C) 
AMD composition (mg L-1) Metal removal efficiency Reference 

Rice husks 
Hydrothermal 300, pyrolysis 

300 and 600 
Cu 20.0 Cu 90.1% 

Pellera et 

al. (2012) 

Common reed 

(Phragmites 

australis) 

450 

Fe 0.36 and 28.8, Al 0.13 

and 10.99, Ni 0.07 and 

0.39, Zn 0.03 and 0.19, Mn 

0.37 and 5.08 

Metal removal by 89.0%–

98.0% (Fe≈Al>Ni≈Zn>Mn) 

 

Mosley et 

al. (2015) 

Sludge 300 (nano zero-valent) Sb 10, 20 and 30 Sb 160.40 mg g-1 
Wei et al. 

(2020) 

Soy sauce residue 
400 and modified by nanoscale 

FeS and chitosan 
Cr 100-550 Cr 70.42 mg g-1 (76.07%)  

Yang et al. 

(2021) 
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Table 2. Biochar used for heavy metal removal from AMD. (Continued). 327 

Biochar feedstock 
Temperature for biochar 

production (°C) 

AMD composition 

(mg L-1) 
Metal removal efficiency Reference 

Oakwood, Oak bark, 

Pinewood Pine bark 
400 and 600, fast pyrolysis 

Cd, As, and Pb are 

all 0.01-0.10 

Oak bark has the highest removal 

efficiency Pb 11.4 mg g-1  

Mohan et 

al. (2007)  

Aloe vera shell 

700 followed by 

NiO.5ZnO.5Fe2O4 magnetic 

nanoparticles supported 

Ag 100 Ag 98.3% (244 mg g-1) 

Beigzadeh 

and 

Moeinpour 

(2016)  
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Table 2. Biochar used for heavy metal removal from AMD. (Continued). 329 

Biochar feedstock 
Temperature for biochar 

production (°C) 
AMD composition (mg L-1) Metal removal efficiency Reference 

Spent coffee 

grounds 
400 

Cd 0.228, Cu 0.194, Pb 

0.0156, Zn 0.0222 

Cd 99%, Cu 88%, Pb >99%, 

Zn 99% 

M.-S. Kim 

et al. 

(2014)  

Canna indica 300, 400, 500 and 600 Cd 30-200 Cd 189 mg g-1 
Cui et al. 

(2016) 

Coconut shell 400, MgCl2 modification  Pb 1000, Cd 1000 
Pb 271.53 mg g-1, Cd 91.95 

mg g-1 

Wu et al. 

(2021) 

Durian shell, 

Robinia 

pseudoacacia 

500, Fe/Zn modification  Cd 30-300 

Cd Durian shell biochar 

99.81%, Robinia 

pseudoacacia biochar 

71.08% 

T. Yang et 

al. (2021) 
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3.1 Heavy metal removal mechanisms  331 

Several mechanisms may be involved in removing heavy metals from 332 

contaminated solutions using biochar. As presented in Figure 2, these 333 

mechanisms include physical sorption, ion exchange, precipitation, 334 

complexation, and electrostatic interaction. Solution pH, zero-point charge of 335 

biochar, and temperature are the parameters that may affect this process 336 

(Inyang et al., 2016). 337 

Surface precipitation between metal ions and mineral components (anions) 338 

such as PO4
3-, CO3

2- and OH- is an essential mechanism in biochar metal 339 

removal (Cui et al., 2016). Tran et al. (2016) studied the effects of orange peel 340 

biochar on Cd2+ removal. They found that Cd2+ was removed by surface 341 

precipitation, as (Cd, Ca)CO3 and Cd3CO3 were found by XRD after the 342 

experiments. Also, the EDX results showed that Ca remained on the surface of 343 

biochar, confirming surface precipitation. The same results of Cd2+ removal 344 

were also reported by Cui et al. (2016) in an experiment conducted using 345 

biochar from Canna indica. In addition, Cui et al. (2016) found that CO3
2- was 346 

the dominant mineral component when biochar was produced at a relatively 347 

high pyrolysis temperature (>500 ˚C). More CO3
2- can be released into the 348 

solution due to the incomplete cracking of carboxyl when the biochar pyrolysis 349 

temperature is high, resulting in Cd2+ precipitating with ligands (Cui et al., 2016). 350 

Likewise, another study using a pistachio green hull biochar to remove Cu gave 351 
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similar results (Jalayeri and Pepe, 2019). They reported that Cu-P, Cu-C and 352 

Cu-Si were formed during experiments. The SEM-EDX image showed C, O, 353 

Cu, P, S, Si, Fe and Ca on the biochar surface, and the FTIR spectra showed 354 

the characteristic peaks of PO4
3- and CO3

2-, confirming this result.  355 

Ion exchange, complexation, and electrostatic interaction are all associated 356 

with functional groups on biochar (Tan et al., 2015). Under different pH 357 

conditions, there would be various mechanisms for different metals. For 358 

example, Abdel-Fattah et al. (2015) compared the simultaneous removal of 359 

Mg2+, Ca2+, Pb2+ and Cr6+ by pinewood biochar in solution. They found that at 360 

a pH of 6.0–7.0, Mg2+, Ca2+ and Pb2+ were mainly removed by complexation 361 

with C=O, C-O and phenolic O-H functional groups. In addition, it is worth 362 

noticing that complexation between oxygen-containing functional groups and 363 

heavy metals may be accompanied by H+ release (Ding et al., 2016). The H+ 364 

release would decrease the solution pH, which can be used as evidence to 365 

determine if this complexation happened during the adsorption process (Tran 366 

et al., 2016).  367 

However, in acid conditions (pH 1.0) the mechanism of Cr6+ removal was mainly 368 

electrostatic interaction between positively charged functional groups and 369 

negatively charged chromate ion (CrO4
2-) (Abdel-Fattah et al., 2015). This can 370 

be explained by the fact that under low pH values, the biochar surface is highly 371 

protonated, which promotes electrostatic interaction between ions. Conversely, 372 

Jo
urn

al 
Pre-

pro
of



34 

under high pH, biochar surface protonation is reduced to the lowest level. This 373 

condition may contribute to the complexation between oxygen donors in 374 

functional groups and metal ions (Abdel-Fattah et al., 2015).  375 

Physical sorption by pores and surface area on the biochar surface is another 376 

mechanism for metal removal. It can be concluded from the literature that 377 

surface physical sorption had a limited effect or less significant contribution than 378 

other mechanisms when using biochar to remove metals from solution. For 379 

example, Poo et al. (2018) reported that physical sorption could be disregarded 380 

when using algae-based biochar to remove Cu, Cd and Zn. Also, Tran et al. 381 

(2016) reviewed several studies and summarised that physical sorption has 382 

less importance than oxygen-containing function groups. However, physical 383 

sorption was responsible for Mn removal in the simultaneous removal of Fe, Al, 384 

Zn, Cu, As, and Mn by poultry litter biochar (Oh and Yoon, 2013). Unlike for 385 

other metals, pH changes had no effects on Mn removal. Other mechanisms, 386 

such as ion exchange or interactions between cations and electrons, may be 387 

responsible for Mn removal, but this is still unclear (Oh and Yoon, 2013). Thus, 388 

based on the discussion above, further detailed research is needed on the 389 

mechanism of metal removal with biochar and the relative contributions of these 390 

mechanisms. In addition, Mn removal by biochar is still poorly understood, and 391 

more research is needed to determine the main mechanism of Mn removal.  392 
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393 

Figure 2. The mechanisms of heavy metal removal by biochar, modified from 394 

Tan et al. (2015). 395 

3.2 Novel developments of biochar for AMD treatment  396 

Novel developments of biochar focus mainly on pyrolysis methods and 397 

modification processes. Compared with conventional pyrolysis methods, some 398 

new trends of pyrolysis can improve the removal capacity of biochar (Wang et 399 

al., 2020). For example, Wang et al. (2020) mentioned that microwave-assisted 400 

pyrolysis could change biochar morphology (for example, surface area) to 401 

make it more suitable for removing metals and organic pollutants. In addition, 402 

microwave pyrolysis can increase the number of biochar functional groups, 403 

contributing to metal adsorption (Shirvanimoghaddam et al., 2022). 404 

Jo
urn

al 
Pre-

pro
of



36 

Hydrothermal pyrolysis is another novel pyrolysis method, used mainly for 405 

feedstock with high water content, such as animal excreta and sewage sludge 406 

(Shan et al., 2020). This method usually heats the feedstock at a relatively low 407 

temperature (120-250 ˚C) without pre-drying (Xiang et al., 2020). Wang et al. 408 

(2020) reviewed several studies on hydrothermal pyrolysis biochar and 409 

concluded that hydrothermal pyrolysis could introduce more oxygen-containing 410 

functional groups (-OH and -COOH) into biochar. Furthermore, hydrothermal 411 

pyrolysis is a cost-effective and simple method, due to its lower heating 412 

temperature, and there is no requirement for oxygen-limited conditions. 413 

Recently, novel modification methods have enhanced biochar performance in 414 

metal removal. Yin et al. (2022) compared three types of oxidant-modified 415 

Platanus orientalis Linn leaf biochar (modified by H2O2, KMnO4 and K2Cr2O7, 416 

respectively) for Cd removal. Among these three types of biochar, the KMnO4 417 

modified biochar had the best performance in removing Cd. It removed 98.57% 418 

of Cd with the highest adsorption capacity of 54.7 mg g-1. BET and FTIR 419 

analyses confirmed that KMnO4 modified biochar had a higher specific surface, 420 

and MnOx introduced by KMnO4 can form inner-sphere complexes with oxygen-421 

containing groups and has a strong affinity for metal cations (Yin et al., 2022). 422 

Ahmed et al. (2021) modified watermelon seed biochar with 30% H2O2 and 423 

used it to remove Pb from the synthetic AMD water. Results showed that the 424 

H2O2 could introduce more hydroxyl and carboxyl groups to modified biochar, 425 
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with a higher adsorption capacity (25.57-44.74 mg g-1) than unmodified biochar 426 

(10.82-32.07 mg g-1). In addition, Wang et al. (2021) investigated Pb removal 427 

by K2FeO4 modified sludge biochar. The adsorption capacity of K2FeO4 428 

modified biochar was found to be six times higher than the original biochar due 429 

to much more numbers of functional groups on the modified biochar.  430 

Also, biochar modification by nanomaterials is another novel development of 431 

biochar for metal removal. The nanomaterials used for biochar modification are 432 

usually carbonaceous materials, metal oxides, and metals. Generally, 433 

nanomaterial modification biochar has better physicochemical properties and 434 

is more dispersible than conventional biochar (Zhao et al., 2021). Yang et al. 435 

(2021) studied nano-FeS and chitosan-modified soy sauce residue biochar for 436 

Cr removal. The results showed that when nano-FeS:chitosan:biochar mass 437 

ratios were 1:1:1, the adsorption capacity reached its highest value of 103.9 mg 438 

g-1. This adsorption capacity was almost five times higher than conventional 439 

soy sauce residue biochar (22.5 mg g-1). Similar to the oxidant modified biochar, 440 

nanomaterials can boost the adsorption capacity by increasing the specific 441 

surface area and the number of oxygen-containing functional groups (Zhao et 442 

al., 2021). 443 

For the modified biochars mentioned above, almost all studies found that 444 

modified biochar has a faster adsorption process when used for AMD treatment. 445 

Ahmed et al. (2021), Wang et al. (2021) and Yin et al. (2022) confirmed that the 446 
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modified biochar could reach the adsorption equilibrium within 1 hour, while 447 

conventional biochar may need 2-12 hours. The rapid adsorption process is 448 

caused by the number of pore channels and functional groups on the modified 449 

biochar that is sufficient to provide active sites (Yin et al., 2022).  450 

In terms of pH, some modified biochar can still be affected by low pH conditions. 451 

In general, the favourable pH for maximum adsorption is around 4-5 (Ahmed et 452 

al., 2021; Yin et al., 2022). One reason for this is that, in acid conditions, H+ can 453 

inhibit metal removal by strongly competing with metal ions for adsorption, 454 

resulting in lower adsorption capacity (Yin et al., 2022). This competition may 455 

also happen when using conventional biochar in a lower condition. However, 456 

Ahmed et al. (2021) reported that competition for active sites between metal 457 

ions and protons may happen in acidic conditions at the initial stages. 458 

Nevertheless, the effect of H+ is considered a promoting factor at a low pH 459 

range. They also reported that electrostatic repulsion has an inhibitory effect on 460 

metal adsorption at low pH. The same reason (electrostatic repulsion) is also 461 

mentioned in Cr adsorption by a nanoscale Fes/chitosan biochar (Y. Yang et 462 

al., 2021). However, some modified biochar cannot be affected by extreme low 463 

pH and reach the maximum adsorption. For example, Wang et al. (2021) 464 

mentioned that K2FeO4 modified sludge biochar could reach the maximum Pb 465 

adsorption capacity at pH 2. Yang et al.(2021) also reported nanoscale biochar 466 

could achieve the maximum adsorption of Cr at pH 2. Compared with other 467 
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modified and conventional biochars, these biochars have a large abundance of 468 

functional groups to resist the effects caused by low pH, which provides more 469 

opportunities for complexation (Y. Yang et al., 2021). Thus, some modified 470 

biochar may solve the problems caused by extreme low pH, which can be an 471 

excellent advantage when used for AMD treatment.  472 

However, both oxidant and nanomaterial introduce additional metals during the 473 

modification process. Thus, it is necessary to assess the stability of these 474 

methods and their environmental risks in further study. Also, due to the small 475 

particle size of nanomaterials, nanomaterial modified biochar is dispersible and 476 

difficult to separate from AMD, which may not be favourable for reuse and 477 

recycling. Further research should consider an effective isolation and recycling 478 

method to solve this problem (Zhao et al., 2021).        479 

3.3 Parameters that affect biochar adsorption capacity 480 

a) Initial heavy metal concentration  481 

The initial heavy metal concentration in AMD solution can affect the adsorption 482 

capacity of biochar. Liu and Zhang (2009) showed that with Pb concentration 483 

increasing from 10 mg L-1 to 20 mg L-1, the adsorption capacity increased 484 

approximately two-fold for pinewood and rice husk biochars. Kılıç et al. (2013) 485 

used almond shell biochar (produced at 600 ̊ C) to remove Ni and Co and found 486 

similar trends. However, Pellera et al. (2012) showed that increasing the initial 487 

Cu concentration caused an increase in Cu removal per mass unit by biochar 488 
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but a decrease in total Cu removal produced from rice husk, olive pomace, 489 

orange peel, and compost. The observed positive relationship between initial 490 

metal concentration and biochar adsorption capacity may have two 491 

explanations: firstly, the increased metal concentration may increase the 492 

possibility of metal ions coming into contact with biochar; secondly, the increase 493 

might be due to more metal ions in the solution inducing the release of H+ from 494 

the surface of biochar, which then leads to more adsorption sites on the biochar 495 

(Abdelhafez and Li, 2016; Liu and Zhang, 2009). Also, increasing metal 496 

concentration can increase the driving force of mass transfer, which can cause 497 

increased metal removal per mass unit (Pellera et al., 2012). The decrease in 498 

metal removal by biochar may be explained by the saturation of active sites on 499 

the biochar surface (Pellera et al., 2012).  500 

b) Biochar dosage  501 

Many studies have suggested that the biochar dosage is a critical parameter 502 

that can affect the heavy metal removal capacity of biochar. Most of the 503 

literature found that an increased ratio of biochar to water increased the total 504 

amount of heavy metal removal but decreased the biochar removal efficiency. 505 

For example, Chen et al. (2011) reported that in a Cu removal experiment by 506 

corn straw biochar, the biochar adsorption dropped from 11.82 mg g-1 to 1.18 507 

mg g-1 when increasing the biochar concentration from 1 g L-1 to 50 g L-1. 508 

Meanwhile, the Cu removal rate increased from 19.7% to 98.3% due to the 509 
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increased biochar concentration. These findings are supported by other studies 510 

(Pellera et al., 2012; Regmi et al., 2012; S. Wang et al., 2015). Based on the 511 

findings from the literature, it is important to use appropriate biochar dosages 512 

when removing metal, particularly for practical use. Appropriate biochar dosage 513 

can be cost-effective and yield maximum results. 514 

c) pH of contaminated water  515 

The pH of contaminated water is another parameter that controls the 516 

mechanisms of heavy metal removal by biochar. Many studies that used 517 

biochar to remove Cu, Pb, and Cd demonstrated that a solution with pH around 518 

5-6 was optimal for the highest metal removal efficiency (Abdelhafez and Li, 519 

2016; Chen et al., 2011; Jiang et al., 2016; Liu and Zhang, 2009; Pellera et al., 520 

2012; H. Wang et al., 2015). However, there are also examples of better 521 

removal efficiency at solution pH outside this range. For instance, Park et al. 522 

(2017) reported that the adsorption of Cd using biochar reached a peak at 523 

pH >8. This was explained by electrostatic interaction between the metal ions 524 

and biochar surface. At a lower pH, the excessive protonation of the biochar 525 

results in competition for binding sites between H3O+ and Cd2+, while at a higher 526 

pH, the adsorbing sites are vacant for Cd adsorption. 527 

Furthermore, other processes, such as metal precipitation/co-precipitation, can 528 

occur at higher pH levels (pH>8) (Park et al., 2017). In contrast, Abdel-Fattah 529 

et al. (2015) showed that Cr removal by pinewood biochar (5 g L-1) reached 530 
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maximum capacity (35.4 mg g-1) at pH of 1. At low pH, the protonation favours 531 

the formation of an ion-pair interaction mechanism between chromate anions 532 

(HCrO4
-) and the positively charged functional groups (Shaheen et al., 2019). 533 

4. Bacteria application in AMD treatment  534 

Forty studies were identified and selected for review (screened from 4041 initial 535 

literature results from 2006 and 2022) from published literature on using 536 

microbial treatments for AMD remediation. The metal removal efficiency 537 

reported by these studies has a wide range, from 18% to 99%. In addition, these 538 

studies used different carbon sources, for example, ethanol and organic waste. 539 

A summary of the studies focused on metal removal by bacteria is shown in 540 

Table 3 and discussed in the following sub-sections.541 
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Table 3. Bacteria used for heavy metal removal from AMD. 542 

Bacteria 

species 

Carbon 

source/electron 

donor 

Experiment 

methods 

AMD 

composition 

(mg L-1) 

Metal removal 

efficiency  
Reference 

Sulfate 

reducing 

bacteria 

(SRB) 

Ethanol 

Inversed fluidised 

bed bioreactors 

(IFBs) 

Zn and Cu 25 Zn and Cu >90% 
Janyasuthiwong et 

al. (2015) 

SRB Maise straw 
Immobilised SRB 

sludge beads 

Fe 469, Cu 88, 

Cd 92, Zn 128 

Fe, Cu, Cd, and 

Zn >99.9% 

Zhang et al. 

(2016) 

SRB Chitinous material 

Sulfate-reducing 

bioreactors 

(SRBRs), 

Cd 0.267, Fe 106, 

Mn 1.50, Zn 72.9 

Cd 0.096 mg g-1, Fe 

0.748.30 mg g-1, Mn 

0.023 mg g-1, Zn 3.07 

mg g-1 

Al-Abed et al. 

(2017) 

 543 

 544 
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Table 3. Bacteria used for heavy metal removal from AMD. (Continued). 545 

Bacteria 

species 

Carbon 

source/electron 

donor 

Experiment 

methods 

AMD composition 

(mg L-1) 
Metal removal efficiency Reference 

SRB 
Zero-valent iron 

(ZVI) 

Continuous-flow 

bioreactors 

Cu 50.0, Cd 10, Pb 

2.4 
Cu, Cd, Pb>99.8% 

Ayala-Parra et al. 

(2016a) 

SRB  

acidophilic and 

autotrophic 

biocathode 

Zn 15-40 Zn 25 mg g-1 (99%) 
Teng et al. 

(2016) 

SRB 
Algae (Chlorella 

sorokiniana) 

Permeable 

reactive barriers 

(PRB) 

Cu 10-50 Cu >99.5% 
Ayala-Parra et al. 

(2016b) 

SRB Graphene oxide 
Laboratory-scale 

experiment 

Ni 59.0, Cu 64, Fe 56, 

Cd 112, Cr 52, Pb 

207, Ti 48 

Ni 98.1%, Pb 97.1%, Ti 

91%, Cu 89.2%, Fe 

77.0%, Cd 51.5%, Cr 

12.4% 

Yan et al. (2018) 

546 
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Table 3. Bacteria used for heavy metal removal from AMD. (Continued). 547 

Bacteria 

species 

Carbon 

source/electron donor 

Experiment 

methods 

AMD composition 

(mg L-1) 

Metal removal 

efficiency  
Reference 

SRB 

Manures, woodchips 

and sawdust, 

sugarcane waste and 

fodder  

 

Bench-scale 

bioreactors 

Fe 188.9, Cu 22.2, 

Zn 21.4, Mn 31.9, 

Ni 10.4, Co 1.2 

Fe 51.49%–99.32%, 

Cu 84.95%–99.97%, 

Zn 35.11%–99.78%, 

Ni 17.87%–99.14%, 

Co 63.55%–99.02%, 

Mn12.68%–73.86%  

Choudhary & 

Sheoran 

(2012) 

SRB Ethanol 

Anaerobic 

sequential batch 

reactor (ASBR) 

Fe 100-400, Zn 20-

40, Cu 5.0-10 

Fe > 99.2%, Zn 100%, 

Cu > 93.3% 

Costa et al. 

(2017) 

Acidithiobacillus 

ferrooxidans 
Glucose 

Biomineralization 

system 
Fe 4378 Fe 89% 

X. Wang et al. 

(2021) 
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Table 3. Bacteria used for heavy metal removal from AMD. (Continued). 549 

Bacteria species 

Carbon 

source/electron 

donor 

Experiment 

methods 

AMD composition (mg 

L-1) 

Metal removal 

efficiency 
Reference 

SRB Ethanol 

Sulfate reducing 

anaerobic 

membrane 

bioreactor 

(AnMBR) 

Fe 37.5 ± 2.7, Cu 12.4 ± 

0.7, Zn 2.50 ± 0.42, Co 

2.50 ± 0.1, Mn 2.9 ± 0.2, 

Ni 1.42 ± 0.08, As 1.5 ± 

0.18 

 Fe, Cu, Zn, Co, 

and Ni > 99.0%, 

Mn 76.0%-91.0%, 

As 41.0%-67.0% 

Sahinkaya 

et al. (2019) 

Acidithiobacillus 

ferrooxidans  
ZVI 

Laboratory-scale 

experiment 
Fe 2234 Fe 98.4% 

Wang et al. 

(2019) 

SRB Ethanol 

Anaerobic 

sequential batch 

reactor (ASBR) 

Fe 100, Zn 20, Cu 5.0 
Fe, Zn and Cu > 

99.0% 

Castro Neto 

et al. (2018) 
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Table 3. Bacteria used for heavy metal removal from AMD. (Continued). 551 

Bacteria 

species 
Carbon source/electron donor 

Experiment 

methods 

AMD 

composition (mg 

L-1) 

Metal removal 

efficiency 
Reference 

SRB Ethanol 

Laboratory-

scale 

sulfate-

reducing 

columns 

Cu 100, Ni 10, Zn 

10 

Cu, Ni and Zn > 

99.2% 

Sierra-Alvarez 

et al. (2006) 

SRB Ethanol 
Anaerobic 

bottles 

Cu 10, Fe 55, Zn 

32 

Cu 99.99%, Fe 

87.6%, Zn 

99.9% 

Zhao et al. 

(2018) 

SRB 

Leaves 6%, compost 9%, Fe (0) 

3%, silica sand 30%, perlite 30%, 

limestone 22% 

Fixed bed 

reactor 

Cd 11, Cr 51, Cu 

64, Zn 65, As 2.0 

Cu, Zn, Cr, Cd, 

and As >98% 

Cruz Viggi et 

al. (2010) 
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Table 3. Bacteria used for heavy metal removal from AMD. (Continued). 553 

Bacteria 

species 
Carbon source/electron donor 

Experiment 

methods 

AMD 

composition (mg 

L-1) 

Metal removal 

efficiency 
Reference 

SRB 

Limestone 40%, spent mushroom 

compost 30%, activated sludge 

20% and woodchips 10%. 

Up-flow anaerobic 

packed-bed 

bioreactor 

Al 44, Fe 5.8, Cu 

4.6, Pb 0.5, Zn 

5.9 

Fe, Pb, Cu, Zn 

and Al 87%-

100% 

Muhammad et 

al. (2018) 

SRB H2S 
Sulfidogenic 

bioreactor 
Cu 325 Cu 90% 

Silva et al. 

(2019) 

SRB 
Zero-valent iron (ZVI) and Zero-

valent copper (ZVC) 

Laboratory-scale 

experiment 
 Pb, Zn and Cu 50 

Pb, Cu and Zn 

100%,  

Hu et al. 

(2018) 

SRB Ethanol 
fluidised-bed 

reactor (FBR) 
Cu 300, Fe 150 

Cu and 

Fe >99% 

Ucar et al. 

(2011) 

 554 
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Table 3. Bacteria used for heavy metal removal from AMD. (Continued). 556 

Bacteria species 

Carbon 

source/electron 

donor 

Experiment 

methods 

AMD 

composition 

(mg L-1) 

Metal 

removal 

efficiency 

Reference 

SRB Iron 

Up-flow anaerobic 

multiple-bed 

(UAMB) 

Cu 20, Fe 55 
Cu 99%, Fe 

86% 

Bai et al. 

(2013) 

SRB Rice wine waste 
Laboratory-scale 

experiment 
Fe 192, Al 104 

Al > 97%, 

Fe >87% 

G.-M. Kim et 

al. (2014) 

 

Acidithiobacillus (Bacillus 

licheniformis, Bacillus firmus 

and Bacillus megaterium) 

Ethanol 
Laboratory-scale 

experiment 
As 100 As 90%-95% 

Natarajan 

(2017) 

SRB Lignite  
Activated lignite-

immobilised SRB 
Cu 10, Zn 20 

Cu 99.59%, 

Zn 99.93% 

Di et al. 

(2022) 
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Table 3. Bacteria used for heavy metal removal from AMD. (Continued). 558 

Bacteria 

species 

Carbon 

source/electron 

donor 

Experiment methods 
AMD composition 

(mg L-1) 

Metal removal 

efficiency 
Reference 

SRB Landfill leachate 
Sulfidogenic fluidised-

bed reactor 

Cu 0.014, Fe 4.0, Zn 

0.47, Cr 0.55 

Cu, Fe, Cr, and 

Zn 82.0-99.9% 

Sahinkaya et 

al. (2013) 

SRB ZVI Glass batch reactors Cr and Zn 10-90 
Cr and Zn > 

99% 

Guo et al. 

(2017) 

SRB Sodium lactate 
Laboratory-scale 

experiment 
Zn 260 

Zn under 

detection 

Castillo et al. 

(2012) 

SRB 

Cow manure and 

activated sewage 

sludge 

Cooperation with dried 

poultry litter pellets 

(400 °C) biochar 

Fe 2460, Al 1295, 

Pb 1.2, Zn 19.2, Cr 

0.3 

Al, Cr, Fe, Pb 

and Zn 100%.  

Giachini et al. 

(2018) 

Iron-

oxidising 

bacteria 

Tryptone soy broth 
Ceramic membrane 

bioreactor 
Fe 250-3000 Fe 99% 

Demir et al. 

(2020) 
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Table 3. Bacteria used for heavy metal removal from AMD. (Continued). 559 

Bacteria 

species 

Carbon 

source/electron 

donor 

Experiment methods 

AMD 

composition 

(mg L-1) 

Metal removal 

efficiency 
Reference 

SRB Sodium lactate 

Sodium alginate 

immobilised sulfate 

reducing bacteria 

Cu and Zn 50-

150 
Cu 99%, Zn 95.8% 

Gopi Kiran et 

al. (2018) 

SRB Sodium lactate 
Laboratory-scale 

experiment 

Ni, Cd, Zn, Pb, 

and Fe 5.0-50 

Ni 97%, Cd 94.8%, 

Zn 94.6, Pb 94.4%, 

Fe 93.9% 

Kiran et al. 

(2017) 

SRB Acetate, 

Sulfidogenic up-flow 

anaerobic sludge blanket 

(UASB) reactor 

Ni 50, Zn 50 
Zn 99.99%, Ni 

96.87% 

Najib et al. 

(2017) 
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Table 3. Bacteria used for heavy metal removal from AMD. (Continued). 561 

Bacteria species 

Carbon 

source/electr

on donor 

Experiment methods 

AMD 

composition 

(mg L-1) 

Metal removal 

efficiency 
Reference 

Hermoacidophilic 

Archaea, Acidianus 

manzaensis 

— Laboratory-scale experiment Cu 64, Zn 65 
Cu 2.88 mg g-1, Zn 

2.17 mg g-1 
Li et al. (2020) 

SRB 

Chicken 

manure, dairy 

manure, and 

sawdust 

Column reactor 

Fe 599, Mn 

29.6, Cu 30, 

Zn 50.4, Cd 

12.2, Ni 16 

Removal ability 

chicken manure > 

dairy manure > 

sawdust 

 Cd and Ni 100%, 

Mn >60% 

Zhang and 

Wang (2014) 

SRB Lactate Laboratory-scale experiment Ni 21.5 Ni 100% Hu et al. (2020) 

SRB Bagasse 
Maifanite-reinforced SRB, 

immobilised 
Mn 6 Mn 63.87% Bao et al. (2021) 
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Table 3. Bacteria used for heavy metal removal from AMD. (Continued). 562 

Bacteria species 

Carbon 

source/electron 

donor 

Experiment 

methods 

AMD 

composition 

(mg L-1) 

Metal removal 

efficiency 
Reference 

Fe–Mn oxidising bacteria 

(Flavobacterium, 

Brevundimonas, 

Stenotrophomonas and 

Thermotonus) 

Glucose 

Laboratory-

scale 

experiment 

Fe 100-1300, 

Mn 100-700 

Fe 99.8%, Mn 

99.6% 

Hou et al. 

(2020) 

Acidiphilium multivorum 

Acidithiobacillus ferrooxidans 
— 

Laboratory-

scale 

experiment 

Fe 1267 Fe 100% 
Jin et al. 

(2020) 

SRB — 

Inverse fluidised 

bed sulfidogenic 

bioreactor 

 

Cd, Ni, Pb and 

Zn 10, 

Cu 50, 

Fe 150 

Cd, Pb, Zn and 

Cu > 95%, Fe 

90%, Ni 85%, 

Kumar and 

Pakshirajan 

(2020)  
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4.1 Mechanisms of metal removal by sulfate reducing bacteria 564 

Recent studies have focused on biological methods for removing heavy metals from 565 

AMDs based on bacteria. Most of these studies used sulfate reducing bacteria (SRB) 566 

and showed excellent results (Table 3). SRB are anaerobic microorganisms that use 567 

sulfate as an electron acceptor, producing S2- and increasing alkalinity in water, 568 

resulting in the generation of insoluble metal sulphates. Thus, SRB can remove metals 569 

dissolved in water (Sierra-Alvarez et al., 2006). Other mechanisms can contribute to 570 

removing heavy metals from AMD by SRB, as shown in Figure 3. This may depend 571 

on different metals, SRB species, and reaction conditions (Zhao et al., 2018). For 572 

instance, Cu can be removed by extracellular chelating, whereas Zn and Fe can be 573 

removed by bioprecipitation.  574 

For multi-metal contaminated water like AMD, the variety of metal ions can also 575 

influence the mechanism of metals removal (Zhao et al., 2018). This phenomenon was 576 

also observed by Cruz Viggi et al. (2010), who found it is difficult to distinguish which 577 

mechanism is involved in metal removal during the reaction with multi-metal water. 578 

Nevertheless, based on the previous study of Cd removal by SRB, Cruz Viggi et al. 579 

(2010) showed that sorption accounted for 94% of the removed Cd, and bioreduction 580 

took up only 6% of total Cd removed. This result, however, can only explain the Cd 581 

removal in this batch experiment. The contribution of different mechanisms for 582 

different metals still requires further investigation (Cruz Viggi et al., 2010).  583 
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 584 

Figure 3. Proposed mechanism for bioremoval of heavy metal ions by SRB, modified 585 

from Zhao et al. (2018). 586 

4.2 Metals toxicity affecting sulfate reducing bacteria 587 

Although SRB can successfully remove heavy metals from AMDs, some studies found 588 

that heavy metals may be toxic to SRB (Alam and McPhedran, 2019; Gopi Kiran et al., 589 

2018; Kiran et al., 2017; Teng et al., 2016; Wang et al., 2019; Zhang et al., 2016; Zhao 590 

et al., 2018). Alam and McPhedran (2019) summarised the findings of several studies 591 

regarding metal toxicity to SRB and pointed out that heavy metals mainly influence the 592 

activity of enzymes, induce protein denaturation, and compete with cations. These 593 

studies also indicated that different metals have different toxicity levels to SRB. For 594 
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example, Alam and McPhedran (2019) showed that Cd (6 mg L-1), Cr (23 mg L-1), Cu 595 

(4 mg L-1), Pb (25 mg L-1), Ni (10 mg L-1) and Zn (13 mg L-1) could inhibit the activity 596 

of SRB. However, Zhao et al. (2018) reported that, at 35 ˚C and pH 3, Cu is toxic to 597 

SRB at 10 mg L-1. In the study of Teng et al. (2016), Zn was found to have an inhibitory 598 

effect on SRB when concentrations reached 40 mg L-1.  599 

However, many other studies observed that even a relatively high concentration of 600 

metals in the water had no adverse effects on SRB activity. On the contrary, these 601 

high concentrations could improve the ability of SRB to remove metals (Castro Neto 602 

et al., 2018; Sierra-Alvarez et al., 2006). For example, Sierra-Alvarez et al. (2006) 603 

showed no inhibition process in a column reactor at pH 4.5, even when the Cu 604 

concentration reached 50 mg L-1. Another study using an anaerobic stirred batch 605 

reactor with Fe (100 mg L-1), Zn (20 mg L-1), and Cu (5 mg L-1), found that these levels 606 

did not affect SRB (Castro Neto et al., 2018). Therefore, the inhibition effect is 607 

influenced not only by the concentration of metals but also by other experimental 608 

conditions (e.g. pH and metal type). In general, pH for experimental inhibition 609 

conditions is lower than 5 and higher than 9 (Kushkevych et al., 2019). Also, Hao et 610 

al. (2008) indicated the inhibitory concentrations of some metals for SRB i.e. Zn 25-611 

40 mg L-1, Pb 75-80 mg L-1, Cu 4-20 mg L-1, Cd 4-20 mg L-1, Ni 10-20 mg L-1 and Cr 612 

60mg L-1.  613 
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The difference in metal tolerance in the different experiments may be due to some 614 

inorganic cations that can affect heavy metal toxicity for SRB by competing with metals 615 

(e.g. Fe, Mg and Ca) for the anionic sites on the SRB surface (Kaksonen and Puhakka, 616 

2007). Also, different metals have different toxicity for SRB (e.g. Cu is higher than Zn), 617 

and a combination of various metal toxicity is higher than the sum of the individual 618 

metal toxicities (Cossich et al., 2002; Utgikar et al., 2003). Another reason is that the 619 

source of the SRB can affect their tolerance to metal toxicity. SRB collected from AMD 620 

sites usually has a higher tolerance than those enriched in a batch experiment 621 

because of the environment adaption (Kaksonen and Puhakka, 2007). 622 

In order to avoid the toxicity effects on SRB, some studies have used SRB immobilised 623 

in beads (Gopi Kiran et al., 2018; Zhang et al., 2016). These beads consisted of a 624 

mixture of SRB, maize straw, zero valence iron, silicon sand, polyvinyl alcohol (PVA), 625 

and sodium alginate. Immobilised SRB beads provided shelter for SRB, as well as a 626 

relatively high specific surface area (Gopi Kiran et al., 2018). In addition, immobilised 627 

SRB beads can increase biomass and retention time in reactors (Gopi Kiran et al., 628 

2018; Zhang et al., 2016). Thus, the SRB immobilised beads can be used to avoid the 629 

toxicity effect on SRB caused by a high concentration of heavy metals (Zhang et al., 630 

2016). To increase the efficacy of SRB, other methods to reduce the effect of metals’ 631 

toxicity should be explored in future work.   632 

4.3 Metals removal by SRB 633 
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Some metals such as Cu, Fe, Cd, Zn, and Pb can be almost entirely removed from 634 

AMD by SRB, while SRB’s ability to remove Mn is more varied among published 635 

studies (Table 3). The removal efficiency of Mn in the solution was only around 50%, 636 

compared to the over 80% for other metals that has been reported by some authors 637 

(Bai et al., 2013; Muhammad et al., 2018; Sahinkaya et al., 2013; Zhang and Wang, 638 

2014). There are two possible reasons for these observations. The first is the 639 

potentially lower sorption affinity of Mn to organic waste (carbon source). The second 640 

reason is the relatively higher solubility of MnS (Ksp = 2.5 x 10-13) compared to the 641 

sulfide salt of other metals (Cd, Cu, Zn, and Fe). Thus, Mn2+ concentration is higher 642 

than other metals in the water. Mn2+ presented in a dissolved state for almost the entire 643 

reaction time (Muhammad et al., 2018), causing the removal efficiency to be 644 

decreased (Zhang and Wang, 2014). Also, because of the complex interaction 645 

between Mn and other metals, this solubility of Mn might be affected (Muhammad et 646 

al., 2018). However, Mukwevho et al. (2019) reported that Mn removal efficiency could 647 

reach 85.9%, which is much higher than the results obtained in previous studies 648 

(~50%). Unfortunately, the reason for this is not clear.  649 

The studies mentioned above did not investigate all experimental parameters in their 650 

studies, and the higher removal efficiency (80.7%) had a better condition for SRB (pH 651 

6 and 30°C) than that of the lower efficiency (74.8%), with conditions of pH 5 for 30°C 652 
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and 10°C. Thus, further research needs to be carried out to confirm whether pH and 653 

temperature conditions can affect Mn removal by SRB.  654 

4.4 Carbon source and electron donor 655 

In the process of metal removal by SRB, the nature of the carbon source and electron 656 

donor is an important factor affecting the metal removal efficiency. In general, lactate 657 

is recommended by many studies (Alam and McPhedran, 2019; Gopi Kiran et al., 2018; 658 

Kiran et al., 2017), as it supports SRB growth and performs better for metal removal 659 

than other carbon sources. Ethanol is another popular carbon source that has been 660 

used in many studies (Castro Neto et al., 2018; Janyasuthiwong et al., 2015; Natarajan, 661 

2017; Sahinkaya et al., 2013; Sierra-Alvarez et al., 2006; Ucar et al., 2011). Ethanol 662 

has been confirmed as effective in both reactor experiments, e.g. in an anaerobic 663 

sequential batch reactor (ASBR) (Costa et al., 2017), and in small lab-scale 664 

experiments, e.g. in an anaerobic reactor (Zhao et al., 2018). These studies reported 665 

that ethanol could enhance SRB capacity to remove metals. Ethanol is also more 666 

competitive in terms of kinetics when compared to lactate under room temperature 667 

conditions (Nielsen et al., 2019), and is also cheaper than lactate (Alam and 668 

McPhedran, 2019), making it more scalable.  669 

In addition to these simple carbon sources (lactate and ethanol), some studies have 670 

used complex organic matter, such as organic waste (e.g. maize straw, leaves and 671 

cow manure) as carbon source (Choudhary and Sheoran, 2012; Cruz Viggi et al., 2010; 672 
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Giachini et al., 2018; G.-M. Kim et al., 2014; Muhammad et al., 2018; Sahinkaya et al., 673 

2013; Zhang et al., 2016). These organic sources are cheap and can contribute to 674 

metal removal because most of them are porous materials. There is evidence that 675 

SRB could be enhanced by using complex organic carbon sources (Nielsen et al., 676 

2019). Another advantage of complex organic carbon sources is that they can last 677 

longer than simple carbon sources due to their more gradual degradation. 678 

Nevertheless, for complex carbon sources, a disadvantage is that sulphate removal 679 

yields are lower than those of simple carbon sources (Nielsen et al., 2019).  680 

Besides using organic carbon as the electron donor in the removal of heavy metals by 681 

SRB, some metals such as ZVI and ZVC are also used in many studies (Ayala-Parra 682 

et al., 2016a; Guo et al., 2017; Wang et al., 2019; Yan et al., 2018). The ZVI can be 683 

used by both SRB and Acidithiobacillus ferrooxidans in metal removal. Compared with 684 

other control studies, ZVI can significantly increase mineral precipitation by enhancing 685 

sulfate reduction and generating alkalinity in solution (Hu et al., 2018; Wang et al., 686 

2019). In the combination of ZVI and SRB, ZVI is a reducing agent that can enhance 687 

anaerobic conditions and release Fe2+, which is beneficial to SRB hydrogenase (Guo 688 

et al., 2017). Also, ZVI can react with heavy metals such as Cr, which can reduce the 689 

metals’ toxicity to SRB (Guo et al., 2017). However, some disadvantages of ZVI have 690 

also been reported, e.g. excessive ZVI is toxic to Acidithiobacillus ferrooxidans, and 691 

the combination of ZVI and A. ferrooxidans results in Fe removal only. The addition of 692 
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ZVI did not affect the removal of Zn, Al, and Mn (Wang et al., 2019). Nevertheless, in 693 

combination with SRB, ZVI can remove other metals except for Mn (Guo et al., 2017). 694 

ZVC has higher removal efficiency than ZVI for Fe, but because ZVC can more easily 695 

introduce Cu to the environment, most of the studies only used ZVI (Wang et al., 2019). 696 

Overall, carbon sources for SRB in metal removal may vary in different conditions. 697 

Factors to consider in selecting a carbon source include metal type, cost, and pH.  698 

Further research should focus on finding long-lasting and cost-effective electron 699 

donors for practical use. 700 

5. Combination of treatments for AMD 701 

5.1 Combination of algae and biochar  702 

Some studies reported the interactions between biochar and algae (Awad et al., 2017; 703 

Jia et al., 2018; Kholssi et al., 2018; Magee et al., 2013; Zhang et al., 2019). In terms 704 

of the inhibitory effects between biochar and algae, the result showed that in some 705 

conditions, biochar could significantly inhibit the growth of algae. For example, Awad 706 

et al. (2017) reported that rice husk biochar might reduce the production of green algae 707 

(Chlamydomonas. sp and Scenedesmus. sp); Zhang et al. (2019) noted that pine 708 

needle biochar has adverse effects on algae growth (Scenedesmus obliquus, and also 709 

the bacterium Photobacterium phosphoreum) due to the presence of free radicals; 710 

Magee et al. (2013) confirmed that oil mallee biochar could also inhibit the growth of 711 

the test algae (Chlorella vulgaris) when adding the biochar at an induction phase (12h 712 
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after incubation of algae); Similar results were also reported by Jia et al. (2018) on the 713 

interaction between apple tree biochar and three species of cyanobacteria 714 

(Oscillatoria. sp, Phormidium. sp and Nostoc. sp). However, in Kholssi et al.'s (2018) 715 

study, the growth of Anabaena cylindrica significantly increased with wood biochar 716 

solid support compared with liquid media.  717 

The inhibition caused by biochar to algae, as mentioned above, is mainly because 1) 718 

porous biochar absorbs algae onto the biochar surface, which blocks nutrient uptake 719 

and affects algae growth (Awad et al., 2017); 2) biochar can be suspended in solution 720 

and the light intensity reduced, hence reduced algal photosynthesis (Jia et al., 2018; 721 

Magee et al., 2013); 3) free radicals in biochar have biotoxicity for algae in solution 722 

and reduce algal growth. These free radicals are produced during the biochar pyrolysis 723 

processes and are influenced by the pyrolysis temperature. Free radicals may inhibit 724 

the germination of seeds, cause growth retardation of roots, and damage the plasma 725 

membrane of algae (Zhang et al., 2019); 4) reactive oxygen species (ROS) produced 726 

by dissolved biochar can also damage algae by influencing algae photosynthetic 727 

growth (Jia et al., 2018; Zhang et al., 2019).   728 

Based on these findings, positive effects between algae and biochar are only valid for 729 

specific algae and biochar (Kholssi et al., 2018). Some biochar can boost more 730 

extracellular polymeric substances (EPS) of algal origin. These EPS may provide 731 

important biological functions by excluding redundant glycogen in algal cells and 732 
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increasing cell numbers (Kholssi et al., 2018). Also, functional groups on the biochar 733 

surface may contribute to the immobilisation of algae and promote algal growth (Shen 734 

et al., 2017). In addition, although the porous structure of biochar may have adverse 735 

effects on algal growth, porous biochar can serve as a suitable material for attachment 736 

and increase the dispersibility of immobilised algae, thus increasing metal sorption 737 

processes (Shen et al., 2017). Besides, quick passive adsorption by biochar can 738 

increase the viability of algal cells and, and as a result, enhance the metal removal 739 

capacity (Shen et al., 2017).  740 

Based on the work reviewed, the biochar-algae system in AMD metal removal has 741 

been rarely studied. Two studies did a simple mixture of algae and biochar to remove 742 

metals in the solution (Jiang et al., 2022; Shen et al., 2017). Shen et al. (2017) used a 743 

combination of Chlorella sp. and water hyacinth biochar to investigate Cd removal. 744 

The algae and biochar were mixed with a shaker by different algae: biochar ratios (1:4, 745 

2:3, 3:2 and 4:1), and the Cd removal was conducted. It was found that the algal cells 746 

were mainly attached to the biochar surface due to the electromagnetic effect. For the 747 

Cd removal results, the maximum removal was 217.4 mg g-1 when the algae and 748 

biochar ratio reached 2:3.  This result was better than the metal removals obtained for 749 

algae only (169.9 mg g-1) or biochar only (95.8 mg g-1). Likewise, Jiang et al. (2022) 750 

performed a similar study using a simple mixture of Chlorella sp. and coconut shell 751 

biochar to remove Cd from synthetic AMD water. SEM morphology results showed 752 
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algae were attached very well to the visible pores on the biochar surface. The results 753 

also showed that the biochar pores become rough after Cd adsorption. When using 754 

algae and biochar together, the biochar became much rougher after Cd adsorption 755 

than only biochar adsorption. This also indicated that algae-biochar Cd adsorption had 756 

better Cd removal results than Cd adsorption by biochar only.  Better Cd removals 757 

with a mixture of algae and biochar were due to 1) the algae-biochar consortium has 758 

a more negative charge on the surface. Also, the negative charge of the biochar 759 

surface can boost the magnetic intensity surrounding the algae, which can enhance 760 

the surface potential of biochar (Shen et al., 2017); 2) FTIR results confirmed that the 761 

algae-biochar consortium has more types and greater numbers, of functional groups 762 

(especially oxygen-containing functional groups) when compared to biochar or algae 763 

alone, which may significantly contribute to the removal of Cd (Jiang et al., 2022; Shen 764 

et al., 2017). The two studies mentioned above have confirmed that the biochar-algae 765 

mixture may have a higher removal efficacy of Cd in solution. However, due to limited 766 

studies of algae-biochar consortium on metal removal from AMD, more studies should 767 

be conducted in the future to investigate the removal efficacy of this approach to 768 

develop new preparation methods for combining algae and biochar. These preparation 769 

methods would reduce the potential inhibition of algae growth caused by biochar and 770 

potential blockage of the biochar pores by algae, as well as reducing the algae growth-771 

inhibitory caused by biochar, to optimise the metal removal result.  772 
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5.2 Combination of algae and bacteria  773 

Several studies also used a combination of algae and bacteria for AMD treatment. 774 

Sahoo et al. (2020) reported that an integrated bacteria (SRB)-algal (Chlorella sp.) 775 

immobilised technology could remove over 95%-99% of metals from AMD in both 776 

aerobic and anaerobic conditions. The same technology was also used by Li et al. 777 

(2018a), which confirmed that an immobilised SRB-algae (Scenedesmus obliquus) 778 

bead technology could remove up to 73.58% of sulfate and 98% of Cu. Similar results 779 

(74.4% of sulfate and 91.7% of Cu) were also reported by Li et al. (2018a) with the 780 

same immobilised technology in the anaerobic reactor (Chlorella vulgaris, 781 

Scenedesmus obliquus, Selenastrum capricornutum and Anabaena spiroides with 782 

SRB). In addition, Ayala-Parra et al. (2016b) reported that a permeable reactive barrier 783 

(PRB) technology with SRB and Chlorella sorokiniana could remove over 99.5% of Cu 784 

from AMD.  785 

Russell et al. (2003) experimented with combining SRB with Carteria sp. and 786 

Scenedesmus sp. for metal removal. The U and Mn were successfully removed, but 787 

only Scenedesmus sp. showed a relatively high sulfate reduction rate (94.3 g g-1 788 

biomass), compared with Carteria sp. (43.5 g g-1 biomass). 789 

In the algae-SRB system, some studies confirmed that algae could serve as an 790 

organic carbon source for SRB (Ayala-Parra et al., 2016b; Das et al., 2009a, 2009b; 791 

Faisal et al., 2020; Li et al., 2018b, 2018a; Russell et al., 2003). SRBs are carbon 792 
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limited in a natural AMD environment and need additional carbon sources for survival 793 

and metal removal. Algae can generate dissolved organic carbon to feed the SRB as 794 

a carbon source by photosynthesis and under the action of co-existing anaerobic 795 

fermentative bacteria (Das et al., 2009a; Li et al., 2018b). EPS produced by algae can 796 

also serve as nutrients for SRB (Das et al., 2009a). In return, CO2 released by bacteria 797 

is utilised by algae for growth in AMD conditions (Abinandan et al., 2018). In addition, 798 

EPS produced by both microalgae and bacteria can chelate metal ions, decreasing 799 

the concentration of the free form, which in turn makes the environment less 800 

aggressive for the organisms to thrive in. From an evolutionary viewpoint, bacteria and 801 

algae support each other for survival, growth, and even metal removal and sulfate 802 

reduction in extreme conditions (Abinandan et al., 2018). The mutualism between SRB 803 

and algae for bioremediation in AMD conditions is shown in Figure 4. 804 

Nevertheless, in natural AMD conditions, the metal removal efficacy may be relatively 805 

low when using algae as the organic carbon source because other microorganisms 806 

compete for electron donors with SRB (Das et al., 2009a; Russell et al., 2003). 807 

Immobilised SRB-algae systems and reactors can increase the efficacy of metal 808 

removal by algae and SRB (Li et al., 2018b, 2018a; Sahoo et al., 2020). In an 809 

immobilised SRB-algae system, SRB can use the secreted carbon source provided 810 

by algae more efficiently because immobilised algae are in the vicinity of SRB (Li et 811 

al., 2018b). For example, a bioreactor (anaerobic up-flow reactor) can continuously 812 
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provide a medium for SRB to grow and thus increase the metal removal efficiency (Li 813 

et al., 2018b). Thus, it can be concluded that the algae-bacteria system can have a 814 

high efficacy of metal removal when compared to individual algal or bacterial systems. 815 

Apart from the immobilised method, developing other ways to promote high 816 

effectiveness for SRB using algae as a carbon source is still needed. 817 

 818 

Figure 4. Microalgal-bacteria synergism in biofilms of AMD, modified from Abinandan 819 

et al. (2018). 820 

5.3 Algae, bacteria, and biochar 821 

The authors have not found any study that has applied algae, bacteria, and biochar 822 

as a consortium to remediate and recover metals from AMD. In a natural AMD 823 

environment, bacteria and algae can be present as a consortium (Bernardez and de 824 
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Andrade Lima, 2015; Du et al., 2022). In addition, based on the discussion above, one 825 

novel aspect of our exploratory approach is to use biochar as a porous support 826 

medium for the growth of the algal-bacteria consortium (Figure 5). Biochar can act as 827 

the “protective buffer” to provide a porous matrix for bacterial attachment since it can 828 

trigger rapid passive uptake of some heavy metal ions, leading to less damage to cells 829 

inside (Mehrotra et al., 2021; Retnaningrum et al., 2021). It was mentioned above that 830 

algae could serve as a carbon source for bacteria (e.g. SRB), supporting their growth, 831 

which in turn produce key nutrients and CO2 required for the photosynthetic algae. 832 

Biochar may not only provide a large surface area for biofilm production but may also 833 

facilitate low-cost harvesting of the metal-laden algae and subsequent recovery of the 834 

metal from ash by burning. Indeed, harvesting from bulk culture is one of the 835 

bottlenecks to the commercialisation of microalgal technologies, as there is no cost-836 

effective harvesting method (Barros et al., 2015; Singh and Patidar, 2018). Moreover, 837 

biochar contains K, P, Ca, etc. and would therefore be able to function as a nutrition 838 

supply/growth medium for the consortium. Also, if AMD itself is inoculated with 839 

nutrients, it may be possible that the biochar will adsorb further nutrients due to its 840 

high adsorption capacity, attracting algae to grow on the surface of the biochar (Muñoz 841 

and Guieysse, 2006). With the right environmental conditions, biochar may enhance 842 

the self-aggregating process of algae-bacteria (Liu et al., 2017), providing an 843 

optimised method to remediate and recover metals from AMD. The algae-bacteria-844 
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biochar combination may be advantageous for use in AMD treatment with higher initial 845 

metal concentration (Mehrotra et al., 2021). Therefore, further research is 846 

recommended to explore the effectiveness of algae-bacteria-biochar consortium for 847 

AMD treatment. 848 

 849 

Figure 5. The synergism of algae, bacteria, and biochar consortium in AMD. 850 

6. Conclusion 851 

6.1 Main findings 852 
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This review found that all three bio-based methods, when applied as a single process 853 

and in combinations (e.g. algae-biochar and algae-bacteria treatments), are effective 854 

treatments for AMD. The principal findings of the review are listed below. 855 

• Most algae can reach at least 90% of removal efficacy via an extracellular stage 856 

and then an intracellular stage when removing Cu, Zn, Fe, Cd and Cr from AMD. 857 

Chlorella vulgaris, Spirulina maxima, Oedogonium crissum and some other 858 

types of algae were found to be effective (over 70 mg. g-1) in metal removal 859 

from AMDs. 860 

• Feedstock and pyrolysis temperature are two factors that can affect biochar 861 

properties and influence the metal removal capacity of biochar. Most of the 862 

biochar, for example, hardwood and fruit peel biochar, can reach a relatively 863 

high metal removal efficacy (over 100 mg. g-1). The mechanisms are mainly 864 

physical sorption, ion exchange, precipitation, complexation, and electrostatic 865 

interaction. 866 

• SRB are the most common bacteria used in AMD treatments. It was found that 867 

SRB has high metal and sulfate removal ability (60%-100%), mainly by 868 

producing insoluble metal sulfide. SRB removal efficacy may be affected by the 869 

carbon source. In general, complex carbon sources such as lactate works 870 

better than simple carbon such as ethanol. In addition, Acidithiobacillus 871 
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ferrooxidans was also found to be an effective bacteria method for Fe removal 872 

from AMDs.  873 

• The combination of the bio-based methods (i.e. algae-biochar and algae-874 

bacteria) for AMD treatment was found to provide a relatively high removal 875 

efficiency (over 200 mg. g-1). Such methods have been observed to have higher 876 

metal removal efficiency than those used as a single treatment.  877 

6.2 Limitations and future research 878 

The main limitations identified in previous studies and recommendations for future 879 

research are: 880 

• Algae may be inhibited by low pH when removing heavy metals from AMDs. 881 

Thus, it needs to be further investigated to facilitate treatment. For example, 882 

studies on isolating novel algae strains and modifying algae prior to treatment 883 

to avoid the effects caused by pH and increase the removal efficacy should be 884 

developed. 885 

• The relationship between temperature and metal removal efficacy by algae is 886 

still unclear. Further studies may focus on this to clarify this relationship and 887 

establish the optimal temperature conditions for metal removal by algae.  888 

• Secondary contamination and post-treatment recycling are the challenges in 889 

AMD treatments by using biochar. The development of novel modifications to 890 

overcome the limitations and increase metal removal capacity still needs to be 891 
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considered in future work. Also, recycling methods of metals and biochar, 892 

especially nanoscale modified biochar, should be further investigated. 893 

• When using bacteria in AMD treatment, the continuous addition of electron 894 

donors is still a limitation. This may reduce the effectiveness of remediation 895 

processes. Therefore, research may focus on effective alternative electron 896 

donors, such as slow-release electron donors and low sulfate condition electron 897 

donors. To reduce the toxicity caused by metals, the immobilised method for 898 

bacteria may be considered.   899 

• No studies focusing on the algae-bacteria-biochar combination for AMD 900 

treatment were found. The authors of this review believe that this consortium 901 

may provide a more sustainable and effective process to remove and recover 902 

metals from AMD. Therefore, it is recommended that future studies investigate 903 

the potential of this consortium.  904 

• However, biochar may inhibit algae’s growth, and algae and bacteria may block 905 

the pore of biochar. Thus, preparation methods to combine algae, biochar, and 906 

bacteria as a consortium are required. Also, the recovery of metals through the 907 

consortium algae-biochar-bacteria should also be investigated. This should be 908 

tested in lab and pilot-scale experiments for future practical applications. 909 
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Highlights 

 

⚫ Algae-biochar-bacteria consortium is proposed as a novel method for acid mine 

drainage remediation. 

⚫ Sulfate reducing bacteria have little effect on Mn removal. 

⚫ Biochar can protect bacteria in heavy metals conditions by rapid removal of heavy 

metals. 

⚫ Algae growth may be inhibited by biochar in acid mine drainage conditions. 
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