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Dravet Syndrome is a genetic epileptic syndrome characterized by severe and intractable seizures asso-
ciated with cognitive, motor, and behavioral impairments. The disease is also linked with increased mor-
tality mainly due to sudden unexpected death in epilepsy. Over 80% of cases are due to a de novo
mutation in one allele of the SCN1A gene, which encodes the a-subunit of the voltage-gated ion channel
NaV1.1. Dravet Syndrome is usually refractory to antiepileptic drugs, which only alleviate seizures to a
small extent. Viral, non-viral genetic therapy, and gene editing tools are rapidly enhancing and providing
new platforms for more effective, alternative medicinal treatments for Dravet syndrome. These strategies
include gene supplementation, CRISPR-mediated transcriptional activation, and the use of antisense
oligonucleotides. In this review, we summarize our current knowledge of novel genetic therapies that
are currently under development for Dravet syndrome.

� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dravet Syndrome (DS; also known as Severe Myoclonic Epilepsy
of Infants (SMEI) [1] is an early-onset encephalopathy accounting
for 1.4% of pediatric epilepsy cases [2] with a reported incidence
of approximately 1 in 12,200 to 1 in 40,900 live-births [2–5]. DS
typically manifests around the first year of life with prolonged, feb-
rile & afebrile seizures, developmental delay becomes apparent
from around the second year of life [6] and severe intellectual dis-
ability in most adults [6–10]. Unfortunately, patients with DS have
an increased risk of death of approximately 15% after 10 years of
follow-up [11] exhibiting high epilepsy mortality due to status
epilepticus and sudden unexpected death in epilepsy (SUDEP) [12].

Although pharmacological and dietary treatment modalities are
available for patients with DS, these are often inadequate. There-
fore, developments in the field of genetic therapies have signifi-
cantly progressed in the last five years. Thus, in this review, we
will be discussing the genetic causes of DS and the future of genetic
therapies for DS.

2. Genetic causes of Dravet Syndrome

SCN1A (located on chromosome 2q24.3), encodes the a-subunit
of a voltage-gated ion channel, NaV1.1 [13]. SCN1A mutations
account for >80% of DS cases [14], of which truncating and mis-
sense mutations are most frequently found and are found to be
associated with more severe phenotypes, with a smaller propor-
tion of intronic splice site changes also seen [15]. Functional stud-
ies have shown that approximately 80% of all SCN1A missense
mutations lead to a loss of function (LOF), resulting in haploinsuf-
ficiency; of these, LOF-causing mutations are primarily associated
with the pore region of NaV1.1 [2,16]. Whole-exon deletions or
duplications have also been reported [17]. The vast majority of
DS-causing mutations are de-novo [18] with only 5% of cases inher-
ited in an autosomal dominant fashion [19,20].

SCN1A mutations have also been associated with Benign Febrile
Seizures, Genetic Epilepsy with Seizures plus (GEFS+), and Intract-
able Childhood Epilepsy with Generalized Tonic-Clonic Seizures
(ICEGTC) [21,22]. Previously, there have been difficulties in estab-
lishing a genotype-phenotype correlation, which has made clinical
diagnosis and distinction of DS or other GEFS+ difficult for practi-
tioners. However, recently Brunklaus et al. have developed a
clinical-genetic prediction model which helps with early detection
of whether the patient will develop DS or GEFS+ [7].

Although most cases of DS are caused by SCN1A variants, other
genes such as SCN1B [23,24], GABRG2 [25], GABRA1 [26], STXBP1
[26], HCN1 [27], CHD2 [28], and PCDH19 [29,30] have also been
implicated in clinically similar encephalopathies. However, these
cases are usually characterized by atypical presentation of the dis-
ease phenotype, hence they are classified as borderline DS [31].
Furthermore, several cases of mosaicism have been reported for
SCN1A; however, patients exhibit on average milder epilepsy phe-
notypes [32–35]. Similarly, mutations leading to gain of function
SCN1A variants also do not present with classic DS manifestations,
and these cases of DS will not be discussed here.
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3. Dravet Syndrome mouse models

Rodent models of DS recapitulate most aspects of the disease
phenotype, including seizures, hyperactivity, anxiety-like beha-
vior, inflexibility, low sociability, cognitive deficits [36–38], and
SUDEP [39,40].

Over the last decade or so, several different mouse models for
DS have been generated. The first was described in 2006 by Yu
et al. where the authors established a Scn1a�/� mouse model
which developed spontaneous seizures, ataxia, and died by post-
natal day 15 (P15) [41]. Heterozygous mice developed sponta-
neous seizures and sporadically died after P21. Elevations in body
temperature have shown to trigger myoclonic and generalized sei-
zures, reiterating the febrile seizures present in patients with DS
[42]. Furthermore, Miller et al. showed that Scn1a+/� mice develop
spontaneous seizures and premature death occurs around 3 weeks
of development [43]. Both groups demonstrated a strong correla-
tion between mouse strain and phenotype presentation with the
C57BL/6J genetic background, showing a more severe phenotype
than the 129Sv background strain. Other mouse models have been
generated by introducing a point mutation in Scn1a gene and have
described less severe phenotype [44–47]. For example,
Scn1aA1783V+/� presents a 70% mortality rate at 8 weeks of age, cog-
nitive impairment, anxiety, hyperactivity, and a reduced threshold
for heat-induced seizures [48]. Recently, two independent groups
have reported a sex difference in heterozygous DS mice, with
females exhibiting more frequent spontaneous seizures of higher
severity [49], as well as a higher degree of mortality than males
[50].

Functionality studies conducted in the rodent models have
highlighted the association of inhibitory interneurons to DS, where
sodium currents were reduced in the GABAergic interneurons of
both Scn1a+/� and Scn1a�/� DS mice [41], resulting in an
enhanced neuronal excitability, followed by a reduction in action
potentials [36]. Deleting Scn1a in somatostatin-expressing,
parvalbumin-positive or GABAergic neurons led to a reduction of
postsynaptic potentials [51], increased hyperthermia sensitivity
and seizure propensity [41], or epilepsy and death [52], respec-
tively. Collectively, these findings point to a seizure mechanism
caused by an imbalance in the inhibition of neuronal networks
due to loss of function of NaV1.1, and multiple disease traits caused
by functional deficits in varying interneurons [41,53,54].
4. Genetic therapies for Dravet Syndrome

Development of genetic therapies for severe neurological disor-
ders is vastly changing. In this part of the review, we will sum-
marize the different types of viral and non-viral genetic
therapeutic technologies developed for Dravet syndrome.
4.1. Viral gene therapy

Several types of viral vectors are available for gene therapy
applications, each offering their own advantages and disadvan-
tages, examples of which can be found in Table 1. The use of len-
tiviral vectors for DS has been limited due to the unstable nature
of the SCN1A coding sequence in bacteria [55], rendering amplifica-
tion of this gene for viral vector packaging significantly more chal-
lenging. Therefore, here we will primarily discuss the uses of
Adeno-associated virus (AAV) and adenoviral vectors, as they are
the most relevant in the DS field.

AAVs are the most common gene therapy vector associated
with CNS disorders [72], and have been shown to be highly effi-
cient when treating neurological disease [73]. Particularly, AAV9
has been the main serotype used in CNS-targeted therapies as it
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has been shown to cross the blood-brain barrier in neonatal and
adult animals following intravenous delivery [74–76]. Further-
more, Zolgensma (AAV9_SMN1) has been successfully imple-
mented as a single-dose treatment in pre-clinical [77] and
clinical trials for Spinal Muscular Atrophy [60], resulting in its
recent FDA and EMA approval.

A range of gene therapy strategies are being investigated for the
treatment of DS. These are highlighted in Table 2 and are discussed
in more detail below.

Traditional gene supplementation therapies have proven chal-
lenging for DS due to the large and unstable nature of SCN1A cDNA,
yet a recent study overcame this through codon optimization and
packaging into a high-capacity adenoviral vector [78]. Administra-
tion of high capacity adenoviral SCN1A gene therapy to adolescent
heterozygous DS mice by stereotaxic injections into multiple brain
regions resulted in increases in SCN1A mRNA, Nav1.1 protein, sur-
vival, reduction of thermal-induced seizure, and several behavioral
readouts [78]. This study provided crucial evidence into the treat-
ment of older DS mice, improving translatability of treatments to
those patients who have had a diagnosis of DS for some time.

Niibori et al. designed an AAV9 vector encoding the multifunc-
tional b1 subunit, which combines with the a subunit of heterotri-
meric Nav1.1 protein. The b1 subunit has shown to modulate ion
flow through the sodium channel, emerging as a potential thera-
peutic target. Administration of AAV9 Nav1.1 b1 subunit vector
to P2 heterozygous DS mice via bilateral intracerebroventricular
(ICV) and intracisternal magna administration [50] resulted in a
greater increase in survival of treated female mice than treated
male mice. In contrast, a battery of behavioral tests showed
increased improvement in the male mice than the treated female
mice [50]. However, the treatment was not able to reduce the sus-
ceptibility of mice to thermal-induced seizures.

Encoded Therapeutics have investigated specific regulatory
regions controlling SCN1A expression, with the aim of targeting
these to increase expression and Nav1.1 protein production [79].
ETX101 is an innovative gene therapy technique that comprises
an AAV vector encoding an engineered transcription factor tar-
geted to GABAergic interneurons, which is small enough to be
packaged into an AAV vector unlike the SCN1A gene itself (AAV9-
REGABA-eTFSCN1A). In vitro studies conducted on human-induced
pluripotent stem cell-derived GABAergic interneurons led to
increased SCN1A mRNA expression and Nav1.1 protein [79]. When
administered to P1 Scn1a+/� DS mice via bilateral ICV, this resulted
in increased survival, significant improvement in hyperthermic
seizure threshold, and reduction in spontaneous seizures [80]. Fur-
thermore, bio-distributional and safety studies were conducted in
non-human primates (NHP). Encoded Therapeutics are currently
recruiting patients for a non-interventional study into the natural
history of DS known as ENVISION [81], which will be followed in
2022 with an interventional clinical trial testing of ETX101 called
ENDEAVOR [82].

Sarepta and StrideBio are currently within the discovery phase
of a potential therapy called STRX-240, but little is known about
this program. It is expected that the therapy would employ the
STRIVETM platform to engineer AAVs with increased efficiency,
lower immunogenicity, and improved tissue-specific tropism
[83], bespoke for a DS gene therapy.

4.2. Gene editing

Gene editing allows specific modifications to be made at target
regions of DNA and has been a major aspiration in precision med-
icine and biotechnology as a treatment modality for genetic disor-
ders. Gene editing has previously been used to cure different
diseases in mice [84–88]. CRISPR (clustered regularly interspaced
short palindromic repeats) mechanisms have proven successful



Table 1
Viral gene therapy approaches. + indicates an advantage, whereas – indicates a disadvantage.

Viral vector Vector particleand
genome

Advantages and disadvantages Example gene therapy products Reference
(s)

Adeno-associated
viral (AAV)

� 25 nm, non-enveloped
� Single-stranded DNA
� 4.7 Kb coding capacity

+ Range of serotypes to specify cellular tropism
+ High titers
+ Strong and sustained transgene expression
- Limited capacity, especially in self-complementary

form
- Possible pre-existing immunity
- Recent safety concerns over high-dose AAV therapy

� Glybera: AAV1_LPLS447X

� Luxturna: AAV2_RPE65
� Zolgensma: AAV9_SMN1

[56–62]

Adenoviral � 100 nm, non-enveloped
� Double-stranded DNA
� 37 Kb capacity

+ Range of serotypes
+ Capsid highly amenable to protein engineering
+ High transduction efficiency
+ Large capacity to accommodate large genes
- Transient transgene expression
- High inflammatory response

� Gendicine: Ad_Tp53
� Oncorine: E1B mutant
� Covid-19 vaccine (AstraZeneca)

[63–65]

Lentiviral � 100 nm, enveloped
� Single-stranded RNA
� 7.5–9 Kb capacity [66]

+ Low immunogenicity and host-immunologically naïve
+ Efficient transduction of mitotic and quiescent cells
+ Integrating and non-integrating forms available
- Low titers
- Difficult to scale up production

� Kymriah: ex vivo LV_anti-CD19
transduced autologous T cells

� Zynteglo: ex vivo LV_bA-T87Q-glo-
bin
transduced autologous T cells

[67–71]
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in various gene editing systems [89], with Cas9 induction of dou-
ble-stranded breaks, nickase-induced single-stranded breaks, base
editors, prime editors, Cas13 RNA targeting, and RNA-guided effec-
tor proteins.

Nuclease defective forms of Cas9, known as dead Cas9 (dCas9)
act as a scaffold to transport transcriptional inhibitors (CRISPRi),
transcriptional activators (CRISPRa), histone alternants, and epige-
netic modifiers to specific target genome sequences [90–93].
Recently researchers have fused dCas9 to an engineered reverse
transcriptase to insert new genetic information into a target DNA
region. Prime editing guide RNA (pegRNA) sequences are utilized
to encode the DNA sequence insert as well as a high specificity
to a target locus [89]. Base editing without the creation of dou-
ble-stranded breaks can be induced by cytosine or adenosine
deaminases, allowing correction of point mutations, or gene inacti-
vation through the generation of stop codons [94]. Both CRISPR
prime editing and CRISPR base editing systems have demonstrated
evidence of high efficiency with rarely detected off-target effects
[89,95,96].

Gene editing techniques for neurological disorders are being
developed in preclinical studies. Examples of molecular targets
that have been approached so far include mutant APP in Alzhei-
mer’s disease [97,98], mutant HTT in Huntington’s disease [99]
and SOD1 in amyotrophic lateral sclerosis (ALS) [100]. For an excel-
lent reviews of neurological gene editing, see Duarte and Deglon,
2020 [94] and Lubroth et al, 2021 [101].

In the context of DS, gene editing approaches using dead Cas9
fused with the transcriptional activators VP64 or VPR in order to
enhance Scn1a transcription have been developed ([102;103];
Table 2). Colasante et al. developed a single gRNA specific to the
Scn1a proximal promoter and delivered this via a dual AAV9
approach to neonatal heterozygous DS mice, specifically targeting
GABAergic interneurons using the Dlx5/6 promoter. This gene edit-
ing treatment sufficiently stimulated Scn1a gene expression and
reduced, but not ameliorated, thermal-induced seizures [102].
Yamagata et al. fused dCas9 to a second-generation transcriptional
activator, VPR, in which VP64 is combined with the p65 subunit of
NF-jB and the viral transcription factor Rta [103]. An AAV-PHP.eB
encoding four tandem gRNAs was administered to 4-week-old
haploinsufficient CRISPR-ON Cre-lox DS mice via tail vein injec-
tions, which resulted in upregulation of Scn1a in inhibitory neu-
rons, ameliorated behavioral defects, febrile seizures, and
mortality [103].
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4.3. Non-viral genetic therapies

Genetic material can be delivered to cells without the use of a
viral vector. Some non-viral approaches (Table 3) include the use
of antisense oligonucleotides (ASOs), small interfering RNAs (siR-
NAs), phosphorodiamidate morpholino oligonucleotides (PMOs),
naked plasmid DNA, or bifunctional RNAs. The goal of non-viral
genetic therapies is not always to simply restore a copy of a func-
tional gene; these can be used to alter transcription, splicing, alter
transcript stability, or disrupt translation initiation [107].

In recent years, the development of ASO treatments for neuro-
logical disorders has increased in popularity. ASOs are short,
single-stranded oligonucleotides which are complementary to
the desired mRNA target and can alter protein expression [108].
Perhaps the most successful of these, culminating in FDA and
EMA approval for the treatment of Spinal Muscular Atrophy is
Spinraza. This ASO binds to SMN2 pre-mRNA at the ISS-N1 splice
silencing sequence, preventing negative splice factors from binding
this site, allowing the recognition of exon 7 by cellular splicing
machinery and thus the inclusion of exon 7 in the mature, full-
length SMN2 mRNA transcript, achieving great therapeutic benefit
[109].

Programs in various stages of preclinical and clinical develop-
ment for other neurological disorders include Batten’s disease
caused by mutations in MFSD8 [110], Huntington’s disease
(NCT02519036: [111]), ALS (NCT01041222: [112–114]) and more.
For excellent reviews on the development of ASO therapeutics,
please see Rinaldi andWood, 2017 [115] andWurster and Ludolph,
2018 [116].

The use of non-viral gene therapies has shown great promise for
channelopathies. For example, pre-clinical study using a gain of
function KCNT1 mouse model demonstrated after a single intrac-
erebroventricular injection of ASO’s to neonatal and post-natal
Kcnt1�/� mice resulted in controllable seizures and increase sur-
vival [134].

Secondly, elevated sodium channel excitability caused by gain-
of-function Scn8a variants could be ameliorated following neonatal
delivery of an ASO, leading to an increase in survival from 2 weeks
to 9 weeks [135]. When the same ASO was delivered to DS model
mice, the reduction in Scn8a expression could partially compensate
for Scn1a haploinsufficiency, highlighting the role of disease mod-
ifiers in achieving excitatory/inhibitory balance and DS phenotype
(Lenk et al., 2020).



Table 2
Genetic therapies in development for Dravet Syndrome.

Compound Company or
academic group

Key aspects of technology Pre-clinical Results Clinical development stage (if applicable) Ref(s)

Viral gene therapy
AdV-CAG-SCN1A � Adenoviral vector encoding codon opti-

mized SCN1A
� 5-week-old stereotaxic bilateral injection
(4x106 or 2x107 vg/mouse)

� Basal ganglia/cerebellum dual injections or
basal ganglia/ cerebellum/pre-frontal cortex
triple injections

� SH-SY5Y cells and primary neuronal cultures: dose-dependent
increase in SCN1A mRNA and Nav1.1 protein

� Scn1aWT/A1783V mice:
� Significant reduction in interictal epileptiform discharges in high-
dose cohort, partial effect in low-dose

� 100-day survival: 95% (dual) and 100% (triple) treated vs 65% control
� Triple-site treated mice significant increase in seizure threshold
temperature

� Behavioral improvements in treated mice in novel object, marble
burying and rotarod tests, but not Morris water maze

No clinical development as yet [78]
Mora-Jimenez et al.,

University of Navarra

AAV9-pGad1-Navb1-myc � AAV9 encoding auxiliary sodium channel
subunit; Navb1

� P2 bilateral ICV and ICM injection (8x1010

vg/mouse)

129 Sv-Scn1atm1Kea/Mmja+/- DS mice:
� Significantly higher mortality in untreated females vs males
� Treated mice more likely to survive vs control
� Survival effect more robust in females
� Untreated: 1–24 seizures/day in 24 h prior to death
� Reduction in seizure frequency in males, but not females following
treatment

� No effect of treatment on susceptibility to heat-induced seizures
� Behavioral correction in males, but not females, in open-field, ele-
vated plus maze, and passive avoidance tests

No clinical development as yet [50]
Niibori et al., University of

Toronto

AAV9-REGABA-eTFSCN1A � AAV delivery of engineered transcription
factor

� Single P1 bilateral ICV dose (range 1.7x1010-
5.1x1010 vg/mouse)

� Increase expression of endogenous SCN1A
specifically in GABAergic interneurons

� Upregulation of SCN1A in human iPSC-derived GABAergic
interneurons

� P1 ICV injection: 30% more SCN1A in GABAergic neurons containing
eTFSCN1A transcript than without, Nav1.1 levels in brain 61.4 ± 14.1%
vs 45.7 ± 11.7% in controls

� Proportion of spontaneous-seizure mice 67% vs 20% control, 88% sei-
zure free in hyperthermic assay vs 13% control

� 90-day survival: 100% vs 50% control
� 470-day survival: 83.2% vs 31.4% controlNon-human Primates
(NHP)

� Single unilateral ICV injection to juvenile cynomolgus macaques
(4.8x1013-8x1013 vg/animal)

� Transgene expression throughout the brain, including cortex and
hippocampus

� No Dorsal root ganglion related toxicity observed

� ENVISION (NCT04537832; recruiting)
� Observational study
� 50 patients, aged 6–60 months
� Plans to launch ENDEAVOR clinical trial in
2022

[79,80,82]
ETX101
Encoded Therapeutics

Gene editing
AAV9-Scn1a-dCas9A

Colasante et al., San
Raffaele Scientific Institute

� CRISPR-ON dCas9-VP160/64
� Single gRNA targeting proximal promoter
� Activation of Scn1a transcription
� Dual AAV system: TRE-dCas9-VP64 and U6-
sgRNA-mDlx5/6-tTA-tdTomato

� ICV delivery at P0

� Primary hippocampal neurons: 4-fold Scn1a mRNA increase, 2-fold
increased Nav1.1

� Wild type cortical interneurons: increased firing rate following
Scn1a-dCas9A

� Scn1a+/- cortical interneurons: 3.5-fold Scn1a mRNA increase, 2-fold
increased Nav1.1

� Electrophysiological rescue
� Scn1a+/- DS mice:
� Increased Scn1a mRNA at 2 weeks of age
� Increased seizure threshold temperature by hyperthermia and infec-
tion-induced fever

� Shorter seizure duration vs control

No clinical development as yet [102]
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Table 2 (continued)

Compound Company or
academic group

Key aspects of technology Pre-clinical Results Clinical development stage (if applicable) Ref(s)

AAV-PHP.eB Scn1a-dCas9-
VPR

� CRISPR-ON dCas9-VPR
� 4 gRNA multiplex
� Single AAV delivery (1.8x1011 vg/mouse) at
4 weeks of age

dCas9-VPRVPR/+/Vgat-CreCre/+/Scn1aRX/+ triple mutant DS mice:
� Increase in Scn1a mRNA and Nav1.1 protein
� 12-week survival: 100% treated vs 82% control
� Increased seizure threshold temperature
� Longer latency to clonic seizures
� Rescue of increased exploratory activity, anxiety, and thigmotaxis
seen in control mice in open-field and elevated plus maze

No clinical development as yet [103]

Yamagata et al., RIKEN Brain
Science Institute

Non-viral genetic therapies
AntagoNAT � ASO

� Inhibition of a repressive long, non-coding
RNA associated with Scn1a

� ‘Unsilencing’ of Scn1a
� Intrathecal injections to 7-week-old
heterozygous DS mice. Repeated injections,
once a week for 4 weeks.

� 86% AntagoNATs led to increase in SCN1A mRNA in vitro: 4.2-fold vs
control

� Highly specific to SCN1AScn1aE1099X+/- DS mice:
� Dose-dependent 10–30% increase of Scn1a mRNA in brain vs control
� 70% decline in average seizure number (20 lg group) vs control
� Seizure threshold temperature significantly increased vs con-
trolAfrican green monkey:

� Adult, single IT injection
� Presence of AntagoNAT in parvalbumin-positive hippocampal
interneurons

� Upregulation of brain Scn1a mRNA

No clinical development as yet [47]
Hsiao et al., OPKA Health Inc,

USA,

STK-001 � ASO – TANGO technology
� Intrathecal delivery
� Splice-correcting ASO to increase produc-
tion of full-length SCN1A mRNA isoforms

129 Sv-Scn1atm1Kea+/- DS mice:
� Dose-dependent increase in Scn1a mRNA and Nav1.1 protein
� P2 ICV injection (20 lg) 90-day survival: 97% treated vs 23% control.
P14 ICV injection (60 lg) 90-day survival: 85% treated vs 64% control

� SUDEP: 50% control mice, 5.2% P2-treated mice, 18.2% P14-treated
mice

� Reduced spontaneous seizure frequency and longer latency to first
seizure in P2-treated mice vs control

� Phase 1/2a, open label clinical trials:
� MONARCH (NCT04442295; recruiting)
� 10, 20, 30 mg SAD, 20 mg MAD. Safety, tolera-
bility and pharmacokinetics.

� SWALLOWTAIL (NCT04740476; enrolling by
invitation). Open-label extension study of
MONARCH participants

� ADMIRAL MAD up to 70 mg
� BUTTERFLY 36 patients, aged 2–18 years
� Observational study

[104–
106]Stoke Therapeutics

AdV = adenoviral vector, vg = vector genomes, AAV = adeno-associated viral vector, P1 = post-natal day 1, ICV = intracerebroventricular, ICM = intracisternal magna, DS = Dravet Syndrome, iPSC = induced pluripotent stem cell,
SUDEP = sudden unexpected death in epilepsy, CRISPR = clustered regularly interspaced short palindromic repeats, gRNA = guide RNA, ASO = antisense oligonucleotide, IT = intrathecal, TANGO = targeted augmentation of nuclear
gene output, SAD = single ascending dose, MAD = multiple ascending dose.
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Table 3
Non-viral gene therapy vectors.

Non-viral
vector

Structure Mechanisms of action Example gene therapy
products

Reference(s)

ASO � �18–30 nucleotides
� Singlestranded
� Nuclease resistant
� Diverse chemistries – 20MOE and PMO

� RNaseH competent – degradation of target
RNA; gene silencing

� Steric block – bind to target with high
affinity, interfere with RNA/RNA and/or
RNA/protein interactions; splice correction,
corruption or isoform switching

� Spinraza: SMN2 pre-mRNA
� Vitravene: CMV_IE-2
� Kynamro: Apolipoprotein
B100

[107,117–
125]

PMO � Singlestranded
� Charge-neutral chemistry

� RNaseH-independent steric blockade; inhi-
bit protein translation

� Intron/exon targeting; modulate pre-
mRNA splicing

� Eteplirsen: Exondys51
� Golodirsen: Exondys53

[107,126–
129]

siRNA � 19 + 2 (complementary + overhang)
nucleotides

� Doublestranded

� Guide Argonaute2 within RNA-induced
silencing complex (RISC) to target; RNA
cleavage and silencing

� Onpattro: Transthyretin [107,130,131]

Plasmid DNA � Circular, double-stranded DNA � Gene augmentation � Neovasculgen:
pCMV_VEGF165

[132,133]
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A non-viral gene therapy has been reported by Hsiao et al.
where they developed synthetic AntagoNATs for the treatment of
DS (Table 2). NATs, or natural antisense transcripts, are long,
non-coding RNAs associated with many gene loci that influence
transcriptional regulation of nearby, associated genes [47]. It is
possible to target these NATs with the use of oligonucleotides,
known as AntagoNATs [47]. By inhibiting the repressive long
non-coding RNA specific to Scn1a, AntagoNATs are able to increase
expression of Scn1a itself, and thus potentially provide therapeutic
benefit to patients with DS. In vivo studies demonstrated signifi-
cantly reduced seizure phenotype improvements in excitability
hippocampal interneurons after repeated intrathecal injections to
7-week heterozygous DS mice [47].

A novel technology, Targeted Augmentation of Nuclear Gene
Output (TANGO), has been developed by Stoke Therapeutics for
DS. In this instance, TANGO uses splice-correcting ASOs to reduce
the production of non-productive messenger RNA; naturally occur-
ring mRNA transcripts containing premature stop codons that are
degraded via nonsense-mediated decay [107]. The TANGO technol-
ogy works by targeting ASOs to alternative splice sites, promoting
the generation of productive, full-length isoforms, thus increasing
the translation of NaV1.1 protein [136]. These novel ASOs were
administered to P2 DS heterozygous mice and showed a significant
increase in survival and in reducing spontaneous seizures [136].
Orphan drug designation has been granted to STK-001 by the
FDA. The MONARCH phase 1/2a trial (NCT04442295) enrolling pa-
tients with DS aged 2–18 years [106] is underway in the US with
preliminary safety and pharmacokinetic data expected to be avail-
able in the second half of 2021. The UK MHRA has recently granted
authorization to initiate the ADMIRAL phase 1/2a clinical trial
[137] assessing safety and tolerability of doses up to 70 mg of
STK-001 with enrolment to begin later this year.

Tevard Biosciences and Zogenix [138] are developing two tRNA-
based gene therapies for DS. Read-through technology can override
premature stop codons caused by nonsense mutations, thus
increasing the amount of full-length SCN1A mRNA available. How-
ever, little information is available in the public domain regarding
data from preclinical experiments.
5. Conclusion

DS is a very complex and a severe condition where antiepilep-
tics are often inadequate in controlling seizures and are unable
to improve the cognitive decline in patients. There is no definitive
genotype-phenotype correlation that has been delineated, as
genetic mutations often lead to different phenotypic characteris-
tics in patients. This, therefore, impedes the early diagnosis of DS
6

and limits the potential medicinal therapies that could effectively
slow-down disease progression. However, with the recent develop-
ments of the novel prediction model for patients with DS, this
hopefully will aid and assist with prognostic counseling and early
decisions on therapeutics [7].

Gene therapy for CNS disorders have developed tremendously
over the years with AAV vectors being the major driving force for
clinical trials [84]. Clinical trials intravenously delivering AAV9 to
children with SMA have demonstrated that the vectors are safe
and efficient in ameliorating the disease symptoms [60], illustrat-
ing that this field is vastly growing and moving in the right direc-
tion in treating neurological disorders. Gene editing tools are
showing great promise in correcting specific point mutations and
thus restoring correct protein formation [139]. Gene editing and
gene therapy tools are constantly developing and therefore provide
opportunities for novel treatments for neurological disorders.

Recent advancements in RNA-based therapies and positive
therapeutic outcomes in pre-clinical studies for neurological disor-
ders, further highlight the great advancements being made in
genetic therapies.

Encoded and Stoke therapeutic genetic therapies for DS have
been approved by the regulatory bodies [79,136] and thus provide
an alternative treatment, for a long-term control of symptoms and
potentially improved cognitive behavioral outcomes by increasing
the expression of NaV1.1. Several academic groups and biotechnol-
ogy companies are developing further genetic therapeutic tech-
nologies applicable to DS, providing hope for this kind of
treatment modality in the future.

As more genetic therapies for DS move toward clinical trials, we
must consider how data from pre-clinical studies translate to pa-
tients with DS. Importance of outcomes such as survival or reduc-
tion in SUDEP is often prioritized in pre-clinical research, whereas
measures of intellectual disability, behavioral deficits, and fre-
quency of seizures may be more informative in determining the
efficacy of the treatment. Furthermore, there is a need for early
identification of DS to enable recruitment into clinical trials at an
early age, for example to avoid pre-existing antibodies to AAV vec-
tors,as it has been reported that children with neurological condi-
tions seem to have increased seroprevalence compared to healthy
children [140–142]. Combining these aspects, together with data
and key measures from natural history studies will be necessary
to design effective DS clinical trials.
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