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Summary
Background Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation 
efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes 
from nationwide linked electronic health records (EHR) using an extensible framework.

Methods In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive 
on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations 
were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease 
severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, 
ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating 
transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination 
status.

Findings Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 
7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 
460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to 
hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive 
ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but 
did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] 
of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients 
who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 
158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses 
on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous 
COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1.

Interpretation Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, 
survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the 
impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources.

Funding British Heart Foundation Data Science Centre, led by Health Data Research UK.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction 
Understanding the population impact of COVID-19 
requires consideration of how COVID-19 varies in 
severity (from asymptomatic to fatal) and time course 
(from acute infection to chronic sequelae [ie, long 
COVID]). These diverse clinical manifestations are 
reflected in a patients’ digital trace across multiple, often 
un connected, health system organisations including 
public health, general practice, hospitals, intensive care, 
and civil death registration.

The trajectories of disease severity in COVID-19 are 
poorly understood for three reasons. First, there is an 
important need for scale to identify outcomes in less 
common demographic groups, and to determine the 
impact on comor bidities and treatments. 

Second, an unmet need exists to comprehensively 
link individual’s data across siloed institutional 
datasets. In practice, scale and linkage are intrinsically 
related concepts. In national health systems, such as 
that in England, datasets might encapsulate the 
population, but are restricted to an isolated component 
of the health system (eg, primary care); therefore, 
linkage is vital to capture the depth of patients’ 
interactions across aspects of health care. Conversely, 
in other health systems, the unit of the dataset might be 
that of a single health-care provider, encompassing rich 
patient data across both primary and secondary care, 
but for a small subset of the population. For datasets 
collected by a single health-care provider, case linkage 
between providers becomes necessary to expand the 
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breadth of individuals captured. These issues are 
apparent in the existing literature, whereby studies 
approaching a population-scale have been restricted to 
primary care settings,1 and those reporting more 
detailed outcomes have been limited to population 
subsets.2 Previous studies have attempted to use linkage 
to mitigate these issues, but have fallen short of 
reaching a size equitable to a full population. For 
example, Mathur and colleagues used five linked 
datasets to determine COVID-19 positive tests, hospital 
admissions, intensive care unit (ICU) admissions, and 
deaths;3 however, because the authors used a single 
dataset per health system, the study population was 
limited to 17·3 million individuals (around 30% of the 
population of England). 

Third, there is a need for open and accessible, 
reproducible electronic health record (EHR) COVID-19 
phenotypes that capture clinically significant treatments 
and outcomes, such as intensive care admission and 
ventilatory support. Such phenotypes need to evolve to 
reflect changes in clinical practice and data recording, 
and incorporate uncertainty—eg, clinical diagnoses in 
the absence of testing, or deaths occurring after 
infection in the absence of COVID-19 as a documented 
cause.

Despite the proliferation of EHR-based COVID-19 
research, few studies have explicitly addressed pheno-
typing. Previous studies have focused on the development 
of binary phenotypes for COVID-19 infection and 
hospital admission, by comparing a single terminology 
(International Classification of Diseases [ICD]-10-Clinical 

Modification) with SARS-CoV-2 test positivity,4 or 
defining severe COVID-19 using laboratory tests, medi-
cations, diagnoses, and procedures.5 Neither of these 
approaches are directly transferable to national EHR data 
in England, and both fail to capture the full range of 
COVID-19 events, including primary care and deaths, 
and do not fully exploit the depth and breadth of available 
national data sources that potentially reduce the fidelity 
of identified phenotypes.

To address these gaps, we leveraged nationwide data 
from England linking laboratory testing, primary care, 
hospital admissions (including ventilatory support and 
ICU admissions), and registered deaths to define 
COVID-19 phenotypes reflecting clinically relevant stages 
of disease severity, characterised demographics and 
comorbidities of those individuals with these phenotypes, 
and compared disease severity, mortality, and trajectories 
stratified by pandemic wave, demographics, and 
vaccination status. Using data linkage, we aimed to 
establish an updatable framework that could be used to 
reconstruct an individual’s COVID-19 trajectory across 
distinct severity states, to provide vital insight with regard 
to the impact of new variants, efficacy of booster doses, 
post-exposure prophylaxis, and emerging drug 
treatments.

Methods
Study design and data sources
In this cohort study, we used eight linked, English 
National Health Service (NHS) datasets available within 
the NHS Digital Trusted Research Environment, 

Research in context

Evidence before this study
We searched PubMed from database inception to Oct 14, 2021, 
for publications using the search terms “COVID-19” or “SARS-
CoV-2”, “severity”, and “electronic health records” or “EHR”, 
without language restrictions. Multiple studies have explored 
factors associated with severity of COVID-19 infection, and 
model predictions of outcome for patients admitted to 
hospital. However, to date, most studies have focused on 
isolated facets of the health-care system, such as primary or 
secondary care only, have been done in subpopulations 
(eg, patients admitted to hospital), have been of small sample 
size, and often utilised dichotomised outcomes (eg, mortality 
or hospital admission) not representative of the full spectrum 
of disease. We identified no studies that comprehensively 
detailed severity of infections across pandemic waves, and by 
vaccination status and patient trajectories.

Added value of this study
To our knowledge, this is the first study to provide a 
comprehensive view of COVID-19 across pandemic waves using 
national data with a focus on severity, vaccination, and patient 
trajectories. Using data from linked electronic health records, at 

the national level, we reported the key demographic factors, 
frequency of comorbidities, impact of the two main waves in 
England, and effect of vaccination on COVID-19 severity on 
57 million people alive and registered with a general 
practitioner in England. Additionally, we identified and 
described patient trajectory networks that illustrate the main 
transition pathways of patients with COVID-19 in the health-
care system. We also provide reproducible COVID-19 
phenotyping algorithms reflecting clinically relevant stages of 
disease severity (ie, positive tests, primary care diagnoses, 
hospital admission, ventilatory support, and mortality). 

Implications of all the available evidence
The COVID-19 phenotypes and trajectory analysis framework 
provides a reproducible, extensible, and repurposable method 
to generate national-level data to support crucial policy 
decision making. By modelling patient trajectories as a series of 
interactions with health-care systems, and linking these to 
demographic and outcome data, we provide a method of 
identifying and prioritising care pathways associated with 
adverse outcomes and highlight tangible targets for 
intervention within the health-care system.
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accessed through the CVD-COVID-UK/COVID-IMPACT 
Consortium. The following datasets were included: 
national laboratory COVID-19 testing data from the 
Public Health England Second Generation Surveillance 
System (SGSS); primary care data from the General 
Practice Extraction Service Extract for Pandemic 
Planning and Research (GDPPR);6 hospital admission 
data from Secondary Uses Service (SUS), Hospital 
Episode Statistics for admitted patient care (HES-APC), 
and Hospital Episode Statistics for adult critical care 
(HES-CC); COVID-19 hospital admission data from the 
COVID-19 Hospitalisations in England Surveillance 
System (CHESS; a dataset initiated by the NHS at the 
start of the pandemic to record information about 
patients admitted to hospital with COVID-19); COVID-19 
vaccination status capturing vaccination details on a 
weekly basis; and mortality information from the Office 
for National Statistics (ONS) Civil Registration of Deaths.7 
Datasets were linked at the individual level by NHS 
Digital using a pseudonymised version of the NHS 
number, a unique ten-digit patient identifier used in the 
UK health-care system that is assigned at birth or at the 
first interaction. 

A Reporting of studies Conducted using Observational 
Routinely-collected Data statement is included in the 
appendix (p 35). The North East-Newcastle and North 
Tyneside 2 research ethics committee provided ethical 
approval for the CVD-COVID-UK/COVID-IMPACT 
research programme (REC No 20/NE/0161) to access, 
within secure trusted research environments, uncon-
sented, whole-population, de-identified data from 
electronic health records collected as part of patients’ 
routine health care, which has been described previously.7 

Study population and pandemic waves 
We collected data between Jan 23, 2020, the date of the 
first recorded COVID-19 case in the UK,8 and 
Nov 30, 2021. We included individuals of any age who 
were alive at the start of the study; registered with a 
general practitioner (GP) in England (minimum one 
patient record in GDPPR), associated with a valid person 
pseudo-identifier, enabling data linkage; had a minimum 
of 28 days of follow-up time (in accordance with death 
estimates reported on the UK Government COVID-19 
dashboard) across the eight linked data sources between 
the index non-fatal infection event and the study end 
date; and resided in England, as defined using lower-
layer super output areas (LSOAs; appendix p 14).

We defined pandemic waves using a data-driven 
approach, in the absence of a consensus definition. We 
defined the first wave as the period in which more than 
1000 cases per day were reported by Public Health 
England (Feb 20–May 29, 2020) and the second wave as 
the period in which more than 10 000 cases per day were 
reported (Sept 30, 2020 to Feb 12, 2021), accounting for 
the increase in testing capacity (as reported on the UK 
Government COVID-19 dashboard). Individuals were 

assigned to waves on the basis of the date of their first 
identified COVID-19 phenotype.

COVID-19 phenotypes
To identify COVID-19 from EHR spanning all health-care 
settings, we combined all relevant COVID-19 events—ie, 
diagnosis codes in primary or secondary care, 
SARS-CoV-2 laboratory testing, disease outcomes, and 
the provision of ventilatory support (within and outside 
of the ICU). To improve the generalisability and reprod-
ucibility of the COVID-19 phenotypes, we created 
modular algorithms that can be adapted and applied in 
other datasets to make use of all available information for 
event ascertainment. We defined ten COVID-19 
phenotypes reflecting clinically relevant stages of disease 
severity and encompassing five categories: (1) positive 
SARS-CoV-2 tests, (2) COVID-19 diagnosis recorded in 
primary care, (3) hospital admissions with a COVID-19 
diagnosis, (4) ventilatory support (four phenotypes) 
related to COVID-19, and (5) deaths (three phenotypes). 
COVID-19 phenotypes were not mutually exclusive and 
thus it was possible for an individual to have more than 
one phenotype or more than one event of a specific 
phenotype. Positive SARS-CoV-2 tests were defined as a 
positive result from national testing data (SGSS), 
encompassing tests from NHS hospitals for individuals 
with a clinical need and health-care workers and swab 
testing from the wider population. Primary care 
diagnoses were ascer tained using SNOMED CT 
concepts, and hospital admissions were identified using 
ICD-10 terms in any diagnostic position in HES-APC 
and SUS, or the presence of a patient in CHESS, a 
COVID-19 specific hospital dataset (appendix p 24).

We defined four ventilatory support phenotypes on the 
basis of ventilatory modalities: non-invasive ventilation, 
invasive mechanical ventilation, extracorporeal mem brane 
oxygenation, and ICU admission. These pheno types were 
defined using proprietary fields from HES-CC and CHESS 
in addition to OPCS-4 procedure codes (analogous to 
Current Procedural Terminology codes used in the USA). 
Ventilatory support outside the ICU was defined as the 
presence of a non-invasive ventilation, invasive mechanical 
ventilation, or extra corporeal membrane oxygenation 
phenotype in the absence of an ICU admission phenotype. 
Fatal COVID-19 events were identified from ONS Civil 
Registration of Deaths and secondary care (HES-APC, 
SUS) and defined as: (1) a suspected or confirmed 
COVID-19 diagnosis ICD-10 term listed anywhere on the 
death certificate, (2) death within 28 days of the first 
recorded COVID-19 event (positive test, diagnosis, or 
admission; consistent with UK Government and Public 
Health England reported threshold [UK Government 
COVID-19 dashboard]), where a COVID-19 diagnosis was 
not listed anywhere on the death certificate, or (3) a 
COVID-19 hospital admission with a discharge method or 
discharge destination denoting death, irrespective of cause 
and duration after the index event (appendix p 24).

See Online for appendix

For more on the CVD-COVID-
UK/COVID-IMPACT Consortium 
see https://www.hdruk.ac.uk/
projects/cvd-covid-uk-project/

For the UK Government data on 
COVID-19 testing capacity see 
https://coronavirus.data.gov.uk/
details/testing

For the Government data on 
COVID-19 deaths see https://
coronavirus.data.gov.uk/details/
deaths

https://www.hdruk.ac.uk/projects/cvd-covid-uk-project/
https://www.hdruk.ac.uk/projects/cvd-covid-uk-project/
https://coronavirus.data.gov.uk/details/deaths
https://coronavirus.data.gov.uk/details/deaths
https://coronavirus.data.gov.uk/details/deaths
https://coronavirus.data.gov.uk/details/testing
https://coronavirus.data.gov.uk/details/testing
https://www.hdruk.ac.uk/projects/cvd-covid-uk-project/
https://www.hdruk.ac.uk/projects/cvd-covid-uk-project/
https://coronavirus.data.gov.uk/details/testing
https://coronavirus.data.gov.uk/details/testing
https://coronavirus.data.gov.uk/details/deaths
https://coronavirus.data.gov.uk/details/deaths
https://coronavirus.data.gov.uk/details/deaths
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We used the CALIBER rule-based phenotyping 
approach9 to create reproducible phenotypes that are 
publicly available, in addition to the study protocol and 
analytical code, on the HDR UK CALIBER Phenotype 
Library and GitHub.10 Phenotype codelists and further 
details on phenotyping are in the appendix (pp 3, 24). 

Age, sex, and ethnicity were derived from the most 
recent non-missing value across primary care (GDPPR) 
and secondary care (HES-APC), with preference given to 
primary care in the event of a match on the same date. 
Ethnicity was categorised by adapting the ONS census 
categories to: White, Asian or Asian British, Black or 
Black British, Chinese, Mixed, or Other. Socioeconomic 
deprivation information was derived using the 2011 
LSOA from GDPPR to index the 2019 English indices of 
deprivation11 and IMD mapped to deprivation quintiles 
(quintile 1 denotes the most deprivation; quintile 5 
denotes the least deprivation). 

We assessed 270 previously described comorbidities,12 
across 16 clinical specialities or organ systems, using 
validated CALIBER phenotypes and data records from 
Jan 1, 1996 to Dec 31, 2019 from primary care, hospital 
admission, and procedure data (appendix p 27).12 A 
multimorbidity variable was created as the binary sum 
across all 270 conditions.

At the start of the pandemic the UK Government 
imple mented a so-called shielding policy, whereby 
patients without COVID-19 who had specified underlying 
conditions considered to make them clinically extremely 
vulnerable to the development of severe COVID-19 
infections were advised to remain at home.13 Patients 
included on the national Shielded Patient List, were 
identified by the presence of SNOMED CT code 
1300561000000107 in their primary care record from 
May 4, 2020 onwards.

Vaccination status was determined from the COVID-19 
vaccination dataset, including all vaccinations admin-
istered after Dec 12, 2020 (when the first official dose was 
administered in England). Patients were denoted as 
vaccinated after 14 days had elapsed since their second 
dose. To examine effects, vaccinated patients were 
matched 1:1 with unvaccinated individuals for age (5-year 
age groups), sex, and ethnicity. Unvaccinated individuals 
were defined as those who had neither received a 
COVID-19 vaccine nor had previously been infected with 
SARS-CoV-2. Survival analysis was performed from a 
single timepoint (Feb 1, 2021), with a minimum of 28 
days follow-up.

Statistical analysis
We used descriptive statistics to summarise patient 
popu lations and characteristics. UpSet plots were used to 
illustrate the congruence of COVID-19 phenotype 
ascertain ment between data sources. 

COVID-19 event trajectory networks were based on 
research by Siggard and colleagues14 and created by 
extracting and chronologically sorting COVID-19 

phenotype events across each of the five categories: 
positive SARS-CoV-2 test, primary care diagnosis, 
hospital admission, ICU admission, and death. Only the 
first date for each phenotype event was considered. If 
multiple events were recorded on the same day (eg, 
positive SARS-CoV-2 test and hospital admission), events 
were ordered in the following hierarchy: positive SARS-
CoV-2 test, primary care diagnosis, hospital admission, 
ICU admission, and death. Deterministic trajectory 
network plots were developed, from all the individual 
patient trajectories, by extracting and aggre gating all 
pairwise transitions between events (a to b to c becomes; 
a to b and b to c) and calculating the frequency of 
transition between events and the median number of 
days elapsed between those two events across all the 
patients with observations of this transition.

We used Kaplan-Meier plots to estimate 28-day 
COVID-19 mortality, stratified by worst health-care 
presentation as a proxy for COVID-19 severity. Trajectory 
and Kaplan-Meier plots were stratified by pandemic 
waves, sex, age, ethnicity, and socioeconomic deprivation 
quintile. Kaplan-Meier plots were also used to compare 
the cumulative event frequency of the five main 
COVID-19 phenotypes stratified by vaccination status. 

Data were accessed through the NHS Digital Trusted 
Research Environment. Data cleaning, exploratory 
analysis, phenotype creation, and cohort assembly were 
performed using Python (version 3.7) and Spark SQL 
(version 2.4.5) on Databricks (version 6.4). Analysis was 
performed in RStudio (version 1.3.1093.1) and R (version 
4.0.3). Summary statistics were created using tableOne 
(version 0.12.0). Figures were constructed using ggplot2 
(version 3.3.3), UpSetR (version 1.4.0), igraph (version 
1.2.6), survival (version 3.2.7), and survminer (version 
0.4.8) packages.

Role of the funding source 
The funders had no role in study design, data collection, 
data analysis, data interpretation of data, or writing of the 
report. 

Results 
Our cohort comprised 57 032 174 individuals who were 
registered with a GP in England and alive on Jan 23,  2020, 
among whom 13 990 423 COVID-19 events were 
identified in 7 244 925 individuals (figure 1), equating to 
an infection rate of 12·7% during the study period 
(appendix p 14). The mean follow-up time from the first 
COVID-19 event was 225 days (SD 151). Of 7 244 925 
individuals with an identified COVID-19 phenotype, 
6 778 342 (93·6%) had a positive SARS-CoV-2 test, 
3 056 132 (42·2%) had a COVID-19 diagnosis in primary 
care, 460 737 (6·4%) were admitted to hospital, and 76 607 
(1·1%) received ventilatory support or were admitted to 
the ICU. A sensitivity analysis of primary admission 
diagnoses for COVID-19 hospital admissions identified 
from HES-APC showed COVID-19 was present in a 

For the HDR UK CALIBER 
Phenotype Library see https://

phenotypes.healthdatagateway.
org/phenotypes/PH1020/

version/2119/detail/#home

https://phenotypes.healthdatagateway.org/phenotypes/PH1020/version/2119/detail/#home
https://phenotypes.healthdatagateway.org/phenotypes/PH1020/version/2119/detail/#home
https://phenotypes.healthdatagateway.org/phenotypes/PH1020/version/2119/detail/#home
https://phenotypes.healthdatagateway.org/phenotypes/PH1020/version/2119/detail/#home
https://phenotypes.healthdatagateway.org/phenotypes/PH1020/version/2119/detail/#home
https://phenotypes.healthdatagateway.org/phenotypes/PH1020/version/2119/detail/#home
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primary diagnostic position in the first admission 
episode in 61% of individuals with a total of 3726 unique 
ICD-10 codes identified (appendix p 34).

6 773 299 (93·5%) of 7 244 925 individuals with 
COVID-19 events did not require hospital admission or 
died due to causes other than COVID-19. Of 46 0737 indiv-
iduals admitted to hospital, 69 090 (15·0%) received non-
invasive ventilation, 48 847 (10·6%) were admitted to an 
ICU, 25 928 (5·6%) received invasive mechanical 
ventilation, 21 717 (4·7%) patients received both non-
invasive ventilation and invasive mechanical ventilation, 
and 696 (0·2%) received extracorporeal membrane 
oxygenation.

Demographic characteristics of the entire dataset and 
individuals with COVID-19 are reported in table 1. Of 
7 244 925 individuals with COVID-19, COVID-19 
infections were highest among individuals who were 
female (3 877 808 [53·5%]), White individuals (5 898 279 
[81·4%]), Asian or Asian British individuals (714 168 
[9·9%]), and individuals in the most deprived quintile 
(1 607 009 [22·2%]). The overall frequency of COVID-19 
events was consistent with the distribution reported by 
the UK Government COVID-19 dashboard (appendix 
pp 16–17). 

158 020 individuals died, equating to a mortality rate of 
2·2%. Of these deaths, the majority occurred among 
patients who were admitted to hospital (114  206 [72·3%]); 
however, 43 814 (27·7%) individuals died without 
admission to hospital (appendix p 33). We identified 
10 884 deaths among individuals for whom COVID-19 
was a recorded cause of death without previous evidence 
of infection; most individuals were aged 70 years or older 
(9458 [86·9%]), were White (9665 [88·8%]), and had 
multiple comorbidities (median 7 conditions 
[IQR 4·00–11·00]; table 1).

15 486 individuals died within 28 days of a COVID-19 
event without a confirmed or suspected COVID-19 
diagnosis listed on the death certificate. Compared with 
individuals who died with COVID-19 as a recorded cause 
of death, these individuals were less likely to have a 
positive SARS-CoV-2 test and had fewer admissions and 
ventilatory treatments (appendix p 33). The most 
frequent primary causes of death were unspecified 
dementia (1008 [6·5%] of 15 486 deaths), cancer of 
bronchus and lung (809 [5·2%]), and pneumonia (794 
[5·1%]; appendix p 34). 

Among individuals with COVID-19 who died, the 
proportion of individuals who were male (86 094 [54·5%]) 
of 158 020 individuals), aged 70 years or older (129 138 
[81·7%]), White (138 434 [87·6%]), and were in the most 
deprived quintile (37 636 [23·8%]) was higher than that 
for the overall population who had COVID-19 (table 1). 
Multimorbidity was substantially higher among 
individuals who died of COVID-19 than those who did 
not: individuals who died of COVID-19 had a median of 
8 comorbidities (IQR 4–11) compared with 1 (0–3) for all 
individuals with COVID-19, five (2–4) among individuals 

admitted to hospital, and 4 (2–8) among individuals who 
received ventilatory support. Among the 4 084 631 
individuals with a SNOMED-CT code indicating a high 
risk category for developing complications with 
COVID-19 due to a condition included in the Patient 
Shielding List, 563 515 (13·8%) contracted COVID-19, of 
whom 51 113 died, equating to a mortality rate of 9·1%.

Overall, mortality was higher among patients who 
received ventilatory support outside the ICU (12 503 
[45·0%] of 27 760 patients) than among patients admitted 
to the ICU (19 023 [38·9%] of 48 847 patients) and patients 
admitted to hospital who did not receive ventilatory 
support (82 681 [21·5%] of 384 135 patients). Between 

Figure 1: Framework describing the ten COVID-19 phenotypes, and severity categories, produced using seven 
linked data sources to evaluate difference between COVID-19 waves and vaccination status
For all sources, ontology terms for both suspected and confirmed diagnosis were used. CHESS=COVID-19 
Hospitalisations in England Surveillance System. ECMO= extracorporeal membrane oxygenation. ICU=intensive 
care unit. IMV=invasive mechanical ventilation. GDPPR=General Practice Extraction Service Extract for Pandemic 
Planning and Research. HES-APC=Hospital Episode Statistics for admitted patient care. HES-CC=Hospital Episode 
Statistics for adult critical care. NIV=non-invasive ventilation. SGSS=Second Generation Surveillance System. 
SUS=Secondary Uses Service. *The proportion of individuals with a specific COVID-19 event phenotype, of all 
individuals with any COVID-19 event phenotype (n=7 244 925). †COVID-19 phenotypes were not mutually 
exclusive, thus for some phenotypes, the number of events exceeds the number of individuals (eg, individuals 
could have more than one positive SARS-CoV-2 test). ‡Includes SARS-CoV-2 tests from National Health Service 
hospitals for individuals with a clinical need and health-care workers and swab testing from the wider population. 
§HES-CC does not provide data on ECMO treatments.

Deaths

Secondary
care

Primary care

Testing SGSS‡

GDPPR

Deaths
registry

HES-
APC

CHESS SUS

HES-
CC§

Linked data sources COVID-19 phenotypes

Positive 
SARS-CoV-2 test

Primary care 
diagnosis

Fatal with COVID-19
diagnosis

Fatal without 
COVID-19 diagnosis

COVID-19 admission

COVID-19 inpatient 
death

HES-
APC

SUS

Severity

Admitted 
to hospital

Critical care

Events/individuals (%*)† 

7135 843/6778342 
(93·6%)

4 304027/3056132
(42·2%)

1 847283/460 737
(6·4%)

189725/69090
(1·0%)

81 578/25928
(0·4%)

1804/696
(0·01%)

76 967/48847
(0·7%)

141688/139818 
(1·9%)

15489/15486 
(0·2%)

196019/99938
(1·4%)

Deaths only

Not admitted 
to hospital

ICU admission

NIV treatment

IMV treatment

ECMO treatment



Articles

6 www.thelancet.com/digital-health   Published online June 8, 2022   https://doi.org/10.1016/S2589-7500(22)00091-7

Population 
(n=57 032 174)

All COVID-19 cases 
(n=7 244 925)

Severity* All COVID-19 
deaths (n=158 020)

Positive SARS-CoV-2 
test (n=3 948 079)

Primary care 
diagnosis 
(n=2 825 220)

Hospital 
admission 
(n=384 135)

Ventilatory 
support 
(n=76 607)

Deaths only† 
(n=10 884)

COVID-19 deaths 158 020 (0·3%) 158 020 (2·2%) 12 026 (0·3%) 20 903 (0·7%) 82 681 (21·5%) 31 526 (41·2%) ·· ··

All deaths 962 754 (1·7%) 224 475 (3·1%) 20 638 (0·5%) 47 346 (1·7%) 112 693 (29·3%) 32 914 (43·0%) ·· ··

Sex

Male 28 279 784 (49·6%) 3 367 117 (46·5%) 1 881 770 (47·7%) 1 239 487 (43·9%) 192 556 (50·1%) 48 197 (62·9%) 5107 (46·9%) 86 094 (54·5%)

Female 28 752 390 (50·4%) 3 877 808 (53·5%) 2 066 309 (52·3%) 1 585 733 (56·1%) 191 579 (49·9%) 28 410 (37·1%) 5777 (53·1%) 71 926 (45·5%)

Age, years

<18 11 612 932 (20·4%) 1 456 663 (20·1%) 1 094 645 (27·7%) 353 197 (12·5%) 7995 (2·1%) 823 (1·1%) <5 (0·0%) 85 (0·1%)

18–29 8 749 196 (15·3%) 1 458 665 (20·1%) 866 886 (22·0%) 569 538 (20·2%) 20 190 (5·3%) 2036 (2·7%) 15 (0·1%) 318 (0·2%)

30–49 15 736 022 (27·6%) 2 222 207 (30·7%) 1 169 541 (29·6%) 980 092 (34·7%) 59 536 (15·5%) 12 806 (16·7%) 232 (2·1%) 3651 (2·3%)

50–69 13 615 556 (23·9%) 1 485 351 (20·5%) 655 180 (16·6%) 699 003 (24·7%) 95 869 (25·0%) 34 123 (44·5%) 1176 (10·8%) 24 828 (15·7%)

≥70 73 18 468 (12·8%) 622 039 (8·6%) 161 827 (4·1%) 223 390 (7·9%) 200 545 (52·2%) 26 819 (35·0%) 9458 (86·9%) 129 138 (81·7%)

Ethnicity

White 45 800 803 (80·3%) 5 898 279 (81·4%) 3 291 417 (83·4%) 2 226 930 (78·8%) 313 864 (81·7%) 56 403 (73·6%) 9665 (88·8%) 138 434 (87·6%)

Asian or Asian British 4 962 875 (8·7%) 714 168 (9·9%) 315 031 (8·0%) 349 669 (12·4%) 37 733 (9·8%) 11 202 (14·6%) 533 (4·9%) 10 573 (6·7%)

Black or Black British 2 209 984 (3·9%) 241 053 (3·3%) 118 109 (3·0%) 99 736 (3·5%) 17 917 (4·7%) 4958 (6·5%) 333 (3·1%) 4771 (3·0%)

Chinese 518 709 (0·9%) 21 758 (0·3%) 11 954 (0·3%) 8218 (0·3%) 1145 (0·3%) 412 (0·5%) 29 (0·3%) 382 (0·2%)

Mixed 1 224 101 (2·1%) 153 693 (2·1%) 91 333 (2·3%) 55 647 (2·0%) 5338 (1·4%) 1300 (1·7%) 75 (0·7%) 1110 (0·7%)

Other 1 213 559 (2·1%) 126 040 (1·7%) 64 121 (1·6%) 53 581 (1·9%) 6406 (1·7%) 1809 (2·4%) 123 (1·1%) 1648 (1·0%)

Unknown 1 102 143 (1·9%) 89 934 (1·2%) 56 114 (1·4%) 31 439 (1·1%) 1732 (0·5%) 523 (0·7%) 126 (1·2%) 1102 (0·7%)

Social deprivation quintiles

1 (most deprived) 11 762 185 (20·6%) 1 607 009 (22·2%) 826 775 (20·9%) 652 071 (23·1%) 104 070 (27·1%) 21 797 (28·5%) 2296 (21·1%) 37 636 (23·8%)

5 (least deprived) 10 910 882 (19·1%) 1 334 226 (18·4%) 775 562 (19·6%) 489 938 (17·3%) 56 392 (14·7%) 10 212 (13·3%) 2122 (19·5%) 26 162 (16·6%)

Unknown 54 905 (0·1%) 5272 (0·1%) 2565 (0·1%) 2299 (0·1%) 340 (0·1%) 43 (0·1%) 25 (0·2%) 136 (0·1%)

Comorbidities

Shielded Patient List 4 084 631 (7·2%) 563 515 (7·8%) 173 799 (4·4%) 227 966 (8·1%) 135 327 (35·2%) 24 322 (31·7%) 2101 (19·3%) 51 113 (32·3%)

Circulatory (35) 10 853 569 (19·0%) 1 116 173 (15·4%) 373 739 (9·5%) 462 290 (16·4%) 228 120 (59·4%) 43 490 (56·8%) 8534 (78·4%) 126 310 (79·9%)

Respiratory (16) 9 930 315 (17·4%) 1 407 172 (19·4%) 687 359 (17·4%) 566 344 (20·0%) 124 530 (32·4%) 25 677 (33·5%) 3262 (30·0%) 55 695 (35·2%)

Genitourinary (17) 3 876 594 (6·8%) 530 319 (7·3%) 197 903 (5·0%) 219 146 (7·8%) 93 613 (24·4%) 16 006 (20·9%) 3651 (33·5%) 50 915 (32·2%)

Digestive (25) 5 195 635 (9·1%) 664 291 (9·2%) 284 903 (7·2%) 274 936 (9·7%) 85 601 (22·3%) 16 416 (21·4%) 2435 (22·4%) 40 303 (25·5%)

Endocrine (7) 7 625 521 (13·4%) 941 512 (13·0%) 357 992 (9·1%) 398 041 (14·1%) 147 747 (38·5%) 33 415 (43·6%) 4317 (39·7%) 71917 (45·5%)

Haematological or 
immunological (18)

663 176 (1·2%) 93 402 (1·3%) 36 693 (0·9%) 36 952 (1·3%) 16 017 (4·2%) 3376 (4·4%) 364 (3·3%) 7349 (4·7%)

Infectious diseases (26) 8 619 925 (15·1%) 1 328 220 (18·3%) 672 065 (17·0%) 492 033 (17·4%) 137 849 (35·9%) 20 739 (27·1%) 5534 (50·8%) 71 595 (45·3%)

Neurological (12) 1 826 233 (3·2%) 235 511 (3·3%) 88 328 (2·2%) 93 773 (3·3%) 44 333 (11·5%) 7625 (10·0%) 1452 (13·3%) 21 802 (13·8%)

Cancers (41) 5 848 962 (10·3%) 722 801 (10·0%) 347 013 (8·8%) 295 587 (10·5%) 66 772 (17·4%) 11 567 (15·1%) 1862 (17·1%) 31 857 (20·2%)

Benign neoplasms (7) 2 731 961 (4·8%) 328 575 (4·5%) 129 357 (3·3%) 145 444 (5·1%) 44 432 (11·6%) 8284 (10·8%) 1058 (9·7%) 19 528 (12·4%)

Mental health (13) 12 214 921 (21·4%) 1 566 420 (21·6%) 694 957 (17·6%) 677 292 (24·0%) 159 053 (41·4%) 28 006 (36·6%) 7112 (65·3%) 78 549 (49·7%)

Musculoskeletal [19) 4 264 373 (7·5%) 504 216 (7·0%) 181 960 (4·6%) 207 463 (7·3%) 96 128 (25·0%) 14 399 (18·8%) 4266 (39·2%) 55 333 (35·0%)

Skin (9) 1 519 639 (2·7%) 216 893 (3·0%) 112 218 (2·8%) 83 282 (2·9%) 17 748 (4·6%) 3143 (4·1%) 502 (4·6%) 7959 (5·0%)

Eye (12) 4 730 278 (8·3%) 50 9135 (7·0%) 148 608 (3·8%) 196 015 (6·9%) 135 043 (35·2%) 24 269 (31·7%) 5200 (47·8%) 79 071 (50·0%)

Ear (3) 179 756 (0·3%) 21 340 (0·3%) 6592 (0·2%) 8254 (0·3%) 5588 (1·5%) 686 (0·9%) 220 (2·0%) 3185 (2·0%)

Perinatal (9) 1 595 554 (2·8%) 204 830 (2·8%) 141 840 (3·6%) 58 499 (2·1%) 3752 (1·0%) 680 (0·9%) 59 (0·5%) 860 (0·5%)

Median number of 
comorbidities (IQR)

1·00  
(0·00–3·00)

1·00 
(0·00–3·00)

1·00  
(0·00–2·00)

1·00  
(0·00–3·00)

5·00  
(2·00–9·00)

4·00 
(2·00–8·00)

7·00  
(4·00–11·00)

8·00  
(4·00–11·00)

Data are n (%), unless otherwise specified. For comorbidities, numbers in parentheses show the number of conditions included under each clinical specialty; counts of individuals identified for each 
of the 270 CALIBER phenotypes are shown in the appendix (pp 27–31). Multimorbidity represents the binary sum across all 270 CALIBER phenotypes. Counts of less than 5 are presented as <5 to 
maintain anonymity. *Severity was defined as the worst presentation of a patient in their disease course and was mutually exclusive, thus individuals were only assigned a single severity. 
†Represents patients who did not have any other COVID-19 related health-care presentation before death, for whom COVID-19 was recorded on the death certificate. 

Table 1: Sample characteristics of full population and individuals with COVID-19, by most severe COVID-19 phenotype
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wave 1 and 2, mortality among all patients admitted to 
hospital decreased from 32·6% (30 034 of 92 108 
individuals) to 26·5% (60 855 of 230 033 individuals; 
table 2). The overall proportion of patients admitted to 
hospital who received ventilatory support and were 
admitted to the ICU was similar between wave 1 and 
wave 2; however, an increase in the proportion of patients 
who received non-invasive ventilation (13·9% [12 837 of 

92 108 individuals] to 15·4% [35 516 of 230 033 
individuals]), and a corresponding decrease in the 
proportion of patients who required invasive mechanical 
ventilation (7·1% [6584 of 92 108 individuals] to 5·4% 
[12 436 of 230 033 individuals]) was observed in wave 2, 
coupled with a small increase in the proportion of 
patients who received ventilatory support outside of the 
ICU (5·5% [5063 of 92 108 individuals] to 6·4% [14 752 of 

All COVID-19 cases 
(n=7 244 925)

All hospital 
admissions

Hospitalised with no ventilatory 
support

ICU admission Ventilatory support outside 
of the ICU

Wave 1 
(n=92 108)

Wave 2 
(n=230 033)

Wave 1 
(n=77 202)

Wave 2 
(n=191 528)

Wave 1 
(n=9843)

Wave 2 
(n=23 753)

Wave 1 
(n=5063)

Wave 2 
(n=14 752)

COVID-19 phenotypes

Positive SARS-CoV-2 
test

6 778 342 (93·6%) 71 538 (77·7%) 216 434 (94·1%) 58 947 (76·4%) 179 730 (93·8%) 8428 (85·6%) 22 812 (96·0%) 4163 (82·2%) 13 892 (94·2%)

Primary care 
diagnosis

3 056 132 (42·2%) 52 648 (57·2%) 127 650 (55·5%) 43 385 (56·2%) 105 352 (55·0%) 6318 (64·2%) 14 006 (59·0%) 2945 (58·2%) 8292 (56·2%)

Hospital admission 460 737 (6·4%) ·· ·· ·· ·· ·· ·· ·· ··

Ventilatory support 76 607 (1·1%) 14 906 (16·2%) 38 505 (16·7%) ·· ·· ·· ·· ·· ··

ICU admission 48 847 (0·7%) 9843 (10·7%) 23 753 (10·3%) ·· ·· ·· ·· ·· ··

Non-invasive 
ventilation

69 090 (1·0%) 12 837 (13·9%) 35 516 (15·4%) ·· ·· 7976 (81·0%) 21 000 (88·4%) 4861 (96·0%) 14516 (98·4%)

Invasive ventilation 25 928 (0·4%) 6584 (7·1%) 12 436 (5·4%) ·· ·· 6245 (63·4%) 11 810 (49·7%) 339 (6·7%) 626 (4·2%)

Extracorporeal 
membrane 
oxygenation

696 (0·0%) 206 (0·2%) 289 (0·1%) ·· ·· 204 (2·1%) 278 (1·2%) <5 (0·0%) 11 (0·1%)

COVID-19 deaths (%)

All deaths 158 020 (2·2%) 30 034 (32·6%) 60 855 (26·5%) 23 485 (30·4%) 44 220 (23·1%) 3980 (40·4%) 9781 (41·2%) 2569 (50·7%) 6854 (46·5%)

Inpatient deaths 99 938 (1·4%) 25 959 (28·2%) 53 488 (23·3%) 19 628 (25·4%) 37 324 (19·5%) 3865 (39·3%) 9546 (40·2%) 2466 (48·7%) 6618 (44·9%)

Deaths with 
COVID-19 diagnosis

139 818 (1·9%) 26 874 (29·2%) 56 284 (24·5%) 20 784 (26·9%) 40 276 (21·0%) 3708 (37·7%) 9361 (39·4%) 2382 (47·0%) 6647 (45·1%)

Deaths without 
COVID-19 diagnosis

15 486 (0·2%) 2728 (3·0%) 3182 (1·4%) 2366 (3·1%) 2817 (1·5%) 206 (2·1%) 214 (0·9%) 156 (3·1%) 151 (1·0%)

Sex 

Male 3 367 117 (46·5%) 50 426 (54·7%) 119 785 (52·1%) 40 503 (52·5%) 95 582 (49·9%) 6713 (68·2%) 15359 (64·7%) 3210 (63·4%) 8844 (60·0%)

Female 3 877 808 (53·5%) 41 682 (45·3%) 110 248 (47·9%) 36 699 (47·5%) 95 946 (50·1%) 3130 (31·8%) 8394 (35·3%) 1853 (36·6%) 5908 (40·0%)

Age, years

<18 1 456 663 (20·1%) 1135 (1·2%) 2709 (1·2%) 949 (1·2%) 2478 (1·3%) 164 (1·7%) 179 (0·8%) 22 (0·4%) 52 (0·4%)

18–29 1 458 665 (20·1%) 2309 (2·5%) 8333 (3·6%) 2050 (2·7%) 7651 (4·0%) 208 (2·1%) 538 (2·3%) 51 (1·0%) 144 (1·0%)

30–49 2 222 207 (30·7%) 10 893 (11·8%) 31 461 (13·7%) 8666 (11·2%) 25 968 (13·6%) 1732 (17·6%) 4043 (17·0%) 495 (9·8%) 1450 (9·8%)

50–69 1 485 351 (20·5%) 25 596 (27·8%) 67 051 (29·1%) 18 481 (23·9%) 49 505 (25·8%) 5318 (54·0%) 12 102 (50·9%) 1797 (35·5%) 5444 (36·9%)

≥70 622 039 (8·6%) 52 175 (56·6%) 120 479 (52·4%) 47 056 (61·0%) 105 926 (55·3%) 2421 (24·6%) 6891 (29·0%) 2698 (53·3%) 7662 (51·9%)

Ethnicity

White 5 898 279 (81·4%) 74 157 (80·5%) 186 341 (81·0%) 63 862 (82·7%) 157 501 (82·2%) 6426 (65·3%) 16 858 (71·0%) 3869 (76·4%) 11 982 (81·2%)

Asian or Asian British 714 168 (9·9%) 8671 (9·4%) 25 031 (10·9%) 6474 (8·4%) 19 213 (10·0%) 1626 (16·5%) 4131 (17·4%) 571 (11·3%) 1687 (11·4%)

Black or Black British 241 053 (3·3%) 5434 (5·9%) 9939 (4·3%) 4017 (5·2%) 7943 (4·1%) 1032 (10·5%) 1491 (6·3%) 385 (7·6%) 505 (3·4%)

Chinese 21 758 (0·3%) 331 (0·4%) 753 (0·3%) 227 (0·3%) 561 (0·3%) 80 (0·8%) 133 (0·6%) 24 (0·5%) 59 (0·4%)

Mixed 153 693 (2·1%) 1294 (1·4%) 2954 (1·3%) 989 (1·3%) 2391 (1·2%) 233 (2·4%) 392 (1·7%) 72 (1·4%) 171 (1·2%)

Other 126 040 (1·7%) 1757 (1·9%) 3939 (1·7%) 1293 (1·7%) 3100 (1·6%) 354 (3·6%) 587 (2·5%) 110 (2·2%) 252 (1·7%)

Unknown 89 934 (1·2%) 464 (0·5%) 1076 (0·5%) 340 (0·4%) 819 (0·4%) 92 (0·9%) 161 (0·7%) 32 (0·6%) 96 (0·7%)

Social deprivation quintiles

1 (most deprived) 1 607 009 (22·2%) 23 405 (25·4%) 60 145 (26·1%) 19 591 (25·4%) 49 552 (25·9%) 2593 (26·3%) 6689 (28·2%) 1221 (24·1%) 3904 (26·5%)

5 (least deprived) 1 334 226 (18·4%) 14 109 (15·3%) 34 219 (14·9%) 11 930 (15·5%) 28 969 (15·1%) 1440 (14·6%) 3154 (13·3%) 739 (14·6%) 2096 (14·2%)

Unknown 5272 (0·1%) 70 (0·1%) 194 (0·1%) 63 (0·1%) 169 (0·1%) <5 (0·0%) 14 (0·1%) <5 (0·1%) 11 (0·1%)

(Table 2 continues on next page)
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230 033 individuals]). Despite these changes, no 
significant difference in mortality was observed among 
patients admitted to the ICU between waves 1 and 2 
(40·4% [3980 of 9843 individuals] vs 41·2% [9781 of 
23 753 individuals]; p=0·21). By contrast, mortality 
decreased between waves 1 and 2 among inpatients who 
did not receive ventilatory support (30·4% [23 485 of 
77 202 individuals] vs 23·1% [44 220 of 191 528 individuals]; 
p<0·0001) and those who received  ventilatory support 
outside the ICU (50·7% [2569 of 5063 individuals] vs 
46·5% [6854 of 14 752 individuals]; p<0·0001).

Kaplan-Meier curves for 28-day mortality corroborated 
the finding that no differences in overall mortality were 
observed among patients admitted to the ICU, and 
indicated a prolongation of survival time in wave 2, 
indicated by the reduced slope (figure 2). This increase in 
survival time was observed among patients who were 
admitted to hospital and those not admitted to the ICU.

Trajectory analysis provided further insight into the 
temporal progression of phenotypes and was consistent 
with our other findings, demonstrating an increase in 
the median number of days between a positive SARS-
CoV-2 test and death (4 days), primary care diagnosis and 
death (5 days), and between hospital admission and 

death (3 days) in wave 2 when compared with wave 1 
(figure 3). Trajectories and Kaplan-Meier curves stratified 
by age, sex, ethnicity, and deprivation are available in the 
appendix (pp 19–23).

No single source captured all COVID-19 cases: 2 641 682 
(39·0%) of  6 778 342 individuals with a positive SARS-
CoV-2 test also received a primary care diagnosis, 
whereas 3 936 053 (54·3%) had a positive SARS-CoV-2 
test but no other record. Of the 7 244 925 individuals 
identified with COVID-19 events, 397 255 (5·5%) were 
identified exclusively from primary care records, 31 525 
(0·4%) from secondary care records alone, and 10 884 
(0·2%) exclusively from mortality data  (figure 4). A small 
number of individuals were identified from Public 
Health England hospital surveillance data only (CHESS; 
726 individuals [0·2% of all hospital admissions]). Details 
of data source overlap are summarised in the appendix 
(p 15).

Comparison of 28-day cumulative event frequency of 
the five main phenotype categories between fully 
vaccinated individuals and unvaccinated controls showed 
that the proportion of individuals with a COVID-19 
positive test, primary care diagnosis, hospital admission, 
requirement for ventilatory support, or death was lower 

All COVID-19 cases 
(n=7 244 925)

All hospital 
admissions

Hospitalised with no ventilatory 
support

ICU admission Ventilatory support outside 
of the ICU

Wave 1 
(n=92 108)

Wave 2 
(n=230 033)

Wave 1 
(n=77 202)

Wave 2 
(n=191 528)

Wave 1 
(n=9843)

Wave 2 
(n=23 753)

Wave 1 
(n=5063)

Wave 2 
(n=14 752)

(Continued from previous page)

Comorbidities

Shielded Patient List 563 515 (7·8%) 34 237 (37·2%) 79 719 (34·7%) 29 631 (38·4%) 67 886 (35·4%) 2731 (27·7%) 6527 (27·5%) 1875 (37·0%) 5306 (36·0%)

Circulatory (35) 1 116 173 (15·4%) 61 077 (66·3%) 141 864 (61·7%) 52 220 (67·6%) 119 092 (62·2%) 5248 (53·3%) 12 963 (54·6%) 3609 (71·3%) 9809 (66·5%)

Respiratory (16) 1 407 172 (19·4%) 31 867 (34·6%) 74 399 (32·3%) 27 018 (35·0%) 61 272 (32·0%) 2747 (27·9%) 7198 (30·3%) 2102 (41·5%) 5929 (40·2%)

Genitourinary (17) 530 319 (7·3%) 27 005 (29·3%) 54 127 (23·5%) 23 745 (30·8%) 46 162 (24·1%) 1790 (18·2%) 4430 (18·7%) 1470 (29·0%) 3535 (24·0%)

Digestive (25) 664 291 (9·2%) 22 300 (24·2%) 51 743 (22·5%) 19 093 (24·7%) 43 254 (22·6%) 1935 (19·7%) 4930 (20·8%) 1272 (25·1%) 3559 (24·1%)

Endocrine (7) 941 512 (13·0%) 39 260 (42·6%) 93 643 (40·7%) 32 595 (42·2%) 76 257 (39·8%) 4191 (42·6%) 10 360 (43·6%) 2474 (48·9%) 7026 (47·6%)

Haematological or 
immunological (18)

93 402 (1·3%) 4590 (5·0%) 8965 (3·9%) 3856 (5·0%) 7439 (3·9%) 430 (4·4%) 901 (3·8%) 304 (6·0%) 625 (4·2%)

Infectious diseases 
(26)

1 328 220 (18·3%) 37 574 (40·8%) 76 416 (33·2%) 33 442 (43·3%) 66 304 (34·6%) 2169 (22·0%) 5356 (22·5%) 1963 (38·8%) 4756 (32·2%)

Neurological (12) 235 511 (3·3%) 11 977 (13·0%) 26 157 (11·4%) 10 479 (13·6%) 22 273 (11·6%) 846 (8·6%) 2162 (9·1%) 652 (12·9%) 1722 (11·7%)

Cancers (41) 722 801 (10·0%) 16 998 (18·5%) 38 913 (16·9%) 14 740 (19·1%) 33 132 (17·3%) 1318 (13·4%) 3301 (13·9%) 940 (18·6%) 2480 (16·8%)

Benign neoplasms (7) 328 575 (4·5%) 11 383 (12·4%) 26 920 (11·7%) 9751 (12·6%) 22 587 (11·8%) 972 (9·9%) 2396 (10·1%) 660 (13·0%) 1937 (13·1%)

Mental Health (13) 1 566 420 (21·6%) 40 847 (44·3%) 93 979 (40·9%) 35 515 (46·0%) 79 581 (41·6%) 3315 (33·7%) 8550 (36·0%) 2017 (39·8%) 5848 (39·6%)

Musculoskeletal (19) 504 216 (7·0%) 25 607 (27·8%) 57 099 (24·8%) 22 853 (29·6%) 49 527 (25·9%) 1430 (14·5%) 3980 (16·8%) 1324 (26·2%) 3592 (24·3%)

Skin (9) 216 893 (3·0%) 4436 (4·8%) 10 065 (4·4%) 3821 (4·9%) 8549 (4·5%) 366 (3·7%) 857 (3·6%) 249 (4·9%) 659 (4·5%)

Eye (12) 509 135 (7·0%) 36 677 (39·8%) 83 328 (36·2%) 31 651 (41·0%) 70 653 (36·9%) 2895 (29·4%) 7091 (29·9%) 2131 (42·1%) 5584 (37·9%)

Ear (3) 21 340 (0·3%) 1463 (1·6%) 3265 (1·4%) 1329 (1·7%) 2935 (1·5%) 66 (0·7%) 152 (0·6%) 68 (1·3%) 178 (1·2%)

Perinatal (9) 204 830 (2·8%) 780 (0·8%) 1905 (0·8%) 662 (0·9%) 1584 (0·8%) 79 (0·8%) 208 (0·9%) 39 (0·8%) 113 (0·8%)

Median number of 
comorbidities (IQR)

1·00 
(0·00–3·00)

6·00  
(3·00–10·00)

5·00  
(2·00–9·00)

7·00  
(3·00–11·00)

5·00  
(2·00–9·00)

4·00  
(2·00–7·00)

4·00  
(2·0– 7·00)

6·00 
(3·00–11·00)

6·00 
(3·00–10·00)

Data are n (%), unless otherwise specified.  For comorbidities, numbers in parentheses show the number of conditions included under each clinical specialty; counts of individuals identified for 
each of the 270 CALIBER phenotypes are shown in the appendix (pp 27–31). Counts of less than 5 are presented as <5 to maintain anonymity.

Table 2: Comparison of COVID-19 hospital admissions between pandemic waves 1 and 2
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in the vaccinated group than the unvaccinated group 
(log-rank p<0·0001 for all phenotypes; figure 5).

Discussion
In this study, we provided a comprehensive examination 
of COVID-19 disease recording patterns, severity, and 
patient trajectories, across pandemic waves, using linked 
EHRs for 57 million people in England. In contrast with 
existing research, which has been undertaken in clinical 
populations, or that has solely used administrative data, 
our study utilised eight complementary datasets 
spanning health-care settings at the national level and 
captured a diverse set of disease exposures and outcomes. 
We defined and evaluated ten COVID-19 phenotypes, 
associated with five severity categories, and explored 
disease trajectories and mortality between pandemic 
waves. COVID-19 testing and treatment has been carried 
out via a number of different routes that have rapidly 
evolved during the pandemic and our findings illustrate 
the importance of linking and triangulating information 
across multiple sources to maximise event ascertainment, 
to fully capture the spectrum of potential health outcomes 
and to identify patient transitions through the health-
care system. The phenotypes presented have already 
enabled other analyses with highly relevant public health 
policy implications, such as assessing the association of 
COVID-19 vaccines ChAdOx1 and BNT162b2 with 
major venous, arterial, and thrombocytopenic events,15 

assessing the use of antithrombotic medication on 
COVID-19 outcomes,16 and studying the incidence of 
vascular diseases after COVID-19 infection.17 

Our study expands the literature in several key ways. To 
our knowledge, this is the largest study in terms of sample 

size and data fidelity to create and evaluate computable 
COVID-19 phenotypes by leveraging multiple sources of 
linked data at the national level spanning electronic health 
records, administrative health-care billing data, disease 
audits, and national registers. The use of multiple sources 
enabled the ascertainment of events that would have 
previously been missed (eg, 10% of COVID-19 deaths 
occurred without COVID-19 being listed as a cause of 
death) or incorrectly aggregated (eg, mortality was highest 
among patients who received ventilation outside of the 
ICU). The framework for defining disease severity across 
multiple settings can be adapted and applied in other 
countries with similar national or regional EHR sources 
(eg, Denmark, Korea, Canada, and the USA). Although 
each country will have different data recording patterns, 
and the algorithms might require adaptation, the overall 
framework can be used to monitor the impact of the 
current, and any subsequent pandemics, and inform 
policy in a systematic manner.

We utilised the CALIBER phenotyping approach9 and 
performed methods of validation including replication of 
findings consistent with existing literature. We internally 
validated our COVID-19 phenotypes through demon-
strating cross-source concordance with EHRs. For 
example, using HES-CC, which incorporates mandatory 
reporting of basic and advanced respiratory support, 
mapping to non-invasive ventilation and invasive 
mechanical ventilation phenotypes res pectively, 73·0% 
(25 569 of 35 377) and 77·5% (17 380 of 22 431) of these 
individuals received a corresponding OPCS-4 code in 
HES-APC or SUS (appendix p 15).

To date, phenotype algorithm validation has involved 
manual review of case notes by experts and generation of 

Figure 2: Cumulative COVID-19 mortality events in wave 1 (A) and wave 2 (B), stratified by most severe COVID-19 phenotype 
Shaded areas show 95% CIs. Log-rank p< 0·0001, for both plots. Crosses denote censoring. ICU=intensive care unit.
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positive and negative predictive value estimates. 
However, such an approach does not feasibly scale to the 
large sample sizes or phenotypes used in this study. 
Furthermore, due to information governance legislation, 
patient records are not made available at scale for 
research. To address these challenges, we have previously 
developed and applied a robust phenotyping framework 
that generates multiple layers of evidence towards 
algorithmic validity, including replication of aetiological, 

prognostic, and descriptive characteristics from 
published literature. We applied the CALIBER pheno-
typing framework to generate such evidence and 
observed consistent patient demographics and 
comorbidity patterns with widely reported associations 
between sex, age, ethnicity, and deprivation and outcomes 
for primary care,3 secondary care,18 and the ICU.19 
Additionally, the ascertained infection rate of 12·7%, was 
comparable with official estimates from Public Health 

Figure 3: COVID-19 trajectory networks
The size of the circles represent the number of individuals with that event relative to the total study population. Numbers on arrows show the proportion of individuals 
who transitioned to each phenotype (relative to the number of individuals in that COVID-19 wave). Numbers in square brackets show median number of days between 
events across all individuals with that transition. Median days between individuals who were unaffected (ie, no recorded COVID-19 phenotype) and other severity 
phenotypes are not shown since they were not directly comparable between waves, due to difference in length of the two periods. Thick arrows represent transitions that 
occurred in 0·1% of individuals or more. Thin black arrows represent transitions that occurred in 0·01% individuals or more. Any transitions that occurred in fewer than 
0·01% of individuals are not shown. All included individuals were alive and had no previous COVID-19 events recorded before the start date of the specified waves.
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England (ascertained from the UK Government 
COVID-19 Dashboard).20 Comparison of 28-day 
cumulative event frequency of the five main phenotype 
categories between fully vaccinated indiv iduals and 
unvaccinated controls reproduced the known and 
expected protective effects of vaccination (ie, reduced 
frequency of COVID-19 events).2 

A key challenge of using multiple data sources is the 
harmonisation of information across each source in the 
absence of a gold standard since each dataset contained 
information at different levels of resolution and reflected 
variations in health-care delivery across the duration of 
the pandemic. For example, when creating phenotypes 
for ventilatory support, we exploited linkage across 
multi ple EHR sources (HES-APC, HES-CC, SUS, 
CHESS), in addition to OPCS-4 procedure codes for 
ventilatory support modalities. This approach allowed us 
to identify 27 153 individuals who received non-invasive 
ventilation outside of the ICU, representing 39% of all 
patients treated with non-invasive ventilation, and 
showed that patients receiving ventilatory support 
outside of the ICU had the highest mortality. These 
important findings are consistent with observations that 
COVID-19 would overwhelm pre-existing critical care 
capacity and thus necessitated expansion of services to 
new areas, such as operating theatres and recovery 
wards.21 Furthermore, such findings illustrate the value 
of linkage and our rigorous phenotypes for maximising 
data capture, particularly in identifying groups that 

might otherwise be missed when comparing between 
datasets.

The increased median duration between COVID-19 
phenotypes observed in wave 2, when compared with 
wave 1, has several potential explanations, including the 
increased availability of testing, leading to individuals 
being identified earlier in their infection, and changes in 
inpatient management, such as the creation of robust 
clinical management protocols and the widespread 
adoption of dexamethasone following the results of the 
RECOVERY trial.22

Stratification of trajectories by demographics identified 
patterns including fewer days between positive SARS-
CoV-2 test and primary care diagnosis to death among 
individuals of non-White ethnicity. These patterns might 
suggest these groups are accessing health care later in 
the disease course, for reasons that are likely to be 
multifactorial, but associated with existing socioeconomic 
health inequalities exacer bated by the pandemic.23

The networks presented provide a succinct and inter-
pretable view, at the national level, of how and when 
patients with COVID-19 interact with the healthcare 
system and the individual disease trajectories they 
follow. Previously, such estimates have been drawn 
from smaller samples that are potentially not general-
isable to the entire population. Stratifying and flagging 
individuals who belong to a specific trajectory can 
additionally be utilised to recruit patients into relevant 
clinical trials. Additionally, we showed that significant 

Figure 4: UpSet plots of individuals with one or more COVID-19 event phenotypes across seven datasets
Vertical bars report unique individuals in the intersection denoted by the intersection matrix below. Empty intersections are not shown. Horizontal bars report unique 
individuals identified from each dataset. Datasets were the SGSS (COVID-19 testing), GDPPR (primary care), HES-APC, HES-CC, SUS, CHESS, and the ONS Civil 
Registration of Deaths. CHESS=COVID-19 Hospitalisations in England Surveillance System. GDPPR=General Practice Extraction Service Extract for Pandemic Planning 
and Research. HES-APC=Hospital Episode Statistics for admitted patient care. HES-CC=Hospital Episode Statistics for adult critical care. ONS=Office of National 
Statistics. SGSS=Second Generation Surveillance System. SUS=Secondary Uses Service. 
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variation exists between waves, and within demographic 
strata, underlying the require ment for a systematic 
approach for monitoring. The trajectory networks can 
be used to monitor the impact of the pandemic on the 
health-care system itself and flag potential issues (eg, 
increases in the time between state transitions) to 
enable remedial action.

The COVID-19 phenotypes and trajectory analysis 
outlined produce a reproducible, extensible, and repur-
posable method to generate national-scale data to support 
crucial policy decision making. By modelling patient 
trajectories as a series of interactions within the health-
care system, and linking these to demographic and 
outcome data, we provide a means to identify and 

Figure 5: Kaplan-Meier curve 
of cumulative COVID-19 

events in vaccinated and 
unvaccinated individuals
Cumulative proportion of 
individuals with a positive 

SARS-CoV-2 test (A), primary 
care diagnosis (B), hospital 
admission (C), ventilatory 

support (D), and COVID-19 
mortality (E) in matched 

groups of fully vaccinated 
(two doses administered at 

least 14 days before Feb 1, 
2021) and unvaccinated 

individuals (no doses 
administered before or during 

follow-up). Analysis was run 
from Feb 1, 2021 to March 15, 

2021 and individuals were 
matched on the basis of sex, 

5-year age groups, and 
ethnicity. Shaded areas show 
95% CIs. Log-rank p<0·0001, 

for all subplots.
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prioritise care pathways associated with adverse out-
comes and identify so-called patient touch points with 
the heath-care system that might act as tangible targets 
for intervention—eg, access to testing for the most 
deprived and non-White ethnicities. Beyond the pan-
demic, we believe that trajectory analysis has the potential 
to transform analysis of complex conditions and 
multimorbidity by utilising linked data to disentangle the 
progression of individuals through the health-care 
system and disease states over time.

In sharing fully reproducible analytical code and 
phenotypes, we envisage that this work will facilitate 
other researchers to produce high quality and consistent 
outputs across a diverse range of topics. Linkage to 
additional datasets, as illustrated by vaccination data, 
allows extension to address new research questions, such 
as the emergence of novel variants of concern, or 
assessing the efficacy of booster or third primary vaccine 
doses on outcomes at both the patient and health-care 
system levels. Thus we provide a framework in which real 
world health-care data can be used to address questions of 
crucial policy relevance and positively impact the care and 
safety of populations at the national level. 

It is important to note that the processes and clinical 
workflows that generate health-care data will vary in each 
country and would have been affected differently by the 
pandemic. Our approach was not restricted to specific 
disease groups or processes and could therefore be 
replicated and used in other scenarios as a basis to create 
frameworks tailored to individual health-care systems. 
The framework we provide makes use of the most popular 
clinical terminologies (such as ICD-10 and SNOMED CT) 
and thus can be used in other countries with comparable 
national or regional EHR data sources, to triangulate 
evidence across multiple sources, define COVID-19 
severity phenotypes (aligned with the WHO Clinical 
Progression Scale24), and monitor and assess the ongoing 
impact of the pandemic on health-care systems. 

The use of EHR and administrative data for research is 
associated with known challenges in terms of variable 
data quality, missingness, and consistency.25 The user 
interface of EHR systems and local clinical coding 
practises can also influence recording patterns. We have 
mitigated these challenges by triangulating information 
across multiple sources and by following a robust 
established approach for creating and evaluating EHR-
derived phenotyping algorithms.9

A key strength of this study using national-scale data is 
that by definition, it is representative of the general 
population across all age groups, ethnicities, deprivation 
levels, and demographic characteristics. To our know-
ledge, this is the largest population-wide research study 
of COVID-19 phenotypes that includes: (1) participant 
information linked across multiple health-care settings 
at the population level, (2) detailed identification of 
specific ventilatory treatments, (3) classification of 
COVID-19 related deaths, and (4) exploration of 

transitions between COVID-19 events. Using multiple 
EHR sources spanning different health-care settings 
maxi mised infection ascertainment and reduced the 
effects of variable testing and data recording patterns 
(especially during the first wave). The phenotypes 
presented broadly align with the WHO Clinical 
Progression Scale24 and can be used to measure patient 
illness by tracking disease, from the absence of infection 
to death, and patient progression through the health-care 
system (ie, ambulatory illness, hospital admission, 
hospital treat ment with ventilation, and death). Such an 
approach, although potentially confounded by the 
capacity and data variability of health-care systems, can 
be used as a framework to quantify disease burden, 
inform policy makers, and potentially identify individuals 
for inclusion into clinical trials. 

Since the aim of this study was to create COVID-19-
related phenotypes and describe the characteristics of 
individuals with such phenotypes, we did not use 
multivariable regression analyses to control for con-
founders and present only unadjusted crude mor tality. 
The findings presented are therefore not associative 
statements and should not be interpreted as causal. 
However, by sharing reproducible phenotype definitions 
we hope to facilitate further work addressing the 
questions raised in this study and other COVID-19 
studies exploring national-level data, as exemplified by 
previous research.15–17 

Although our definitions of the pandemic waves differ 
from previous studies, we believe using non-contiguous 
dates enabled a more balanced comparison across periods 
of increased health-care system strain than including the 
period of low cases during the summer in the first wave. 
The recording of dates in EHRs will not always be fully 
accurate. We sought to mitigate inaccuracies by reporting 
the median number of days between pheno types, and by 
only reporting time differences between transitions that 
occurred in more than 0·01% of all transitions. Data were 
of low granularity: for example, we could not delineate 
whether a patient received non-invasive ventilation 
followed by invasive mechanical ventilation, representing 
an escalation of ventilatory support, or invasive 
mechanical ventilation followed by non-invasive 
ventilation, and therefore focused on ICU admissions, for 
which accurate start dates were available. Our analysis did 
not include any physio logical or pathology data associated 
with COVID-19 infections, since laboratory data within 
hospitals is not systematically captured and made 
available at scale in the UK. This study did not include 
information on medication patterns and changes in 
treatment approaches across waves because secondary 
care prescriptions are not routinely captured in electronic 
form. We were unable to ascertain which patients resided 
in care homes due to information governance restrictions 
of sensitive data fields and as a result we could not study 
this population who were disproportionately impacted by 
the pandemic.26 
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Exploiting linkage across EHRs at the national scale 
highlighted the health-care trajectories of individuals 
with COVID-19, to identify who has been affected and 
how.

Defining new phenotypes empowers analysts to look 
beyond binary outcomes (such as mortality) to clinically 
significant interim events (such as ventilatory treatments 
and ICU admissions), and enables charact erisation of an 
individual’s progression through these disease states. 
Furthermore, trajectory analysis provides a method to 
link previously disaggregated datasets to provide insight 
on behaviour at a national scale and enables insights 
from populations that might be missed by other analysis 
methods, for example individuals who died outside of 
hospital, or who received ventilatory support outside of 
the ICU.

As demonstrated for vaccination efficacy, this study 
provided an adaptable framework that could be rapidly 
repurposed to answer questions of crucial clinical and 
policy relevance, such as those around the emergence of 
a new variant, the need for booster doses in the context of 
waning immunity, or simply maximising the value of 
existing health-care data to understand individuals’ 
progression through complex chronic disease 
trajectories.
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