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Abstract 26 

Chemical diffusion in minerals has shown great potential to quantify timescales of 27 

geological processes. The presence of chemical gradients, along with favorable 28 

temperature and time conditions, lead to the formation of measurable diffusion profiles. 29 

Temporal information can be extracted from measured diffusion profiles using either 30 

analytical or numerical solutions of Fick's second law. Currently, there is a lack of 31 

widely adopted programs for diffusion studies. In addition, the uncertainties associated 32 

with timescales derived from diffusion chronometry are critical for geological studies, 33 

but are not always robustly evaluated. In many cases, only uncertainties in curve fitting 34 

parameters and temperature are considered, whereas other uncertainties, such as those 35 

associated with the experimentally determined diffusion coefficients themselves, are 36 

rarely propagated into the calculated timescales. Ignoring these uncertainties reduces 37 

the reproducibility and intercomparability of results. In response to these challenges, 38 

we present Diffuser, a user-friendly program to standardize diffusion chronometry with 39 

transparent and robust propagation of uncertainties. Using analytical and numerical 40 

methods, our program provides an automatic, visual, and efficient curve fit to extract 41 

chronological information from diffusion profiles. The method is complemented by an 42 

algorithm to propagate all uncertainties (i.e., measurement, temperature, curve fitting, 43 

and diffusion coefficient) to derived timescales. Three examples are provided to 44 

highlight how the program can recover timescales with internal consistency, efficient 45 

computing and easy-to-use features. Our freely available and user-friendly program 46 

will hopefully increase the accessibility and consistency of diffusion modeling and 47 
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thereby to facilitate more high-quality diffusion studies. 48 

Keywords: diffusion modeling, timescale, Ti in quartz, Ca in olivine, Li in zircon 49 

50 
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1. Introduction 51 

Time is one of the fundamental parameters of earth and planetary sciences, where 52 

age and duration are used to put geological events in chronological order and to quantify 53 

rates of geological processes, respectively. An absolute age is generally determined by 54 

radiometric dating, and two ages can be used to bracket the duration or timescale. This 55 

timescale then is used to quantify the rates of geological processes (e.g., Borg et al., 56 

2017; Li et al., 2017; Schoene et al., 2019, 2021; Sprain et al., 2019; Wang et al., 2021). 57 

Radiometric dating is routinely used to determine timescales on the order of a few 58 

million years and, less frequently, tens to a few thousand years or shorter (e.g., Burgess 59 

et al., 2014; Li et al., 2017; Thines et al., 2021). For rapid geological events with shorter 60 

timescales (e.g., hours, days, months, and years), constraining their timescales via 61 

radiometric dating is very challenging (or even impossible) and requires ultra-high 62 

temporal resolution. Complementary to absolute dating, timescales also can be 63 

determined through diffusion modeling in minerals (or other phases) regardless of their 64 

absolute ages (i.e., diffusion chronometry; Lasaga, 1983), with the potential for 65 

diffusion modeling being a function of temperature and time for a given element in a 66 

given mineral (Chakraborty, 2008; Costa et al., 2020; Watson and Baxter, 2007; Zhang 67 

and Cherniak, 2010). The diffusivity of different elements in minerals varies 68 

significantly, hence diffusion chronometry can be used to estimate timescales from a 69 

few seconds to several million years (Costa et al., 2020). Whilst diffusion is a thermally 70 

activated process and does not require any chemical gradients to operate, the presence 71 

of chemical gradients leads to the formation of measurable chemical diffusion profiles. 72 
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As soon as a chemical gradient is established, the diffusion clock starts. Element 73 

diffusivity depends strongly on temperature, though other factors such as pressure, 74 

crystallographic orientation, the fugacities of water and oxygen, and major element 75 

activities are important in certain cases (e.g., Ganguly, 2002; Jollands et al., 2016; Kohn 76 

and Penniston-Dorland, 2017). The power of diffusion chronometry can be 77 

significantly increased by combining multiple elements that simultaneously diffuse 78 

with variable diffusivities in a given mineral or in several minerals within the same rock. 79 

These can be integrated to provide a more comprehensive understanding of processes 80 

that the rock has experienced (Costa et al., 2020; Dohmen et al., 2017). 81 

At the temperature–time conditions relevant to magmatic, metamorphic, and 82 

hydrothermal processes, most diffusion in minerals occurs over small length scales (nm 83 

to mm). Analytical techniques with high spatial resolution are therefore required to 84 

measure changes in composition along the diffusion profiles. In the past few decades, 85 

developments in microanalysis techniques such as Fourier-transform infrared 86 

spectroscopy, scanning electron microscope, electron microprobe, laser-ablation 87 

inductively coupled plasma mass spectrometry, secondary ion mass spectrometry, and 88 

local electrode atom probe tomography have accelerated the availability of high-quality 89 

diffusion profiles (e.g., Audétat et al., 2021; Bloch et al., 2019; Rubatto et al., 2020; 90 

Tang et al., 2017), which have provided critical information to better quantify the 91 

timescales of magma storage, ascent, and eruption as well as ore formation, and 92 

evolution of metamorphic rocks (e.g., Chu et al., 2018; Cooper, 2019; Devoir et al., 93 

2021; Li et al., 2022; Mutch et al., 2019).  94 
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For diffusion studies, Fick’s second law lays the foundation for diffusion modeling. 95 

Both numerical solutions (e.g., finite difference) and analytical solutions (e.g., Crank, 96 

1975) can be used to solve Fick’s second law for the purposes of diffusion chronometry, 97 

but a lack of widely accepted protocols for diffusion modeling limits the consistency of 98 

different diffusion studies. Hence, a user-friendly program is extremely useful to 99 

standardize the usage of diffusion modeling, facilitate more diffusion studies, and 100 

enable us to better understand the duration, rate, and efficiency of geological events. 101 

In addition to timescale estimates, diffusion chronometry requires robust 102 

propagation of uncertainties. The systematic uncertainties of experimentally 103 

determined diffusion coefficients can significantly affect the timescale uncertainties but 104 

are rarely considered in current diffusion studies. This impedes objective comparison 105 

of timescales derived from different elements. Another problem is that the algorithm of 106 

parameter uncertainties in the diffusion coefficients areis rarely described in 107 

experimental studies, which introduces known but unquantified uncertainties. Available 108 

programs for diffusion modeling (e.g., Costa et al., 2008; Dunai, 2005; Faryad and 109 

Ježek, 2019; Girona and Costa, 2013; Jollands, 2020; Mutch et al., 2021; Robl et al., 110 

2007; Smye et al., 2018) do not always estimate the aforementioned uncertainties. 111 

Therefore, a program that uses an explicit curve-fitting method to determine parameters 112 

in the diffusion coefficient and propagates their uncertainties into timescales will make 113 

diffusion studies more internally consistent and reproducible. 114 

While all diffusion happens in three-dimensional space, diffusion problems can 115 

often be simplified into one-dimensional models, as long as the extent of diffusion is 116 
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short relative to the size of the crystal. For demonstration purposes, our program uses 117 

analytical solutions to solve the one-dimensional model of single-element diffusion 118 

with uncertainties being propagated using the Monte Carlo method. Our program can 119 

also be adopted for 2D and 3D scenarios and multi-component systems (i.e., coupled 120 

diffusion), which will be available in its future versions. 121 

 122 

2. Methodology 123 

Basic notations used in this study are defined in Table 1. 124 

Table 1. Notations used in this study. 
Notation Unit Description 
x m position along a diffusion profile 
C as measured composition along a diffusion profile 
C1, C2, C3 as measured initial compositions of a diffusion profile as defined in Figure 1 
erf, erfc 

 
error function (erf) and complementary error function (erfc) used 
in analytical solutions of a diffusion profile (erfc = 1–erf) 

T K initial temperature 
t s diffusion time 
D0 m2/s pre-exponential factor in the Arrhenius equation 
Ea J/mol activation energy in the Arrhenius equation 
R J/(mol·K) universal gas constant 
D m2/s diffusion coefficient 

 125 

2.1 Analytical solutions to one-dimensional diffusion 126 

The goal of a diffusion problem in one dimension is to solve Fick’s second law: 127 

∂𝐶𝐶
∂𝑡𝑡

= ∂
∂𝑥𝑥

(𝐷𝐷 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)            (1)  128 

Ideally, this equation can be simplified as follows when D is independent of x and 129 

C (equation 2.2 in Crank, 1975): 130 
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∂𝐶𝐶
∂𝑡𝑡

= 𝐷𝐷 𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

            (2) 131 

Analytical solutions to the above equation for diffusion in semi-infinite and infinite 132 

media are presented by Crank (1975) and adopted directly in Diffuser. For diffusion in 133 

minerals, a semi-infinite medium can be defined as a crystal in contact with an infinite 134 

long reservoir of a fixed composition while an infinite medium can be treated as 135 

chemical zoning in the interior of a crystal. For instance, in a homogeneous crystal 136 

where the boundary is at x = x0 with an initial condition of x = x0, C = C1 at the rim and 137 

x>x0, C = C2 in the core (Figure 1A), if diffusion has not appreciably modified the initial 138 

core composition, the diffusion profile can be expressed as: 139 

𝐶𝐶 = (𝐶𝐶2–𝐶𝐶1) × erf �𝑥𝑥−𝑥𝑥0
𝐿𝐿
� + 𝐶𝐶1       (3) 140 

where L is the characteristic diffusion length and defined as √4𝐷𝐷𝐷𝐷  when D is 141 

independent of time. 142 

It should be emphasized that equation 3 is no longer strictly applicable if diffusion 143 

has erased the original core composition. This rule works for the profiles A–F in Figure 144 

1 of a semi-infinite medium. Other analytical solutions to diffusion profiles A–L in 145 

Figure 1 can be found in Crank (1975) and the Appendix. While analytical solutions for 146 

diffusion profiles A–H in Figure 1 have been compiled in a previous program (PACE), 147 

which focuses on deconvoluting the analytical beam effects (Jollands, 2020), Diffuser 148 

offers analytical solutions to four more forms of diffusion profiles (I–L in Figure 1) and 149 

associated uncertainty estimation of the D or t value. To make Diffuser more versatile, 150 

the main functions of PACE (Jollands, 2020) have been incorporated into our program. 151 

 152 
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2.2 Fitting a model to the diffusion profile 153 

Measured profiles are fitted to the diffusion equations by nonlinear least squares 154 

regression (NLS) in MATLAB, which fits functions of the form 155 

𝐶𝐶 =  𝑓𝑓(𝑥𝑥,𝛽𝛽)  +  𝜀𝜀           (4) 156 

where x and C are observed values, β is the fitted parameter(s), f is the fitted model 157 

and ε is the residual error of the model (i.e., the difference between the observed C and 158 

the predicted value). NLS finds the model parameter(s) β, which minimizes the residual 159 

sum of squares (RSS, equation 5) using an iterative optimization technique (e.g., 160 

Levenberg-Marquardt algorithm used in this study; Seber and Wild, 2003). If the 161 

uncertainties of C are given (σ), the associated weight of each point also can be 162 

considered as 1
𝜎𝜎2

: 163 

RSS =  ∑ 1
𝜎𝜎𝑖𝑖2

(𝐶𝐶𝑖𝑖–𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝛽𝛽))2𝑛𝑛
1          (5) 164 

where the subscript i denotes the ith value and n is the total number of i. 165 

For profiles A–L (Figure 1), it is straightforward to determine C1, C2 and C3 if a 166 

flat compositional platform exists. Although Diffuser can fit a model with C1, C2 and 167 

C3 as free parameters, this should not be done in the absence of a flat compositional 168 

platform. Specifically, if the flat peak or trough is replaced by a bell shape after 169 

diffusion in profiles I–L of Figure 1 (e.g., t = t2), the composition associated with the 170 

initial flat peak or trough cannot be determined directly from the composition versus 171 

distance data. In such cases, instead of choosing an arbitrary value, Diffuser lets the 172 

initial composition vary during modeling, and then also considers its effect on the final 173 

timescales. Taking the profile I at t = t2 (Figure 1) as an example, because diffusion 174 
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decreases the height and broadens the peak simultaneously, assuming a higher initial 175 

composition plateau would result in a narrower initial bandwidth (Figure 2A). As 176 

expected, an optimal time value can always be obtained at an assumed flat peak value 177 

C0 (Figure 2B). This means that there exist infinite solutions for the time when a flat 178 

compositional plateau is not recognizable for the profile I. Nevertheless, the modeled 179 

diffusion time converges with increasing C0 (Figure 2B), so it is still possible to obtain 180 

a time estimate according to a reasonable C0 or bandwidth, especially if ranges of C0 181 

can be estimated independently. Taking a diffusion profile of Rubin et al. (2017) as an 182 

example, despite C0 changing considerably, the goodness of fit (R2) of curve fitting 183 

(Figure 2B) shows a very weak response to the choice of C0. As such, the true initial 184 

composition is unknown and using an assumed value will introduce additional 185 

uncertainties. Using variable C0, the maximum timescale is nearly constant (~47 years) 186 

when C0 > 300 ppbw (Figure 2B; see the example section for details). To fully account 187 

for uncertainties introduced by an unknown initial composition, variable initial 188 

compositions are modeled in Diffuser. The same method is applicable to profiles J–L 189 

in Figure 1, when a flat compositional peak or trough cannot be recognized.  190 

For profiles K–L in Figure 1, it is noticed that when C3 is close to the flat peak (or 191 

trough) composition, the diffusion profile will resemble Figure 1G–H after sufficient 192 

time of diffusion (e.g., t3 in Figure 1K–L). It should be emphasized that care should be 193 

taken to distinguish these two cases in real studies. For instance, profiles of an element 194 

with a very low diffusion rate could potentially be used to identify the initial boundary 195 

shape. 196 
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 197 

2.3 Time-dependent diffusion coefficient 198 

All the above models apply the parameter L for curve fitting, which equals √4𝐷𝐷𝐷𝐷 199 

when D is independent of time. Here, we consider the case of a non-constant D over 200 

time, if, for example, temperature (τ) changes with time (t), then 201 

τ(t) = F(T,t)          (6) 202 

where T denotes the initial temperature which is a constant estimated independently 203 

by other methods, e.g., geothermometers, and F represents a linear, exponential, or 204 

parabolic function. 205 

Then, Diffuser employs an isobaric Arrhenius equation for the diffusion coefficient: 206 

𝐷𝐷(𝑡𝑡)  = 𝐷𝐷0e
−𝐸𝐸a
R𝜏𝜏(𝑡𝑡)           (7) 207 

where D0 and Ea are determined experimentally. 208 

Therefore, Dt becomes an integral (ξ): 209 

𝜉𝜉(𝑡𝑡)  = ∫ 𝐷𝐷(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡
0           (8) 210 

and Fick’s second law for equation 2 becomes  211 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

             (9) 212 

Equation 9 can be solved analytically by replacing Dt with ξ (Crank, 1975). Models 213 

can then be fit to data to obtain L and ξ values as: 214 

𝐿𝐿 = �4𝜉𝜉            (10) 215 

The t value can be obtained by solving integral equation 8 directly in MATLAB 216 

(e.g., using the fzero function, a combination of bisection, secant, and inverse quadratic 217 

interpolation methods). Furthermore, Diffuser outputs the parameter ξ for users to 218 
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explore further in case of a more complex time-dependent diffusion coefficient (e.g., 219 

an abrupt temperature change caused by magma recharge). 220 

 221 

2.4 Uncertainties of the modeled diffusion time 222 

According to previous studies, the uncertainty budget of the modeled diffusion time 223 

is dominated by the temperature and parameters that control the diffusion coefficient 224 

(Costa et al., 2008; Costa and Morgan, 2010). Diffuser propagates the uncertainties of 225 

1) the parameter L calculated by curve fitting, 2) the initial temperature T estimated by 226 

other methods such as geothermometers, 3) and, importantly, the experimentally 227 

determined diffusion parameters (D0 and Ea) themselves, into the uncertainty of the 228 

diffusion time. In the case of isothermal diffusion, the relative time uncertainty can be 229 

calculated directly as follows, assuming that there is negligible or no covariance 230 

between D and L. 231 

�𝜎𝜎𝑡𝑡
𝑡𝑡
�
2

=  �𝜎𝜎𝐷𝐷
𝐷𝐷
�
2

+ �2𝜎𝜎𝐿𝐿
𝐿𝐿
�
2
         (11) 232 

where σt, σD and σL represent absolute uncertainties of t, D, and L respectively. σD 233 

is calculated as: 234 

𝜎𝜎𝐷𝐷 = �𝐽𝐽′∑𝐽𝐽            (12) 235 

where ∑ is the covariance matrix, J is the Jacobian matrix and J' is its transpose: 236 

∑ = �
(𝜎𝜎ln[𝐷𝐷0])2 Cov(ln[𝐷𝐷0],𝐸𝐸a) 0

Cov(ln[𝐷𝐷0],𝐸𝐸a) (𝜎𝜎𝐸𝐸a)2 0
0 0 (𝜎𝜎𝑇𝑇)2

�   (13)  237 

𝐽𝐽 = 𝐷𝐷 �

1
− 1

R𝑇𝑇
𝐸𝐸a
R𝑇𝑇2

�           (14) 238 
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where 𝜎𝜎ln[𝐷𝐷0] , 𝜎𝜎𝐸𝐸a and σT represent absolute uncertainties of ln[D0], Ea, and T 239 

respectively. Cov(ln[D0],Ea) is the covariance between ln[D0] and Ea. 𝜎𝜎ln[𝐷𝐷0], 𝜎𝜎𝐸𝐸a and 240 

Cov(ln[D0],Ea) are calculated in Diffuser by refitting the original experimental data (D 241 

at different T) by linear least-squares regression (e.g., Montgomery and Runger, 2018). 242 

If the temperature varies with time (e.g., during cooling), a Monte Carlo method is 243 

introduced to estimate the time uncertainty. First, a data set is generated consisting of 244 

Li and Ti values, which follows a Gaussian distribution with uncertainties of σL and σT, 245 

respectively. Second, the diffusion time ti is calculated using equations 6–10 for each 246 

paired Li and Ti. Finally, we calculate the average t value and its uncertainty from all ti 247 

results. Because ti values are log-normally distributed based on the Lilliefors test (Figure 248 

3; Lilliefors, 1967), we calculate the average ln[t] value and its uncertainty and then 249 

convert them into t, yielding a geometric mean value with upper and lower boundaries 250 

at a 95% confidence level. The numerical stability of the geometric mean and 251 

confidence interval increases with the number of iterations. Taking a diffusion profile 252 

of Rubin et al. (2017) as an example, repeating Monte Carlo modeling 15 times using 253 

100, 500, 1000, 2000, 3000, 4000, and 5000 trials, respectively, shows a convergence 254 

of t and its uncertainty (range <1 year) when the number of trials is larger than 2000 255 

(Supplementary Figure S1). In some cases, the distribution of ln[t] values does not 256 

follow a normal distribution, and more trials are needed to obtain robust uncertainty 257 

estimates.  258 

 259 
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3. Program design 260 

Diffuser was written in MATLAB and comes with an intuitive graphical user 261 

interface (GUI) that can either be used offline (on Windows, Mac or Linux), or online 262 

(in any HTML-5 compatible web browser) at http://www.geoapp.cn. The latter is our 263 

suggested method for accessing the program regardless of the computer platform being 264 

used. A brief introduction of how to use this program interactively is given below. A 265 

more detailed manual also is provided along with the program. 266 

 267 

3.1 Data input 268 

The measured diffusion profile can be fed into the software through a delimited 269 

text (e.g., txt or csv format), spreadsheet file (Microsoft® Excel), or clipboard on the 270 

data input panel (Figure 4A). The distance and composition data should be in two 271 

columns. If the compositional uncertainties (σ) are assigned in another column, Diffuser 272 

asks the user to input the column names of x, C, and σ. Otherwise, all compositional 273 

data are treated with equal weights. After data import, the data is directly visualized by 274 

means of a pre-formatted plot (Figure 4A). 275 

 276 

3.2 Diffusion modeling 277 

After importing the diffusion data, the user can choose the relevant solution to 278 

Fick’s second law graphically, on the diffusion modeling panel (‘Diffusion profile’ in 279 

Figure 4B) by comparing the shape of the measured data profile with the diffusion types 280 

presented in Figure 1. The unit of position x should be set and initial compositions (C1, 281 
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C2, and C3) can be fixed or determined by fitting. Specifically, if the user does not define 282 

an initial flat peak or trough for profiles I–L in Figure 1, more parameters are required, 283 

including minimum and maximum values and a step length of the assumed flat peak or 284 

trough (C0). Then, the user can start a diffusion model to obtain a modeled Dt value. 285 

 286 

3.3 Time and diffusion coefficient calculation 287 

 To model timescales in natural samples, the diffusion coefficient, initial 288 

temperature with its uncertainty, trials for the Monte Carlo calculation, and cooling path 289 

with its constant coefficient should be set (Figure 4C). Additionally, diffusion 290 

coefficient data collected from the literature are provided in an embedded Excel file 291 

(see below). The program reads these values automatically and users can access them 292 

via a drop-list on the diffusion coefficient panel (Figure 4C) once the program interface 293 

is opened. At the time of release, Diffuser contains a library of diffusion coefficients for 294 

the following systems: olivine (Ca, Al, P, REE, Ti, H, Li, Be), garnet (Hf, REE), quartz 295 

(Ti, Al, H), zircon (REE, Ti, Al, Li), orthopyroxene (REE, Ti, Cr, H), clinopyroxene (Ti, 296 

REE, H), and feldspar (Sr, Ba, REE, H). These have been compiled in Diffuser by 297 

refitting original experimental data in previous studies. Thus, the algorithm of 298 

parameter uncertainties in Diffuser is internally consistent. Diffusion coefficients from 299 

other systems can be added intoto Diffuser by modifying the relevant template file. 300 

Requests to add other diffusion coefficients to future versions of Diffuser can be sent 301 

to the first author. 302 

To calculate diffusion coefficients in isothermal experimental studies, the user can 303 
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enter the experimental duration and get an estimated D with its uncertainty (Figure 4D). 304 

Then, the parameters of ln[D0] and Ea in the diffusion coefficient and their covariance 305 

can be calculated by ordinary linear least-squares regression of experimental data (D at 306 

different T). 307 

 308 

3.4 Data output 309 

There are two basic types of output in our program after each modeling process: 310 

first, a figure showing the curve-fitting result, which can be saved as vector graphics 311 

(e.g., Figure 5A); and second, a text or spreadsheet file recording the calculation result 312 

(including information of trials, R2, C1, C2, C3, x0, Dt, D, t, and t uncertainty). The figure 313 

compares the measured diffusion profiles directly with modeled zoning profiles (e.g., 314 

Figure 5A). If the temperature is assigned an uncertainty, a marginal plot shows 315 

distributions of the temperature and diffusion timescale and the trade-off between these 316 

two parameters (e.g, Figure 5B). The uncertainty budget of the diffusion time estimate 317 

is broken down into a sequence of histograms that show the contributions of curve 318 

fitting, temperature, and experimental parameters in the diffusion coefficient (e.g., 319 

Figure 5C). 320 

Especially, during calculation for profiles I–L in Figure 1, if there is no flat peak or 321 

trough defined by the user, then an additional figure is created to show the process of 322 

estimating timescales with an assumed composition range of the initial flat peak/trough 323 

(e.g., Figure 2B). Furthermore, if the temperature decreases with time (non-isothermal 324 

systems), Monte Carlo results of timescales are displayed on histograms to show 325 
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whether they are log-normally distributed based on the Lilliefors test (e.g., Figure 3). 326 

The Monte Carlo results and histograms can be saved so that users can evaluate the 327 

calculation process. 328 

 329 

4. Examples 330 

We will demonstrate the functionality, convenience and efficiency of Diffuser with 331 

three examples. 332 

4.1 Ti diffusion in quartz 333 

Quartz is a common mineral formed in magmatic, metamorphic, and hydrothermal 334 

processes. It often has a large crystal size (>>100 μm) and displays clear trace element 335 

zoning (e.g., Ti and Al), and thus has been extensively used for diffusion modeling (e.g., 336 

Ackerson et al., 2018; Cernuschi et al., 2018; Li et al., 2022; Spear et al., 2012). For 337 

example, a titanium diffusion profile in quartz from the Valles caldera, U.S.A. (Boro et 338 

al., 2021) yielded a timescale of 180 ± 15 years between magma recharge and volcanic 339 

eruption, using the Ti-in-quartz diffusivity of Cherniak et al. (2007) and an assumed 340 

temperature of 750 ± 20 °C. Diffuser gives a timescale of 195-131
+399  years which is 341 

identical within uncertainty to the time determined by Boro et al. (2021) using a finite 342 

difference method (Figure 5A–B). However, the uncertainty is an order of magnitude 343 

larger than that previously estimated. It also can be seen in Diffuser that the main 344 

contribution to the time uncertainty is curve fitting (~72%, Figure 5C). In addition, a 345 

better way to define the initial diffusion interface position (x0) is by measuring as many 346 

elements as possible and studying transects of slow and fast diffusing elements. In 347 
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reality, this is not always possible. Instead of adopting an interface position visually 348 

from the diffusion profile, Diffuser determines it directly by curve fitting when an 349 

element with a lower diffusivity is unavailable, which is at least convenient and more 350 

reproducible. 351 

It should be noted that a recent experimental study of Jollands et al. (2020) yielded 352 

a much lower Ti-in-quartz diffusivity than that proposed by Cherniak et al. (2007). 353 

Using this new Ti-in-quartz diffusivity will give timescales about three orders of 354 

magnitude longer (224-185
+1064 kyr). This has promoted discussions about addressing the 355 

discrepancy of time scales derived from the two Ti-in-quartz diffusivities (Audétat et 356 

al., 2021; Boro et al., 2021; Gualda and Pamukçu, 2020), which is beyond the scope of 357 

this study and not discussed further. 358 

 359 

4.2 Ca diffusion in olivine 360 

Olivine is a common phenocryst in basalt and has been widely used to constrain 361 

timescales between magma intrusion and eruption, which provides important 362 

information for volcano monitoring and forecasting. Furthermore, multiple elements 363 

including rare earth elements, Ti, P, Cr, Ca, Ni, Fe–Mg, Li, Be, and H in a single olivine 364 

crystal enable verifying diffusion and crystal-growth zoning models (see reviews in 365 

Costa et al, 2020 and Costa, 2021). Although diffusion of major elements in olivine 366 

(e.g., Fe–Mg) shows multi-component effects that generally cannot be modeled using 367 

simple analytical solutions of the diffusion equation, trace elements in olivine that have 368 

composition-independent diffusivities can be modeled by Diffuser. For example, a Ca 369 
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diffusion profile in olivine from the IODP Hole U1309D (Ferrando et al., 2020) records 370 

a timescale of 150 ± 40 years for melt-rock interaction, using the Ca-in-olivine 371 

diffusivity of Coogan et al. (2005), an initial temperature of 1230 ± 20 °C and linear 372 

cooling rate of 0.004 °C/year. Diffuser recovers a timescale of 135-53
+86 years with a 373 

fixed initial CaO composition of 0.065 wt.% at the rim and 0.105 wt.% in the core 374 

(Figure 6A–B). This result is identical within uncertainty to the time determined by 375 

Ferrando et al. (2020) using a 3D finite difference method. It also can be seen in 376 

Diffuser that the main contribution to the time uncertainty is curve fitting (~80%, Figure 377 

6C). Uncertainties of experimentally determined diffusion coefficients are systematic 378 

and should be considered when comparing diffusion studies using different elements, 379 

or using the same element but different diffusion coefficients. 380 

 381 

4.3 Li diffusion in zircon 382 

Zircon is an invaluable mineral for understanding igneous, metamorphic, and 383 

sedimentary environments, as highlighted by the wide utilization of its U–Pb ages, trace 384 

elements, and Hf–O–Si–Zr isotopes. Trace element diffusion in zircon that recovers 385 

magmatic residence time is making it more versatile (e.g., Bloch et al., 2022; Cherniak, 386 

2021; Cherniak and Watson, 2010; Cherniak et al., 2007; Trail et al., 2016). For example, 387 

a Li diffusion profile in zircon from the Taupo Volcanic Zone, New Zealand (Rubin et 388 

al., 2017) records a timescale of 22 years between magma injection and eruption, using 389 

the Li-in-zircon diffusivity of Trail et al. (2016) and a fixed temperature of 700 ± 20 °C. 390 

The modeling result of Diffuser (23-13
+30  years) is identical to the finite difference 391 
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method of Rubin et al. (2017) when initial Li compositions are fixed at 0 ppbw outside 392 

the band and 120 ppbw in the band (Figure 7A–B). It also can be seen that the major 393 

contribution of the time uncertainty comes from the temperature (~60%, Figure 7C). 394 

However, because Li diffusion has decreased the initial peak which is now unknown, 395 

Rubin et al. (2017) assumed the maximum measured Li composition (~120 ppbw) to 396 

represent the initial composition plateau. Such an assumption is plausible but very hard 397 

to test. To evaluate the effect of varying initial composition on final timescales, assumed 398 

initial Li compositioncompositions ranging from 120 to 600 ppbw are modeled in 399 

Diffuser. The results show that obtained timescales range from 23-13
+30 years to 47-26

+60 400 

years and have become stable when the maximum Li composition goes beyond ~300 401 

ppbw (Figure 2B). Therefore, it is more reasonable to propagate these uncertainties and 402 

use a time range (e.g., 10–107 years) rather than a single value to represent the diffusion 403 

time. A more precise time estimate can be obtained if a reasonable plateau value or 404 

bandwidth can be constrained. For example, we can consider an upper limit of Li 405 

composition in natural zircon for the plateau or use another element with a very low 406 

diffusion coefficient (e.g., Hf, Th, and U; Cherniak et al., 1997) to determine the initial 407 

bandwidth. 408 

As emphasized by Trail et al. (2016), when Li zoning in zircon is utilized for 409 

diffusion chronometry, it is important to evaluate whether Li compositions correlate 410 

with the REE and P, which may have charge balance effects related to zircon growth. 411 

The potential for such coupled diffusion to modify derived timescales should be 412 

evaluated carefully in future diffusion studies. 413 
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 414 

5. Conclusion 415 

Diffuser is a program designed for diffusion chronometry. In particular, it is coded 416 

with robust uncertainty propagation of curve fitting, temperature, and experimentally 417 

determined diffusion coefficients. The code offers an intuitive and user-friendly GUI to 418 

control the data import, diffusion modeling, time calculation, and diffusivity calculation. 419 

The program conducts an automatic curve fit and provides fitting parameters with 420 

associated uncertainties. Data output includes figures showing curve-fitting results and 421 

text or spreadsheet files recording modeling results which can be saved as vector 422 

graphics and used for further processing, respectively. Accelerated by improvements in 423 

microanalysis techniques, diffusion profiles at microscales now are readily obtained. 424 

Together with the easy-to-handle program to generate diffusion models of multiple 425 

elements and multiple minerals, studies on diffusion timescales are expected to become 426 

more common for a more comprehensive understanding on the duration and rates of 427 

geological processes. 428 
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List of Figures 615 

Figure 1. A–D, half diffusion profiles from rim to core in a crystal; E–F, full diffusion 616 

profiles from rim to rim in a crystal. G–H, diffusion profiles for chemical zoning with 617 

an initial sharp boundary in a crystal; I–L, diffusion profiles for chemical zoning with 618 

an initially confined band in a crystal. The grey dashed line shows the initial boundary 619 

and composition conditions at time t0 (t0 = 0) and the blue solid line shows the diffusion 620 

profile at time t1, t2, and t3 (t0<t1<t2<t3). The right panel shows composition distributions 621 

within minerals before (t = t0) and after diffusion (t = t1) which corresponds to profiles 622 

A–L, respectively. The black arrow shows the direction of the diffusive flux. 623 

 624 

Figure 2. A, a schematic diagram showing that different values of the initial flat peak 625 

and bandwidth can have a same diffusion profile. B, modeled diffusion time with an 626 

assumed composition range of the initial flat peak using an example data from Rubin 627 

et al. (2017). Uncertainties of the curve fitting, temperature and experimentally 628 

determined diffusion coefficient are propagated into the uncertainty of timescales. 629 

 630 

Figure 3. Distribution of ln[t] and timescales calculated by the Monte Carlo method 631 

(with an artificial cooling rate of 200 ℃/Ma and temperature of 700 ± 20 ℃) using an 632 

example data from Rubin et al. (2017). Trials are 5000 in total. 633 

 634 

Figure 4. A screenshot of Diffuser interface. A, data import panel. B, diffusion 635 

modeling panel. C, time calculation panel. D, diffusivity calculation panel. 636 
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 637 

Figure 5. An example of Ti-in-quartz diffusion modeling in Diffuser using raw data 638 

from Boro et al. (2021). A, curve fitting result of the diffusion profile. B, marginal plot 639 

showing distributions of the temperature and diffusion timescale and the trade-off 640 

between these two parameters. The superscript a and b denote timescales calculated by 641 

the finite difference method from Boro et al. (2021) and by Diffuser, respectively. C, 642 

histogram showing the uncertainty budget of modeled timescales. 643 

 644 

Figure 6. An example of Ca-in-olivine diffusion modeling in Diffuser using raw data 645 

from Ferrando et al. (2020). A, curve fitting result of the diffusion profile. B, marginal 646 

plot showing distributions of the temperature and diffusion timescale and the trade-off 647 

between these two parameters. The superscript a and b denote timescales calculated by 648 

the finite difference method from Ferrando et al. (2020) and by Diffuser, respectively. 649 

C, histogram showing the uncertainty budget of the modeled timescale. 650 

 651 

Figure 7. An example of Li-in-zircon diffusion modeling in Diffuser using raw data 652 

from Rubin et al. (2017). A, curve fitting result of the diffusion profile. B, marginal plot 653 

showing distributions of the temperature and diffusion timescale and the trade-off 654 

between these two parameters. The superscript a and b denote timescales calculated by 655 

the finite difference method from Rubin et al. (2017) and by Diffuser, respectively. C, 656 

histogram showing the uncertainty budget of the modeled timescale.  657 

 658 
 659 
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Appendix 660 

Analytical solutions to diffusion in semi-infinite and infinite media are listed below. 661 

1 Diffusion in a semi-infinite medium 662 

For a rim-to-core profile with an initial condition of x = x0, C = C1 and x>x0, C = C2 663 

(Figure 1A): 664 

𝐶𝐶 = (𝐶𝐶2–𝐶𝐶1) × erf �𝑥𝑥−𝑥𝑥0
𝐿𝐿
� + 𝐶𝐶1        (A1) 665 

For a rim-to-core profile with an initial condition of x<x0, C = C2 and x = x0, C = C1 666 

(Figure 1B): 667 

𝐶𝐶 = (𝐶𝐶2–𝐶𝐶1) × erf �–𝑥𝑥+𝑥𝑥0
𝐿𝐿

� + 𝐶𝐶1        (A2) 668 

For a rim-to-core profile with an initial condition of x = x0, C = C2 and x>x0, C = C1 669 

(Figure 1C; analogous to equation 2.45 in Crank, 1975): 670 

𝐶𝐶 = (𝐶𝐶2–𝐶𝐶1) × erfc �𝑥𝑥−𝑥𝑥0
𝐿𝐿
� + 𝐶𝐶1        (A3) 671 

For a rim-to-core profile with an initial condition of x<x0, C = C1 and x = x0, C = C2 672 

(Figure 1D): 673 

𝐶𝐶 = (𝐶𝐶2–𝐶𝐶1) × erfc �–𝑥𝑥+𝑥𝑥0
𝐿𝐿

� + 𝐶𝐶1        (A4) 674 

For a rim-to-rim profile with an initial condition of (x0–W)<x<(x0+W), C = C2 and x≤675 

(x0–W) or x≥(x0+W), C = C1 (Figure 1E): 676 

 𝐶𝐶 = (𝐶𝐶2–𝐶𝐶1) × �erf �𝑊𝑊+𝑥𝑥−𝑥𝑥0
𝐿𝐿

� + erf �𝑊𝑊–𝑥𝑥+𝑥𝑥0
𝐿𝐿

�� + 2𝐶𝐶1–𝐶𝐶2  (A5) 677 

where W is the rim-to-core length. 678 

For a rim-to-rim profile with an initial condition of (x0–W)<x<(x0+W), C = C1 and x≤679 

(x0–W) or x≥(x0+W), C = C2 (Figure 1F): 680 
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𝐶𝐶 = (𝐶𝐶2–𝐶𝐶1) × �erfc �𝑊𝑊+𝑥𝑥−𝑥𝑥0
𝐿𝐿

� + erfc �𝑊𝑊–𝑥𝑥+𝑥𝑥0
𝐿𝐿

�� + 𝐶𝐶1   (A6) 681 

2 Diffusion in an infinite medium 682 

For an initial sharp boundary when the position of the initial diffusion interface is fixed 683 

at x = x0 (Figure 1G), if an initial high composition (C2) lies on the right side, 684 

𝐶𝐶 =  𝐶𝐶2−𝐶𝐶1
2

× [1 + erf(𝑥𝑥−𝑥𝑥0
𝐿𝐿

)] + 𝐶𝐶1        (A7) 685 

If an initial high composition (C2) lies on the left side (Figure 1H; analogous to equation 686 

2.14 in Crank, 1975), 687 

𝐶𝐶 =  𝐶𝐶2−𝐶𝐶1
2

× erfc(𝑥𝑥−𝑥𝑥0
𝐿𝐿

) + 𝐶𝐶1         (A8) 688 

For an initially confined region of (x0–h)<x<(x0+h), if the diffusion is symmetric with 689 

an initial high composition (C2) in the region (Figure 1I; analogous to equation 2.15 in 690 

Crank, 1975), 691 

𝐶𝐶 = 𝐶𝐶2−𝐶𝐶1
2

× �erf �ℎ−𝑥𝑥+𝑥𝑥0
𝐿𝐿

� + erf �ℎ+𝑥𝑥−𝑥𝑥0
𝐿𝐿

�� + 𝐶𝐶1    (A9) 692 

where h is the half bandwidth. 693 

If the diffusion profile is symmetric with an initial low composition (C1) in the region 694 

(Figure 1J), 695 

𝐶𝐶 = 𝐶𝐶2−𝐶𝐶1
2

× �erfc �ℎ−𝑥𝑥+𝑥𝑥0
𝐿𝐿

� + erfc �ℎ+𝑥𝑥−𝑥𝑥0
𝐿𝐿

�� + 𝐶𝐶1    (A10) 696 

If the diffusion profile is asymmetric with an initial high composition (C2) in the region 697 

(Figure 1K), 698 

 𝐶𝐶 = 𝐶𝐶2−𝐶𝐶3
2

× erf(ℎ–𝑥𝑥+𝑥𝑥0
𝐿𝐿

) + 𝐶𝐶2−𝐶𝐶1
2

× erf(ℎ+𝑥𝑥−𝑥𝑥0
𝐿𝐿

) + 𝐶𝐶3
2

+ 𝐶𝐶1
2

  (A11) 699 

If the diffusion profile is asymmetric with an initial low composition (C1) in the region 700 

(Figure 1L), 701 
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𝐶𝐶 = 𝐶𝐶3−𝐶𝐶1
2

× erfc(ℎ–𝑥𝑥+𝑥𝑥0
𝐿𝐿

) + 𝐶𝐶2−𝐶𝐶1
2

× erfc(ℎ+𝑥𝑥−𝑥𝑥0
𝐿𝐿

) + 𝐶𝐶1   (A12) 702 
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