UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Stoichiometry-Selective Antagonism of α4β2 Nicotinic Acetylcholine Receptors by Fluoroquinolone Antibiotics

Sanders, Victoria R; Sweeney, Aaron; Topf, Maya; Millar, Neil S; (2022) Stoichiometry-Selective Antagonism of α4β2 Nicotinic Acetylcholine Receptors by Fluoroquinolone Antibiotics. ACS Chemical Neuroscience 10.1021/acschemneuro.2c00200. (In press). Green open access

[thumbnail of acschemneuro.2c00200-2.pdf]
Preview
Text
acschemneuro.2c00200-2.pdf - Published Version

Download (5MB) | Preview

Abstract

Quinolone antibiotics disrupt bacterial DNA synthesis by interacting with DNA gyrase and topoisomerase IV. However, in addition, they have been shown to act as inhibitors of pentameric ligand-gated ion channels such as GABAA receptors and the α7 nicotinic acetylcholine receptor (nAChR). In the present study, we have examined the effects of quinolone antibiotics on the human α4β2 nAChR, an important subtype that is widely expressed in the central nervous system. A key feature of α4β2 nAChRs is their ability to coassemble into two distinct stoichiometries, (α4)_{2}(β2)_{3} and (α4)_{3}(β2)_{2}, which results in differing affinities for acetylcholine. The effects of nine quinolone antibiotics were examined on both stoichiometries of the α4β2 receptor by two-electrode voltage-clamp recording. All compounds exhibited significant inhibition of α4β2 nAChRs. However, all of the fluoroquinolone antibiotics examined (ciprofloxacin, enoxacin, enrofloxacin, difloxacin, norfloxacin, pefloxacin, and sparfloxacin) were significantly more potent inhibitors of (α4)_{2}(β2)_{3} nAChRs than of (α4)_{3}(β2)_{2} nAChRs. This stoichiometry-selective effect was most pronounced with pefloxacin, which inhibited (α4)_{2}(β2)_{3} nAChRs with an IC_{50} of 26.4 ± 3.4 μM but displayed no significant inhibition of (α4)_{3}(β2)_{2} nAChRs. In contrast, two nonfluorinated quinolone antibiotics (cinoxacin and oxolinic acid) exhibited no selectivity in their inhibition of the two stoichiometries of α4β2. Computational docking studies suggest that pefloxacin interacts selectively with an allosteric transmembrane site at the β2(+)/β2(−) subunit interface, which is consistent with its selective inhibition of (α4)_{2}(β2)_{3}. These findings concerning the antagonist effects of fluoroquinolones provide further evidence that differences in the subunit stoichiometry of heteromeric nAChRs can result in substantial differences in pharmacological properties.

Type: Article
Title: Stoichiometry-Selective Antagonism of α4β2 Nicotinic Acetylcholine Receptors by Fluoroquinolone Antibiotics
Open access status: An open access version is available from UCL Discovery
DOI: 10.1021/acschemneuro.2c00200
Publisher version: https://doi.org/10.1021/acschemneuro.2c00200
Language: English
Additional information: © 2022 The Authors. Published by American Chemical Society under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/).
Keywords: Nicotinic acetylcholine receptor subunit stoichiometry antagonist quinolone antibiotic pefloxacin
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Neuro, Physiology and Pharmacology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
URI: https://discovery.ucl.ac.uk/id/eprint/10149954
Downloads since deposit
43Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item