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ABSTRACT
This article develops a sparsity-inducing version of Bayesian Causal Forests, a recently proposed nonpara-
metric causal regression model that employs Bayesian Additive Regression Trees and is specifically designed
to estimate heterogeneous treatment effects using observational data. The sparsity-inducing component
we introduce is motivated by empirical studies where not all the available covariates are relevant, leading
to different degrees of sparsity underlying the surfaces of interest in the estimation of individual treatment
effects. The extended version presented in this work, which we name Shrinkage Bayesian Causal Forest, is
equipped with an additional pair of priors allowing the model to adjust the weight of each covariate through
the corresponding number of splits in the tree ensemble. These priors improve the model’s adaptability to
sparse data generating processes and allow to perform fully Bayesian feature shrinkage in a framework
for treatment effects estimation, and thus to uncover the moderating factors driving heterogeneity. In
addition, the method allows prior knowledge about the relevant confounding covariates and the relative
magnitude of their impact on the outcome to be incorporated in the model. We illustrate the performance
of our method in simulated studies, in comparison to Bayesian Causal Forest and other state-of-the-art
models, to demonstrate how it scales up with an increasing number of covariates and how it handles
strongly confounded scenarios. Finally, we also provide an example of application using real-world data.
Supplementary materials for this article are available online.
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1. Introduction

Inferring the treatment effect at an individual level in a popula-
tion of interest lies at the heart of disciplines such as precision
medicine or personalized advertisement, where decision mak-
ing in terms of treatment administration is based on individual
characteristics. The ever-increasing amount of observational
data available offers a unique opportunity for drawing inferences
at the resolution of each individual. However, since Individual
Treatment Effects (ITEs) are never directly observable in the
real world, standard supervised learning techniques cannot be
directly applied. Moreover, the process of treatment allocation
in large, observational datasets is usually unknown and can
obscure the effect of the actual treatment through confounding
(Dawid 2000; Pearl 2009a; Imbens and Rubin 2015).

The application of statistical learning tools (Hastie, Tibshi-
rani, and Friedman 2001) for causal inference has led to signif-
icant improvements in the estimation of heterogeneous treat-
ment effects. These improvements stem from the predictive
power of advanced nonparametric regression models, that, after
being appropriately adapted to the causal inference setting, can
leverage large observational datasets and capture nonlinear rela-
tionships. Caron, Manolopoulou, and Baio (2020) provide a
review of the most recent and popular methods, together with a
comparison of their performance.

Two of the early contributions that paved the way toward the
use of tree-based statistical learning tools on large datasets for
causal analysis purposes are Foster, Taylor, and Ruberg (2011)
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and Hill (2011), who advocate the use of tree ensemble methods
for the estimation of ITE. The former focuses on randomized
experiments and makes use of Random Forests (Breiman 2001;
Lu et al. 2018); the latter instead addresses the problem from an
observational study perspective, and employs Bayesian Additive
Regression Trees (BART) (Chipman, George, and McCulloch
1998, 2010). Another early contribution that focuses instead
on Average Treatment Effect (ATE) estimation in observational
studies is Traskin and Small (2011), where the authors pro-
pose classification trees for identifying the study population
with sufficient overlap. A more recent and popular tree-based
method for ITE estimation is Causal Forests (CF) (Athey and
Imbens 2016; Wager and Athey 2018), a causal implementa-
tion of Random Forests. Hahn, Murray, and Carvalho (2020)
instead build on the work of Chipman, George, and McCul-
loch (2010) and Hill (2011) to formulate a new BART frame-
work for causal analysis, under the name of Bayesian Causal
Forests (BCF), specifically designed to address strong confound-
ing and separate between prognostic and moderating effects of
the covariates when estimating ITE. The prognostic effect (or
prognostic score) is defined as the impact of the covariates on
the outcome in the absence of treatment, while the moderat-
ing effect is the impact of the covariates on the response to
treatment.

A different stream of contributions that do not focus on
any specific regression model is that of Meta-Learners. Meta-
Learners are meta-algorithms that design a procedure to esti-
mate ITE via any suitable off-the-shelf supervised regression
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model (e.g., random forests, neural networks, etc.). Recent pop-
ular work on Meta-Learners include Künzel et al. (2017), where
the authors develop a framework to deal with unbalanced treat-
ment groups (named X-learner), and Nie and Wager (2020),
where parameterization in Robinson (1988) is exploited (hence,
the name R-learner) to design a direct loss function on the treat-
ment effect surface for parameter tuning. Among other notable
works on ITE estimation, Alaa and van der Schaar (2017, 2018)
adopt a multi-task learning approach using Gaussian Processes,
while Johansson, Shalit, and Sontag (2016), Shalit, Johansson,
and Sontag (2017), and Yao et al. (2018) employ deep neural net-
works to learn balanced representations that aim at minimizing
a distributional distance between treatment groups. Moreover,
contributions such as those of Powers et al. (2018); Zhao, Small,
and Ertefaie (2018); Zimmert and Lechner (2019), and Fan et al.
(2020) focus specifically on high-dimensional settings, where
a large number of covariates is available. In particular, Zhao,
Small, and Ertefaie (2018) use Robinson (1988) decomposition
to estimate nuisance parameters with machine learning meth-
ods and isolate the treatment effect function, which is then fit
via LASSO regression, for a more interpretable output on effect
modifiers. Zimmert and Lechner (2019) and Fan et al. (2020)
instead propose and derive properties of a cross-validated two
stage estimator where nuisance parameters are fitted with ML
methods in the first stage, and a nonparametric local kernel
smoother is instead applied to fit treatment effect.

Regression-based methods for treatment effect estimation
typically leverage large samples in observational studies. How-
ever, large observational data often also feature a large num-
ber of pretreatment covariates, many of which may not affect
the response variable in question nor act as a modifier of the
treatment effect. Hence, the task of estimating ITE, whose com-
plexity inevitably depends on the smoothness and sparsity of
the outcome surface (Alaa and van der Schaar 2018), neces-
sitates regularization. At the same time, prior subject-matter
knowledge on the relative importance of the covariates may be
available, and can improve estimates if embedded in the model.
In light of these considerations, none of the aforementioned
approaches mentioned allow to jointly: (i) account for heteroge-
neous smoothness and sparsity across covariates; (ii) tease apart
prognostic and moderating covariates through targeted feature
shrinkage; (iii) incorporate prior knowledge on the relevant
covariates and their relative impact on the outcome. Carefully
designed regularization can lead to improved ITE estimates
and inferences on prognostic and moderating factors, since
including a large number of covariates in a fully-saturated model
to adjust for confounding may lead to misspecification. In this
work, we propose an extension of the Bayesian Causal Forest
framework (Starling et al. 2019; Hahn, Murray, and Carvalho
2020), consisting in additional Dirichlet priors placed on the
trees splitting probabilities (Linero 2018), that implement fully
Bayesian feature shrinkage on the prognostic and moderating
covariates, and allow the incorporation of prior knowledge on
their relative importance. BART (and consequently BCF) was
originally designed to adapt to smoothness but not to sparsity.1

1Regularization in BART is introduced via shallow trees structures, to avoid
overfitting (similarly to Gradient Boosting). Linero and Yang (2018) pro-
posed a way to further enhance smoothness adaptation in BART through a

Our extended version of the model can be easily fitted with
a slight modification of the existing MCMC algorithm and
provably results in improved performance thanks to its better
adaptability to sparse DGPs, for negligible extra computational
cost.

The rest of the article is organized as follows. Section 2
introduces the problem of estimating treatment effects using
the Neyman–Rubin causal model framework, and formulates
the necessary assumptions to recover treatment effect estimates
under confounded observational data. Section 3 offers an
overview on Bayesian Additive Regression Trees and their
popular causal version, Bayesian Causal Forest. Section 4
introduces our shrinkage-inducing extension, under the name
of “Shrinkage Bayesian Causal Forest.” Section 5 presents results
from simulated studies carried out to compare Shrinkage
Bayesian Causal Forest performance with other state-of-
the-art models. Section 6 provides an example of analysis
using data from the Infant Health and Development Program
aimed at investigating the effects of early educational support
on cognitive abilities in low birth weight infants. Section 7
concludes with a discussion.

2. Problem Framework

In this section we outline the problem of deriving an estimator
for ITE using observational data, using the formalism of the
Neyman–Rubin potential outcomes framework (Rubin 1978;
Imbens and Rubin 2015).2 We consider a setup where the out-
come variable is continuous and the treatment assignment is
binary (of the type exposure versus nonexposure), but most of
the notions in this section can be generalized to noncontinuous
responses and more than two treatment arms. For each indi-
vidual i ∈ {1, . . . , N}, the two potential outcomes are defined
as Y(Zi)

i , where Zi ∈ {0, 1} is the binary treatment assignment,
with Zi = 1 indicating exposure to the treatment, while Zi = 0
nonexposure. We consider continuous type of outcomes such
that

(
Y(0)

i , Y(1)
i

) ∈ R
2. Given the potential outcomes and the

binary treatment assignment, ITE is defined, for each individual
i, as the difference Y(1)

i − Y(0)
i . The fundamental problem of

causal inference is that, for each i, we get to observe only one
of the two potential outcomes

(
Y(0)

i , Y(1)
i

) ∈ R
2, specifically

the one corresponding to the realization of Zi, that is, Yi =
ZiY(1)

i + (1 − Zi)Y(0)
i , so that ITE is never observable.

Given a dataset {Xi, Zi, Yi} of sample size N, where Xi ∈
X are P pretreatment covariates, the ITE is the (unobserved)
difference Y(1)

i − Y(0)
i . In practice, the goal is often to estimate

the Conditional Average Treatment Effects (CATE), defined as

τ(xi) = E

[
Y(1)

i − Y(0)
i |Xi = xi

]
. (1)

CATE is the conditional mean of the ITE for the given value of
the covariates, averaging across individual-level noise, so it is the
best estimator for ITE in terms of mean squared error.

probabilistic version of the trees, where inputs follow a probabilistic, rather
than deterministic, path to the terminal nodes.

2Note that identification of causal effects can be achieved also with other
causal frameworks, such as do-calculus in Structural Causal Models (Pearl
2009a,b, 2018), or decision-theoretic approach (Dawid 2000, 2015), and the
contribution of this work, which concerns solely estimation, still apply.
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In order to estimate τ(xi) through the observational quan-
tities {Xi, Zi, Yi}, we rely on a common set of assumptions to
achieve identification. First of all, as already implied by the
notation introduced above, we are assuming that Stable Unit
Treatment Value Assumption (SUTVA) holds, ensuring that one
unit’s outcome is not affected by other units’ assignment to
treatment (no interference). The second assumption is uncon-
foundedness, which can be expressed through the conditional
independence (Y(0)

i , Y(1)
i ) ⊥⊥ Zi|Xi, and it rules out the pres-

ence of unobserved common causes of Z and Y (i.e., no unob-
served confounders). The third and final assumption is common
support, which means that all units have a probability of falling
into either treatment groups which is strictly between 0 and 1.
More formally, after defining the propensity score (Rosenbaum
and Rubin 1983) as the probability of unit i being selected into
treatment given xi,

π(xi) = P(Zi = 1|Xi = xi) , (2)
common support implies π(xi) ∈ (0, 1)∀i ∈ {1, . . . , N}, so that
there is no deterministic assignment to one of the groups given
features Xi = xi. Note that unconfoundedness and common
support are automatically satisfied in the case of fully random-
ized experiments. While the degree of overlap between the two
treatment groups can be typically examined in the data, SUTVA
and unconfoundedness are untestable assumptions, and their
plausibility must be justified based on domain knowledge.

In this work, we focus on nonparametric regression-based
approaches to CATE estimation. Imbens (2004) offers a compre-
hensive overview on different methodologies (regression-based,
matching-based, etc.) to derive different causal estimands of
interest, such as sample and population ATE and CATE, Average
Treatment effect on the Treated (ATT), Conditional Average
Treatment effect on the Treated (CATT) etc. A nonparametric
regression approach entails modeling the response surface as an
unknown function of the covariates and treatment assignment
indicator, and an error term. As typically done in the vast
majority of the contributions on regression-based CATE esti-
mation, we assume that the error term is additive and normally
distributed with zero mean, such that Yi is modeled as

Yi = f (Xi, Zi) + εi , where εi ∼ N (0, σ 2) (3)
and where f (·) is of unknown form, and learnt from the data.
A broad variety of methods to retrieve a CATE estimator from
Equation (3) have been developed in the literature (see, Caron,
Manolopoulou, and Baio 2020 for a review). Among these, we
will follow in particular the one presented in Hahn, Murray,
and Carvalho (2020), that we introduce and discuss in the next
section.

3. BART for Causal Inference

Bayesian Additive Regression Trees (BART) are a nonparamet-
ric regression model that estimates the conditional expectation
of a response variable Yi via a “sum-of-trees.” Considering the
regression framework in (3), one can use BART to flexibly
represent f (·) as

f (X, Z) =
m∑

j=1
gj

([
X Z

]
,
(
Tj, Mj

))
, (4)

where m is the total number of trees in the model; the pair
(Tj, Mj) defines the structure of the jth tree, namely Tj embeds
the collection of binary split rules while Mj = {ψ1, . . . , ψb} the
collection of b terminal nodes in that tree; gj(·) is a tree-specific
function mapping the predictors [X Z] to the set of terminal
nodes Mj, following the set of binary split rules expressed by Tj.
The conditional mean function f (x, z) = E

[
Yi|Xi = xi, Zi =

zi
]

fit is computed by summing up all the terminal nodes ψij
assigned to the predictors [X Z] by the tree functions gj(·),
that is,

∑m
j=1 gj(·). We refer the reader to Chipman, George, and

McCulloch (1998, 2010) and Ročková and Saha (2019) for more
details about BART priors and inference.

3.1. Bayesian Causal Forests

As briefly mentioned in Section 2, we will follow the represen-
tation proposed by Hahn, Murray, and Carvalho (2020), that
avoids imposing direct regularization on f (·) in Equation (3).
Hahn et al. (2018) and Hahn, Murray, and Carvalho (2020) in
fact show that regularization on f (·) can generate unintended
bias in the final estimation of CATE, and propose a simple repa-
rameterization of (3) that uses a two-stage regression approach
that dates back to the early contributions of Heckman (1979)
and Robinson (1988). The two-stage representation reads:

Zi ∼ Bernoulli
(
π(X̃i)

)
, π(x̃i) = P(Zi = 1|X̃i = x̃i) , (5)

Yi = μ
([

Xi π(X̃i)
]) + τ(W i)Zi + εi . (6)

The first stage (5) deals with propensity score estimation, for
which any probabilistic classifier is suitable (e.g., logistic regres-
sion, Probit BART, neural nets, etc.). In the simulated experi-
ments shown in later sections, we will specifically employ either
default probit BART or a one-hidden-layer neural network. In
general, it is advisable not to rely on aggressive regularization
in the estimation of π(·), as this could accidentally result into
one or more main confounders being over-shrunk and/or left
out of the model. The second stage (6) estimates the prognostic
score μ(·), defined as the effect of the covariates Xi ∈ X on
the outcome Yi in the absence of treatment μ(xi) = E

[
Yi|Xi =

xi, Zi = 0
]
, and CATE τ(·). Note that we use slightly different

notation for the covariates in μ(·), τ(·) and π(·). This is to
highlight the fact that the set of available covariates Xi ∈ X
might consist of four different types (Herren and Hahn 2020):
(i) confounders, that is, direct and indirect common causes of Z
and Y ; (ii) prognostic covariates, that is, predictors of μ(·) only;
(iii) moderators, that is, predictors of τ(·) only; (iv) propensity
covariates, entering only π(·) equation. Any covariate that does
not fall into one of these categories is an irrelevant/nuisance
predictor.

The two-stage procedure described above belongs to a class
of models known as “modularized,” as opposed to joint-models,
that attempt to embed uncertainty around propensity scores in a
single stage, which nonetheless can lead to poor estimates due to
feedback issues in the approximation of the full posterior (Zigler
et al. 2013; Zigler and Dominici 2014). See Jacob et al. (2017) for
a thorough discussion on the issue of modularized versus joint
models.

A Bayesian Causal Forest model (Hahn, Murray, and Car-
valho 2020) is based on the reparameterization of the second
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stage regression (6). The advantage of this reparameterization
from a Bayesian standpoint lies in the fact that separate priors,
offering targeted regularization, can be placed on the prognostic
score μ(·) and on CATE τ(·) directly. This approach mitigates
unintended bias attributable to what the authors call Regular-
ization Induced Confounding (RIC). The intuition behind RIC is
that CATE posterior is strongly influenced by the regularization
effects of the prior on f (·) in Equation (3), such that posterior
estimates of CATE are bound to be biased, even more so in pres-
ence of strong confounding, such as when treatment selection is
suspected to be “targeted,” that is, when individuals are selected
into treatment based on the prediction of an adverse potential
outcome if left untreated. In order to alleviate confounding from
targeted selection, the authors suggest to employ propensity
score estimates obtained from the first stage π̂ as an additional
covariate in the estimation of μ(·).

In practice, a BCF model assigns a default BART prior to
μ(·), while a prior with stronger regularization is chosen for
τ(·), as moderating patterns are believed to be simpler. The
BART prior on τ(·), compared to the default specification, con-
sists in the use of a smaller number of trees in the ensemble (50
trees instead of 200), and a different combination of hyperpa-
rameters that govern the depth of each tree. In particular, in the
context of BART priors, the probability that a node at depth d ∈
{0, 1, 2, . . .} in a tree is nonterminal is given by ν(1+β)−d, where
(ν, β) are the hyperparameters to set (Chipman, George, and
McCulloch 2010). The default specification (ν, β) = (0.95, 2)

already has a shrinkage effect that accommodates small trees.
The BCF prior on τ(·) instead sets (ν, β) = (0.25, 3), with the
purpose of assigning higher probability mass to even smaller
trees. This combination of hyperparameters in the CATE prior
allows to detect weak heterogeneous patterns, and provides
robustness in case of homogeneous treatment effects.

For the reasons illustrated above, BCF tends to outperform
BART and other tree-based methods for CATE estimation, such
as Causal Forests (Wager and Athey 2018). As we will illustrate
in the following sections, our work extends the BCF framework
by introducing explicit shrinkage of irrelevant predictors, which
results into higher computational efficiency, and accommodates
different levels of smoothness across covariates, while, at the
same time, returning interpretable measures of feature impor-
tance in the estimation of μ(·) and τ(·), separately.

4. Shrinkage Bayesian Causal Forests

BART, and consequently BCF, are known to handle sparsity
quite well, thanks to the fact that splitting variables are chosen
uniformly at random. However, they do not actively implement
heterogeneous sparsity, nor feature shrinkage, which inevitably
implies assigning equal level of heterogeneity to every covari-
ate in the model. We will briefly illustrate in this section the
concept of feature shrinkage in the context of tree ensemble
models such as BART. Let us define first s = (s1, . . . , sP) as the
vector of splitting probabilities of each predictor j ∈ {1, . . . , P},
where each sj represents the probability for the jth predictor
of being chosen as a splitting variable in one of the decision
nodes of a tree. The default version of BART places a uniform
distribution over the splitting variables, meaning that each pre-
dictor has equal chance of being picked as a splitting variable:

sj = P−1 ∀j ∈ {1, . . . , P}. As a consequence, predictors are
virtually given equal prior importance in the model. A sparsity-
inducing solution in this framework implies having a vector s
of “stick-breaking” posterior splitting probabilities where ide-
ally the entries corresponding to irrelevant predictors are near-
zero, while the ones corresponding to relevant predictors are
significantly higher than P−1. Posterior splitting probabilities
in this context can be intuitively viewed as a measure of vari-
ables importance (Breiman 2001). A complementary, decision-
theoretic interpretation of sparsity-inducing solutions in this
setup is given by the posterior probabilities that a predictor j
appears in a decision node at least once in the ensemble. The
two interpretations above (variables importance and probability
of inclusion) are interchangeable and qualitatively lead to the
same conclusions. In the next section we review how a simple
extension of BART proposed by Linero (2018) can accommo-
date sparse solutions as described above, and how this modified
version of BART can be put to use in the context of Bayesian
Causal Forests.

4.1. Dirichlet Additive Regression Trees

Dirichlet Additive Regression Trees (Linero 2018), or DART,
constitute an effective and practical way of inducing sparsity in
BART. The proposed modification consists in placing an addi-
tional Dirichlet prior on the vector of splitting probabilities s,
which triggers a consequent posterior update in the backfitting
MCMC algorithm. The Dirichlet prior on s reads

(s1, . . . , sP) ∼ Dirichlet
(α

P
, . . . ,

α

P

)
, (7)

where α is the hyperparameter governing the a priori preference
for sparsity. Lower values of α correspond to sparser solutions,
that is, fewer predictors included in the model. The hyperpa-
rameter α is in turn assigned a prior distribution, in order to
deal with unknown degree of sparsity. This prior is chosen to be
a Beta distribution, placed over a standardized version of the α

parameter, of the following form
α

α + ρ
∼ Beta(a, b) , (8)

where the default parameter values are (a, b, ρ) = (0.5, 1, P).
The combination of values a = 0.5 and b = 1 assigns higher
probability to low values of α, thus, giving preference to sparse
solutions (the combination (a, b) = (1, 1) would instead revert
back to default BART splitting probabilities, that is, uniform
distribution over the splitting variables). The prior is assigned
to the standardized version of α in Equation (8) instead of α

directly, as this allows to easily govern preference for sparsity
through the parameter ρ. If one suspects that the level of sparsity
is, although unknown, rather high, setting a smaller value of ρ

facilitates even sparser solutions.
The modified version of DARTs MCMC implies an extra step

to update s, according to the conjugate posterior

s1, . . . , sP|(u1, . . . , uP) ∼ Dirichlet
(α

P
+ u1, . . . ,

α

P
+ uP

)
,

(9)
where the update depends on uj, defined as the number of
attempted splits on the jth predictor in the current MCMC
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iteration. The phrase “attempted splits” refers to the fact that
BART MCMC algorithm generates trees through a branching
process undergoing a Metropolis–Hastings step, so that a pro-
posed tree in the process might be rejected, but the chosen
splitting variables are counted anyway in u = (u1, . . . , uP)

(Chipman, George, and McCulloch 1998, 2010; Linero and Yang
2018).

The rationale behind the update in Equation (9) follows the
natural Dirichlet-Multinomial conjugacy. The more frequently a
variable is chosen for a splitting rule in the trees of the ensemble
in a given MCMC iteration (or equivalently the higher is uj),
the higher the weight given to that variable by the updated
s|(u1, . . . , uP) in the next MCMC iteration. Hence, the higher
sj, the higher the chance for the jth predictor of being drawn as
splitting variable from the multinomial distribution described
by Multinom

(
1, s|u)

. This extra Gibbs step comes at negligible
computational cost when compared to default BART typical
running time.

4.2. Shrinkage BCF Priors

Similarly to Linero (2018), symmetric Dirichlet priors can be
straightforwardly embedded in the Bayesian Causal Forest
framework to induce sparsity in the estimation of prognostic
and moderating effects. Bearing in mind that, as described
in the previous section, BCF prior consists in two different
sets of independent BART priors, respectively, placed on the
prognostic score μ(·) and CATE τ(·), our proposed extension
implies adding an additional Dirichlet prior over the splitting
probabilities to these BART priors. Throughout the rest of the
work we will consider the case where W i = Xi, that is, where the
same set of covariates is used for the estimation of μ(·) and τ(·)
(see Equation (6) for reference), but the ideas easily extend to
scenarios where a different set of covariates is designed, based on
domain knowledge, to be used for μ(·) and τ(·)3. The additional
priors are, respectively,

sμ ∼ Dirichlet
(

αμ

P+1 , . . . , αμ

P+1

)
,

sτ ∼ Dirichlet
(

ατ

P , . . . , ατ

P
)

,

αμ

αμ+ρμ
∼ Beta(a, b)

ατ

ατ +ρτ
∼ Beta(a, b) ,

(10)
where the Beta’s parameters are chosen to be (a, b) = (0.5, 1)

as default. The hyperparameter ρ is set equal to (P + 1) in
the case of the prognostic score (ρμ = P + 1) since, when
estimating μ(xi), we make use of P covariates plus an estimate
of the propensity score π̂(xi) as an additional covariate. In the
case of τ(xi), we set it equal to ρτ = P

2 to give preference to
even more targeted shrinkage, as the CATE is typically believed
to display simple heterogeneity patterns and a higher degree of
sparsity compared to the prognostic score.

3In certain cases, the set of pretreatment covariates might benefit from
an initial screening by the researcher in the design of the study, and
later undergo feature shrinkage in Shrinkage BCF, with the possibility of
incorporating further a priori knowledge through the prior distributions,
as described later in this section. As we will show in Section 4.3, in fact,
Shrinkage BCF not only adjusts to sparse data generating processes (DGPs)
per se, but allocates splitting probabilities in a more efficient way among
the covariates, compared to uniformly at random splits, increasing compu-
tational efficiency.

Algorithm 1: Bayesian Backfitting MCMC in Shrinkage
BCF

Input: Data (X, Z, Y)

Output: MCMC samples of{
μ(b)(·), τ (b)(·), (sμ|uμ)(b), (sτ |uτ )

(b), σ (b)
}B

b=1
for b = 1, . . . , B do

Result: Sample μ(b)(x), (sμ|uμ)(b)

for j = 1, . . . , mμ do
Sample tree structure
Tjμ ∼ p(Tj|Rj, σ) ∝ p(Tj)p(Rj|Tj, σ)

Sample terminal nodes Mjμ ∼ p(Mj|Tj, Rj, σ)

(conjugate normal)
end
Sample (sμ|uμ) ∼
D

(
αμ/(P + 1) + u1μ, . . . , αμ/(P + 1) + u(P+1)μ

)

Result: Sample τ (b)(x), (sτ |uτ )
(b)

for j = 1, . . . , mτ do
Sample tree structure
Tjτ ∼ p(Tj|Rj, σ) ∝ p(Tj)p(Rj|Tj, σ)

Sample terminal nodes Mjτ ∼ p(Mj|Tj, Rj, σ)

(conjugate normal)
end
Sample (sτ |uτ ) ∼ D

(
ατ /P + u1τ , . . . , ατ /P + uPτ

)

Result: Sample σ (b)

Sample σ ∼ p
(
σ |μ̂(xi), τ̂ (xi), Y

)
end

We refer to this setup as Shrinkage Bayesian Causal Forest
(Shrinkage BCF). Naturally, the two Dirichlet priors trigger two
separate extra steps in the Gibbs sampler, implementing draws
from the conjugate posteriors:

sμ | uμ ∼ Dirichlet
(
αμ/(P + 1) + u1μ, . . . , αμ/(P + 1) + u(P+1)μ

)
sτ | uτ ∼ Dirichlet

(
ατ /P + u1τ , . . . , ατ /P + uPτ

)
.

(11)

Shrinkage BCFs setup allows first of all to adjust to different
degrees of sparsity in μ(·) and τ(·), and thus to induce different
levels of smoothness across the covariates. Second, it naturally
outputs feature importance measures on both the prognostic
score and CATE separately, given that separate draws of the pos-
terior splitting probabilities are returned. The raw extra com-
putational time, per MCMC iteration, is slightly greater, albeit
negligible, compared to default BCF; however, Shrinkage BCF
demonstrates higher computational efficiency thanks to the fact
that it avoids splitting on irrelevant covariates. Thus, it neces-
sitate far fewer MCMC iterations to converge, and improves
performance under sparse DGPs. A sketch of pseudo-code illus-
trating the backfitting MCMC algorithm in Shrinkage BCF can
be found in Algorithm 1.

The Dirichlet priors in Shrinkage BCF can be also adjusted
to convey prior information about the relevant covariates and
their relative impact on the outcome. This can be achieved by
introducing a set of scalar prior weights k = {k1, . . . , kP} ∈ R

P+,
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such that
sμ ∼ Dirichlet

(
k1μ

αμ

P+1 , . . . , k(P+1)μ
αμ

P+1

)
,

sτ ∼ Dirichlet
(
k1τ

ατ

P , . . . , kPτ
αμ

P
)

.
(12)

The weights can take on different values for each covariate and
can be set separately for prognostic score and CATE. If the jth
covariate is believed to be significant in predicting μ(·), then
its corresponding prior weight kjμ can be set higher than the
others, in order to generate draws from a Dirichlet distribution
that allocate higher splitting probability to that covariate. In
the simulated experiment of Section 5.2 we will introduce a
version of Shrinkage BCF with informative priors assigning
higher a priori weight to the propensity score in μ

(
xi, π(xi)

)
,

to investigate whether this helps tackling strong confounding.

4.3. Targeted Sparsity and Covariate Heterogeneity

As a result of a fully Bayesian approach to feature shrinkage,
Shrinkage BCF returns nonuniform posterior splitting proba-
bilities that assign higher weight to more predictive covariates.
This automatically translates into more splits along covariates
with higher predictive power, compared to default BCF. To
investigate whether this more strategic allocation of splitting
probabilities in Shrinkage BCF leads to better performance, we
test it against a default version of BCF including all the covariates
and a version of BCF that already employs the subset of relevant
covariates only. Think of the latter as a sort of “oracle” BCF that
knows a priori the subset of relevant covariates, but may not
assign different weights to them in terms of relative importance
in the estimation of μ(·) and τ(·), respectively. To this end,
we run a simple simulated example with P = 10 correlated
covariates, of which only 5 are relevant, meaning that they exert
some effect on the prognostic score or on CATE. We compare
default BCF, “oracle” BCF using only the 5 relevant covariates
and Shrinkage BCF using all the covariates (5 relevant and 5
nuisance). We generate the P = 10 covariates from a multi-
variate Gaussian (X1, . . . , X10) ∼ N (0, �), where the entries
of the covariance matrix are such that �jk = 0.6|j−k| + 0.1I(j �=
k), indicating positive correlation between predictors. Sample
size is set equal to N = 1000. We then generate treatment
assignment as Zi ∼ Bern

(
π(xi)

)
, where the propensity score

is
π(xi) = P(Zi = 1|Xi = xi) = �

( − 0.4 + 0.3Xi,1 + 0.2Xi,2
)

,
(13)

and �(·) is the cumulative distribution function of a standard
normal distribution. The prognostic score, CATE and response
Yi are, respectively, generated as

μ(Xi) = 3 + Xi,1 + 0.8 sin(Xi,2) + 0.7Xi,3Xi,4 − Xi,5 ,
τ(Xi) = 2 + 0.8Xi,1 − 0.3X2

i,12 , (14)
Yi = μ(xi) + τ(xi)Zi + εi , where εi ∼ N (0, 1) .

In this experiment only the first five predictors are relevant.
Table 1 shows performances of the default BCF, “oracle” BCF run
on just the 5 relevant predictors (oracle BCF-5) and Shrinkage
BCF (SH-BCF), averaged over H = 500 Monte Carlo simula-
tions. Performance of the methods is measured through: bias,
defined as E

[
(τ̂i − τi)|Xi = xi

]
; the quadratic loss function

E
[
(τ̂i − τi)

2|Xi = xi
]

, (15)

Table 1. Sample average bias,
√

PEHE and 95% coverage for default BCF, “oracle”
BCF which uses only the five relevant predictors (Oracle BCF-5) and shrinkage BCF
(SH-BCF).

Model Bias
√

PEHE 95% Coverage

BCF 0.037 ± 0.008 0.447 ± 0.006 0.92 ± 0.01
Oracle BCF-5 0.034 ± 0.008 0.440 ± 0.006 0.91 ± 0.01
SH-BCF 0.031 ± 0.007 0.380 ± 0.006 0.88 ± 0.01

NOTE: Bold text represents better performance.

where τ̂i is the model-specific CATE estimate, while τi is the
ground-truth CATE; and finally 95% frequentist coverage,
defined as P

(
τ̂ (xi)low ≤ τ(xi) ≤ τ̂ (xi)upp

)
, where τ̂ (xi){low,high}

are the upper and lower bounds of 95% credible interval around
τ̂ (xi), returned by the MCMC. The loss function in (15) is also
known as the Precision in Estimating Heterogeneous Treatment
Effects (PEHE) from Hill (2011). Bias, PEHE and coverage
estimates are estimated by computing, for each of the H = 500
Monte Carlo simulations, their sample equivalents

Bîasτ = 1
N

N∑
i=1

(
τ̂ (xi) − τ(xi)

)

PÊHEτ = 1
N

N∑
i=1

(
τ̂ (xi) − τ(xi)

)2

Cov̂erageτ = 1
N

N∑
i=1

I

(
τ̂ (xi)low ≤ τ(xi) ≤ τ̂ (xi)upp

)
,

and then averaging these over all the simulations. More pre-
cisely, Table 1 reports bias,

√
PEHE and coverage estimates

together with 95% Monte Carlo confidence intervals.
Shrinkage BCF shows better performance than default BCF

as well as the “oracle” BCF version in terms of bias and
√

PEHE,
while reports just marginally lower coverage, indicating that
the method allocates “stick-breaking” splitting probabilities in
an efficient way and necessitates fewer MCMC iterations for
convergence. The intuition as to why Shrinkage BCF performs
better than “oracle” BCF, is that its priors allow not only to
split more along relevant covariates instead of irrelevant ones
(which explains the advantage over BCF), but also to split more
frequently along covariates that are more predictive of the out-
come, resulting in higher computational efficiency. To illustrate
this concept, suppose we have the following trivial linear DGP
with two covariates on the same scale, Y = 2X1 + X2. Both
covariates are relevant for predicting Y , but X1 has a relatively
higher impact in magnitude. DART, and thus Shrinkage BCF,
allocate more splits along the more predictive dimension X1,
while BART produces a similar level of splits along both X1 and
X2 and hence requires a larger number of MCMC iterations and
provides noisier estimates.

4.4. Targeted Regularization in Confounded Studies

The parameterization in BCF, and thus in Shrinkage BCF as
well, is designed to effectively disentangle prognostic and mod-
erating effects of the covariates and to induce different levels
of sparsity when estimating these effects, in contrast to other
methods for CATE estimation. The purpose of this section is to
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Table 2. Posterior splitting probabilities from S-learner DART, T-learner DART and
Shrinkage BCF over the five available covariates.

Method Variable

X1 X2 X3 X4 X5 Z

S-DART f (·) 0.12 0.43 0.00 0.00 0.00 0.45
T-DART f0(·) 0.29 0.70 0.01 0.00 0.00 –

f1(·) 0.09 0.90 0.00 0.01 0.00 –
SH-BCF μ(·) 0.98 0.01 0.00 0.00 0.01 –

τ(·) 0.00 0.96 0.00 0.03 0.01 –

NOTE: Values in bold denote which covariates receive significant chunks of splitting
probability in fitting the corresponding functions, that characterize each model.

briefly illustrate with a simple example how naively introducing
sparsity through a model that does not explicitly guard against
RIC can have a detrimental effect on CATE estimates. To this
end, we simulate, for N = 1000 observations, P = 5 correlated
covariates as (X1, . . . , X5) ∼ N (0, �), where the entries of
the covariance matrix are �jk = 0.6|j−k| + 0.1I(j �= k). The
treatment allocation, prognostic score, CATE and response Yi
are then, respectively, generated as follows:

Zi ∼ Bernoulli
(
π(xi)

)
,

π(xi) = �
( − 0.5 + 0.4Xi,1

)
,

μ(Xi) = 3 + Xi,1 ,
τ(Xi) = 0.5 + 0.5X2

i,2 ,
Yi = μ(xi) + τ(xi)Zi + εi , where εi ∼ N (0, 1) .

Notice that in this simple setup the prognostic effect is deter-
mined by the first covariate Xi,1, while the moderating effect by
the second covariate Xi,2. We run CATE estimation via three
different methods that make use of DART priors. The first is
a “Single-Learner” (S-learner) that employs DART (S-DART)
to fit a single surface f (·) and computes CATE estimates as
τ̂ (xi) = f̂ (xi, Zi = 1) − f̂ (xi, Zi = 0). The second is a
“Two-Learner” (T-learner) that employs DART (T-DART) to
fit two separate surfaces, f1(·) and f0(·), for the two treatment
groups and derives CATE estimates as τ̂ (xi) = f̂1(xi) − f̂0(xi).
The last method is our Shrinkage BCF (SH-BCF). Each of
these methods is able to account for sparsity when estimating
CATE. However, the interpretation of covariate importance is
very different across them, due to the way the CATE estimator
is derived. In particular, as indicated by the posterior splitting
probabilities of each method in Table 2, S-DART fits a single
surface f (·), where Z is treated as an extra covariate, so it ends up
assigning most of the splitting probability to Z and then in turn
to other relevant covariates. T-DART performs “group-specific”
feature shrinkage, in that it fits separate surfaces for each of the
treatment groups. Although both S-DART and T-DART turn
out to select the relevant covariates for the final estimation of
CATE, they are unable, by construction, to distinguish between
prognostic and moderating ones. Shrinkage BCF instead, thanks
to its parameterization, is capable of doing so, disentangling the
two effects.

In Section 5, we will show that Shrinkage BCF outperforms
default BCF and other state-of-the-art methods in estimating
CATE under two more challenging simulated exercises. Fur-
thermore, in the supplementary materials we present results
from few additional simulated experiments.

5. Simulated Experiments

In this section, we report results from two simulated studies
carried out to demonstrate the performance of Shrinkage
BCF and its informative prior version under sparse DGPs.
The first simulated study is intended to evaluate Shrinkage
BCF performance compared to other popular state-of-the-art
methods for CATE estimation, and to show how it scales up with
an increasing number of nuisance covariates. In addition, we
will also illustrate how the method returns interpretable feature
importance measures, as posterior splitting probabilities on μ(·)
and τ(·). The second simulated setup instead mimics a strongly
confounded study, and is designed to show how versions
of Shrinkage BCF deal with targeted selection scenarios. In
the supplementary materials, we present further results from
four additional simulated exercises, designed to: (i) study
what happens with perfectly known propensity scores in
confounded settings; (ii) investigate computational advantage
of DART priors; (iii) test Shrinkage BCFs reliability under
increasingly larger P; (iv) consider different types of sparse
DGPs. The R code implementing Shrinkage BCF is available
at: https://github.com/albicaron/SparseBCF.

5.1. Comparison to Other Methods

The first setup consists of two parallel simulated studies, where
only the total number of predictors (P = 25 and P = 50) is
changed. The purpose underlying this setup is to illustrate how
Shrinkage BCF relative performance scales up when nuisance
predictors are added and the level of sparsity increases.

For both simulated exercises, sample size is set equal to N =
1000. In order to introduce correlation between the covariates,
they are generated as correlated uniforms from a Gaussian
Copula CGauss

 (u) = �

(
�−1(u1), . . . , �−1(uP)

)
, where  is a

covariance matrix such that jk = 0.3|j−k| +0.1I(j �= k). A 40%
fraction of the covariates is generated as continuous, drawn from
a standard normal distribution N (0, 1), while the remaining
60% as binary, drawn from a binomial Bin(N, 0.3). Propensity
score is generated as

π(xi) = P(Zi = 1|Xi = xi)

= �
(
−0.5 + 0.2Xi,1 + 0.1Xi,2 + 0.4Xi,21 + ηi

10

)
, (16)

where �(·) is the cumulative distribution function of a stan-
dard normal, and ηi is a noise component drawn from a uni-
form U(0, 1). The binary treatment indicator is drawn as Zi ∼
Bernoulli

(
π(xi)

)
. Prognostic score and CATE functions are

simulated as follows:

μ(xi) = 3 + 1.5 sin(πXi,1) + 0.5(Xi,2 − 0.5)2 + 1.5(2 − |Xi,3|)
+1.5Xi,4(Xi,21 + 1)

τ (xi) = 0.1 + |Xi,1 − 1|(Xi,21 + 2) .
(17)

Notice that only five predictors among P ∈ {25, 50}, namely
{X1, X2, X3, X4, X21}, are relevant to the estimation of the prog-
nostic score and CATE. Eventually, the response variable Yi is
generated as usual:

Yi = μ(xi) + τ(xi)Zi + εi , where εi ∼ N (0, σ 2) . (18)

https://github.com/albicaron/SparseBCF
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Table 3. List of models tested on the simulated experiment in Section 5.1.

Family Label Description

Linear models S-OLS Linear regression as S-learner
T-OLS Linear regression as T-learner

R-LASSO LASSO regression as R-learner

Naive nonparametrics kNN k-Nearest neighbors as T-learner

Tree-based methods S-BART BART as S-learner
T-BART BART as T-learner

CF Causal forest
S-DART DART as S-learner
T-DART DART as T-learner

BCF Bayesian causal forest
SH-BCF Shrinkage Bayesian causal forest

Gaussian processes CMGP Causal multi-task Gaussian process
NSGP Nonstationary Gaussian process

The error term standard deviation is set equal to σ = σ̂μ

2 , where
σ̂μ is the sample standard deviation of the simulated prognostic
score μ(xi) in (17).

Performance of each method is evaluated through
√

PEHE
estimates, averaged over H = 1000 replications, reported
together with 95% Monte Carlo confidence intervals. Data are
randomly split in 70% train set, used to train the models, and
30% test set to evaluate the model on unseen data;

√
PEHE

estimates are reported both for train and test data.
The models evaluated on the simulated data are summarized

in Table 3. We make use of the Meta-Learners terminology
described in Künzel et al. (2017) and Caron, Manolopoulou,
and Baio (2020). The first set of models includes a S-learner
and a T-learner least squares regressions (S-OLS and T-OLS),
and a R-learner (Nie and Wager 2020) LASSO regression (R-
LASSO). The second set consists just in a naive k-nearest neigh-
bors (kNN) as a T-learner. The third set includes the following
popular tree ensembles methods: Causal Forest (CF) (Wager
and Athey 2018); a S-learner and a T-learner versions of BART
(S-BART and T-BART) (Hill 2011; Green and Kern 2012; Siva-
ganesan, Müller, and Huang 2017) and DART (S-DART and T-
DART); Bayesian Causal Forest (BCF) (Hahn, Murray, and Car-
valho 2020); and finally our method, Shrinkage Bayesian Causal
Forest (SH-BCF). The last set includes two causal multitask
versions of Gaussian Processes, with stationary (CMGP) and
nonstationary (NSGP) kernels, respectively, both implementing
sparsity-inducing Automatic Relevance Determination over the
covariates (Alaa and van der Schaar 2017, 2018).

Performance of each method, for the two simulated scenarios
with P = 25 and P = 50 covariates, respectively, is shown in
Table 4. Results demonstrate the high adaptability and scalabil-
ity of Shrinkage BCF, as the method displays the lowest esti-
mated error in both simulated scenarios, and its performance
is not undermined when extra nuisance covariates are added,
while the other methods generally deteriorate.

Figure 1 shows how Shrinkage BCF correctly picks the rele-
vant covariates behind both prognostic and moderating effects,
in contrast to default BCF which assigns equal probability of
being chosen as a splitting variable to each predictor. Notice also
that results do not essentially vary between the P = 25 and the
P = 50 scenarios (respectively, first and second row graphs in
Figure 1), as Shrinkage BCF virtually selects the same relevant
predictors.

Table 4. Train and test set
√

PEHE estimates, together with 95% confidence inter-
val, in the case of P = 25 covariates and P = 50 covariates scenarios.

P = 25 P = 50

Train Test Train Test

S-OLS 1.91 ± 0.00 1.91 ± 0.01 1.91 ± 0.00 1.91 ± 0.01
T-OLS 1.41 ± 0.01 1.47 ± 0.01 1.68 ± 0.01 1.78 ± 0.01
R-LASSO 1.17 ± 0.01 1.19 ± 0.01 1.20 ± 0.01 1.22 ± 0.01
kNN 1.62 ± 0.01 1.66 ± 0.01 1.72 ± 0.01 1.76 ± 0.01
S-BART 0.77 ± 0.01 0.79 ± 0.01 0.85 ± 0.01 0.86 ± 0.01
T-BART 1.11 ± 0.01 1.11 ± 0.01 1.28 ± 0.01 1.29 ± 0.01
CF 1.05 ± 0.01 1.05 ± 0.01 1.23 ± 0.01 1.23 ± 0.01
S-DART 0.59 ± 0.01 0.60 ± 0.01 0.59 ± 0.01 0.60 ± 0.01
T-DART 0.88 ± 0.01 0.89 ± 0.01 0.90 ± 0.01 0.90 ± 0.01
BCF 0.79 ± 0.01 0.82 ± 0.01 0.86 ± 0.01 0.88 ± 0.01

SH-BCF 0.54 ± 0.01 0.56 ± 0.01 0.55 ± 0.01 0.55 ± 0.01
CMGP 0.59 ± 0.01 0.61 ± 0.01 0.85 ± 0.03 0.77 ± 0.02
NSGP 0.60 ± 0.01 0.62 ± 0.01 0.74 ± 0.03 0.75 ± 0.03

Bold indicates best performance.

5.2. Strongly Confounded Simulated Study

This section presents results from a second simulated study,
aimed at showing how Shrinkage BCF addresses scenarios char-
acterized by strong confounding. In particular, the setup is
designed around the concept of targeted selection, a common
type of selection bias in observational studies, expressively tack-
led by the BCF framework, that implies a direct relationship
between μ(·) and π(·). We run the simulated experiment in
the usual way, by first estimating the unknown propensity score;
then we also rerun the same experiment assuming that propen-
sity score is known (results in the supplementary materials),
to gain insights by netting out effects due to propensity model
misspecification.

We simulate N = 500 observations from P = 15 corre-
lated covariates (the first five continuous and the remaining 10
binary), generated as correlated uniforms from the Gaussian
Copula CGauss

 (u) = �

(
�−1(u1), . . . , �−1(uP)

)
, where the

covariance matrix is such that jk = 0.6|j−k| + 0.1I(j �= k).
The relevant quantities are simulated as follows:

μ(xi) = 5
(

2 + 0.5 sin(πXi,1) − 0.25X2
i,2 + 0.75Xi,3Xi,9

)
,

τ(xi) = 1 + 2|Xi,4| + 1Xi,10 ,
π(xi) = 0.9 �(1.2 + 0.2μ(xi)) , (19)

Zi ∼ Bernoulli
(
π(xi)

)
,

Yi = μ(xi) + τ(xi)Zi + εi , where εi ∼ N (0, σ 2) ,

where �(·) is the logistic cumulative distribution function. The
error’s standard deviation is set equal to half the sample standard
deviation of the generated τ(·), σ 2 = σ̂τ

2 . Targeted selection is
introduced by generating the propensity score π(xi) as a func-
tion of the prognostic score μ(xi) (Hahn, Murray, and Carvalho
2020). The BCF models tested on this simulated setup are: (i)
Default BCF; (ii) agnostic prior Shrinkage BCF; (iii) agnostic
prior Shrinkage BCF, without propensity score estimate as an
additional covariate; (iv) Shrinkage BCF with informative prior
on μ(·) only, where prior weight given to propensity score is
kPS = 50; (v) Shrinkage BCF with the same prior as (iv), but
kPS = 100. We test a variety of BCF versions to examine how
they tackle confounding deriving from targeted selection. In
particular, with (iv) and (v), we investigate whether nudging
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Figure 1. Shrinkage BCF posterior splitting probabilities for each single covariates, indexed on the x-axis, for μ(·) (on the left) and τ(·) (on the right), in the scenarios with
P = 25 predictors (first row) and P = 50 predictors (second row). Spikes indicate higher probability assigned by Shrinkage BCF to the relevant predictors. The horizontal
dashed lines denote default BCF uniform splitting probabilities.

more splits on the propensity score covariate induces better
handling of confounding and better CATE estimates. With (ii)
and (iii) we study whether it is sensible to have propensity score
as an extra covariate, once we have accounted for sparsity, in
settings such as the one described in (19), where propensity
π(·) and prognostic score μ(·) are functions of the same set of
covariates—more specifically π(·) is a function of μ(·).

We first compare the usual performance metrics (bias,√
PEHE, 95% coverage), averaged over H = 500 replications,

which are gathered in Table 5, together with the average
posterior splitting probability assigned to propensity score
(sπ |uπ ) by each model, where applicable. As for the posterior
splitting probability (sπ |uπ ), we notice that in (ii) this is nearly
zero, thus, not really different than not having π(·) at all, as
in (iii). This means that estimates of π(·) do not virtually
contribute a lot to the fit. Also, in (i) and (iv), the probability
is more or less the same, meaning that, in this example, setting
kPS = 50 implies assigning similar (sπ |uπ ) as default BCF,
but allowing sparsity across the other covariates. In addition to
the information in Table 5, for a better visual inspection, we
plot the posterior fit of the π(·) and μ(·) relationship for each
specification of BCF4.

4We avoid plotting the fit for (iii) Shrinkage BCF without π(·), since it yields
very similar results to (ii) Shrinkage BCF with π(·)—In Table 5, (ii) allocates
nearly 0% splits to π(·), as in (iii).

Table 5. Bias,
√

PEHE, 95% coverage and posterior splitting probability on π̂(xi) —
(sπ |uπ ) — for: (i) default BCF; (ii) Shrinkage BCF; (iii) Shrinkage BCF without π̂(xi);
(iv) informative prior BCF with kPS = 50; (v) informative prior BCF with kPS = 100.

Model Bias
√

PEHE 95% coverage (sπ |uπ )

(i) BCF −0.06 ± 0.01 0.49 ± 0.01 0.94 ± 0.00 9.09%
(ii) SH-BCF −0.05 ± 0.01 0.38 ± 0.01 0.96 ± 0.00 0.29%
(iii) SH-BCF (no PS) −0.05 ± 0.01 0.38 ± 0.01 0.96 ± 0.00 –
(iv) I-BCF (kPS = 50) −0.05 ± 0.01 0.39 ± 0.01 0.96 ± 0.00 9.76%
9v) I-BCF (kPS = 100) −0.05 ± 0.01 0.40 ± 0.01 0.96 ± 0.01 17.48%

The results corroborate those of the previous sections, as all
the Shrinkage BCF versions (ii)–(v) outperform default BCF (i),
thanks to their ability to adapt to sparsity (Table 5). In order to
net out effects that are due to propensity model misspecification,
we rerun the same example in (19) for H = 250, this time
assuming that PS is known, thus, plugging in the true values in
μ(xi, π). Results can be found in the supplementary materials.

The picture emerging from this exercise is the following.
Methods (ii)–(v) all have comparable performances in the real-
istic scenario where PS is to be estimated (see Table 5); moreover,
Figure 2 show that, in this case, they all effectively capture
the relationship between π(·) and μ(·). Hence, adjusting prior
weights to nudge more splits on the estimated PS—methods
(iv) and (v)—does not seem to improve performance. In the
more abstract scenario where PS is assumed to be known (whose
results are gathered in supplementary materials), and thus the
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Figure 2. Posterior fit of π(·) and μ(·) relationship, for default BCF, Shrinkage BCF (with π(·)) and the two versions of informative prior BCF (kPS = 50 and kPS = 100). All
the specifications effectively capture the underlying relationship.

relationship between π(·) and μ(·) can be directly estimated,
versions (i) and iii) perform poorly. The first because it does
not induce sparsity, while iii) does not include π(·) as extra
covariate. Versions (ii), (iv), and (v) instead perform compar-
atively better as they virtually assign all the splitting probability
to π(·), leaving the other covariates out of the model. This is
unsurprising in a setup where π(·) is known, as its relationship
with μ(·) is straightforwardly captured. Even under this abstract
scenario, specifications (iv) and (v), which assign higher weight
to π(·), do not show improvements on performance, as also the
agnostic prior version (ii) effectively allocates the entire splitting
probability to the π(·) covariate.

Results from the example where PS is perfectly known are
in line with the findings of Hahn, Murray, and Carvalho (2020)
and shed light on why adding π(·) as an extra covariate is always
helpful in tackling targeted selection. Naturally, the success of
this practice in addressing strong confounding heavily depends
on the quality of the approximation of π(·), that is, the quality
of the propensity model that estimates π̂(·).

6. Case Study: The Effects of Early Intervention on
Cognitive Abilities in Low Birth Weight Infants

In this section, we illustrate the use of Shrinkage BCF by revis-
iting the study in Brooks-Gunn et al. (1992), which analyzes
data from the Infant Health and Development Program (IHDP),
found also in the more recent contribution of Hill (2011). The
IHDP was a randomized controlled trial aimed at investigating
the efficacy of educational and family support services, with

pediatric follow-ups, in improving cognitive skills of low birth
weight preterm infants, who are known to have developmental
problems regarding visual-motor and receptive language skills
(McCormick 1985; McCormick, Gortmaker, and Sobol 1990).
The study includes observations on 985 infants whose weight
at birth was less than 2500 grams, across eight different sites.
About one third of the infants were randomly assigned to treat-
ment (Zi = 1), which consisted in routine pediatric follow-
up (medical and developmental), in addition to frequent home
visits to inform parents about child’s progress and communi-
cate instructions about recommended activities for the child.
Following Hill (2011), the outcome variable (Yi) we use is the
score in a Stanford Binet IQ test, whose values can range from
a minimum of 40 to a maximum of 160, taken at the end of
the intervention period (child’s age equal 3). The available final
sample, obtained after removing 77 observations with miss-
ing IQ test score, consists of N = 908 data points, while
the number of pretreatment covariates amounts to P = 31.
A full list of the variables included in the analysis, together
with a short description, can be found in the supplementary
materials.

First, we estimate propensity score using a 1-hidden layer
neural network classifier. Then we run Shrinkage BCF with
default agnostic prior for 15,000 MCMC iterations in total, but
we discard the first 10,000 as burn-in. As output, we obtain
the full posterior distribution on CATE estimates and splitting
probabilities relative to each covariate. The left-hand pane graph
of Figure 3 shows the estimated CATE posterior distribution
for the individuals in the sample whose estimated propensity
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Figure 3. Left panel: Posterior distributions for the CATE estimates, obtained using Shrinkage BCF, corresponding to the approximated propensity percentiles (i.e., for
individuals in the sample whose estimated propensity corresponds or is closest to the percentiles). Fill color is darker around the median. Right panel: Shrinkage BCFs
posterior splitting probabilities on τ(·), averaged over the post burn-in MCMC draws.

Figure 4. Decision tree identifying the most homogeneous subgroups in terms of treatment response, based on splitting rules involving the available covariates. The nodes
report CATE estimates averaged within the corresponding subgroup.

corresponds, or is closest, to the ith percentile of the estimated
propensity distribution, where i is 0, 10, 20,…, 100. The rep-
resented stratified CATE posterior distribution relative to these
propensity values conveys information about the uncertainty
around the estimates and depicts an overall positive and rather
heterogeneous treatment effects. The estimated average treat-
ment effect is equal to ATE = 9.33 and standard deviation
of CATE estimates, averaged over the post burn-in draws, is
equal to 3.25, which is another sign of underlying heterogeneity
patterns in the treatment response. The analysis would thus,
benefit from further investigation about the heterogeneity of
treatment effects, with the aim of distinguishing the impact
within subgroups of individuals characterized by similar fea-
tures (i.e., covariates values). Evidence on what the relevant
drivers of heterogeneity behind treatment effect are is given by
the posterior splitting probabilities on τ(·) (again averaged over
the post burn-in draws), reported in the right-hand pane graph
of Figure 3, where few covariates end up being assigned rela-
tively higher weights compared to the others. The two covariates

that primarily stand out are the binary indicator on whether
the mother’s ethnicity is white (29th predictor) and the ordinal
variable indicating mother’s level of education (31st predictor).

We proceed with a sensitivity analysis of treatment effect
subgroups by following the suggestion of Hahn, Murray, and
Carvalho (2020); that is, we fit a decision tree partition algo-
rithm using the R package rpart, by regressing mean CATE
estimates obtained from Shrinkage BCF τ̂ (xi) (averaged over the
MCMC post burn-in draws) on the available covariates Xi ∈ X .
The purpose of this sensitivity analysis exercise is to identify the
most homogeneous subgroups, namely the subgroups leading
to an optimal partition, in terms of their estimated mean CATE,
as a function of the covariates, and to examine how much the
emerging partition agrees with the results on posterior splitting
probabilities in Figure 3.

Results are depicted in Figure 4 in the form of a decision tree,
pruned at four levels. Zero splits trivially return ATE estimate
(first node in Figure 4), while shallower nodes show CATE esti-
mates averaged within the subgroup defined by the correspond-
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ing split rule. The first split is on the variable “Mother’s level of
education,” specifically on whether the mother has attended col-
lege or not. The second level features a split on whether mother’s
ethnicity is white in one branch, and a split on whether mother
has finished high school in the other. These are exactly the
same covariates selected by the posterior splitting probabilities.
The last set of splits is again on mother’s ethnicity, number of
children the mother has given birth to and whether child’s birth
weight is less than 2kg. Within these subgroups, CATE estimates
range from a minimum of +2.1 to a maximum of +12.

Both CATE’s posterior splitting probabilities as well as
subgroup analysis particularly point to covariates related to
mother’s education and ethnicity, in addition to birth weight (in
the subgroup analysis only). Results concerning heterogeneity
stemming from mother’s ethnicity and child’s birth weight
are consistent with those in the original (Brooks-Gunn et al.
1992) and follow-up studies Brooks-Gunn et al. (1994) and
McCarton et al. (1997), where the treatment effect is found
to be lower for white mothers and for children with lower
weight. The advantage of carrying out subgroup analysis
through models such as Shrinkage BCF lies in the fact that
subgroup identification can be done ex-post using CATE
estimates, without the need of manually identifying the groups
or partitioning the original sample ex-ante.

This illustrative example showed how Shrinkage BCF detects
covariates which are responsible for the heterogeneity behind
treatment impact in an example of real-world analysis, and how
simple a posteriori partitioning of CATE estimates allows the
derivation of optimal splitting rules to identify the most homo-
geneous subgroups in terms of treatment response. The analysis
demonstrated that the estimation of individual (or subgroup)
effects is a key factor for the correct evaluation and design of
treatment administration policies.

7. Conclusions

In this work, we introduced a sparsity-inducing version of the
popular nonparametric regression model Bayesian Causal For-
est, recently developed by Hahn, Murray, and Carvalho (2020),
in the context of heterogeneous treatment effects estimation.
The new version proposed, Shrinkage Bayesian Causal Forest,
is based on the contributions by Linero (2018) and Linero and
Yang (2018), and differs in the two additional priors that modify
the way the model selects the covariates to split on. Shrinkage
BCF allows targeted feature shrinkage on the prognostic score
and CATE surfaces, and in addition returns posterior splitting
probabilities, an interpretable measure of feature importance. In
Section 5, we demonstrated its performance on simulated exer-
cises that mimic confounded observational studies where only
some covariates are relevant, while the rest of them constitutes
nuisance predictors that can cause bias if included in a fully-
saturated outcome model. Shrinkage BCF demonstrates com-
petitive performance and scalability compared to the original
version of BCF and to other state-of-the-art methods for CATE
estimation, that tend to deteriorate with an increasing number
of covariates. We also showed that it effectively tackles strong
confounding from targeted selection, a property inherited from
the BCF parameterization, and illustrated its use on a real-world
study.

In the simulated studies of Sections 4 and 5, in addition
to those in the supplementary materials, we have investigated
Shrinkage BCF’s performance on different sparse DGPs. When
we consider nonsparse DGPs instead, with few but all relevant
covariates, default BCF might be the preferable option, even
though Shrinkage BCF would not incur in much higher error.

Besides the implementation of feature shrinkage per se, the
additional advantage of Shrinkage BCF specification is that the
pair of Dirichlet priors placed on the splitting probabilities can
be tailored to incorporate subject-matter knowledge about the
importance and impact of the covariates, separately for prog-
nostic score and CATE. Embedding of prior information in
a Bayesian fashion represents a way of avoiding a completely
agnostic model, that nonetheless benefits from the excellent
predictive properties of a nonparametric regression algorithm
such as BART. Hence, the informative version of Shrinkage
BCF can be useful in applied studies with limited sample size,
where a priori knowledge is possessed and can be efficiently
incorporated without losing the benefits of using a powerful
nonlinear model.

Finally, as highlighted in different parts of the manuscript,
we stress how the main advantage of DART (and consequently
Shrinkage BCF) over BART (and BCF) is very much compu-
tational and improves performance in sparse DGPs settings
exclusively. The MCMC convergence in DART is faster, as the
model is urged to split more and more eagerly along the most
predictive features. However, DART and Shrinkage BCF do not
perform variable selection explicitly. An interesting future direc-
tion would be to augment DART priors to include predictor-
specific inclusion parameters, to completely select out irrelevant
predictors.

Supplementary Materials

Supplementary materials include a pdf file describing additional simulated
experiments, and code and data to replicate all the simulated and real-world
examples.
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