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Abstract

Mutations in human proteins lead to diseases. The structure of these proteins can help understand the mechanism of such diseases
and develop therapeutics against them. With improved deep learning techniques, such as RoseTTAFold and AlphaFold, we can predict
the structure of proteins even in the absence of structural homologs. We modeled and extracted the domains from 553 disease-
associated human proteins without known protein structures or close homologs in the Protein Databank. We noticed that the model
quality was higher and the Root mean square deviation (RMSD) lower between AlphaFold and RoseTTAFold models for domains that
could be assigned to CATH families as compared to those which could only be assigned to Pfam families of unknown structure or could
not be assigned to either. We predicted ligand-binding sites, protein–protein interfaces and conserved residues in these predicted
structures. We then explored whether the disease-associated missense mutations were in the proximity of these predicted functional
sites, whether they destabilized the protein structure based on ddG calculations or whether they were predicted to be pathogenic.
We could explain 80% of these disease-associated mutations based on proximity to functional sites, structural destabilization or
pathogenicity. When compared to polymorphisms, a larger percentage of disease-associated missense mutations were buried, closer
to predicted functional sites, predicted as destabilizing and pathogenic. Usage of models from the two state-of-the-art techniques
provide better confidence in our predictions, and we explain 93 additional mutations based on RoseTTAFold models which could not
be explained based solely on AlphaFold models.
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Introduction
Mutations in genomes can either be in the coding regions
or noncoding regions. Mutations in the noncoding
regions of the genome largely affect protein production
by initiating it at the wrong time and wrong place
or reduce and eliminate the production of proteins.
These lead to various diseases, such as congenital heart
diseases, pancreatic agenesis, campomelic dysplasia,
developmental disorders, and are very commonly found
in cancer [1–4]. A missense mutation (change in the
amino acid to another) in the coding region of the
genome can lead to changes in or near catalytic site
residues [5, 6], ligand-binding sites [7, 8], protein–protein

interface sites [9, 10], allosteric sites [11], etc., modifying
the protein or rendering it inactive. The sequence of
amino acids dictates the structure of the protein [12].
Some missense mutations can hence lead to changes
in the structure of the protein [13, 14], which make the
protein non-functional.

Single nucleotide polymorphisms (SNPs) are common
in genes, some of which lead to disease and are being
collated in databases such as dbSNP [15] and the 1000
genomes project [16]. Databases such as ClinVar [17]
link mutations in humans with phenotypes. Specific
databases such as COSMIC [18], OncoVar [19] and DoCM
[20] contain information on cancer-related mutations.
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Several other specialized databases containing subsets
of these mutations exist, such as KinMutBase (for human
disease-associated protein kinase mutations) [21] and
ActiveDriverDB (mutations at protein post-translational
modification sites), [22] among others. UniProt-KB
[23] and PDBe-KB [24] also contain experimental and
computational annotations of mutations and associated
phenotypes. Humsavar [23] is a database of human
variants from literature reports and therefore tends to
have more substantial annotations from experimental
evidence. DBSAV [25] is a database that contains all SNPs
in the human proteome and a predicted score of their
deleteriousness.

Protein structures can help gain insights into the
mechanism of these disease-associated mutations. How-
ever, experimental determination of protein structures
is time-consuming, expensive and difficult. With the
increase in the size of proteins and complexes, it becomes
increasingly challenging to experimentally determine
their structures. Hence, computational models can
help in such cases. Homology modeling techniques
(such as MODELLER [26, 27], SWISS-MODEL [28], etc.)
can be used to model sequences in the presence of
structural homologs having sequence identity ≥30%,
but a large number of protein sequences have no
close homologs. Ab initio protein structure modeling
techniques (ROSETTA [29], I-TASSER [30], etc.) are used
in the absence of structural homologs. More recently,
deep neural networks trained on the massive body of
available protein sequence and structure data have been
shown to significantly outperform traditional homology
modeling or ab initio approaches in terms of the accuracy
of the resulting model (e.g. RaptorX [31], DMPFold [32],
trRosetta [33], AlphaFold.v1 [34], etc.). Models, such as
AlphaFold.v2 [35] and RoseTTAFold [36], trained end
to end to directly predict 3D model coordinates were
shown to be able to reach near-experimental accuracy.
AlphaFold was shown to be the best-performing tech-
nique for protein structure prediction in CASP14 (https://
predictioncenter.org/casp14/). In July 2021, AlphaFold
released the structures of the entire reference proteome
of 21 organisms [37], which had about 50% of the residues
(that could not be modeled using homology) predicted
with confidence [38]. Recent studies have shown that
these high-quality models can be used to predict binding
sites and effects of mutations and these calculations
and predictions are similar to those obtained from
experiments or experimental structures [38].

Along with the protein structure, experimental and
computational determination of functional residues can
help explain the effect of mutations on proteins. Muta-
tions on or near functional sites are likely to affect the
functioning of the proteins. The current strategies for
the computational prediction of functional sites such
as catalytic sites, ligand-binding sites, allosteric sites,
protein–protein interaction sites, etc. have been reviewed
elsewhere [39–42]. In addition to the predictions of func-
tional sites, the energetic effect of mutations can also be

calculated using various tools [43–46], which determine
the free energy change of the mutation. These tools can
predict whether the mutation will destabilize the protein
structure, possibly affecting its functioning. The likely
deleteriousness of these mutations can be calculated
based on various machine learning-based pathogenicity
predictors, such as CADD, EVE, MutPred2, etc. [47–49].

Homology models have been previously used to
explain disease-associated mutations [50, 51]. In this arti-
cle, we model and exploit RoseTTAFold and AlphaFold
models of human proteins without known protein
structures or homologs in the Protein Databank (PDB)
[52] (sequence identity < 30%) and explain the effect
of deleterious missense mutations by checking if these
mutations are on or near a predicted functional site, con-
served site, lead to protein structure destabilization or
are pathogenic (mutations which might lead to disease).

Results
Protein domains for disease-associated proteins
For our analysis, we considered 553 human disease-
associated proteins without known protein structures or
close homologs in the PDB (see the Curation of disease-
associated human proteins section for criteria used to
identify close homologs). These proteins were selected
from the VarSite [53] database, containing disease site
information from Uniprot, ClinVar and gnomAD (see
Curation of disease-associated human proteins section
for further details on protein selection). We checked
the PANTHER [54–56] protein classes these proteins fall
into. Of the 553 proteins, only 243 proteins have been
associated with 20 out of 24 PANTHER classes. The most
highly represented protein classes are metabolite inter-
converting proteins, transporters and scaffold/adaptor
proteins, containing 71, 36 and 16 proteins, respectively
(Supplementary Table 2 available online at http://bib.
oxfordjournals.org/). These are followed by chaperons,
protein-modifying enzymes and membrane traffic
proteins containing 13 proteins each. We performed
gene ontology analysis using PANTHER, which showed
the enrichment of terms that can be associated with
transport or metabolite interconverting enzymes (details
about gene ontology are given in Supplementary Text
1 available online at http://bib.oxfordjournals.org/).
However, we would like to point out that the dataset
is somewhat biased in the sense that these proteins are
those without any homologs in the PDB. It is possible that
many of them are therefore difficult to crystallize.

Out of the 553 proteins, regions in 198 proteins mapped
to CATH. Of the remaining proteins or regions of proteins
not mapped to CATH, 341 mapped to Pfam, leaving 14
proteins that could not be assigned to CATH or Pfam
domains. CATH [57, 58] and Pfam [59] superfamilies can
be functionally diverse, with 62% of the protein space
being covered by the largest 200 CATH superfamilies
[60]. Hence, only some of the members of these super-
families will function similarly, requiring the need to
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Figure 1. The model quality of AlphaFold models for (A) CATH domains (B) Pfam domains and (C) unassigned domains.

subclassify them into functionally similar families called
FunFams [61] (Supplementary Text 11 available online at
http://bib.oxfordjournals.org/). The 198 proteins assigned
to CATH comprised 309 domains which were assigned to
297 FunFams and 117 CATH superfamilies. Rossman and
immunoglobulin folds were among the most represented
in the dataset (Supplementary Figure 1 available online
at http://bib.oxfordjournals.org/). This is not surprising
as these folds are among the most commonly occurring
folds in the CATH database and appear to be adopted
by a large proportion of UniProt sequences [62, 63] (refer
Supplementary Text 9 and Supplementary Figure 2, avail-
able online at http://bib.oxfordjournals.org/, for details
about model quality across superfamily). The remain-
ing proteins and regions which were not assigned to
CATH domains were scanned against Pfam FunFams.
416 domains belonging to 341 proteins were matched
to 376 unique Pfam FunFams. A total of 496 regions of
proteins (at least 50-residue-long stretches) belonging
to 332 proteins were designated as unassigned domains
that did not map to CATH/Pfam domains. Some of these
(41) could be putatively assigned to CATH superfamilies
using more advanced sequence search strategies and
structure comparisons using the predicted structure (see
Supplementary Text 10 available online at http://bib.
oxfordjournals.org/) [64, 65].

Comparison of domain models generated using
RoseTTAFold and AlphaFold
The quality of the models was assessed using the
average predicted lDDT score [66] (Supplementary Text
11, available online at http://bib.oxfordjournals.org/,
for details about lDDT). The pLDDT value reported by
RoseTTAfold can range from 0 to 1, while for AlphaFold2,
the range is between 0 and 100. Therefore, 0.7 for
RoseTTAfold models is equivalent to 70 for AlphaFold2
models. RoseTTAFold models with a score of 0.7 and
AlphaFold models with a score of 70 were considered
as good models, as recommended by the developers of
these techniques. Furthermore, 304/309 (98%), 328/416
(79%) and 198/469 (42%) CATH, Pfam and unassigned
domains, respectively, were good AlphaFold models
(Figure 1). However, for the RoseTTAFold models 274/309
(89%), 240/416 (58%) and 79/469 (17%) CATH, Pfam and

unassigned domains, respectively, were good models.
Thus 72% AlphaFold models and 58% RoseTTAFold
models were of good quality.

We did not have access to the multiple sequence align-
ments (MSAs) used to build the AlphaFold models; hence,
we analyzed the MSAs used to build the RoseTTAFold
models. We calculated the number of effective sequences
(Neff), diversity of positions (DOPs), percent scorecons
and number of taxons in the alignment to check the
information content of the MSA used to build the models
[67]. Neff provides an estimate of the number of sequence
clusters at 80% sequence identity, thereby providing a
measure of the diversity of the dataset. Scorecons provide
a conservation score for each of the positions in the MSA.
Percent scorecons provide an estimate of the percentage
of the conserved positions in the MSA, which also reflects
the diversity of sequences in the MSA. Similarly, DOPs
also provides an estimate of the diversity of the dataset
and associated MSA based on conservation scores (see
Supplementary Text 11, available online at http://bib.
oxfordjournals.org/, for more details about each of the
metrics). These measures quantify the diversity of the
sequences in the alignment and not the quality of the
alignment. Neff and the number of taxons in the align-
ment are higher for CATH models compared with the
other two groups providing more coevolutionary infor-
mation for those models (Supplementary Figure 3 avail-
able online at http://bib.oxfordjournals.org/). However,
no clear correlation was found between Neff, DOPs, per-
cent scorecons, number of taxons in the alignment and
model quality (Supplementary Figure 4 available online
at http://bib.oxfordjournals.org/). This trend is similar to
that reported by AlphaFold and RosettaFold (refer details
in Supplementary Text 2 available online at http://bib.
oxfordjournals.org/) [35, 36].

Though the AlphaFold model quality was higher for
89% of the models compared to RoseTTAFold, 2, 27 and 45
CATH, Pfam and unassigned domains, respectively, had
good RoseTTAFold models where the AlphaFold models
were not of good quality (Figure 2). It should also be
noted that the AlphaFold domains were extracted from
the full proteins; however, RoseTTAFold models were
built directly from the domain sequences. Residues in
AlphaFold domains were modeled in the presence of
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Figure 2. Model quality of AlphaFold models versus RoseTTAFold models for (A) CATH domains (B) Pfam domains and (C) unassigned domains.

Figure 3. Ribbon model of superimposition of AlphaFold model (salmon)
and RoseTTAFold model (sky blue) for CATH domain of C2 domain-
containing protein 3, having an RMSD of 1 Å. Both the models are of good
quality. Figure generated using CHIMERA [121].

the residues from other interacting domains, which was
not the case for RoseTTAFold. Hence, added constraints
introduced in the alignment and placement of residues
with respect to neighbors from surrounding domains
during modeling might have led to the better model qual-
ity of the AlphaFold models as compared to RoseTTAFold
models.

Around 88%, 74% and 64% of the CATH, Pfam and
unassigned domains had an RMSD < 2 Å between
domains that had both good RoseTTAFold and AlphaFold
models, indicating higher structural similarity for the
CATH and Pfam domains for good-quality models (Sup-
plementary Figure 5 available online at http://bib.oxfordjo
urnals.org/). In some cases, simple orientation changes
of helices or sheets with respect to one another in
RoseTTAFold domain models would help in better
superimposition than those of their AlphaFold counter-
parts, hence reducing the RMSD. Some of the models,
including regions of the C2 domain-containing protein 3
(Uniprot Q4AC94) mapped onto CATH FunFams, showed
RMSD < 1A between RoseTTAFold and AlphaFold models
(Figure 3). As expected, the RMSD of the domains
increased with a decrease in model quality (Figure 4). The
correlation of RMSD with model quality is as expected
and provides confidence in the techniques and their
independence. The length of the model did not affect the

model quality of AlphaFold models (correlation coeffi-
cient between length and model quality of 0.16, −0.13
and −0.03 for CATH, Pfam and unassigned domains)
(Supplementary Figure 6 available online at http://bib.
oxfordjournals.org/). However, the model quality was
lower for longer Pfam and unassigned RoseTTAFold
domain models (correlation coefficient between length
and model quality of 0, −0.35 and −0.52 for CATH, Pfam
and unassigned domains, respectively) (Supplementary
Figure 6 available online at http://bib.oxfordjournals.
org/).

Disorder in protein domains
The probability of a residue in the sequence to be disor-
dered for the CATH, Pfam and unassigned domains was
calculated using IUPred2A [68]. We then calculated the
percentage of the domain sequence that is disordered.
For the CATH, Pfam and unassigned domains, around
3%, 15% and 38% of the sequences, respectively, had
greater than 40% of its sequence disordered (Figure 5).
This indicates that the CATH domains had much lower
disorder compared to Pfam which in turn was much
lower compared with the unassigned domains. Given the
fact that the disordered regions lack proper structure, the
model quality of those regions will be low, hence lowering
the overall domain model quality. The percentage of the
predicted disordered region in the sequences of the unas-
signed domains had an inverse correlation coefficient of
0.74 and 0.41 with model quality for the AlphaFold and
RoseTTAFold models, respectively (Supplementary Fig-
ure 7 available online at http://bib.oxfordjournals.org/),
indicating that the model quality was lower because
the sequences might be disordered. A low model quality
for disordered regions provides higher confidence in the
model quality scores.

Characterization of disease-associated mutations
The total number of disease-associated missense muta-
tions for our 553 modeled proteins in humsavar is 1730,
corresponding to 1568 residue positions. Around 81% of
the proteins in our dataset had 1 disease annotation
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Figure 4. Distribution of model quality (AlphaFold in red, RoseTTAFold in blue) against the RMSD between the models for (A) CATH domains (B) Pfam
domains and (C) unassigned domains.

Figure 5. Density plot showing the distribution of percent disorder of the
domain sequence for CATH (in red), Pfam (in green) and unassigned (in
blue) domains.

for all the mutations. Forty of the proteins had >10
disease-associated mutations (Supplementary Figure
8A available online at http://bib.oxfordjournals.org/)
of which 19 proteins had a single-disease annotation
(Supplementary Figure 8B available online at http://
bib.oxfordjournals.org/). For details, see Supplemen-
tary Text 3 available online at http://bib.oxfordjourna
ls.org/. About 78% of the residues involving mutations
leading to the same disease are structural neighbors
(within 5 Å), suggesting a similar mechanism. The disease
annotations in our dataset were mostly nervous system
disorders followed by musculoskeletal system disorders
according to the Human Disease Ontology database
[69] (Supplementary Figure 9 and Supplementary Text
3 available online at http://bib.oxfordjournals.org/).

We checked if any of the mutations corresponded to
gain of function (GOF)/loss of function (LOF) from the
GOF/LOF database [70] based on the Human Gene Muta-
tion database [71] and MAVEDB [72]. GOF and cancer
mutations are usually clustered together in 3D space [73–
75]. Thirteen out of 14 GOF mutations in the GOF/LOF
database involve structural neighbors, whereas MAVEDB
had no proteins from our dataset (Supplementary Text 3
available online at http://bib.oxfordjournals.org/).

We examined the relative abundance of the amino
acids that the residues mutated into against proteins
in the SwissProt51 database using Composition Profiler
[76]. We noticed an enrichment of Cys, His, Pro, Arg, Ser
and Trp with P-value < 0.05 (Supplementary Figure 10

and Supplementary Table 1 available online at http://bib.
oxfordjournals.org/). These amino acids are either neu-
tral polar or basic polar. In addition, Trp is a bulky amino
acid and mutation into Trp can structurally destabilize
the protein. Mutation into Cys might introduce unfavor-
able disulfide bonds and Pro can disrupt helical struc-
tures. These propensities are similar to a much larger
amino acid mutation database study [77] for human
disease mutations.

Explaining disease-associated mutations
We checked if these mutations were on or near a pre-
dicted ligand-binding site (by P2Rank) or protein–protein
interface (by meta-PPISP) or are conserved (by scorecons)
in the FunFam or superfamily. Although there are several
servers and tools for predicting ligand-binding sites and
protein–protein interfaces that we recently reviewed [41],
we used meta-PPISP and P2Rank based on availability,
ease of installation, ability to run the scripts on all the
protein domains and usage in recent studies (for details
about choice of tools, see Supplementary Text 4 available
online at http://bib.oxfordjournals.org/) [24, 37, 78–82].

We considered the residues within a 5 Å radius
(heavy atom distance) (see Supplementary Text 4,
available online at http://bib.oxfordjournals.org/, for the
explanation of this threshold) [83–85] of a predicted
functional site because mutations in those can lead to a
change in the environment of the functional site residue,
potentially leading to a modification or loss of activity.
We limited our analysis to the structure of the wild-type
protein as we were unsure of the ability of the techniques
to build the mutant models. We also calculated the effect
of the mutations on the stability of the protein using
FoldX and DynaMut2 and pathogenicity of mutations
using MutPred2.

Out of the 1568 disease-associated residue positions,
1317 residue positions (corresponding to 1389 mutations)
are in high-confidence AlphaFold-modeled domains
and residues (lDDT > 70). We did not analyze residues
with lDDT < 70 as those are low-confidence regions of
the models and hence should be treated with caution.
For these domains, 122 CATH (585 residue positions),
143 Pfam (508 residue positions) and 61 unassigned
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Figure 6. Percentage of disease-associated mutations that are predicted to be in or near a ligand-binding/protein–protein interface/conserved site in the
AlphaFold domain models. Some of these mutations are predicted to be destabilizing or pathogenic.

domains (224 residue positions) had disease-associated
mutations.

796 of these disease-associated residue positions
(corresponding to 919 mutations) are either in or near
a predicted functional site (Figure 6). In addition, 272
mutations (corresponding to 227 residue positions) were
predicted to be destabilizing using FoldX (Figure 5). Other
than these, eight mutations (corresponding to eight
residue positions) were predicted to be pathogenic. Of all
the disease-associated residue positions, 488 were near
the predicted protein–protein interface, 163 near the pre-
dicted ligand-binding sites and 473 were near conserved
sites. Furthermore, 816 mutations (corresponding to 689
residue positions) were predicted to be destabilizing by
FoldX (ddG > 1) (refer Supplementary Figure 11 available
online at http://bib.oxfordjournals.org/; Supplementary
Text 4, available online at http://bib.oxfordjournals.org/,
for the explanation of this threshold). We used two
independent methods, FoldX and DynaMut2, to predict
the free energy change of mutation. We found that for
about 95% of the mutations predicted to have an impact

by FoldX, DynaMut2 [86] also predicted impact, giving
higher confidence in the predictions (Supplementary
Figure 11 available online at http://bib.oxfordjournals.
org/). We have not used the computed ddG value to
quantify the impact of the mutation as such computed
values might not correspond to actual ddG values.
Moreover, 899 mutations (corresponding to 844 residue
positions) were predicted as pathogenic using MutPred2.
Of these, 638 mutations (corresponding to 629 proteins)
were in the functional sites. In total, this suggests that
we can provide some rationale for 78% of the disease-
associated mutations in the well-modeled regions.

We calculated the solvent accessibility of residues
whose mutations lead to disease and compared them
against the distribution of the solvent accessibility of
residues that make up the entire domain (Supplementary
Figure 19 available online at http://bib.oxfordjournals.
org/). We noticed that 42% (547 residues) of the residues
that lead to disease were buried (residues with solvent
accessibility <20 were considered buried [87]). This is
much higher than the 21% of residues buried in the
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Figure 7. The overlap between the number of disease-associated
mutation sites that are either predicted to be on or near a ligand-
binding/protein–protein interface/conserved for the AlphaFold domain
models. Figure generated using InteractiVenn [120].

entire domain. A large number of the disease-associated
mutations are buried, which could cause destabilization
of the protein. Out of the 547 buried residues, 428
residues had mutations that were predicted destabilizing
according to FoldX.

When we consider whether mutations fall on over-
lapping functional sites, we observe that 108 mutations
were predicted as both near a ligand-binding site and
a protein–protein interface, 101 mutations either near
a conserved residue or a ligand-binding site and 221
mutations were either near an interface or a conserved
site (Figure 7). Around 44% of these mutations have mul-
tiple evidence for it lying on or near a functional site,
which provides higher confidence in these sites having
functional significance.

In addition, RoseTTAFold helped to find 93 additional
mutations (in 44 proteins) near functional domain
regions, which could not be explained using AlphaFold.
The AlphaFold and RosettaFold models were very struc-
turally similar to each other with an RMSD of 1.7+/−
0.6 Å (Supplementary Figure 12 available online at http://
bib.oxfordjournals.org/). Small changes in orientations of
the parts of the models led to low quality for AlphaFold
model or prediction of functional site or larger distance
of the functional site from mutations (Supplementary
Figure 13 and Supplementary Text 8 available online at
http://bib.oxfordjournals.org/). There was an overlap of
492 mutations predicted to be a functional site between
the predictions derived from RoseTTAFold and AlphaFold
models, providing higher confidence in these predictions.

Mutations in residue numbers 32,33,233,236 and 412
in transmembrane helices of putative sodium-coupled
neutral amino acid transporter 8 (Uniprot A6NNN8;
Gene SLC38A8) lead to foveal hypoplasia 2. Other than
residue 412, the others are spatially close to each other

and are predicted either to be in or near a ligand-
binding site. In addition, residue 233 is also predicted
to be near a conserved site (Figure 8A). Mutations in the
vitamin K epoxide reductase complex subunit 1 (Uniprot
Q9BQB6; Gene VKORC1) lead to Coumarin resistance,
which lie on or near the predicted ligand-binding sites
and interface residues (Figure 8B). In another example,
the immediate early response-3 interacting protein-1
(Uniprot Q9Y5U9, Gene IER3IP1) RoseTTAFold models
had acceptable model quality, while the AlphaFold model
was of low quality or the residue of interest was of
low quality. Mutations in residue numbers 21 and 78
(associated with microcephaly, epilepsy and diabetes
syndrome) are on the predicted protein–protein interface
site (Figure 8C). In certain cases, such as the Arg300Cys
mutation in beta-1,4 N-acetylgalactosaminyltransferase
1 (Uniprot Q00973; leading to spastic paraplegia 26,
autosomal recessive) and the Ala241Thr mutation in
feline leukemia virus subgroup C receptor-related protein
1 (Uniprot Q9Y5Y0) (leading to posterior column ataxia
with retinitis pigmentosa), the impacts of the mutations
could only be explained by large changes in ddG of
the mutation (>2.5) (Supplementary Figure 14 available
online at http://bib.oxfordjournals.org/). These residue
positions were not close to any functional sites.

We also looked at the PANTHER protein classes to
check if different functional sites were enriched in the
different classes (Supplementary Figure 17 available
online at http://bib.oxfordjournals.org/). Given our lim-
ited dataset, we could not compare the various properties
across all the protein classes (see analysis of three
PATHER classes in Supplementary Text 5 available online
at http://bib.oxfordjournals.org/); however, a detailed
study across all the classes has previously been done
for a larger dataset of human proteins by Iqbal and
coworkers [88].

Comparison of disease-associated mutations and
polymorphisms
In order to compare the disease-associated mutations
with that of likely neutral variants (polymorphisms), we
checked the ddG of mutation, proximity to predicted
functional sites, pathogenicity and solvent accessibil-
ity of these polymorphisms in the AlphaFold models.
The number of residues with polymorphisms was 998
(see Supplementary Text 6 available online at http://bib.
oxfordjournals.org/). We see that a larger percentage of
disease-associated mutations were closer to the func-
tional site, buried, destabilizing and pathogenic as com-
pared with polymorphisms (Table 1 and Figure 9). The
distribution of the pathogenicity scores, relative solvent
accessibility, ddG for the polymorphisms and disease-
associated mutations is significantly different (P-value
< 2.2e-16) when compared using the Mann–Whitney
Wilcox test [89]. When we compared the relative abun-
dance of amino acids in deleterious mutations (com-
pared with amino acids in polymorphisms), we noticed
that Cys, Pro, Arg, Tyr and Trp are more predominant
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Figure 8. (A) AlphaFold models in gray surface representations for putative sodium-coupled neutral amino acid transporter 8, the residues in cyan
are the predicted ligand-binding residues and in red are the disease-associated mutations. (B) AlphaFold models in gray surface representations for
vitamin K epoxide reductase complex subunit 1, the residues in cyan are the predicted ligand-binding residues, tan are the predicted interface residues,
golden are the residues predicted both as ligand binding and interface and in red are the disease-associated mutations. (C) RoseTTAFold model of early
response-3 interacting protein-1 in gray surface representation. The predicted interface is in tan, and the disease-associated mutations are in red.

Table 1. Table showing the percentage of residues that are near
functional site, buried, destabilizing and pathogenic for a
residue that has a disease-associated mutation compared with
those residues with polymorphism

Disease-
associated
mutation (%)

Polymor-
phism
(%)

In or near predicted functional site 60 41
Destabilizing (foldX ddG > 1) 59 26
Buried (RSA < 20) 42 22
Pathogenic (MutPred2 score > 0.611) 67 15

in deleterious mutations compared with polymorphisms
(Supplementary Figure 16 available online at http://bib.
oxfordjournals.org/; see Results Section on Characteriza-
tion of disease-associated mutations for the effect of these
mutations on protein function and structure).

DISCUSSION
With the current improved state-of-the-art compu-
tational structural predictors, like RoseTTAFold and
AlphaFold, we can model regions of proteins without
any known homologs for about 20% of the residues in
humans [90]. In this study, we modeled the disease-
associated human proteins without known homologs
[calculated using Basic Local Alignment Search Tool
(BLAST)] using RoseTTAFold and AlphaFold. We used
these models to check if the disease-associated muta-
tions were near predicted functional residues (i.e.
ligand-binding site/protein–protein interface/conserved

residues). Some of these disease-associated mutations
were also predicted to be structurally destabilizing or
pathogenic.

For our analyses, we used the BLAST method, which
is most commonly used by biologists to detect struc-
tural homologs in the PDB. However, in principle, more
sophisticated sequence search tools could be used and
biologists may seek to employ MODELLER [26] or similar
tools. We checked using MODELLER and this resulted in
∼6% of the domains (at least 50% of the protein sequence
with at least 30% sequence identity) having homologs
in the PDB, giving no substantial changes to the trends
(Supplementary Figure 18 and Supplementary Table 3
available online at http://bib.oxfordjournals.org/).

The AlphaFold models (72%) were largely of better
quality when compared with those of RoseTTAFold mod-
els (58%). However, there were a total of 74 models where
RoseTTAFold produced a good-quality model whereas
AlphaFold had a low-quality model. We should keep in
mind that model quality calculations for the two tech-
niques were independent of each other and no consensus
model quality assessment tool was used. To date, there
has been no evaluation of the model quality estimates of
AlphaFold and RoseTTAFold. However, optimizing model
quality cutoffs for such consensus estimators will involve
benchmarking and is out of the scope of the current
study. The high-confidence models (where both the tech-
niques provide consensus structures) could be used to
predict and design inhibitors and drugs against them [91],
predict off-target effects of putative drugs [92], explain
the functioning of proteins, the impact of variations [93,
94] or model protein complexes [95].
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Figure 9. Density plots showing the distribution of (A) MutPred2 predicted pathogenicity scores (B) FoldX predicted ddG values and (C) relative solvent
accessibility of residues that have disease-associated mutations in blue and polymorphism in red. The dotted horizontal lines show the cutoff beyond
which the mutations are predicted as pathogenic (>0.611), destabilizing (>1) and buried (<20).

The CATH domains were modeled better compared
with domains that could only be assigned Pfam or
not assigned to either because of lower disorder and
greater diversity in the alignments used for modeling.
With the ease of sequencing and large-scale sequencing
projects, we expect to further increase the repertoire and
quality of protein sequences in the near future. With
the increased number of sequences, the model quality
of the Pfam and unassigned domains will hopefully
improve.

Functional sites, such as ligand-binding sites, interface
residues, allosteric sites, post-translational modification
sites, etc., are more conserved compared with the rest of
the protein; hence mutation of these conserved sites and
their neighbors might lead to a loss or modification in
protein function. We considered residues close to the pre-
dicted functional site because these residues can have an
effect on the structure and functioning of the functional
site residues and hence changes to them might also alter
the functioning of the protein. Moreover, previous studies
have shown that in a large number of cases, the disease-
associated mutations are near functional sites [77, 96].
We assume that the neighborhood of the functional sites
will be well predicted at this level of model quality even if
the functional residues are not always correct. Interface
residues and ligand-binding sites have been shown to
be highly conserved [97]. In our dataset, 38% of the

disease-associated ligand-binding sites and 45% of the
protein–protein interfaces are conserved, hence provid-
ing higher confidence that these mutations could impact
structure or function. In addition, around 59% of these
mutations were predicted to be structurally destabilizing
(based on FoldX), which might also impact structure and
function. About 85% of these disease-associated muta-
tions in the buried residues were predicted to be destabi-
lizing. Around 67% of the disease-associated mutations
were also predicted to be pathogenic. We also had 37% of
the mutations being predicted near functional sites using
both AlphaFold and RoseTTAFold models, which provide
additional confidence in those predictions. We were able
to explain 78% of the disease-associated mutations in the
good-quality regions. Given the fact that the models built
using the state of art tools AlphaFold and RoseTTAFold
might still have inaccuracies, cases, where the struc-
ture predicted using multiple techniques are similar pro-
vide higher confidence in the prediction accuracies. We
also compared the disease-associated mutations with
the polymorphisms and found a larger proportion of
disease-associated mutations were more buried, desta-
bilizing, pathogenic and had a larger percentage closer
to predicted functional sites.

The fact that a large number of disease-causing
mutations could be explained using the AlphaFold
models further validates the model quality as we would
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Figure 10. Schematic explaining the methodology to model protein domains and explain disease-associated mutations.

expect poor models to introduce noise into our analyses.
Predicting whether mutations are likely to be disease-
associated remains one of the most challenging tasks in
bioinformatics despite the improvements brought about
by deep learning. This is because multiple factors can
lead to a disease phenotype, such as stability of the
protein, change in binding affinity, expression levels of
the protein, minimum concentration of the proteins
required for its functioning, etc. Our study can help

in providing insights on the structural and functional
features that are frequently disrupted by disease-causing
mutations.

In summary, the strategy of using good-quality protein
structures to predict functional sites can help explain
the mechanism of disease-associated mutations. Similar
strategies can be used on good-quality models of the
entire human proteome in the future to explain disease-
associated mutations.
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Methods
Dataset of disease-associated human proteins to
model
Curation of disease-associated human proteins

The VarSite database [53] contains 4444 human proteins
that are disease associated as annotated in Uniprot or
ClinVar. Out of these, 553 human disease proteins are
without any structural homologs (match determined by
running the sequence with BLAST [98] against all PDB
[52] sequences with e-value cutoff of 1e-06). We used
PANTHER to study the GO enrichment of these proteins.
In addition, we divided the proteins into the 24 PANTHER
classes (Supplementary Table 2 available online at http://
bib.oxfordjournals.org/) to study the properties of each
group.

Assignment of domain boundaries to disease-associated
human proteins without structural homologs

All the 553 proteins were scanned against CATH-
FunFams v4.3 (212872 HMMs) using HMMER3 [99] with
an e-value cutoff of 1e-03 to assign domains. The
domain boundaries were resolved using cath-resolve-
hits [100] with a bitscore cutoff of 25 and coverage of
80%. The proteins/regions of proteins that were not
assigned to CATH domain boundaries were scanned
against the Pfam32-FunFams (102712 HMMs) using the
same protocol. The regions not belonging to domains
identified by scans against CATH/Pfam FunFams were
modeled separately. These regions have been referred to
as unassigned domains.

Modeling the proteins using RoseTTAFold
MSA generation for protein domains

The domains that were assigned to the CATH/Pfam Fun-
Fams were aligned to the FunFams using MAFFT (ver-
sion 7.471) [101] using the default options. The resulting
seed alignments were enriched with additional homologs
by performing iterative sequence hhblits [102] searches
against uniclust30 (version UniRef30_2020_01) [103] and
BFD [104, 105] databases as outlined by Anishchenko
and colleagues [106] (details in Supplementary Text 12
available online at http://bib.oxfordjournals.org/).

Assessment of diversity of MSA

The diversity of the alignment was accessed using four
parameters: Neff, DOPs, percent scorecons and number
of taxon IDs in the alignment (Details in Supplementary
Text 11 available online at http://bib.oxfordjournals.org/).
DOPs and scorecons were calculated using Cathy.

Modeling of the protein domains

Using MSAs from Section on MSA generation for protein
domains above, structure templates were identified by
hhsearch [102] searches against the PDB100 database
and 10 best scoring templates were selected. The iden-
tified templates along with the MSA were then used as
inputs to RoseTTAFold [36] to predict residue–residue

distances and orientations followed by the PyRosetta-
based [107] 3D structure reconstruction protocol from
trRosetta [33]. About 15 structure models were generated
and subsequently rescored according to lDDT scores [66]
predicted by DeepAccNet [108]. As revealed by the results
of the CASP14 experiment [106], rescoring the pool of the
PyRosetta-generated models with DeepAccNet brings in
an additional 1–2 GDT_TS score [109] unit improvement
in the model accuracy, which is beyond what can be
achieved from picking models by Rosetta energy [110].
The model with the highest predicted global lDDT score
was selected for further analysis.

Creating domains from AlphaFold models

The domains were extracted from the AlphaFold models
downloaded from the AlphaFold database portal. The
domain boundaries were the same as obtained by the
CATH/Pfam scans or unassigned domains as mentioned
in Section on Assignment of domain boundaries to disease-
associated human proteins without structural homologues. The
AlphaFold domains were superimposed on the domains
built using RoseTTAFold using GESAMT [111].

Scoring the local and global quality of the models
The model quality for both RoseTTAFold and AlphaFold
models was calculated using the predicted lDDT scores;
which is commonly used by CAPRI [66, 112] (details
in Supplementary Text 11 available online at http://
bib.oxfordjournals.org/). The global quality of the model
is calculated as the average of the local lDDT scores of
the constituent residues.

Disorder prediction on the domain sequences
The disorder percentage was calculated for the unas-
signed regions using IUPred2A [68] using default param-
eters. A residue was considered disordered if the predic-
tion probability was greater than 0.5.

Prediction of functional sites on protein domains
and known mutational sites
The human mutations were identified from humsavar
[23] as downloaded on 2 December 2020. The muta-
tions were classified as disease (used for disease-
associated mutations), polymorphism and unclassi-
fied (refer Supplementary Text 7, available online
at http://bib.oxfordjournals.org/, for current nomen-
clature). The conserved positions were identified as
positions in the MSA with a high scorecons value (≥0.8) or
position of >0.65 scorecon value near (<5 Å) a position of
high scorecon value (>0.8) (details about MSA generation
for identification of conserved residues are given in
Supplementary Text 12 available online at http://bib.
oxfordjournals.org/). The neighborhood of the predicted
functional residues was identified using the imple-
mentation of the cell list algorithm [113–116] (details
about choice of algorithm are given in Supplemen-
tary Text 4 available online at http://bib.oxfordjourna
ls.org/).
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The ligand-binding sites were predicted using P2Rank
[117] with default parameters. Positions were annotated
as ligand binding if the probability of the ligand bind-
ing was ≥0.5 (intuitively chosen). The protein–protein
interaction sites were predicted using the meta-PPISP
webserver [118]. The mutation was predicted to affect
the functioning of the protein if the site was either on
or near (within 5 Å) of a predicted functional site by
P2Rank/meta-PPISP/highly conserved position. We only
considered predictions for those sites where the entire
domain had a good model quality score and the local
quality score of the mutated residue was good (lDDT
score of 70 for AlphaFold models and 0.7 for RoseTTAFold
models).

We calculated the relative solvent accessibility of the
residues using NACCESS [119]. For each of these sites, the
effect of mutation on the stability of the protein was iden-
tified using FoldX [43]. In order to be stringent; ddG > 1
was chosen as destabilizing. In addition to FoldX, the ddG
of the mutation was also calculated using DynaMut2 API
[86]. This technique predicts a mutation as destabilizing
if ddG < 0. The likely pathogenic impact of the mutations
was predicted using the standalone version of MutPred2
[47] using default parameters (details about the tool cho-
sen are given in Supplementary Text 4 available online
at http://bib.oxfordjournals.org/). The entire method has
been described schematically in Figure 10.

Key Points

• Recent advances in deep learning based techniques like
AlphaFold and RoseTTAFold has provided near accurate
protein structure models which can help explain disease
associated mutations.

• The models built for CATH domains were of better qual-
ity as compared to the domains that could only be
assigned to Pfam families of unknown structure, which
were better than those which could not be assigned to
either.

• We could explain 80% of the disease associated muta-
tions in well modelled regions of the protein either based
on proximity to predicted functional sites or destabiliza-
tion of the protein or pathogenicity of the mutation.

• Usage of multiple state of art techniques for both mod-
elling and functional sites predictions provides better
confidence on the predictions.
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