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Abstract

The building design cooling load is the basis of sizing the air-conditioning equipment, 

but the extreme values are always used as the referenced design parameters for 

occupants, lighting and equipment respectively without considering the relationship 

between the internal load sources which will result in an oversized equipment. Based 

on the measured data in existing buildings, the Copula function is used to explore the 

joint occurrence probability of the internal disturbances. In view of the deviation of the 

calculated cooling load from the extreme cooling load, the unguaranteed rate is 

established. Aiming to balance the maximum joint probability and the minimum 

unguaranteed rate, a dual-objective trade-off approach with the genetic algorithm and 

TOPSIS method is proposed to seek the optimum solution from the Pareto Fronts to 

provide references for internal load design parameters. The results show that there is a 

big deviation between the design values and trade-off results, especially the 

recommended values of lighting power density in the design standards are at least 26% 

higher than the trade-off results. And the energy consumption for internal disturbances 

can be at least reduced by 12.1% using the trade-off approach.
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1. Introduction

1.1 Research background

It is well known that buildings account for nearly 40% of overall global energy 

consumption [1], and this number is even higher in China (i.e. 46%) [2]. This huge 

energy consumption is mostly coming from the running of HVAC systems to provide 

comfortable indoor environment [3], and their contribution can be up to 40% of overall 

building energy consumption [4]. In China, cooling buildings by HVAC systems has a 

significant contribution [5,6]. In many buildings, however, mechanical cooling systems 

do not always operate under the optimal performance conditions [7]. This is mainly due 

to ensuring that the energy system has sufficient capacity, the system is usually 

oversized with a larger safety factor than that actually needed [8], which results in the 

equipment operating with a low operational efficiency most of the time, causing 

damage to the equipment and unnecessary energy lost [9]. As for the cooling water 

systems, a design safety factor of up to 20% is usually applied which results in an 

increased operating cost [10]. To ensure their performance, these systems need to be 

properly designed, selected and sized, based on an accurately estimated design cooling 

load [11]. 

In conventional cooling load calculations, extreme statistical values with corresponding 

safety margins are widely adopted when selecting design parameters, in order to meet 

the load demand under extreme conditions [12]. If the selected design values are too 

high, the plant will be oversized, resulting in an increased initial investment and 
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decreased plant operational efficiency [13]. If the selected design values are too low, 

the system capacity may not meet actual demand during operational time, especially at 

extreme conditions [14]. Additionally, a properly selected safety margin is also 

important for ensuring acceptable indoor thermal environment with minimized energy 

consumption. To achieve these targets, the values of relevant design parameters need 

to be selected as close as to actual conditions [11].

1.2 Uncertainty analysis in cooling load calculation

Many existing studies have suggested that the values of design parameters for 

calculating the cooling load of buildings are different from the actual values at operation 

stage [11, 15, 16, 17], due to many uncertainties [18], such as meteorological 

parameters, envelope parameters and occupant-related parameters [19]. In recent years, 

due to the increasing improvement of building thermal insulation, the influence from 

outdoor weather parameters has been well controlled [20]. The internal loads, however, 

continuously increase in modern buildings due to the higher dependence of human 

activities on electrical equipment [21], and this part is closely linked to room occupancy 

and occupant behavior [22]. Due to the stochastic characteristics of these two 

parameters, the internal loads, including occupancy, lighting power density and 

equipment power density, are difficult to decide, and this may lead to a significant 

deviation between design and actual values [18]. 

To quantify the stochastic nature of room occupancy and occupant-centric internal 

disturbances in load calculation, many researchers have carried out research in 

predicting room occupancy, lighting load and equipment load. Tagliabue et al. [23] 

have proposed a probabilistic modeling approach describing occupancy related 

parameters using probability distributions. Ding et al. [24] have proposed a correction 

coefficient based on questionnaires to modify the occupancy rate and this approach 

achieved a reduction of cooling load by 35.9%, with a high assurance rate. Zhou et al. 



4

[28] developed a stochastic lighting model based on lighting energy use data from 15 

large office buildings which can generate more accurate lighting schedules to improve 

simulation accuracy. Sarfraz et al. [30] used the experimental methodology to measure 

heat gain values for different office equipment to update heat gain tables. Zhang et al. 

[32] have proposed a probabilistic approach for describing the spatial distribution 

characteristics of internal heat gains from occupants, lighting, and plug loads 

respectively, and their results showed that the calculated building cooling load was 

close to the actual peak cooling load. Table 1 has summarized existing literature in 

terms of quantifying the uncertainties of internal disturbances.

Table 1: Existing literature in terms of quantifying the uncertainties of internal disturbances

Internal disturbances Quantified results Literature

Occupancy
Occupancy rate

Occupancy schedule
[21-27]

Lighting load
Lighting schedules

Lighting energy consumption
[28, 29]

Equipment load
Real-time equipment usage profiles

Equipment energy consumption
[16, 30, 31]

Internal heat gain from 

occupants, lighting and 

equipment (separately)

Calibrated value of internal disturbances

Internal cooling load
[10, 15, 21] [32-36]

1.3 Research gap and scientific contributions

Existing studies on the uncertainties of building internal load mainly focused on 

quantifying the individual influence from occupancy, lighting and equipment, as shown 

in Table 1, but have not yet considered the joint occurrence probability between them. 

For example, it has been well justified that both equipment usage and lighting usage are 
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highly dependent on the occupancy rate of the building [37]. Without considering these 

dependencies, the safety margins of these interlinked parameters will be treated 

separately so the difference between the design condition and the actual condition will 

be enlarged. In the design calculation process of building cooling load, the maximum 

values of these parameters are usually used to cover extreme conditions. However, the 

probability of a single parameter reaching its extreme value is small, nevertheless when 

all three parameters reaching their extreme values simultaneously. Therefore, it is 

important to consider the occurrence possibility among all three parameters for 

designing cooling systems more realistically. This study has used the Copula function 

method to establish muti-parameter joint distribution functions for internal disturbances, 

and expressed the possibility of simultaneous occurrence in the form of joint probability. 

By considering the unguaranteed rate of internal cooling load, this study obtained a 

trade-off result between two conflicting objectives including the maximum joint 

probability and the minimum unguaranteed rate. This method was justified to provide 

closer design values to actual situation than considering all parameters separately, 

which can replace the internal disturbances parameters recommended in the design 

standards for load calculations of new buildings after counting a large number of 

measured data in existing buildings with the same type.

The rest of the paper will introduce the new method developed for analyzing the joint 

probability of muti-parameters in terms of internal disturbances and methods for 

validation of results in Section 2, with the steps of trade-off optimization presented. 

Section 3 will describe the two case study buildings used in this study and the measured 

results from them. These results will be used in Section 4 to establish the joint 

probability distribution functions of cooling load disturbances. The main findings from 

this study will be summarized in the conclusion section of this paper.
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2. Methodology

To optimize the quantification of design parameters considering combining their 

extreme conditions and maximum joint probabilities, a trade-off approach has been 

proposed in this study, with a research framework depicted in Figure 1.

Figure 1: Proposed research framework

The trade-off approach can be specifically divided into the following two steps:

Step 1: Establishing joint probability distribution functions for internal disturbances 

including occupancy, lighting and equipment, to describe their joint occurrence 

probabilities;

Step 2: Deciding trade-offs using a combination of dual-object optimization method 

and TOPSIS decision method.

2.1 Step 1: establishing joint probability distribution functions

According to building design standards [38, 49, 50, 51], there are three major internal 
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disturbances, namely, occupancy density, lighting power density and equipment power 

density, when deciding the cooling load of a building. Additionally, their maximum 

values are usually used to cover extreme conditions. In real buildings, however, the 

probability of a single parameter reaching its extreme value is small, nevertheless when 

all three parameters reaching their extreme values simultaneously. Therefore, to design 

cooling systems more realistically, it is important to consider the occurrence possibility 

among all three parameters. In the statistical domain, Copula theory is a method of 

multivariate analysis. Using this method, multivariate joint distribution functions can 

be decomposed into a marginal distribution function to describe the probability 

distribution of a single parameter and a Copula function [38]. Using the Copula function, 

the correlation between random variables and their marginal distributions can be 

analyzed separately. Tahir et al. [39] used the best-fit copula estimate to define the 

degree of correlation between the percentage load and the converter efficiency. Huang 

et al. [40] used copula joint distribution function to describe the relationship between 

vegetation and groundwater depth and estimate the conditional probability of achieving 

ecological protection target. Therefore, it can describe the correlations among 

occupants, lighting and equipment, respectively, hence establishing marginal 

distribution functions of these three parameters and a three-parameter distribution 

function for calculating the joint probability of internal disturbances.
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Figure 2: The construction process of joint distribution functions

In this study, Matlab, a popular computational tool for numerical calculation [40], has 

been used to construct the Copula function. Based on measured behavioral data from 

real buildings, the marginal distribution of the single parameters could be calculated. 

The kernel density estimation method is used to analyze the measured data based on 

the Gaussian kernel function and six probability distributions are fitted to the measured 

data. Then the fitting errors of the probability distributions are calculated respectively 

for determining the type of distribution functions by Equation 1,

                                           (1)𝐸𝑟𝑟 =
1
𝑛∑𝑛

𝑖 = 1|𝑥𝑖 ― 𝑡𝑖

𝑥𝑖
× 100%|

where  is the measured values, dimensionless;  is the estimated values, 𝑥𝑖 𝑡𝑖

dimensionless.

Besides, the binary frequency histograms could be established for both occupant-

lighting and occupant-equipment. Then suitable Copula functions were selected by 

analyzing the tail correlation and symmetry between the parameters to describe the 

correlations both between any two parameters and among the three parameters, and the 

maximum likelihood estimation method was then used to calculate the values of the 

parameters in the functions. This construction process has been depicted in Figure 2.

2.2 Step 2: deciding trade-offs using the TOPSIS decision method

The internal cooling load can rarely reach its maximum value in real conditions, but it 

is still important to meet extreme load requirements in the cooling load calculation. 

However, pursuing only the satisfaction of the extreme load and ignoring the possibility 

of the event may cause unnecessary waste of energy from the cooling system. In this 

procedure, there are two conflicting objectives, i.e. maximum joint probability and 

minimum unguaranteed rate. The former objective means that the internal cooling load 
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calculated from internal disturbances with maximum joint probability is close to the 

actual situation. On the contrary, the latter objective means that the calculated internal 

cooling load is given to approach the ideal extreme conditions, which is far from the 

actual situation.

To establish a benchmark for the trade-off approach which is aim to find a compromised 

solution between two conflicting objectives, the deviation of the calculated internal 

cooling load from the design internal cooling load under extreme conditions was 

evaluated. Therefore, an unguaranteed rate ( ) has been proposed as one of the trade-𝑃

off targets, and this parameter was defined as the difference between the calculated 

internal cooling load and the design internal cooling load under extreme conditions, as 

defined by Equation 2,

                                                  (2)𝑃 =
𝑄D ― 𝑄C

𝑄D
× 100%

where  is the design internal cooling load under extreme conditions, in kW, and  𝑄D 𝑄C

is the calculated internal cooling load under extreme conditions, in kW.

The internal cooling load ( ) is mainly due to indoor heat sources, mainly including 𝑄𝑖𝑛

occupants, lighting and equipment, as defined by Equation 3, and the heat loss due to 

insulation or leakage is not considered in this study.

                                                 (3)𝑄𝑖𝑛 = 𝑄𝑃 + 𝑄𝐿 + 𝑄𝐸

where  is the internal cooling load of a building, in kW;  is the internal heat 𝑄𝑖𝑛 𝑄𝑃

gain from occupants, in kW;  is the internal heat gain from lighting, in kW, and  𝑄𝐿 𝑄𝐸

is the internal heat gain from equipment, in kW.

The internal heat gain from occupants can be decided by Equation 4,

                                                           (4)𝑄𝑃 = 𝑞𝑛

where  is the heat gain from one single occupant, in kW, and  is the total number 𝑞 𝑛
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of occupants in the building, dimensionless.

The internal heat gain from lighting can be decided by Equation 5,

                                  (5)𝑄𝐿 = 𝑛1𝑃1𝑋1𝑡 + 𝑛2𝑃2𝑋2𝑡 +⋯ + 𝑛𝑖𝑃𝑖𝑋𝑖𝑡

where  is the type of lighting, dimensionless;  is the number of lighting for type , 𝑖 𝑛𝑖 𝑖

dimensionless;  is the power of lighting for type , in kW, and  is the operational 𝑃𝑖 𝑖 𝑋𝑖𝑡

state of lighting at time , with 0 for off and 1 for on, dimensionless.𝑡

The internal heat gain from equipment can be decided by Equation 6,

                                 (6)𝑄𝐸 = 𝑛1𝑃1𝑋1𝑡 + 𝑛2𝑃2𝑋2𝑡 +⋯ + 𝑛𝑖𝑃𝑖𝑋𝑖𝑡

where  is the type of equipment, dimensionless;  is the number of equipment for 𝑖 𝑛𝑖

type , dimensionless;  is the power of equipment for type , in kW, and  is the 𝑖 𝑃𝑖 𝑖 𝑋𝑖𝑡

operational state of equipment at time , with 1 for on, 0.3 for standby and 0 for off, 𝑡

respectively, dimensionless [41].

Evolutionary algorithms have been widely used in optimization problems due to their 

robustness and flexibility in yielding solutions in complex applications, which can be 

modified to adapt to multi-objective optimization using the Pareto front approach [42]. 

The non-dominated sorting genetic algorithm [43] is one technique suitable for 

optimizing multi-objective problems with two or three objective functions [44]. To 

balance the two objectives considered in this study, the genetic algorithm has been 

applied to seek feasible solutions from dual-objective optimization, in which a couple 

of optimal non-dominating points were given on the Pareto front, and then the 

multicriteria decision-making tool was used to find the final optimal solution [45]. The 

TOPSIS method was applied to select the optimal design solution from the Pareto fronts, 

which basic principle is to calculate the closeness degree based on the Euclidean 

distance from the evaluation scheme to the positive and negative ideal solutions, and 

then the schemes are ranked according to the closeness degree. [46]. The detailed steps 
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are as followings:

(1) The optimization objective function is constructed in terms of both the maximum 

joint probability and the minimum unguaranteed rate. It is then used to maximize 

the joint probability of the selected internal disturbances, which is calculated by the 

three-parameter joint probability function. Meanwhile, the unguaranteed rate is to 

minimize the difference between the calculated load and the extreme load.

(2) Running the genetic algorithm in Matlab to generate a Pareto front curve based on 

the non-dominated solution. The settings of relevant parameters for the optimization 

are listed in Table 2.

Table 2: The parameters settings of genetic algorithm

Initial population size 50

Maximum number of iterations 500

Crossover probability 0.6

Mutation probability 0.06

(3) The TOPSIS decision making method is used to evaluate the different design 

solutions on the Pareto front curve, and it can be divided into following steps [47]:

Assuming that the dual-objective decision-making matrix  is composed of (𝑋𝑖𝑗)2 × t

 evaluation indicators and two solutions, it can be expressed by Equation 7,𝑡

                                         (7)(𝑋𝑖𝑗)2 × t = [𝑋11 𝑋12 ⋯
𝑋21 𝑋22 ⋯

𝑋1𝑡
𝑋2𝑡]

where  is the eigenvalue of indicator  in the solution .𝑥𝑖𝑗 𝑗 𝑖

The distance scale is used to measure sample gap, which requires isotropy for different 
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indicator attributes. The transformation process can be expressed as Equation 8,

                                                            (8)𝑥′𝑖𝑗 =
1

𝑥𝑖𝑗

In TOPSIS, a weight is needed for each indicator [48], so the entropy weight method 

was used to weight each indicator, given by Equations 9-21. 

The standardization of the indicators of various solutions was calculated by Equation 

9,

                                                 (9)𝑘𝑖𝑗 =
𝑥′𝑖𝑗 ― min (𝑥′𝑗)

max (𝑥′𝑗) ― min (𝑥′𝑗)

The specific weight of each indicator was expressed by Equation 10,

                                                       (10)𝑃𝑖𝑗 =
𝑘𝑖𝑗

∑𝑠
𝑖 = 1𝑘𝑖𝑗

The Entropy value of each indicator was expressed by Equation 11 and Equation 12,

                                              (11)𝐸𝑗 = ― 𝑚∑𝑠
𝑖 = 1𝑃𝑖𝑗·ln𝑃𝑖𝑗

                                                           (12)𝑚 =
1

ln𝑠

The Entropy weight of each indicator was expressed by Equation 13,

                                                     (13)𝑊𝑗 =
1 ― 𝐸𝑗

∑𝑡
𝑗 = 1(1 ― 𝐸𝑗)

The isotropic normalization of the data was expressed by Equation 14,

                                                    (14)𝑈𝑖𝑗 = { 𝑥𝑖𝑗

∑𝑠
𝑖 = 1(𝑥𝑖𝑗)2

𝑥′𝑖𝑗

∑𝑠
𝑖 = 1(𝑥′𝑖𝑗)

2

The construction of the normalized weighting matrix was expressed by Equation 15 and 

Equation 16,
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                                            (15)𝑍 = [𝑍11
𝑍21

⋮

𝑍11 ⋯ 𝑍1𝑡
𝑍22 ⋯ 𝑍2𝑡

⋮ ⋮ ⋮
𝑍𝑠1 𝑍𝑠2 ⋯ 𝑍𝑠𝑡

]
                                  (16)𝑍𝑖𝑗 = 𝑊𝑗𝑈𝑖𝑗(𝑖 = 1,2…,𝑠;𝑗 = 1,2,…𝑡)

The selection of the optimal solution  and the worst solution  was expressed 𝑍 + 𝑍 ―

by Equation 17 and Equation 18,

                                     (17)𝑍 + = {max𝑍𝑖1,max𝑍𝑖2,…max𝑍𝑖𝑠}

                                     (18)𝑍 ― = {max𝑍𝑖1,max𝑍𝑖2,…max𝑍𝑖𝑠}

The calculation of the distances between the evaluation unit and the optimal/worst 

solutions was expressed as Equation 19/20,

                                          (19)𝐷 +
𝑖 = ∑𝑠

𝑖 = 1(max𝑍𝑖𝑗 ― 𝑍𝑖𝑗)2

                                          (20)𝐷 ―
𝑖 = ∑𝑠

𝑖 = 1(min𝑍𝑖𝑗 ― 𝑍𝑖𝑗)2

The calculation of the relative closeness was expressed as Equation 21,

                                                        𝐶𝑖 =
𝐷 ―

𝑖

𝐷 +
𝑖 + 𝐷 ―

𝑖

(21)

All solutions could be ranked and evaluated based on the relative closeness , with the 𝐶𝑖

best compromising solution with the largest value. 

2.3 Compare and validate trade-off results with reference parameters 

in existing design standards

After deciding trade-offs between two objectives, the probability curve and 

unguaranteed hours of internal cooling load are used to validate trade-off results. The 
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Monte Carlo method, which can use a series of random numbers to model stochastic 

processes [49], has been used for random sampling of internal disturbances for cooling 

load simulation to obtain the probability distributions of different internal cooling load 

and the cumulative probability curve, which can be used to compare the internal cooling 

load calculated from the trade-off results with that under extreme and maximum 

probability cases. Then the unguaranteed hours of internal cooling load are calculated 

based on the cooling hours to further justify the optimal solutions selected by the trade-

off approach.

The recommended values of the internal disturbance in the design standards of three 

countries are selected for comparison with the trade-off results, and the parameters of 

internal disturbances are multiplied with the hourly operation schedules for occupancy 

rate, lighting usage rate and equipment usage rate to obtain the internal disturbances 

schedules for hourly occupancy density, lighting power density and equipment power 

density using the Chinese energy-saving design standard as an example. Then it is 

compared with the measured data to verify the rationality of the trade-off results. 

Besides, the DesignBuilder is used to perform energy simulation calculations to 

illustrate the energy efficiency benefits of the trade-off approach to building energy 

consumption. Two office buildings are modeled in DesignBuilder software, and the 

envelope parameters, occupancy, operation schedules of lighting and HVAC systems 

are defined based on the collected information. Referring to ASHRAE Handbook [50], 

the models are calibrated in terms of meteorological parameters, envelope parameters, 

schedules, internal loads, and system operation based on the energy-saving design 

standard and measured data. And then the normalized mean bias error (NMBE) and the 

coefficient of variance of the root mean square error [CV(RMSE)] are used to validate 

the building models, as defined by Equation 22 and 23, 

                                  (22)𝑁𝑀𝐵𝐸 =
∑(𝑉𝑎𝑐𝑡𝑢𝑎𝑙 ― 𝑉𝑚𝑜𝑑𝑒𝑙𝑒𝑑)

(N ― 1) × 𝑀𝑒𝑎𝑛(𝑉𝑎𝑐𝑡𝑢𝑎𝑙) × 100%
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                              (23)𝐶𝑉(𝑅𝑀𝑆𝐸) =

∑(𝑉𝑎𝑐𝑡𝑢𝑎𝑙 ― 𝑉𝑚𝑜𝑑𝑒𝑙𝑒𝑑)2

𝑁 ― 1

𝑀𝑒𝑎𝑛(𝑉𝑎𝑐𝑡𝑢𝑎𝑙) × 100%

where  is parameter’s measured or metered value for each time step,  𝑉𝑎𝑐𝑡𝑢𝑎𝑙 𝑉𝑚𝑜𝑑𝑒𝑙𝑒𝑑

is parameter’s estimated or modeled value for each time step, and is number of 𝑁 

time steps being analyzed during period of evaluation.

It is suggested that a building model is considered accurate if the  is within 𝑁𝑀𝐵𝐸

5% and the  is below 15% when monthly data are used [50].𝐶𝑉(𝑅𝑀𝑆𝐸)

3. Case study

3.1 Data acquisition

An academic office building (Office Building A) and a business office building (Office 

Building B), both located in Tianjin, China, have been selected in this study, as shown 

in Figure 3. Building A has about 70% of rooms being either single or multi-person 

offices, with a total floor area of 3,690 m2 and an opening time from 6:00am to 11:00pm. 

Building B has a total floor area of 10,238 m2 and an opening time from 8:30am to 

5:30pm, with various functional types of rooms including offices, meeting rooms and 

event rooms. For both building, there are no nearby objects, such as other buildings and 

tall trees. Therefore, there is no shading effect on their cooling loads.
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Figure 3: Pictures of the academic office building (left) and business office building (right)

The occupants’ behavior related data in the buildings include the room occupancy and 

power density of lightings and equipment. A combination of physical monitoring and 

questionnaires was selected in this study. The specific test subjects and contents are 

shown in Figure 4.

Figure 4: Test contents and methods

By using passive infrared sensors and cameras for occupancy detection and behavior 

recording, physical monitoring concentrates on the data of indoor environmental 

parameters, occupancy data and the equipment usage data [51]. Questionnaire survey 

allows direct understanding of personal motivations of various behaviors [52] and 

thoughts of controlling devices in a multi-person environment in a non-invasive way 

[53].

A two-month field test was conducted from July to August 2020. The historical data 

such as hourly cooling load and sub-electricity consumption in the past five years was 

collected from the energy monitoring platforms in both of the office buildings. It was 

found that the total number of occupants in the buildings has not changed much in size 
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over the past five years, which shows that both buildings have been in stable operation 

in recent years. Therefore, the data obtained from the two-month test in summer is 

representative enough for the verification of the proposed method for seeking the design 

parameters of internal cooling load. The specific testing scheme is listed in Table 3 and 

the questionnaire is shown in Appendix A.

Table 3: Test parameters and equipment

Test parameters Test equipment Equipment accuracy
Equipment 

location

Test 

interval

Indoor 

temperature and 

humidity

Self-recording 

temperature and 

humidity meter

± 0.8%/± 5% Desk side 5 min

Working surface 

illumination

Self-recording 

illuminance meter
± 5%

Unobstructed 

working surface 

area

5 min

Lighting status Cameras

360° horizontal and 

180° vertical viewing 

angle

Unobstructed 

desktop
1 h

Window status
Window magnetic 

sensor
± 0.1% Windows 5 min

Computer power
Intelligent power 

socket
± 2% Computer sockets 1 h

3.2 Characteristics analysis of test data

The occupants are the main user of the buildings, and the occupancy rate is the most 

important factor influencing the variation of the building cooling load. The design 

numbers and hourly numbers of occupants in the office buildings are counted as shown 

in Figure 5.



18

Figure 5: Design and hourly numbers of occupants in two office buildings

It can be seen that the design numbers of occupants in the buildings far exceed the actual 

maximum numbers. In office building A, the hourly number of occupants shows a 

"three-peak distribution" as a whole, while in office building B, the hourly number of 

occupants shows a "two-peak distribution". The number of occupants fluctuates in a 

wide range which varies with great randomness, and the mobility of occupants is the 

greatest during meal and commuting hours. From the occupancy rate data of two office 

buildings, it can be seen that the occupancy density recommended in the design manual 

[41] is seriously deviate from the actual situation in existing office buildings. The actual 

occupancy rate is only about 60% of the original design profiles or even lower during 

most of the time.

The cameras are used in two office buildings for real-time monitoring of lighting 

behavior and the number of lights turned on in the room. Then the lighting power 

density is calculated from the number of running lightings and the power, as show in 

Figure 6.
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Figure 6: Hourly lighting power density in two office buildings

In Figure 6, the hourly lighting power density in office building B shows a "two-peak 

distribution", while it shows a "three-peak distribution" in office building A. Most of 

the occupants will enter the building gradually from 7:30 and choose to turn on the light 

according to their own lighting using habit or energy saving consciousness. The number 

of lights decreases during the midday hours due to the absence of occupants or the 

increase of outdoor light intensity. Due to the different job and lighting using habits of 

occupants in the two buildings, the lighting power densities are also different. But it 

can be seen that the maximum lighting power densities of the two buildings are still 

lower than the design value.

The most frequently used equipment in office buildings with the largest heat gain is the 

computer, so only the mode and proportion of running computers in the buildings are 

focused in this study. Then the computer power density is calculated from the number 

of running computers and the power. Due to the design work with a high frequency of 

using computers of occupants in office building A, the monitoring data of the number 

of running computers in office building A is analyzed as an example. The computer 

usage patterns can be divided into three modes including running all day, off at noon 

and randomly running, with the number of occupants accounting for 60%, 27% and 13% 

respectively.
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Figure 7: Hourly changes in the computer power density and numbers of occupants

It can be seen that the overall trends of the number of running computers and occupants 

are consistent, which have a fluctuation pattern in a small range except for a certain 

decrease during lunch time. But the computer power density is much lower than the 

design value.

4. Results and discussion

4.1 Marginal distribution functions of internal disturbances

The probability density distributions of the single parameters are calculated using 

MATLAB based on the kernel function, and the least squares method is used to fit the 

measured data. The fitted curves of the six probability distributions are compared with 

the statistical results of measured data as shown in Figure 8.
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Figure 8: Probability density distribution of three single parameters

The fitting errors are calculated using the method mentioned in Section 2.1, and the one 

with the minimum cumulative fitting error of the probability density distributions of 

three single parameters is the Weibull distribution, so the Weibull distributions are used 

in this paper to describe the probability distribution of room occupancy, lighting usage 

and equipment usage respectively.

4.2 Joint probability distribution of internal disturbances

4.2.1 Room occupancy and lighting usage

Figure 9 shows a binary frequency histogram for the occupancy rate and the proportion 

of lighting usage, built upon the measured data from the study. The tail variation 

characteristics have been analyzed to select a suitable joint distribution function 

between room occupancy and lighting usage.

Figure 9: Binary frequency histogram of occupancy rate and proportion of lighting usage

It can be seen that the occupancy rate and the proportion of lighting usage have 
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symmetrical tails, indicating that a high correlation between the two parameters. A 

binary normal Copula function was selected according to the tail independence and the 

parameter values were calculated using the maximum likelihood estimation method. 

Figure 10 shows the probability density distribution and the joint distribution of the two 

parameters, with the occupancy rate mainly concentrated between 60% and 80% and 

the proportion of lighting usage mainly concentrated between 60% and 70%.

Figure 10: Probability density distribution and joint distribution of the binary normal Copula 
function

The binary normal Copula function between the occupancy rate and the lighting usage 

can be defined by Equation 24, 

(24)             𝐶𝐺(𝑢;𝑣) = ∫𝜙 ―1(𝑢)
―∞ ∫𝜙 ―1(𝑣)

―∞
1

2𝜋 1 ― 0.73312exp [ ―
𝑠2 ― 2 × 0.7331𝑠𝑡 + 𝑡2

2(1 ― 0.73312) ]d𝑠d𝑡           

4.2.2 Room occupancy and equipment usage

Figure 11 shows the binary frequency histogram for the occupancy rate and the 

proportion of computer usage, also obtained from the measured data, with the tail 

variation characteristics analyzed for selecting a suitable joint distribution function to 

describe the joint probability distribution characteristics.
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Figure 11: Binary frequency histogram of occupancy rate and proportion of computer usage

It can be seen that the occupancy rate and the proportion of computer usage have 

symmetrical tails, so a binary normal Copula function was selected according to the tail 

independence and the parameters were calculated using the maximum likelihood 

estimation method. Figure 12 shows the probability density distribution and the joint 

distribution of both parameters. The occupancy rate was mainly concentrated between 

60% and 80%, and the proportion of computer usage was between 50% and 70%.

Figure 12: Probability density distribution and joint distribution of the binary normal Copula 
function
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The binary normal Copula function of the occupancy rate and the computer usage can 

be defined by Equation 25,

(25)            𝐶𝐺(𝑢;𝑣) = ∫𝜙 ―1(𝑢)
―∞ ∫𝜙 ―1(𝑣)

―∞
1

2𝜋 1 ― 0.8542exp [ ―
𝑠2 ― 2 × 0.854𝑠𝑡 + 𝑡2

2(1 ― 0.8542) ]d𝑠d𝑡               

4.2.3 Room occupancy, lighting usage and equipment usage

The dual-parameter joint probability functions were used as the marginal distribution 

functions to construct the three-parameter joint probability distribution function, and 

the Clayton Copula function was selected due to the asymmetry of the marginal 

distribution whose parameter values were calculated using the maximum likelihood 

estimation method. The joint distribution function of the three parameters were defined 

by Equation 26, 

              𝐶3(𝑢,𝑣1,𝑣2) = （𝐶1（𝑢,𝑣1）
―𝜃 + 𝐶2(𝑢,𝑣2) ―𝜃 ― 1）

―
1
𝜃，𝜃 = 3.12               

(26)

Figure 13: Three-parameter joint probability distribution
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Figure 13 shows the joint probability distribution of three parameters. It can be seen 

that when the occupancy rate lies in between 60% and 80%, the joint distribution 

probability is the largest; and when the number of occupants reaches the maximum, the 

joint probability is very small, and the probability that all three parameters reach the 

extreme values at the same time is almost zero. Besides, the probability of lighting 

usage and computer usage increased with the number of occupants, which is consistent 

with the trend of room occupancy, lighting usage and computer usage shown in Section 

3.

4.3 Optimal solution selection

In this study, the genetic algorithm was used to optimize the two objectives, i.e. the 

maximum three-parameter joint probability and minimum unguaranteed rate of internal 

cooling load, with the optimal solution of Pareto front obtained shown in Figure 14.

Figure 14: Pareto optimal solutions
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A higher joint probability of the internal disturbances indicates a more rational solution, 

while it is opposite for the unguaranteed rate of the internal cooling load. Therefore, in 

the indicator convergence process, the inverse of the unguaranteed rate needs to be used. 

According to Equation 9-21, the weight of each index was calculated using the entropy 

weight method based on the dimensionless standardization of each index, with a bigger 

weight indicating a greater influence on the evaluation of the solutions.

To decide the optimal and worst solutions, the normalized weighted decision matrix 

was obtained by weighting the weight matrix and the normalization matrix, with results 

listed in Table 4.

Table 4: The positive and negative ideal solutions of two office buildings 

Solution
Unguaranteed rate of internal

cooling load

Joint probability of internal

disturbances

Z+ 1.112 3.528Office 

building A Z- 3.987 0.001

Z+ 1.023 5.621Office 

building B Z- 4.412 0.667

The optimal design parameters were selected by calculating the relative proximity 

based on the distance from the positive and negative ideal solutions of each solution, 

and Table 5 lists the optimal results from the Pareto front.

Table 5: Optimal solutions of the two office buildings

Occupancy 

density 

(Person/m2)

Lighting 

power density 

(W/ m2）

Computer 

power density 

(W/ m2）

Unguaranteed 

rate

Joint 

probability
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Office 

building A
0.08 4.97 13.24 15.20% 2.31%

Office 

building B
0.10 6.37 14.89 10.67% 2.28%

4.4 Optimal solution validation

To further validate the optimal solutions selected by the trade-off approach, the 

probability curve and the unguaranteed hours of internal cooling load were used, 

compared to that in both extreme and maximum probability cases.

4.4.1 The probability curve of building internal cooling load

The Monte Carlo method was used for random sampling of internal disturbances to 

simulate cooling load. Figure 15 shows the probability distribution of internal cooling 

load, with Points A and C indicate the design values of internal cooling load in the 

existing standard and the value under maximum probability, respectively. Point B is the 

design value derived from this study.

Figure 15: Probability distribution of internal cooling load of two office buildings

From the result, it can be seen that for Office building A and Office building B, the 

calculated design internal cooling load according to the standard manual was 128.30kW 
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and 432.23kW respectively, exceeding the peak cooling load by 11.56% and 33% 

respectively. Additionally, the cumulative probability of the cooling load at Point A had 

reached 100%, further indicating that the calculated cooling load according to the 

standard manual had far exceeded the actual cooling load. For Point B, however, the 

obtained design values still ensured the cooling load demand of the buildings during 

most of the operating hours, even these values were lower than the standard values. 

Additionally, Point B was located at the inflection point of the cumulative probability 

curve. On its left side, a slight decrease in the design parameters of internal cooling load 

would cause a significant increase in the unguaranteed rate of internal cooling load. On 

its right side, even if a significance increase in internal disturbances would not reduce 

unguaranteed rate greatly. Therefore, the rationality of setting point B with appropriate 

values of internal disturbances as the design point is verified.

4.4.2 The unguaranteed hours of internal cooling load

The unguaranteed hours of internal cooling load reflect the unguaranteed situation 

under the condition of extreme values of internal disturbances. Figure 16 shows the 

results of unguaranteed hours under different unguaranteed rates.

Figure 16: Unguaranteed hours under different unguaranteed rates of two office buildings

For Office building A, it can be seen that when the unguaranteed rate of internal cooling 
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load increased from 15.2% to 15.7%, the unguaranteed hours during the operation hours 

increased from 4 hours to 12 hours. When the unguaranteed rate of internal cooling load 

continued to increase to 16.3%, the number of unguaranteed hours increased sharply by 

nearly 42 times, i.e. from the 4 unguaranteed hours to 171 unguaranteed hours, the 

occupancy density remained at 0.18 person/m2, the lighting power density was reduced 

by 0.36W/m2 only, and the equipment power density was reduced by 0.38 W/m2 only. 

It can be seen that a small decrease of internal disturbances would significantly increase 

the number of unguaranteed hours. For Office building B, it can also be seen that when 

the unguaranteed rate of internal cooling load increased from 10.67% to 11.89%, the 

unguaranteed hours during the operation hours increased nearly three times. Besides, 

Therefore, the optimal design solution is able to satisfy the unguaranteed hours with 

lower values for internal disturbances.

4.5 Design value comparison

The TOPSIS method was used to determine the optimum design solution of internal 

disturbances, which balances the joint probability and the unguaranteed rate. The trade-

off results were compared with the values given in major building design standards, as 

shown in Table 6.

Table 6: Comparison of internal disturbances

Building 

type

Occupancy density

（Person/m2）

Lighting power 

density

（W/m2）

Equipment 

power density

（W/m2）

Design standard of GB 

55015-2021 [54]
Office 0.10 8 15

ASHRAE standard 90.1 

[55]
Office 0.05 10.76 15

DIN V 18599 2018 [56] Office 0.1 13 15

Office building A Office 0.08 4.97 13.24
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Office building B Office 0.10 6.37 14.89

It can be seen that the values in major building design standards are generally higher 

than the values given by the optimum design solution. Both the occupancy density and 

equipment power density in the optimum design solution were basically consistent with 

the energy-saving design standards, indicating that the selected parameters are in line 

with the standards, which verifies the effectiveness of the method. However, the 

difference of the lighting power density between the optimum design solution and 

design standards is large, mainly because of the lower proportion of running lightings 

during most of the operating hours even when the occupancy rate is high. Therefore, it 

is recommended that the lighting power density used for cooling load calculations of 

office buildings in the design standards should be slightly reduced.
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Figure 17: Comparison of schedules for internal disturbances calculated from the design 
standard and trade-off results with actual data

Schedule is also an important parameter in cooling load design calculations. The 

schedules for internal disturbances including number of occupants, lighting power 

density and equipment power density calculated from the design standards [54] and 

trade-off results were compared to the test data in Section 3. The results are shown in 

Figure 17. It can be seen that the operating schedules calculated from the trade-off 

results were closer to the actual test data in Office building A, except for the special 

overtime situation at night which is not considered in the design standard. The same 

results can be obtained in Office building B.

The values of internal disturbances were then substituted into DesignBuilder, a popular 

dynamic building performance package [60], to calculate and compare the energy 

consumption of a whole year, using Office buildings A and B. The definitions of 

building performance parameters are available in Appendix B, where the operating 

schedules remain the same. After calibrating, the monthly energy consumption data of 

a whole year are used for validation, and the validation results are shown in Table 7. 

Both the NMBE and CV(RMSE) are within the range required by the standard, so the 

building model is considered accurate.

Table 7: The validation results of two office buildings

Buildings NMBE (%) CV(RMSE) (%)

Office building A -3.8 12.7

Office building B 4.2 14.3

Table 8: The calculation results of energy consumption in Office building A

Energy Energy Energy Total energy 
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consumption of 

lighting (kWh)

consumption of 

computer (kWh)

consumption of 

occupants (kWh)

consumption for 

internal disturbances

(kWh)

Design 

standard of 

GB 55015-

2021 [50]

130615.10 77289.66 21244.56 229149.36

ASHRAE 

standard 

90.1 [51]

177763.40 77289.66 10627.21 265680.25

DIN V 

18599 2018 

[52]

210979.90 77289.66 25066.92 313336.47

Trade-off 

results of 

building A

91327.64 54796.58 19926.03 166050.25

Table 9: The calculation results of energy consumption in Office building B

Energy 

consumption of 

lighting (kWh)

Energy 

consumption of 

computer (kWh)

Energy 

consumption of 

occupants (kWh)

Total energy 

consumption for 

internal disturbances

(kWh)

Design 

standard of 

GB 55015-

2021 [50]

410031.61 226041.60 62908.34 698981.55

ASHRAE 

standard 

90.1 [51]

552134.49 226041.60 24067.30 802243.39
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DIN V 

18599 2018 

[52]

667303.65 226041.60 60117.45 953462.70

Trade-off 

results of 

building B

326905.05 224629.58 62745.69 614280.32

The simulation results are shown in Table 8 and Table 9. It can be seen that the total 

energy consumption calculated from the trade-off results of Office building A was at 

least reduced by 27.5%, while that of Office building B was at least reduced by 12.1%, 

compared to the results calculated by the recommended values in the design standards. 

The reduction of lighting power density, however, will have an important influence on 

indoor visual environment, so it is necessary to evaluate whether the values of 

illuminance meet the requirement of the design standards after reducing the lighting 

power density. The lighting power density and illuminance conversion formula can be 

obtained from the design standards, as shown in Equation 27, 

(27)                                                                 𝐿𝑃𝐷 =
𝐸𝑎𝑣
𝜂𝑠𝑢𝐾                                                               

where  is the lighting power density, in W/m2;  is the illuminance, in lx;  𝐿𝑃𝐷 𝐸𝑎𝑣 𝜂𝑠

is luminous efficacy of a light source, dimensionless, with a value range between 80-

140 [57];  is the utilization factor, dimensionless, generally taken as 0.6 for offices 𝑢

[57], and  is the maintenance factor, dimensionless, generally taken as 0.8 for offices 𝐾

[57].

Table 10: Calculated lighting power density

Building type Illuminance (lx)
The range of LPD 

(W/m2)
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GB 50034-2013 [57] Office 300-500

ANSI/IESNA RP-1-04 

[58]
Office 300-500

DIN 5035-1 [59] Office 300-500

4.46-13.02

Referring to the design standards of various countries, the illuminance level in offices 

need to be maintained between 300-500lx, which needs the lighting power density to 

be between 4.46 and 13.02 W/m2, as shown in Table 10. Therefore, the lighting power 

density obtained from the trade-off results which is 4.97 and 6.37 W/m2 can meet the 

requirement of the design standards.

5. Conclusion

The uncertainty and correlation of the internal load disturbances is often ignored in the 

design cooling load calculations and always result in the oversized cooling system, the 

trade-off approach is proposed to explore the optimal design parameters for internal 

cooling load calculation based on the joint probability of internal disturbances. By 

taking two office buildings as examples, the effectiveness of the method is verified by 

comparing the results with the design standards. The following conclusions can be 

drawn from the results.

(1) The Copula function can express the joint probability distribution of internal 

disturbances. The optimal design parameters can be determined from a trade-off 

between the two objectives, i.e. minimum unguaranteed rate and maximum joint 

probability. 

(2) The trade-off results have been validated based on the frequency characteristics and 

the unguaranteed hours of internal cooling load. 
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(3) The actual occupancy rate is only about 60% of the original design profiles, or even 

lower for most of the time. By comparing with the trade-off results, the values of 

internal disturbances in the design standards need to be lowered to meet the energy-

saving development trend, especially for the lighting power density, which is at 

least 26% higher than the trade-off results. 

(4) The calculated schedules for internal disturbances based on both the design standard 

and the trade-off results have been compared with the test data, and the comparison 

showed that the schedules of internal disturbances calculated from the trade-off 

results were closer to actual situation. Simulation by DesignBuilder showed that the 

energy consumption for internal disturbances can be reduced by at least 27.5% and 

12.1%, respectively, when using the trade-off results. 

Aiming at providing optimum design parameters for internal cooling load calculations, 

a trade-off approach has been proposed in this study. However, due to the significant 

variation in both climate and building type, the results cannot be directly used in other 

buildings, but this method can be applied in various types of buildings in different 

climate zones in future studies. Besides, when this approach is applied to more types of 

buildings, multiple sets of trade-off results of internal disturbances can be calculated, 

and then the statistical values of internal disturbances for a certain type of buildings that 

are closer to the actual conditions can be obtained, which can replace the recommended 

values in the design standards to be applied in the building load design calculations.
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Appendix A

Questionnaire of occupant behavior in office buildings

1. Your department is（）

2. Your office hours on weekdays are（）

  Your office hours on weekends are（）

3. Your main activities in the office are（）

  Standing at work/ Standing or walking slightly/ Walking frequently/ Laboratory 

experiment

4. The thermal sensation before you choose to open the window for ventilation is（）

  Moderate/ Slightly hot/ Hotter/ Very hot

5. Your usage of the office equipment is（）

Mainly use your own equipment/ Mainly use office equipment/ Both

6. What equipment do you use in your office? (Only fill in the equipment you use 

frequently.)

Desktop/ Laptop/ Mini printer/ Water dispenser/ Large printer/ Thredder/ Air 

purifier/ refrigerator/ Kettle

7. On weekdays, how long do you turn on your laptop in the office ( )h, use your laptop 

in the office ( )h, standby your laptop in the office ( )h.

8. On weekdays, how long do you turn on your desktop in the office ( )h, use your 

desktop in the office ( )h, standby your desktop in the office ( )h.

9. How often do you use small printers, water dispensers, large printers, shredders, air 

purifiers, refrigerators, and kettles?

Kettle ( )

1-3 times/day  4-6 times/day  7-9 times/day  More than 10 times/day 

Shredders ( )

Less than 1 time/day  1-3 times/day  4-6 times/day  7-9 times/day  10-20 

times/day  More than 21 times/day

10. Do you have the habit of napping?

Yes, napping in the office, the time period is ( )

Yes, not napping in the office, the time period is ( )

No, in the office at noon, the time period is ( )

No, not in the office at noon, the time period is ( )
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11. How long will you leave the room when you choose to turn off the lights?

10min  30min  60min  120min  More than 120min

12. What do you choose to do with your computer under different absence period? 

(Keep, Standby, Lock, Turn off)

0-0.5 h  0.5-2 h  2-24 h

13. What do you wear in different outdoor temperature? (General outerwear, Summer 

clothes, Work clothes）

20~23 ℃  23~26 ℃  26~29 ℃  29~32 ℃  32~35 ℃

14. Do you choose to open the lights under different indoor illumination? (Moring, 

Noon, Afternoon)

0~25 lux  25~50 lux  50~75 lux  75~100 lux
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Appendix B

Table B. Design parameters for office building C in building energy simulation

Building type Office
Floor area (m2) 3690/10238

Window-to-Wall ratio 28.94%/28.84%

Weather data
Parameters of typical meteorological year in 

Tianjin
Envelope performance parameters

Exterior walls (W/m2*K) 0.35
Ground floor (W/m2*K) 0.25

Roof (W/m2*K) 0.25
Window (W/m2*K) 1.96

HVAC system
Heating type Gas furnace inside the packaged air 

conditioning unit
Cooling type Packaged air conditioning unit
HVAC sizing Autosized with design day

Used fuel types Gas and electricity
Thermostat setpoint 22℃ heating/26℃ cooling
Thermostat setback 15℃ heating/30℃ cooling
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