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Highlights 

 Insect range shifts vary widely in rates and consequences. 

 Incorporating eco-evolutionary dynamics is essential to understand this variation.  

 Temporal and spatial replication help identify patterns and processes of eco-

evolutionary dynamics.  

 Modelling and genomic sequencing data can improve predictions to inform 

management.  
 

 

Abstract  

Evolutionary change impacts the rate at which insect pests, pollinators, or disease vectors 

expand or contract their geographic ranges. Although evolutionary changes, and their 

ecological feedbacks, strongly affect these risks and associated ecological and economic 

consequences, they are often underappreciated in management efforts. Greater rigor and 

scope in study design, coupled with innovative technologies and approaches, facilitates our 

understanding of the causes and consequences of eco-evolutionary dynamics in insect range 

shifts. Future efforts need to ensure that forecasts allow for demographic and evolutionary 

change and that management strategies will maximize (or minimize) the adaptive potential of 

range shifting insects, with benefits for biodiversity and ecosystem services. 
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Introduction  

Insect range expansions and contractions in response to human activities are widespread and 

are reshaping entire food webs and altering ecosystem functions and services [1,2]. Practical 

consequences of range shifts include the rescue of species from degraded habitats, more 

robust populations with expanded ranges, and increases in local biodiversity. While such 

consequences can often be favorable, negative impacts are also observed, if range shifting 

species include agricultural pests and vectors of human and agricultural diseases, or disrupt 

native communities and ecosystem services [3,4]. Because both ecological and economic 

consequences of insect range shifts are important, it is a priority to understand what drives 

some insects, but not others, to undergo rapid range shifts, and to further understand drivers 

of variation. Until recently however, forecasting models have mostly considered ecological 

drivers such as colonization, biotic interactions, and abundance shifts, without taking into 

account rapid evolution associated with range shifting, which can affect all of these ecological 

parameters. Rapid evolution commonly occurs during range shifts; this phenomenon was first 

shown in insects [5], and is clearly a dominant phenomenon in this group, facilitated by their 

sensitivities to environmental change and by their short life cycles and large population sizes. 

These characteristics can facilitate rapid transgenerational genetic or epigenetic change [6,7]. 

Life-history trade-offs in insects can further help to maintain evolutionary variability, and, 

perhaps counter-intuitively, increase fitness when encountering novel environments during 

range expansions [8]. 

 

Range shifts are ecological processes, so when they involve evolution they invoke eco-

evolutionary dynamics, i.e. interactions between evolutionary change and ecological processes. 

For example, insect range expansions can both drive evolution of dietary niche breadth [9] and 

be facilitated by it [5,10]. There is well-established theoretical understanding of eco-

evolutionary dynamic feedbacks between microevolutionary change and demographic shifts 

Jo
ur

na
l P

re
-p

ro
of



4 
 

during colonization of novel environments [11]. However, empirical evidence lags behind 

theoretical developments. This omission is largely due to a lack of established approaches for 

discovering, diagnosing and monitoring eco-evolutionary processes in wild systems. Lack of 

data to test models therefore makes it difficult to predict evolutionary responses and their 

relationship to ecological patterns and processes. This is unfortunate, given that conservation 

and management actions depend on a robust prediction of range shift trajectories. To increase 

awareness of this gap between theory and data, we (1) highlight opportunities that insects offer 

for identifying the eco-evolutionary basis of range shifts and their applied relevance; (2) discuss 

recent advances in our understanding of eco-evolutionary dynamics of insect range shifts; and 

(3) identify critical avenues for robustly assessing the temporal and spatial scale of those 

dynamics to improve predictions of range shifts and their impacts on biodiversity. 

 

The importance of studying eco-evolutionary dynamics during insect range expansions 

 

Insects are among the most rapidly range-expanding of all terrestrial taxa [12]. Range-shifting 

insects have a large impact on the assembly of resident biotas [13], on pollinator networks [4] 

and other ecosystem services [14]. Life histories of range expanding insects are often distinct 

from resident communities in that they exhibit increased resilience to stressors, ecological 

generalism, or competitive ability [15]. These observations have been used to suggest that 

colonizing species are those already with ecological traits that enable rapid spread. However, 

this conclusion rests on the assumption that ecological and evolutionary processes occur on 

different time scales, where the evolution of the traits that confer the capacity for ecological 

disruption is often thought to occur in advance of geographical expansion. However, we argue 

that this assumption is unlikely to be true, in part because attempts to discover traits 

predisposing range expansions have failed or detected only weak effects (reviewed in [16]). 

Instead, we suggest that traits conferring colonization ability most likely evolve during range 

expansions ([17]; Figure 1). Conversely, traits and processes likely to arise during range 

contraction may potentially confer enhanced sensitivity to further declines, although 
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evolutionary processes during range contraction are even less well characterized than those 

associated with expansion. 

 

Insects offer ideal opportunities for detailed studies of range shifts. Data on insect distributional 

shifts is increasing in volume owing to technological advances in rapid insect surveying methods 

[18], such as remote sensing and techniques that exploit frequencies of solar radiation to track 

individuals and their microclimates [19]. These advances offer more in-depth insight into the 

densities, distributions and dispersal behavior of flying insects. However, such data are highly 

biased towards terrestrial insect communities, which are unlikely to be representative of 

aquatic species and the important ecosystem services they provide. Increasing research on the 

eco-evolutionary dynamics of range shifting pest species and disease vectors [20] is particularly 

needed, given their relevance for food sustainability and human health. 

 

Eco-evolutionary dynamics during insect range shifts  

 

Many studies of evolution during range shifts in insects have focused on changes in 

physiological traits under ecological selection (e.g. [21–23]). However, novel demographic 

conditions arising from range expansion can also impose selection on characteristics such as 

enhanced dispersal or resistance to inbreeding, and on life history traits such as reduced 

generation time, voltinism and diapause that can speed up the expansion itself [24]. In addition, 

gene flow from the historic range and genetic drift further shapes genetic variation for these 

traits and, thus, alters evolutionary dynamics [25]. Neutral, rather than adaptive processes, can 

dominate evolutionary changes during colonization events, making it difficult to predict range 

shift outcomes. Nonetheless, certain anticipatory responses may also evolve, for example, 

serial colonization at the leading edge of range shifts can select for indiscriminate individuals 

that are more likely to accept marginal habitat conditions [26].  

 

Recent studies highlight the importance of trait plasticity for insect adaptation during range 

shifts [23,27]. In particular, increased learning ability may be important for insects to cope with 
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environmental heterogeneity and unpredictability during these colonization events [28,29]. 

Increases in learning ability, as in any form of plasticity, can facilitate environmental adaptation 

by allowing persistence in a novel environment until genetic accommodation has occurred [30].  

 

Dispersal evolution is often part of eco-evolutionary feedback loops, both as a driver and 

response [31]. In addition to being favored during serial colonization [24], high or low 

population densities at the range limit may further facilitate changes in dispersal propensity 

[32]. Evolutionary impacts of range shift-induced dispersal traits may not evolve independently 

from other traits, meaning that changes in dispersal will impact correlated traits, further 

modifying eco-evolutionary dynamics [33,34]. Furthermore, insect dispersal traits are often 

temperature-sensitive, suggesting that the interplay between shifts in environmental plasticity 

and dispersal needs to be considered together to predict likely evolutionary dynamics [35]. 

 

Social dynamics also evolve readily during range shifts, influencing adaptive potential to both 

expand and to resist contraction. This may occur for instance if sexual selection differs between 

the range core [36], due to changes in fragmentation or density conditions at fluctuating range 

edges that impact reproductive and competitive opportunities. Novel social dynamics at range 

margins can feed back to impact individual phenotypes and fitness, for example, via invoking 

generalized stress responses that also confer fitness in novel environments [37]. Another 

consequence of range shifts may be skewed sex ratios, particularly where sexes differ in 

dispersal, meaning the more dispersive sex reaches the range limit in higher numbers. The 

resulting skew can impact mating systems or the strength of sexual selection (e.g., in 

damselflies: [7]).  

 

An understudied area is the complex, interactive effect of eco-evolutionary change on 

community dynamics during insect range shifts. For example, novel plant-insect interactions 

caused by unequal rates of range shifting likely impact both plant and insect biodiversity, 

population sizes, and evolutionary potential, with shifts in pollinator and pest communities 

impacting food security. In particular, encountering novel resources during range shifts can 
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trigger diet evolution (e.g. increase or reduction in Lepidopteran host breadth: [9,38,39]). 

Moreover, shifts in plasticity, physiology, life history and dispersal associated with range shifts 

can further impact future community dynamics: colonizing lineages, which have already 

adapted to spatial variability, may then have an evolutionary advantage over existing residents 

when future environments become more variable or less predictable [40]. To take into account 

the evolution of interactions among species and environments, an approach that includes 

multiple drivers and responses is needed to detect how biotic interactions affect and are 

impacted by eco-evolutionary processes during range-shifts (Figure 1).  

 

Advances in the study of eco-evolutionary dynamics 

 

To advance our understanding of eco-evolutionary dynamics, a temporal approach is needed to 

quantify the nature, rate and magnitude of population changes along range expansion 

trajectories. However, due to practical constraints, most studies assess range shift dynamics 

across only one or a few generations. Improving temporal resolution may be accomplished via 

judicious use of historical records or genetic inference of past demography and adaptation, to 

make links between previous or ongoing population processes and resulting demographic 

characteristics or trait values [7,39]. Statistical approaches that account for abiotic and biotic 

factors that can bias range estimates are also developing rapidly to enable more accurate 

modelling of past and current range dynamics [41].   

 

Recent advances in genomic sequencing approaches and computational improvements further 

present the opportunity to track historical eco-evolutionary processes using a greatly expanded 

set of ‘omic’ markers. Spatial genomic datasets allow for high-powered tests for dispersal and 

demographic processes that influence genetic connectivity, and provide insight into spatial and 

temporal dynamics of neutral and adaptive genomic variation [42,43]. Likewise, transcriptomic 

approaches can test the relationships between environment, gene expression, and phenotype 

in insect populations impacted by range      shifting, providing insight into how the genetic basis 

of traits, and their plasticities, may evolve [44,45]. Epigenomics, the study of DNA modifications 
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that impact gene expression, is another growing field that identifies how insects can rapidly 

respond to a changing climate [6], with accumulating evidence suggesting that modifications 

can have significant transgenerational impact [46]. One interesting idea is that the evolution of 

‘epigenetic potential’ (i.e., proportion of the genome available for new epigenetic 

modifications) may be an important mechanism of plasticity evolution during range shifts [47], 

a hypothesis that remains untested in insects.  

 

Effective use of these techniques depends on careful experimental design to allow for 

generalizations about the role of eco-evolutionary dynamics in the likelihood, rate, and 

outcomes of range shifts. For instance, effective design may include careful sampling over time 

within the range as well as at the edge, repeated sampling across multiple range shifts within a 

species, or comparing outcomes across range-shifting versus non shifting species along a shared 

spatial gradient [48]. Recent meta-analysis suggests that only range-shifting insects exhibit 

latitudinal gradients in dietary and thermal niche breadth, suggesting that evolution during 

range shifts is an important cause of latitudinal clines [9,49]. Alternatively, replicated 

assessment of trait or distribution outcomes across independent expansion trajectories within a 

species, such as in [38], are crucial to understand what patterns are due to stochastic versus 

general responses of populations.  

 

Appropriate application of ‘omic approaches often requires a mechanistic understanding of 

how genetic variation links to relevant traits, which in turn impact demography and adaptation. 

We therefore advocate to combine wild studies with laboratory or field experiments to robustly 

corroborate these links. Experimental approaches may involve evolution of replicate laboratory 

populations under range shift conditions, and adopting an ‘evolve and resequence’ approach to 

track how genetic and phenotypic (co)variation respond to experimentally altered patterns of 

demography and environmental variation [50]. Alternatively, common garden or reciprocal 

transplant studies can be used to establish causality. Such common garden studies can also be 

combined with more complex breeding designs coupled to sequencing, to experimentally 

disentangle and quantify genetic and environmental factors [51]. 
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Increased collaborative efforts are also essential. Extending the temporal and spatial scales 

requires investment and prioritisation at multi-institutional, and in many cases, multi-national 

levels. A multidisciplinary approach is also critical for integrating data from environmental, 

physiological, demographic, genetic, and epigenetic data sources. Effectively combining this 

information will be essential for modelling evolutionary trajectories and feedbacks that 

facilitate or hinder range shifts. Such models are still in their infancy. However, recent work 

suggests that incorporation of data on genetic variation improves species distribution models 

and forecasts [52], and the development of genetically explicit process-based models is 

increasing at a rapid pace [53,54]. Inverse fitting of process-based forecasting models 

parameterized from rigorous empirical demographic and genomic data represents the next 

stage in forecasting sophistication [55]. 

 

Conclusions 

 

Accurate forecasting of which insect species will or will not range-shift or adapt is urgently 

needed. Insect range shifts are already impacting biodiversity, human disease risk, agriculture, 

and forestry, with severe economic consequences [3]. Providing the needed empirical data to 

understand and model the eco-evolutionary processes that underpin range shifts demands 

multidisciplinary insights e.g. from ‘omic’ approaches, and combinations of wild and laboratory 

studies at the appropriate temporal and ecological scale. Once we understand the biological 

processes limiting or enhancing insect range shifts, species and communities identified as being 

at risk can be targeted to support their ecological and adaptive potentials.  
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Figure 1: Mechanistic, simplified representation of eco-evolutionary dynamics during insect 

range shifts and their importance for (applied) research. The gear wheels can move in the 

direction indicated by the arrows, such that the exemplary selection of demographic, 

environmental and social drivers (D) (see color legend on bottom right) may individually, or in 

combination, (1) evoke evolutionary responses (e.g. epigenetic, or genetic) (R) in range 

expanding insect populations on contemporary time scales (2). Understanding the rates and 

strengths of these processes will be crucial for theoretical advancements and practical 

implications of insect range shifts (see boxes on bottom left). Moreover, responses can induce 

new driving forces (3), resulting in positive or negative eco-evolutionary feedbacks and 

feedback loops, e.g. an increase in the level of a driving trait A induces a genetic response that 

further increases vs. decrease trait A, thus accelerating vs. dampening the dynamic.  
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