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Abstract
The 4D-Var method for filtering partially observed nonlinear chaotic dynamical systems consists of finding the maximum
a-posteriori (MAP) estimator of the initial condition of the system given observations over a time window, and propagating
it forward to the current time via the model dynamics. This method forms the basis of most currently operational weather
forecasting systems. In practice the optimisation becomes infeasible if the time window is too long due to the non-convexity
of the cost function, the effect of model errors, and the limited precision of the ODE solvers. Hence the window has to be kept
sufficiently short, and the observations in the previous windows can be taken into account via a Gaussian background (prior)
distribution. The choice of the background covariance matrix is an important question that has received much attention in the
literature. In this paper, we define the background covariances in a principled manner, based on observations in the previous b
assimilation windows, for a parameter b ≥ 1. The method is at most b times more computationally expensive than using fixed
background covariances, requires little tuning, and greatly improves the accuracy of 4D-Var. As a concrete example, we focus
on the shallow-water equations. The proposed method is compared against state-of-the-art approaches in data assimilation
and is shown to perform favourably on simulated data. We also illustrate our approach on data from the recent tsunami of
2011 in Fukushima, Japan.
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1 Introduction

Filtering, or data assimilation, is a field of core importance in
awide variety of real applications, such as numerical weather
forecasting, climate modelling and finance; see e.g. Asch
et al. (2016), Blayo et al. (2014), Crisan (2017), Lahoz et al.
(2010), Law et al. (2015) for an introduction. Informally,
one is interested in carrying out inference about an unob-
served signal process conditionally upon noisy observations.
The type of unobserved process considered in this paper is
that of a nonlinear chaotic dynamical system, with unknown
initial condition. As an application in this paper we con-
sider the case where the unobserved dynamics correspond
to the discretised version of the shallow-water equations;
see e.g. Salmon (2015). These latter equations are of great
practical importance, generating realistic approximations of
real-world phenomena, useful in tsunami and flood mod-
elling (see e.g. Bates et al. (2010), Pelinovsky (2006)).

For systems of this type, the filtering problem is notori-
ously challenging. Firstly, the filter is seldom available in
analytic form due to the nonlinearity. Secondly, even if the
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given system is solvable, the associated dimension of the
object to be filtered is very high (of order of 108 or greater),
thus posing great computational challenges.

One of the most successful methods capable of handling
such high-dimensional datasets is the so-called 4D-Var algo-
rithm (LeDimet and Talagrand 1986; Talagrand and Courtier
1987): it consists of optimising a loss-functional so that under
Gaussian noise it is equivalent to finding the maximum a-
posteriori (MAP) estimator of the initial condition. Since its
introduction, a lot of further developments in the 4D-Var
methodology have appeared in the literature; for an overview
of some recent advances, we refer the reader to Bannister
(2016), Lorenc (2014), Navon (2009), Park and Xu (2009),
Park and Xu (2013), Park and Xu (2017). The main focus
of this article is to consider principled improvements of the
4D-Var algorithm.

An important practical issue of the 4D-Var method is that,
due to chaotic nature of the systems encountered in weather
prediction, the negative log-likelihood (cost function) can
become highly non-convex if the assimilation window is too
long. The reason for this is that for deterministic dynamical
systems, as the assimilation window grows, the smoothing
distribution gets more and more concentrated on the stable
manifold of the initial position,which is a complicated lower-
dimensional set (see Pires et al. 1996, Paulin et al. 2018a for
more details). On the one hand, this means that it becomes
very difficult to find the MAP estimator. On the other hand,
due to the highly non-Gaussian nature of the posterior in this
setting, the MAPmight be far away from the posterior mean,
and have a large mean square error. Moreover, for longer
windows, the precision of the tangent linear model/adjoint
solvers might decrease. Due to these facts, the performance
of 4D-Var deteriorates formanymodelswhen the observation
window becomes too long (see Kalnay et al. 2007).

The observations in the previous window are taken into
account via the background (prior) distribution, which is a
Gaussian whose mean is the estimate of the current position
based on the previous windows, and has a certain covariance
matrix. The choice of this background covariance matrix is
an important and difficult problem that has attracted much
research. (Fisher 2003) states that in operational weather
forecasting systems up to 85% of the information in the
smoothing distribution comes from the background (prior)
distribution. The main contribution of this paper is an
improvement of the 4D-Varmethodology by a principled def-
inition of this matrix in a flow-dependent way. This is based
on the observations in the previous b assimilation windows
(for a parameter b ≥ 1). Via simulations on the shallow-
water model, we show that our method compares favourably
in precision with the state-of-the-art Hybrid 4D-Var method
(see Lorenc et al. 2015).

The structure of the paper is as follows. In the rest of
this section, we briefly review the literature on 4D-Var back-

ground covariances. In Sect. 2, the modelling framework for
the shallow-water equations is described in detail. In Sect.
3, we introduce our 4D-Var method with flow-dependent
background covariance. In particular, Sect. 1.1 compares our
method with other choices of flow-dependent background
covariances in the literature. In Sect. 4, we present some sim-
ulation results and compare the performance of our method
with Hybrid 4D-Var. Finally, in Sect. 5 we state some con-
clusions for this paper.

1.1 Comparison with the literature

There exist mathematically rigorous techniques to obtain
the filter with precision and use the mean of the posterior
distribution as the estimate, based upon sequential Monte
Carlo methods (e.g. Del Moral et al. (2006),Rebeschini et al.
(2015)) which can provably work in high-dimensional sys-
tems Beskos et al. (2014). While these approximate the
posterior means and hence are optimal in mean square
error, and are possibly considerably more accurate than
optimisation-based methods, nonetheless such methodology
can be practically overly expensive.As a result, onemay have
to resort to less accurate but more computationally efficient
methodologies (see Law et al. (2015) for a review). There are
some relatively recent applications of particle filtering meth-
ods to high-dimensional data assimilation problems, see, e.g.,
(van Leeuwen (2009, 2010)). While these algorithms seem
to be promising for certain highly nonlinear problems, their
theoretical understanding is limited at the moment due to the
bias they introduce via various approximations.

Despite the difficulty of solving the nonlinear filtering
problem exactly, due to the practical interest in weather
prediction, several techniques have been devised and imple-
mented operationally in weather forecasting centres world-
wide. These techniques are based on optimisation methods,
and hence they scale well to high dimensions and are able
to process massive datasets. Although initially such methods
were lacking inmathematical foundation, the books (Bengts-
son et al. (1981)) and (Kalnay (2003)) are among the first
to open up the field of data assimilation to mathematics.
Among the earlier works devoted to the efforts of bringing
together data assimilation andmathematics, we also mention
(Ghil et al. 1981) and (Ghil and Malanotte-Rizzoli (1991)),
where a comparison between the Kalman filter (sequential-
estimation) and variational methods is presented.

The performance of 4D-Var methods depends very stro-
ngly on the choice of background covariances. One of the
first principled ways of choosing 4D-Var background covari-
ances was introduced by Parrish and Derber (1992). They
have proposed the so-called NMC method for choosing cli-
matological prior error covariances based on a comparison of
24 and 48 hour forecast differences. This method was refined
in Derber and Bouttier (1999). (Fisher (2003)) proposed the
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use of wavelets for forming background covariances; these
retain the computational advantages of spectral methods,
while also allow for spatial inhomogeneity. The background
covariances aremade flow dependent via a suitablemodifica-
tion of the NMC approach. (Lorenc (2003)) reviews some of
the practical aspects of modelling 4D-Var error covariances,
while (Fisher et al. (2005)) makes a comparison between 4D-
Var for long assimilation windows and the Extended Kalman
Filter. As we have noted previously, long windows are not
always applicable due to the presence of model errors and
the non-convexity of the likelihood.

More recently, there have been several methods proposing
the use of ensembles combined with localisation methods
for modelling the covariances, see, e.g. Zupanski (2005),
Auligné et al. (2016), Bannister (2016), Bannister (2008a),
Bannister (2008b), Bonavita et al. (2016), Bousserez et al.
(2015), Buehner (2005) Clayton et al. (2013), Hamill et al.
(2011), Kuhl et al. (2013),Wang et al. (2013). Currentlymost
operational NWP centres use the Hybrid 4D-Var method,
which is based on a linear combination of a fixed back-
ground covariance matrix (the climatological background
error covariance) and an ensemble-based background covari-
ance (see Lorenc et al. (2015), Fairbairn et al. (2014)).

Localisation eliminates spurious correlations between ele-
ments of the covariance matrix that are far away from each
other, and hence they have little correlation. This means that
these long range correlations are set to zero, which allows
the sparse storage of the covariance matrix and efficient
computations of the matrix-vector products. Bishop et al
2011 proposes an efficient implementation of localisation by
introducing some further approximations, using the product
structure of the grid, and doing part of the calculations on
lower resolution grid points. Such efficient implementations
have allowed localised ENKF-based background covariance
modelling to provide the state-of-the-art performance in data
assimilation, and they form the core ofmost operationalNWP
systems at the moment.

Over longer time periods, given sufficient data available,
most of the variables become correlated, and imposing a
localised structure over them leads to some loss of informa-
tion vs the benefit of computational efficiency. Our method
does not impose such a structure as it writes the precision
matrix in a factorised form. Moreover, the localisation struc-
ture is assumed to befixed in time, so evenwith a considerable
amount of tuning for a certain time period of data it is not
guaranteed that the same localisation structure will be opti-
mal in the future. Our method does not make such a constant
localisation assumption and hence it is able to adapt to dif-
ferent correlation structures automatically.

We use an implicit factorised form of the Hessian and
the background precision matrix described in Sects. 3.2–3.3,
and thus we only need to store the positions of the system
started from the 4D-Var estimate of the previous b windows

at the observation times. This allows us to compute the effect
of these matrices on a vector efficiently, without needing to
store all the elements of the background precision matrix,
which would require too much memory.

Although in this paper we have assumed that the model is
perfect, there have been efforts to account for model error in
the literature, see (Trémolet 2006). The effect of nonlineari-
ties in the dynamics and the observations can be in some cases
so strong that the Gaussian approximations are no longer rea-
sonable, see (Miller et al. 1994; Bocquet et al. 2010; Gejadze
et al. 2011) for some examples and suggestions for overcom-
ing these problems.

2 Notations andmodel

2.1 Notations

In this paper, we will be generally using the unified notations
for data assimilation introduced in Ide et al. (1997). In this
section, we briefly review the required notations for the 4D-
Var data assimilation method.

The state vector at time t will be denoted by x(t), and it is
assumed that it has dimension n. The evolution of the system
from time s to time t will be governed by the equation

x(t) = M(t, s)[x(s)], (2.1)

where M(t, s) is the model evolution operator from time s
to time t . In practice, this finite-dimensional model is usu-
ally obtained by discretisation of the full partial differential
equations governing the flow of the system.

Observations are made at times (ti )i≥0, and they are of the
form

y◦
i = Hi [x(ti )] + εi , (2.2)

where Hi is the observation operator, and εi is the random
noise. We will denote the dimension y◦

i by n◦
i , and assume

that (εi )i≥0 are independent normally distributed random
vectors with mean 0 and covariance matrix (Ri )i≥0. The
Jacobian matrix (i.e. linearisation) of the operator M(t, s) at
position x(s)will be denoted by M(t, s), and the Jacobian of
Hi at x(ti ) will be denoted by Hi . The inverse and transpose
of a matrix will be denoted by (·)−1 and (·)T , respectively.

The 4D-Var method for assimilating the observations in
the time interval [t0, tk−1] consists of minimising the cost
functional

J [x(t0)] = 1

2
[x(t0) − xb(t0)]T B−1

0 [x(t0) − xb(t0)]

+ 1

2

k−1∑

i=0

[ yi − y◦
i ]T R−1

i [ yi − y◦
i ], (2.3)
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where yi := Hi (x(ti )), and B0 denotes the background
covariance matrix, and xb(t0) denotes the background mean.
Minimising this functional is equivalent to maximising the
likelihood of the smoothing distribution for x(t0) given
y◦
0:k−1 := { y◦

0 , . . . , y
◦
k−1} and normally distributed prior

with mean xb(t0) and covariance B0. Note that the cost
function (2.3) corresponds to the so-called strong constraint
4D-Var (i.e., no noise is allowed in the dynamics), there are
also weak constraint alternatives that account for possible
model errors by allowing noise in the dynamics (see e.g.
Trémolet 2006).

2.2 Themodel

We consider the shallow-water equations, e.g. as described
in [pg. 105-106]Salmon (2015), but with added diffusion and
bottom friction terms, i.e.

∂u

∂t
=

(
−∂u

∂ y
+ f

)
v − ∂

∂x

(
1

2
u2 + gh

)
+ ν∇2u − cbu;

(2.4)

∂v

∂t
= −

(
∂v

∂x
+ f

)
u − ∂

∂ y

(
1

2
v2 + gh

)
+ ν∇2v − cbv;

(2.5)

∂h

∂t
= − ∂

∂x
((h + h)u) − ∂

∂ y
((h + h)v). (2.6)

Here, u and v are the velocity fields in the x and y direc-
tions, respectively, and h the field for the height of the wave.
Also, h is the depth of the ocean, g the gravity constant,
f the Coriolis parameter, cb the bottom friction coefficient
and ν the viscosity coefficient. Parameters h, f , cb and ν

are assumed to be constant in time but in general depend on
the location. The total height of the water column is the sum
h + h.

For square grids, under periodic boundary conditions, the
equations are discretised as

dui, j
dt

= fi, jvi, j − g

2�
(hi+1, j − hi−1, j )

− cbui, j + ν

�2

(
ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j

)

− 1

2�

[(
ui, j+1 − ui, j−1

)
vi, j + (

ui+1, j − ui−1, j
)
ui, j

]
,

(2.7)
dvi, j

dt
= − fi, j ui, j − g

2�
(hi, j+1 − hi, j−1)

− cbvi, j + ν

�2

(
vi+1, j + vi−1, j + vi, j+1 + vi, j−1 − 4vi, j

)

− 1

2�

[(
vi+1, j − vi−1, j

)
ui, j + (

vi, j+1 − vi, j−1
)
vi, j

]
, (2.8)

dhi, j
dt

=

− 1

2�

(
hi, j + hi, j

) (
ui+1, j − ui−1, j + vi, j+1 − vi, j−1

)

− 1

2�
ui, j

(
hi+1, j + hi+1, j − hi−1, j − hi−1, j

)

− 1

2�
vi, j

(
hi, j+1 + hi, j+1 − hi, j−1 − hi, j−1

)
, (2.9)

where 1 ≤ i, j ≤ d, for a typically large d ∈ Z+, with the
indices understood modulo d (hence the domain is a torus),
and some space-step � > 0. Summing up (2.9) over 1 ≤
i, j ≤ d, one can see that the discretisation preserves the
total mass htot := ∑

i, j (hi, j + hi, j ). If we assume that the
viscosity and bottom friction are negligible, i.e. ν = cb = 0,
then the total energy

Etot := 1

2
·

∑

i, j

(
(hi, j + hi, j )u

2
i, j +(hi, j + hi, j )v

2
i, j + g(h2i, j − h2i, j )

)

is also preserved.When the coefficients cb and ν are not zero,
the bottom friction term always decreases the total energy
(the sum of the kinetic and potential energy), while the dif-
fusion term tends to smooth the velocity profile. We denote
the solution of Eqs. (2.7-2.9) at time t ≥ 0 as

x(t) :=
((
ui, j (t)

)
1≤i, j≤d ,

(
vi, j (t)

)
1≤i, j≤d ,

(
hi, j (t)

)
1≤i, j≤d

)
.

The unknown and random initial condition is denoted by
x(0). One can show by standard methods (see Murray and
Miller 2013) that the solution of (2.7-2.9) exists up to some
time Tsol(x(0)) > 0. In order to represent the compo-
nents of x(t), we introduce a vector index notation. The set
I := {u, v, h}×{1, . . . , d}×{1, . . . , d} denotes the possible
indices, with the first component referring to one of u, v, h,
the second component to coordinate i , and the third to j . A
vector index in I will usually be denoted as m or n, e.g. if
m = (u, 1, 2), then xm(t) := u1,2(t).

We assume that the n := 3d2-dimensional system is
observed at time points (tl)l≥0, with observations described
as in Section 2.1. The aim of smoothing and filtering
is to approximately reconstruct x(t0) and x(tk) based on
observations y◦

0:k−1. We note that data assimilation for the
shallow-water equations has been widely studied in the lit-
erature, see (Bengtsson et al. 1981), (Egbert et al. 1994) for
the linearised form and (Lyard et al. 2006), (Courtier and
Talagrand 1990), (Ghil and Malanotte-Rizzoli 1991) for the
full nonlinear form of the equations.
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3 4D-Var with flow-dependent covariance

3.1 Method Overview

Assume that observations y◦
0:k−1 are made at time points

tl = t0 + lh for l = 0, . . . , k − 1, and let T := kh.
The 4D-Var method for assimilating the observations in
the time interval [t0, tk−1] consists of minimising the cost
functional (2.3). Under the independent Gaussian observa-
tion error assumption, −J [x(t0)] is the log-likelihood of the
smoothing distribution, ignoring the normalising constant.
The minimiser of J is the MAP estimator, and is denoted by
x̂0 (if multiple such minimisers exist, then we choose any
of them). A careful choice of the background distribution
is essential, especially in the case when the total number of
observations in the assimilation window is smaller than the
dimension of the dynamical system, where without the prior
distribution, the likelihood would be singular (see Dashti and
Stuart 2016 for a principled method of choosing priors).

To obtain the MAP estimator, we make use of Newton’s
method. Starting from some appropriate initial position x0 ∈
R
n , the method proceeds via the iterations

xl+1 = xl −
(

∂2 J

∂x2l

)−1
∂ J

∂xl
, l ≥ 0, (3.1)

where ∂ J
∂xl

and ∂2 J
∂x2l

denote the gradient andHessian of J at xl ,

respectively. Due to the high dimensionality of the systems
in weather forecasting, typically iterative methods such as
the preconditioned conjugate gradient (PCG) are used for
evaluating (3.1). The iterations are continued until the step
size ‖xl+1 − xl‖ falls below a threshold δmin > 0. The final
position is denoted by x̂∗, and this is the numerical estimate
for x̂0 - with its push-forward M(tk, t0)[x̂∗] then being the
numerical estimate for M(tk, t0)[x̂0].

To apply the iterations (3.1), one needs to compute the
gradient and the Hessian of J (or, more precisely, the appli-
cation of the latter to a vector, which is all that is required
for iterative methods such as PCG). An efficient method for
doing this is given in the next section. In practice, one cannot
apply the above optimisation procedure for arbitrarily large k
due to the non-convexity of the smoothing distribution for big
enough k (due to the nonlinearity of the system). Therefore,
we need to partition the observations into blocks of size k for
some reasonably small k, and apply the procedure on them
separately. The observations in the previous blocks can be
taken into account by appropriately updating the prior distri-
bution. The details of this procedure are explained in Section
3.3. Finally, in Section 1.1 we compare our method with
other choices of flow-dependent background covariances in
the literature.

3.2 Gradient and Hessian calculation

We can rewrite the gradient and Hessian of the cost function
J at a point x(t0) ∈ R

n as

∂ J

∂x(t0)
= B−1

0 [x(t0) − xb(t0)]

−
k−1∑

l=0

M(tl , t0)
T HT

l R−1
l ( yl − y◦

l ),

∂2 J

∂x(t0)2
= B−1

0 +
k−1∑

l=0

M(tl , t0)
T HT

l R−1
l HlM(tl , t0)

(3.2)

−
k−1∑

l=0

(
∂2M(tl , t0)

∂x20

)T

HT
l R−1

l ( yl − y◦
l )

−
k−1∑

l=0

(
M(tl , t0)

T
)2 (

∂2Hl

∂x(tl)2

)T

R−1
l ( yl − y◦

l ). (3.3)

These can be obtained either directly, or by viewing J as
a free quadratic function with (2.1) and (2.2) as constraints.

Let Mi := M(ti , ti−1), then M(tl , t0) = Ml · . . . · M1, so
the sum in the gradient (3.2) can be rewritten as

k−1∑

l=0

M(tl , t0)
T HT

l R−1
l ( yl − y◦

l )

=
k−1∑

l=0

MT
1 · . . . · MT

l HT
l R−1

l ( yl − y◦
l ) (3.4)

The above summation can be efficiently performed as fol-
lows. We consider the sequence of vectors

gk−1 := HT
k−1R

−1
k−1

(
yk−1 − y◦

k−1

) ;
gl := HT

l R−1
l ( yl − y◦

l ) + MT
l+1gl+1, k − 1 > l ≥ 0.

The sum on the right side of (3.4) then equals g0. We note
that this method of computing the gradients forms the basis
of the adjoint method, introduced in Talagrand and Courtier
(1987), see also (Talagrand 1997).

In the case of the Hessian, in (3.3) there are also second-
order Jacobian terms. If x(t0) is close to the true initial
position, then ( yl − y◦

l ) ≈ εl . Therefore in the low-
noise/high-frequency regime, given a sufficiently precise
initial estimator, these second-order terms can be neglected.
Using such Hessian corresponds to the so-called Gauss–
Newton method, which has been studied in the context of
4D-Var in Gratton et al. (2007). Thus, we use the approxi-
mation
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∂̂2 J

∂x(t0)2
:= B−1

0 +
k−1∑

l=0

M(tl , t0)
T HT

l R−1
l HlM(tl , t0)

(3.5)

A practical advantage of removing the second-order terms
is that if the Hessian of the log-likelihood of the prior, B0 is
positive definite, then the resulting sum is positive definite,

so the direction of −
(

∂̂2 J
∂x(t0)2

)−1

· ∂ J
∂x(t0)

is always a direc-

tion of descent (which is not always true if the second-order
terms are included). Note that via the so-called second-order
adjoint equations, it is possible to avoid this approximation,
and compute the action of the Hessian ∂2 J

∂x(t0)2
on a vector in

O(n) time, see (Le Dimet et al. 2002). However, this can be
slightly more computationally expensive, and in our simula-
tions the Gauss-Newton approximation (3.5) worked well.

For the first order terms in the Hessian, for any w ∈ R
n ,

we have

k−1∑

l=0

M(tl , t0)
T HT

l R−1
l HlM(tl , t0)w

=
k−1∑

l=0

MT
1 MT

2 . . . MT
l HT

l R−1
l HlMlMl−1 . . . M1w. (3.6)

We define

wl := Ml . . . M1w, l = 0, . . . , k − 1;

and consider the sequence of vectors

hk−1 = HT
k−1R

−1
k−1Hk−1wk−1;

hl = HT
l R−1

l Hlwl + MT
l+1hl+1, k − 1 > l ≥ 0. (3.7)

Then the sum on the right side of (3.6) equals h0. TheHes-
sian plays an important role in practical implementations of
the 4D-Var method, and several methods have been proposed
for its calculation (see Courtier et al. 1994; Le Dimet et al.
2002; Lawless et al. 2005). Due to computational considera-
tions, usually some approximations such as lower resolution
models are used when computing Hessian-vector products
forKrylov subspace iterative solvers in practice (this is the so-
called incremental 4D-Var method, see Courtier et al. 1994).
Note that it is also possible to use inner and outer loops,
where in the inner loops both the Hessian-vector products
and the gradient are run on lower resolution models, while
in the outer loops we use the high resolution model for the
gradient, and lower resolution model for the Hessian-vector
products. (Lawless et al. 2005) has studied the theoretical
properties of this approximation. In practice, the speedup
from this method can be substantial, but this approximation

can introduce some instability, and hence appropriate tuning
is needed to ensure good performance.

At the end of Sect. 3.3, we discuss how can the incremen-
tal 4D-Var strategy be combined with the flow-dependent
background covariances proposed in this paper.

3.3 4D-Var filtering with flow-dependent covariance

In this section, we describe a 4D-Var-based filtering pro-
cedure that can be implemented in an online fashion, with
observations { y◦

l }l obtained at times tl = lh, l = 0, 1, . . .
(although the method can be also easily adapted to the case
when the time between the observations varies). We first fix
an assimilation window length T = kh, for some k ∈ Z+,
giving rise to consecutive windows [0, tk], [tk, t2k], . . ..

Let the background distribution on x(t0) be Gaussian with
mean xb(t0) and covariance matrix B0. In general, let the
background distributions for the position of the signal at the
beginning of each assimilation window, {x(tmk)}m≥0, have
means {xb(tmk)}m≥0 and covariance matrices {Bmk}m≥0.
There are several ways to define these quantities sequen-
tially, as we shall explain later on in this section. Assuming
that these are determinedwith someapproach,workingon the
window [tmk, t(m+1)k] we set our estimator x̂(tmk) of x(tmk)

as theMAP of the posterior of x(tmk) given background with
mean xb(tmk) and covariance Bmk , and data y◦

mk:(m+1)k−1;
we also obtain estimates for subsequent times in the window,
via push-forward, i.e.

x̂(tl) := M(tl , tmk)[x̂(tmk)],mk ≤ l < (m + 1)k.

Recall that the numerical value of MAP is obtained by the
Gauss–Newton method (see (3.1), with the details given in
Section 3.1).

We now discuss choices for the specification of the back-
ground distributions.Afirst option is to set these distributions
identical to the first one, and set Bmk := B0 and x(tmk) :=
x(t0) (i.e. no connection with earlier observations). A sec-
ond choice (used in the first practical implementations of the
4D-Var method) is to set Bmk := B0 (the covariance is kept
constant) but change the background mean to

xb(tmk) := M(tmk, t(m−1)k)[x̂(tm(k−1))], (3.8)

i.e. adjusting the prior mean to earlier observations. Finally,
one can attempt to update both the mean and the covariance
matrix of the background (prior) distribution, and this is the
approach we follow here.

Note that we still define the background means according
to (3.8). To obtain data-informed background covariances
Bmk , we use Gaussian approximations for a number, say
b ≥ 1, of earlier windows of length T , and appropriately
push-forward these to reach the instance of current interest
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tmk . There are two reasons why we use a fixed b and do
not push-forward all the way from time t0. The first is to
avoid quadratic costs in time. The total computational cost
for our approach up to time mT scales linearly with time for
a fixed b, but if we would start from t0, then we would incur
O(m2) computational cost (or if it is done by storing the
whole covariance matrix directly, then the approach would
have O(d2) memory cost which is prohibitive in practice).
The second reason is that a Gaussian distribution propagated
through nonlinear dynamics for longer and longer intervals
of length bT becomes highly non-Gaussian for large values
of b, so the resulting background distribution can lead to
poorer results than using smaller values of b. Reminiscent
to 4D-Var, at time t(m−b)k we always start off the procedure
with the same background covariance B0. In Paulin et al.
(2018b) it was shown—under certain assumptions—that for
a class of nonlinear dynamical systems, for a fixed observa-
tion window T , if ‖Ri‖ = O(σ 2) and σ

√
h is sufficiently

small (h is the observation time step) then the smoothing and
filtering distributions can indeed be well approximated by
Gaussian laws. Following the ideas behind (3.5), an approxi-
mation of the Hessian of J , evaluated at the MAP given data
y◦
(m−1)k:mk−1, is given as

B−1
(m−1)k + D(m−1)k:mk−1,

where we have defined

D(m−1)k:mk−1 :=
k−1∑

l=0

AT
m−1,l R

−1
(m−1)k+l Am−1,l;

Am−1,l :=
H(m−1)k+lM(t(m−1)k+l , t(m−1)k)[x̂(t(m−1)k)].

If the precision (inverse covariance) of the background were
0, then D(m−1)k:mk−1 would correspond to the Hessian of J
at the MAP, and the smoothing distribution could be approx-
imated by a Gaussian with mean x̂(t(m−1)k) and precision
matrix D(m−1)k:mk−1.Recall the change of variables formula:
if Z ∼ N (m, P−1) inR

n and ϕ : R
n → R

n is a continuously
differentiable function, then ϕ(Z) follows approximately

N

⎛

⎜⎝ϕ(m),

⎡

⎣
((

∂ϕ

∂m

)−1
)T

· P ·
(

∂ϕ

∂m

)−1
⎤

⎦
−1

⎞

⎟⎠ . (3.9)

The quality of this approximation depends on the size of
the variance of Z, and the degree of nonlinearity of ϕ. A way
to consider the effect of the observations in the previous b
assimilation windows is therefore by using the recursion

Bm
(m−b)k = B0;

Bm
(m−b+ j)k

=
[ ((

M(t(m−b+ j)k, t(m−b+ j−1)k)[x̂(t(m−b+ j−1)k]
)T )−1

·
( (

Bm
(m−b+ j−1)k

)−1 + D(m−b+ j−1)k:(m−b+ j)k−1

)

· (
M(t(m−b+ j)k, t(m−b+ j−1)k)[x̂(t(m−b+ j−1)k]

)−1
]−1

,

(3.10)

for j = 1, . . . , b, and set Bmk := Bm
mk , where we have

defined

D(m−b+ j−1)k:(m−b+ j)k−1 :=
k−1∑

l=0

AT
m−b+ j−1,lR

−1
(m−b+ j)k+l Am−b+ j−1,l , j = 1, . . . , b;

Am−b+ j−1,l := H(m−b+ j−1)k+l

·M(t(m−b+ j−1)k+l , t(m−b+ j−1)k)[x̂(t(m−b+ j−1)k)].

Note that similarly to the idea of variance inflation for
the Kalman filter, one could include a multiplication by an
inflation factor (1 + α) for some α > 0 in the definition
of Bm

(m−b)k in (3.10). To simplify the expressions (3.10), we
define

M− j := M(t(m− j+1)k, t(m− j)k))[x̂(t(m− j)k)],
j = 1, 2, . . . , b. (3.11)

The action of B−1
mk on a vector w ∈ R

n can be computed
efficiently as follows. Let

w− j := M−1
− j · · · M−1

−1w, j = 1, 2, . . . , b. (3.12)

We then determine the recursion

B−b := (MT−b)
−1(B−1

0 + D(m−b)k:(m−b+1)k−1)w−b

B− j := (MT− j )
−1(B− j+1 + D(m− j)k:(m− j+1)k−1w− j ),

j = b − 1, . . . , 1. (3.13)

Then it is easy to see that B−1
mkw = B−1.

In order to evaluate the quantities in (3.12) and (3.13)
for the shallow-water equations (2.7)-(2.9), we need imple-
ment the effect of the Jacobians M1, . . . , Mk , their inverses
M−1

1 , . . . , M−1
k , and their transpose for the previous b assim-

ilationwindows.Note thatmultiplyingby D(m−l)k:(m−l+1)k−1

is equivalent to evaluating (3.7) for the appropriate Jacobians;
hence, it is also based on multiplication by these Jacobians,
their inverses and their transposes.

Matrix-vector products of the form M jv and M ′
jv can

be computed by the tangent linear model, and by the
adjoint equations, respectively. When computing matrix-
vector products of the form M−1

j v and (M−1
j )′v, we need
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to run the tangent linear model backward in time, while the
adjoint equations forward in time. It is important to note that
while normally this would lead to numerical instability if
done for a long time period (as the shallow-water equations
are dissipative), this is not a problem here as we only run
them over short time periods, the time between two observa-
tions (even shorter time periods could be possible if needed
by breaking the Jacobians into products of Jacobians over
shorter intervals). The initial point of these backward runs
of the original equation (and forward runs of the adjoint
equation) is always based on a forward run of the original
equation; hence, the instability is avoided. For the shallow-
water equations, the Jacobians M j can be stored directly in
a sparse format; see Appendix for more details (this reduces
the need to use theODE solvers repeatedly during the optimi-
sation steps; however, this is not necessary for the method to
work as we can always use the adjoint/tangent linear solvers
directly as described above).

Our method is based on the forward and adjoint equa-
tions of the model. The computational cost of using these
b previous intervals in each iteration of our proposed flow-
dependent 4D-Var methodology (requiring the calculation of
the gradient of the cost function J , and the and the product of
itsHessianwith a vector) is atmost O(b) timesmore than just
using the observations in the current window. The key idea
behind the choice of the precision matrices (3.10) is that we
approximate the likelihood terms corresponding to the obser-
vations in the previous windows by Gaussian distributions,
and then propagate them forward to the current time position
via the Jacobians of the dynamics according to the change of
variables formula (3.9). This allows us to effectively extend
the assimilation time T to (b + 1)T , but without the non-
convexity issue that would occur if it would be extended
directly (this was confirmed in our simulations). Moreover,
the choice (3.10) introduces a strong linkage between the
successive assimilation windows, and effectively allows the
smoothing distribution to rely on two sided information (both
from the past and the future), versus one-sided information
if one would simply use a longer window of length (b+1)T .

In fact, this was confirmed during our simulations, and we
have found that increasing T beyond a certain range did not
improve the performance, while increasing b has resulted in
an improvement in general up to a certain point.

We note that the incremental 4D-Var strategy of Courtier
et al. (1994) can be implemented here as follows. In the inner
loops, we compute the gradient ∂ J

∂x(t0)
using the adjoint equa-

tions with lower resolution models (see (3.2)) . The Hessian-
matrix products required to compute the B−1

0 [x(t0)−xb(t0)]
term in the gradient from the flow-dependent matrix covari-
ances can also be computed using lower resolution models.
For the Hessian-matrix products in the iterative Krylov sub-
space solvers, we can always use the lower resolution model.

In contrast with this, in the outer loops, when computing
the gradient ∂ J

∂x(t0)
we always need to use the highest resolu-

tionmodel (including in Hessian-matrix products required to
compute the B−1

0 [x(t0) − xb(t0)] term in the gradient). The
Hessian-matrix products for the iterative solvers can still be
computed on lower resolution models.

4 Simulations

In this section, we are going to illustrate the performance of
our proposed method through simulation results. As a com-
parison, we also apply the Hybrid 4D-Var method on the
same datasets as these form the basis of most currently used
data assimilation systems (see Clayton et al. 2013, Lorenc
et al. 2015). Section 5 of Kalnay (2003), (Evensen 2009)
and Sections 7-8 of Reich and Cotter (2015) offer excellent
introductions to standard data assimilation methods such as
4D-Var and ENKF and its variants.

We consider two linear observation scenarios. In both of
them, it is assumed that the observations happen in every h
time units and that the linear observation operators Hi are the
same each time, represented by a matrix H ∈ R

n◦×n . The
scenarios are as follows.

1. We observe the height h at every gridpoint 1 ≤ i, j ≤ d,
and the velocitiesu andv at selected locationswith spatial
frequency r in both directions for a positive integer r .
All of the observation errors are i.i.d. N (0, σ 2) random
variables.

2. We observe the height h at selected locations with spatial
frequency r in both directions for a positive integer r .
All of the observation errors are i.i.d. N (0, σ 2) random
variables.

The motivation of using these scenarios is that the heights
are in general easier to observe than the velocities (for exam-
ple, by satellite altimetry). In the following experiments, we
are going to compare the performance of our proposed 4D-
Var method using flow-dependent background covariances
with the Hybrid 4D-Var method. In Sect. 4.1, we use syn-
thetic data, while in Sect. 4.2 we use data from the tsunami
waves after the 2011 Japan earthquake. Note that we did not
have access to observations over multiple locations at multi-
ple time points, only an estimate of the initial position of the
ocean surface after the earthquake.We ran our shallow-water
model initiated from this estimate and then generated obser-
vations from the model to be fed into the data assimilation
systems.

Data assimilation methods are often evaluated in the lit-
erature over long time periods using real data, and their
performance is reaching some sort of stationary. While using
longer time periods is natural, the shallow-water equations
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are unstable and so are their discretised version. The solu-
tion blows up after a while, and we are not able to use these
equations directly for periods longer than 10 days. A stan-
dard practice in the literature is to modify the dynamics
using a filter that smooths out the high-frequency compo-
nents and removes the instability from the system (see Laible
and Lillys 1997). We have tried to add a similar filter for
our discretisation scheme, and this managed to stabilise the
process, so it could run for a longer period. Nevertheless,
this somewhat arbitrary modification means that all 4D-Var-
based approaches that rely on the likelihoodusing the original
discretisation of the shallow-water equations (without the fil-
tering part) seemed to be significantly less accurate when
applied to the data generated by the filtered equations. We
believe that this is due to the fact that the model is mis-
specified in this case, so we cannot expect the same level of
performance as before. None of the methods for generating
flow-dependent covariances seemed to have outperformed
simple fixed diagonal background covariances in these exper-
iments. The arbitrary filtering step dramatically impacts the
results. Due to this, in the absence of real data, we believe
that using theoriginal dynamics over shorter periods (where it
can be evaluated without resorting to filters) is a more appro-
priate way to evaluate the performance of data assimilation
methods on the shallow-water equations. We have used this
approach in the paper.

Our flow-dependent 4D-Varmethod is fully deterministic;
hence, the simulation results would be exactly the same if
we ran them again on the same dataset. The Hybrid 4D-Var
method is using at least 100 particles in our implementation,
which is sufficient to ensure good stability, and we did not
detect significant variability in the results over multiple runs.

4.1 Comparison based on synthetic data

First, we compare the performance of various methods using
synthetic data. The shallow-water equations were solved on
the torus [0, L]2 with L = 210km. The initial condition
U(0) := (u(0), v(0), h(0)), ocean depth H and other ODE
parameters were chosen as follows:

u(0) = 0.5 + 0.5 sin( 2π(x+y)
L ),

v(0) = 0.5 − 0.5 cos( 2π(x−y)
L ),

h(0) = 2 sin( 2πx
L ) cos( 2π y

L );
H = 100 + 100(1 + 0.5 sin( 2πx

L ))(1 + 0.5 sin( 2π y
L ));

ν = 10−3, cb = 10−5, g = 9.81, f = 10−4.

The discretised versions of the initial condition and the
ocean depth were obtained under the choices d = 21,
� = 10km. In the first observation scenario, we have chosen

the spatial frequency of the velocity observations as r = 3
(giving 49 velocity observations). All of the heights are also
observed. Observations are made every 10 seconds, the total
observation time is 1 day, and the observation errors had
standard deviation σ = 10−2.

In the second observation scenario, we have chosen the
spatial frequency of the height observations as r = 3 (giving
49 height observations). Velocities are not observed. Obser-
vations are made every 60 seconds, the total observation time
is 10 days, and the observation errors had standard deviation
σ = 10−2.

For the Hybrid 4D-Var, we have used localisation, as
described in Section 8.3 of Reich and Cotter (2015). This

localisation matrix was chosen as (C)kl = ρ
(
rl,l
rloc

)
, where

rk,l denotes the spacial distance on the torus between two
gridpoints k and l, and ρ is the filter function describing the
decay of correlations, and rloc is the localisation radius. The
filter function in the localisation was chosen according to
equation (8.29) of Reich and Cotter (2015) as

ρ(s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − 5
3 s

2 + 5
8 s

3 + 1
2 s

4 − 1
4 s

5

for 0 ≤ s ≤ 1
− 2

3 s
−1 + 4 − 5s + 5

3 s
2 + 5

8 s
3 − 1

2 s
4 + 1

12 s
5

for1 ≤ s ≤ 2
0

otherwise.
(4.1)

We have also used multiplicative ensemble inflation, as
described inSection 8.2 ofReich andCotter (2015). This con-
sists of rescaling the ensemble members around their mean
by a factor 1 + cinf for some cinf > 0. Finally, the clima-
tological covariance B0 and mean were estimated from the
true unobserved path of the system during the total assimi-
lation time (1 day in our first experiment, and 10 days in our
second). This is typically estimated from past data, or by run-
ning the model over longer time periods (see Fairbairn et al.
2014), but this was not possible as the nonlinear shallow-
water equations suffer from numerical instabilities over long
time periods (due to the breaking waves phenomenon). The
initial ensemble was sampled from a Gaussian distribution
corresponding to the estimated climatological mean, and cli-
matological covariance. We have used hybridisation, so the
ensemble-based flow-dependent covariances were combined
with the climatological covariances according to a hybridis-
ation parameter chyb ∈ [0, 1].

Table 1 states the values of the localisation radius, mul-
tiplicative inflation, and hybridisation parameters that we
tested in agrid search for twoexperiments. In total, 3×3×6 =
54 different values were tested, with chyb = 0 corresponding
to 4DEnVar.
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Table 1 Tested parameter values for Hybrid 4D-Var

Parameter & Experiment Synthetic 1 day Synthetic 10 days Tsunami

rloc (localisation) 2,3,4 2,3,4 2,3,4

cinf (inflation) 2.5 · 10−4, 5 · 10−4, 10−3 5 · 10−4, 10−3, 2 · 10−3 0.01, 0.02, 0.03

chyb (hybridisation) 0, 0.1, 0.3, 0.5, 0.7, 0.9 0, 0.1, 0.3, 0.5, 0.7, 0.9 0, 0.1, 0.3, 0.5, 0.7, 0.9

Ensemble size 200 200 100

Fig. 1 Relative errors of velocity estimates in the case of synthetic data
for all methods. Setting: d = 21, k = 1080, T = 3h, σ = 10−2,
� = 104, 10 seconds between observations. The 4D-Var and Hybrid
4D-Varmethods process the data is batches of size k; hence, the filtering
accuracy is poor until we have reached the end of the first observation
window. The best parameter values for Hybrid 4D-Var were rloc = 4,
chyb = 0, cinf = 2.5 · 10−4 (see Table 1 for all of the parameter values
that we tested).

In the case of the proposed 4D-Var method with flow-
dependent background covariances, the initial covariance B0

was chosen as a diagonal matrix. The assimilation window T
was chosen as 3 hours (which offered the best performance
for fixed background covariance). Figure 1 illustrates the
performance of the various methods in the first observation
scenario for the 1 day run case.

The 4D-Var method was optimised based on the Gauss-
Newton method with preconditioned conjugate gradient
(PCG)-based linear solver. We did not use any precondi-
tioner, and the maximum number of iterations per PCG step
was set to 100 (which was sufficient for reducing the relative
residual below 0.01 in most cases). In the Hybrid 4D-Var
method, we used a hybrid version of the ENKF based on
fixed covariances (i.e. a linear combination of them), and the
optimisation was done in a similar way as for the 4D-Var
method. All of the methods were implemented in Matlab
and ran on a single node of the Oxford ARC Arcus-B HPC
cluster (16 cores per node). The measure of performance is

the relative error of the unobserved component at a certain
time t , i.e. if w(t) ∈ R

n−n◦
denotes the true value of the

unobserved component, and ŵ(t) ∈ R
n−n◦

is the estimator,
then ‖ŵ(t) − w(t)‖/‖w(t)‖ is the relative error (‖ · ‖ refers
to the Euclidean norm).

We have also repeated the experiment in the more chal-
lenging second observation scenario. Figure 2a shows the
performance of 4D-Var with a fixed background covariance
matrix with varying window sizes T = 3h, 6h, 9h, 12h and
18h. In the case of 12h and 18h, we have used the idea of
Pires et al. (1996) to first find the optimum for shorter win-
dows and then gradually extend the window length to T to
avoid issues with non-convexity. This has resulted in a better
optimum at the cost of longer computational time (it did not
make a difference at shorter window lengths). Overall, we
can see that the T = 12h has the best performance, but the
computational time is longer than for T = 9h (as we in fact
first find the optimum based on the first half of the observa-
tions in the window, and then continue with the other half).
At T = 18h, the performance diminishes due to the non-
convexity of the likelihood, and even the gradual extension
of the window length fails to overcome this problem.

Figure 2b compares the performanceof ourmethod (based
on T = 9h, but with choices of b from 1 to 5) with 4D-Var
with fixed window length (T = 12h), ENKF andHybrid 4D-
Var. For this synthetic dataset, our 4D-Var-basedmethodwith
b = 3 offered the best performance. b = 4 was similar but
with higher computational cost, and b = 5 resulted in worse
performance, likely due to the nonlinearity of the system.
We can see that using observations in earlier assimilation
windows to update the background covariance matrix in a
flow-dependent way is very beneficial, with relative errors
reduced by as much as 70-90% compared to using a fixed
background matrix.

To better understand the reason for this improvement in
performance, in Figure 3 we have plotted the average corre-
lations in background covariances between the components
at a given distance, in the cases b = 1, 2, 3, for the first
observation scenario computed at the last observation win-
dow (after 24 hours). As we can see, as b increases, the
background covariance matrix changes and becomes less-
and-less localised.
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(a)

(b)

Fig. 2 Relative errors of velocity estimates for synthetic data with
observation scenario 3. Setting: d = 21, σ = 10−2, � = 104, 60
seconds between observations. Figure 2a shows the performance of
4D-Var with fixed covariance matrix for different time lengths. Figure
2b compares the performance of our method with Hybrid 4D-Var. The
best parameter values for Hybrid 4D-Var were rloc = 2, chyb = 0,
cinf = 5 · 10−4 (see Table 1 for all of the parameter values that we
tested) .

The performance of the Hybrid 4D-Var was quite good,
and it considerably improved upon using a fixed background
covariance matrix, but nevertheless our method still had sig-
nificantly better accuracy, especially in second observation
scenario which involved data assimilation over a longer time
period (10 days) with less frequent observations. We believe
that this increase in accuracy is due to the more accurate
modelling of background covariances, which become less-
and-less localised over longer time periods.

Fig. 3 Correlation decay in flow-dependent background covariances
for different values of b. Setting: d = 21, k = 540, T = 9h, σ = 10−2,
� = 104, observation scenario 2.

4.2 Comparison based on tsunami data

The shallow-water equations are applied in tsunami mod-
elling. (Saito et al. 2011) estimate the initial distribution of
the tsunami waves after the 2011 Japan earthquake. They use
data from 17 locations in the ocean, where the wave heights
were observed continuously in time.We have used these esti-
mates as our initial condition for the heights and set the initial
velocities to zero (as they are unknown).Usingpublicly avail-
able bathymetry data for h, and the above described initial
condition, we have run a simulation of 40 minutes for our
model, see Fig. 4. We have tested the efficiency of the data
assimilation methods also on this simulated dataset, consid-
ering a time interval from 10 to 40 minutes (thus the initial
condition corresponds to the value of the model after 10 min-
utes and is shown in Fig. 4b). Due to the somewhat rough
nature of the tsunami waves, in this example we have found
that setting the background precision (inverse covariance)
matrix B−1

0 as zero offered the best performance for the pro-
posed 4D-Var method, while we used a diagonal matrix for
the Hybrid 4D-Var method. The localisation and ensemble
inflation was implemented as described in Sect. 4.1, with
the tested parameter values shown in Table 1. The 4D-Var
method was optimised based on the Gauss-Newton method
with preconditioned conjugate gradient (PCG)-based linear
solver without any preconditioner, and themaximumnumber
of iterations per PCG step was set to 500.

Figure 5 compares the performance of themethods for this
synthetic dataset implemented for grid size d = 336 (so the
dimension on the dynamical system is n = 3d2 = 338, 688)
in the first observation scenario, where the spatial frequency
of the velocity observations was chosen as r = 48 (i.e. 7·7 =
49 velocity observations in total).
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(a) (b)

(c) (d)

(e)

Fig. 4 Evolution of the height of the tsunami waves (in meters) at 0,
10, 20, 30, and 40 mins (for grid size d = 336).

Fig. 5 Relative error of estimates of velocities for tsunami data in the
first observation scenario, all methods. Setting: d = 336, k = 30,
T = 30mins, σ = 10−2. The best performance for hybrid Hybrid 4D-
Varwas obtained by only using the fixed background covariancematrix;
hence, the performance and running time is equivalent to 4D-Var with
b = 0 (see Table 1 for all of the parameter values that we tested).

As in the previous synthetic example, the proposed 4D-
Var-based method offers the best performance. Note that the
best performance of the Hybrid 4D-Var was achieved when
we have used only a fixed background covariancematrix, and
coefficient for the ENKF-based background covariance is set
to zero in the hybridisation (see Table 1 for the tested parame-
ter values for hybridisation, inflation and localisation). Hence
in this complex highly unstable situation the ENKF-based
background covariances did not help, while our proposed
flow-dependent covariances improved the precision of the
velocity estimates when using b = 1 and b = 2.

5 Conclusion

In this work, we have presented a new method for updating
the background covariances in 4D-Var filtering and applied it
to the shallow-water equations. Our method finds the MAP
estimator of the initial position using the Gauss-Newton’s
method with the Hessian matrix stored and the background
covariances obtained in a factorised form. Our method is
computationally efficient andhasmemory and computational
costs that scale nearly linearly with the size of the grid.

4D-Var-based methods are less directly parallelisable
compared to ENKF as the optimisation steps and the ODE
solver steps are indeed inherently serial. Hence in a parallel
environment, it is likely that the background covariance part
of the Hybrid 4D-Var can be computed significantly faster
using the ENKF-based methods compared to the proposed
method. However, we have shown in the experiments that
the method proposed by this paper can be significantly more
accurate in the perfect model scenario for the shallow-water
equations. Moreover, both Hybrid 4D-Var and the proposed
method use the same computations based on adjoint equa-
tions and tangent linear model for the data in the current
assimilation window (they only differ in formulation of the
flow-dependent background covariances). The total compu-
tational time of the background covariances takes typically
at most factor of b times longer than the computations for the
data in the current window, and thus the proposed method is
not overly computationally expensive.

It remains to be seen if the improvements in accuracy for
the proposed method also hold in more complex weather
forecasting models, in the presence of some model error.
Our hope is that the proposed method could yield significant
improvements in accuracy in some challenging data assim-
ilation scenarios where modelling covariance localisation is
difficult, without the need of extensive tuning.

TheMatlab code for the experiments is available at https://
github.com/paulindani/shallowwater.
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A sparse storage of Jacobians for shallow-
water dynamics

In this section,we explain a possiblemethod for the computa-
tion and storage of the Jacobians Mi , 1 ≤ i ≤ k specifically
for the case of the shallow-water Eqs. (2.7-2.9). For other
equations, itmight be the case that storing (Mi )1≤i≤k directly
as follows is not practical because the interaction between the
components is not local and the Jacobianmatrix is not sparse.
In such cases, we can still apply the tangent-linear and adjoint
equations for computing thematrix-vector products Miv and
MT

i v, as explained in Sect. 3.3.
One can observe that time derivatives at a grid position

only depends on its grid neighbours. Moreover, the shallow-
water equations are of the general form dx

dt = −Ax −
B(x, x) + f , where A is an n × n matrix, B is a n × n × n
array, and f is a constant vector in R

n (note that for the
shallow-water Eqs. (2.7-2.9), we have f = 0). For equations
of this form, there is an efficient way of calculating the time
derivatives and their Jacobians, stated in equations (3.14) and
(3.16) of Paulin et al. (2018b). Based on these, one can use
Taylor’s expansion to compute the Jacobian M(t, s)[x(s)],
that is

M(t, s)[x(s)] ≈ In +
lmax∑

l=1

∂
(

dl

dtl
M(t, s)[x(s)]

∣∣∣
t=s

)

∂x(s)
· (t − s)l

l! ,

(A.1)

for some lmax > 0. Due to the fact that the first derivatives
only contain terms from neighbouring gridpoints, it is easy to
see that the above approximation only has nonzero elements
for gridpoints that are no more than lmax steps away. This
means that as long as t − s is sufficiently small, the Jacobian

M(t, s)[x(s)] can be stored as a sparse matrix with O(n)

nonzero elements. If the time interval between the obser-
vations is sufficiently small, then each of M1, . . . , Mk can
be stored as a single sparse matrix defined by (A.1). The
inverse of the Jacobian satisfies that (M(t, s)[x(s)])−1 =
M(s, t)[x(t)], so it can be calculated by (A.1) with terms
(s − t)l instead of (t − s)l and x(t) instead of x(s).

At this point, we note that one could attempt to use the
Jacobians M(tl , t0) directly. However, for l � n, storing
the Jacobians M1, · · · , Ml separately requires O(nl) mem-
ory, and the effect of MlMl−1 · · · M1 on a vector can be
evaluated in O(nl) time, while for 2D lattices, the product
Ml · · · M1 would require O(nl2) memory, and its effect on
a vector would require O(nl2) time to evaluate (for 3D lat-
tices, it would incur up toO(nl3)memory and computational
cost). For the same reason, for longer time intervals between
observations, it is more effective to break the interval into
r > 1 smaller blocks of equal size, and store the Jacobians
corresponding to each of them. In this case, when applying
the Jacobian Ml on a vector, the result can computed as the
product of the Jacobians for the shorter intervals.
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