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Abstract 

Heritage model calibration and validation are crucial for decreasing uncertainty and enhancing the robustness of 

simulation results and conservation interventions. Yet, hygrothermal modelling methodologies are marked by significant 

heterogeneity and lack of robustness. Aiming to provide a solution for the drawbacks identified, this study puts forth a 

comprehensive hygrothermal modelling methodology. Following the in situ data collection of a subset of heritage 

buildings, 22 vernacular dwellings in Southern Portugal, a three-step method was developed, consisting of: Morris 

sensitivity analysis, optimisation-based calibration, and validation and multi-criteria decision-making (MCDM). A 

genetic algorithm multi-objective optimisation-based calibration with NSGA-II was implemented for simultaneously 

minimising the statistical indicators RMSE and MAE for the indoor air temperature of the winter and summer models. 

The validation and MCDM were conducted by means of threshold compliance and Compromise Programming. NSGA-II 

found Pareto frontiers composed of nine and six optimal solutions for the summer and winter models, respectively, in 

nearly three hours each. All optimal solutions significantly decreased the RMSE and MAE, especially in the summer 

model, regarding the baseline data. The final solutions selected after the MCDM resulted in an accuracy improvement of 

51 % and 54 % for the RMSE and MAE for the winter model and 80 % and 81 % for the RMSE and MAE in the summer 

model, compared to the baseline models. The strong correlation found between the calibrated models and the measured 

data along with the enhancement of calibrated data regarding the baseline model, highlighted the potential of using GAs 

to obtain calibrated vernacular models that robustly predict real building performance and foster better retrofitting 

decision-making. 

 

Keywords: Simulation model calibration; Hygrothermal model validation; Vernacular dwellings; Genetic algorithm; 

Multi-objective optimization. 
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1. Introduction 

 

Vernacular dwellings are inherently linked to their environmental context and available resources, and built to meet 

specific needs using traditional technologies while accommodating the values, economies, and ways of life of the cultures 

that produce them [1,2]. Currently, the dynamic thermal simulation of these types of dwellings is an expanding research 

field with extensive potential for, inter alia, obtaining long-term performance predictions, performing sensitivity and 

parametric analyses, and examining climate change resilience and its impact on thermal comfort [3,4]. Since the research 

interest on this topic peaked in 2014, 26 studies have been published on modelling vernacular dwellings [5–34], of which 

19 focus on thermal comfort evaluation [6,11,14–17,21,22,35–45] by combining simulation and in situ monitoring, with 

EnergyPlus via the DesignBuilder interface being by far the most employed [4]. Moreover, a systematic review of 

vernacular dwellings’ climate responsiveness was recently published, confirming the research trend of coupling fieldwork 

with simulation for evaluating climate responsiveness and the effectiveness of strategies, with EnergyPlus via 

DesignBuilder being the main simulation software, followed by Ecotect, Phoenics and eQuest [46]. In addition, two 

publications contributed to the analysis of research challenges and recommendations in dynamic thermal and 

hygrothermal simulation and validation of historical buildings [3,47]. 

The thermal simulation of vernacular dwellings presents specific challenges linked with a lack of consistent validation 

methodology or guidelines for hygrothermal model calibration, input-data dependent model accuracy, the gap 

between modelled and actual conditions, and software limitations for modelling complex vernacular architecture 

elements [4]. An inaccurate modelling stage may lead to inappropriate conclusions and interventions, which in turn 

misinform the indoor thermal comfort assessment and the retrofitting decision-making process [47]. In this regard, 

thorough model calibration and validation are crucial for decreasing uncertainty and enhancing the robustness of the 

simulation results, as would be the scientific consensus on standard key parameters. 

Currently, ASHRAE Guideline 14-2014 [48] stands out as the most followed validation method, suggesting two main 

statistical indicators for model validation according to hourly or monthly data: the Coefficient of Variation of the Root-

Mean-Square Error ((CV)RMSE) and the Mean Bias Error (MBE) or the Normalised Mean Bias error (NMBE). 

 
Abbreviations: CoP: Coefficient of performance; CP: Compromise Programming; (CV)RMSE: Coefficient of Variation 

of the Root-Mean-Square Error; GA: Genetic Algorithm; IAQ: Indoor Air Quality; LV1/2: Level 1/2; MAE: Mean 

Absolute Error; MBE: Mean Bias Error; MCDM: Multi-criteria decision-making; MOEAs: multi-objective evolutionary 

algorithms; MOO: Multi-objective optimisation; NMBE: Normalised Mean Bias Error; NSGA-II: Non-dominated 

Sorting Genetic Algorithm; RH: Relative Humidity; RMSE: Root Mean Square Error; SA: Sensitivity Analysis; SVV: 

São Vicente e Ventosa; Ta: Air temperature; Tg: Globe Temperature; Tmrt: Mean Radiant Temperature; Ts: Surface; Va: 

Air velocity. 
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Alternatively, the FEMP [49] and IPMVP [50] criteria may be adopted for validating building simulation models. All 

three guidelines take an energy-based approach to the validation process. Thus, thermal comfort studies in vernacular 

dwellings default to adapting the criteria for predicted energy consumption, using the monitored environmental 

parameters in place of the energy data [4,47], leading to a high degree of dispersion amongst vernacular modelling 

studies, with no clear framework, and heterogeneity of indexes, control parameters, validation periods and 

thresholds. This hampers the comparative analysis and replicability of findings in this field [51], increases uncertainty, 

and impacts trust in research, stressing the need for heritage-adequate indexes. Moreover, the most used statistical 

indicators for model validation in vernacular dwellings present some drawbacks related to the error cancellation effect 

and results dependent on the dataset scale due to the normalisation process, leading to possible misinterpretation 

[47,52,53]. Additionally, these indicators have recently been suggested as unsuitable for heritage buildings [47], 

finding that the combination of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) would be 

more reliable, i.e. allowing to avoid misinterpretation due to the normalisation process and with RMSE, in particular, 

having a high sensitivity to the amplitude of residuals which can be more suitable to heritage buildings [47]. Moreover, 

based on the review conducted in [4], a robust and time-efficient hygrothermal calibration technical process is yet to 

be explored in vernacular dwellings modelling research, and by the same token, to the best of the authors’ knowledge, 

simultaneously targeting the minimisation of the gap between modelled and monitored data through two heritage-

adequate error indexes is yet to be conducted in this type of buildings.  

Thus, further research is essential through studies focusing on modelling vernacular dwellings and their accurate and 

efficient calibration and validation, to help bridge the modelled-real performance gap. Research developing a 

common framework based on heritage-adequate error indexes would be essential for furthering the robustness of 

this research niche, by obtaining accurately validated models, which would allow to determine adequate 

interventions with real-world implications at the heritage conservation level. 

 

1.1. Aim and objectives  

 

The present study is part of a larger study [54,55] assessing rural vernacular dwellings established in São Vicente e 

Ventosa (SVV), Alentejo, Portugal. Its overarching purpose is to put forth a modelling and hygrothermal calibration and 

validation framework for vernacular dwellings, which could contribute towards overcoming the main issues identified in 

previous studies. 

 

In achieving this goal, the following specific objectives were set: 

i. Building the case studies baseline models fed with in situ data from the as-built survey, environmental and 

thermophysical monitoring, and occupant surveying; 
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ii. Conducting a Sensitivity Analysis (SA) to ascertain the models’ parametric effect on the statistical error indicators 

MAE and RMSE regarding indoor air temperature and, thus, reducing the number of parameters for the optimisation-

based calibration; 

iii. Carrying out a multi-objective optimisation-based calibration of the models simultaneously targeting the minimisation 

of the heritage-adequate indexes MAE and RMSE, using GA; 

iv. Validating the models based on accuracy threshold compliance regarding the error indicators MAE and RMSE and 

the Residuals Frequency Analysis, based on indoor air temperature, surface temperature, and Relative Humidity; 

v. Conducting Pareto multi-criteria decision-making via Compromise Programming to obtain the final calibrated and 

validated models.  

2. Materials and methods 

 

The case studies as-built survey, in situ environmental and thermophysical monitoring, and occupant surveying conducted 

prior to the modelling stage were described in depth in [54,55]. Figure 1 illustrates the methodology developed for 

modelling the case studies. 
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(1) OTa: Outdoor Air Temperature; Ta: Indoor Air Temperature; RH: Relative Humidity; Ts: Surface Temperature; Tg: 

Globe Temperature; Tmrt: Mean Radiant Temperature; Va: Air Velocity; Lux: Natural illuminance; IAQ: Indoor Air 

Quality; dB: Sound level; U-value EW: Thermal Transmittance of the external walls; (2) Ta, RH, and Va; (3) Tmrt; (4) IAQ, 

Lux, dB; (5) Lux; (6) U-value; (7) MCDM: Multi-criteria Decision-Making; (8) Fi: Residuals Frequency Analysis.  

 

Fig.1. Methodology developed for the hygrothermal modelling of the vernacular case studies. 

2.1. Brief description of the case studies 

The vernacular case studies are established in SVV, which is characterised by a temperate climate, with dry and hot 

summer, sub-type Csa of the Köppen Climate Classification [56]. The typical case study layout (70 % of the case studies) 

is a rectangular floor plan with average dimensions of 6.00 m x 10.00 m, divided into two main spaces: a sleeping space 

and a living space, where all indoor activities take place. The heavy thermal mass walls built in limestone and earth 

masonry with lime wash finish have an average thickness of 0.60 m. The roof is composed of single hollow clay bricks 

and Arabic tiles, and the ground is made of ceramic floor tiles. The significantly-sized fireplace and chimney play a 

predominant role in the case studies and their lack of windows in all walls are amongst their key bioclimatic features. 

Further details can be found in [54]. 

 

2.2. In situ monitoring and surveying 

22 vernacular dwellings were selected for the as-built survey, summer and winter in situ monitoring (three months), and 

occupant surveying. The criteria for selection were the following: i. representativeness of regional vernacular dwellings 

and their bioclimatic strategies; ii. preservation of traditional building elements, including the façade’s integrity; iii. 

residential occupancy; iv. physical condition. To this end, a photographic survey of the façades of the entire settlement 

was carried out, resulting in 75 preliminary options, which decreased to 22 final ones due to additional considerations, i.e. 

access denied by occupants, abandonment or construction work; absence of occupants; modified indoor space and 

construction systems. The parameters measured included outdoor and indoor air temperature (Ta), relative humidity (RH), 

globe temperature (Tg), surface temperature (Ts), air velocity (Va), illuminance, indoor air quality (IAQ), and sound level. 

The survey focused on thermal perception and acceptability, and IAQ and illuminance. The respective methodologies and 

findings were discussed in [54,57] and the details of the measurements conducted are listed in the Appendix A. 

The summer in situ experimental measurements of the U-values were measured on south-west-facing external walls, 

simultaneously with the Ts, Ta, and outdoor air temperature monitoring, in three case studies, for 72 hours, duly shielded 

against thermal radiation, ventilated, and mounted so as to ensure a result representative of the whole element, as 

established in ISO 9869-1:2014 [58]. No previous thermographic investigation was conducted as acknowledged in the 

limitations section of the paper. The measurement was conducted with a calibrated Multifunction Testo 435-2 probe with 

a triple sensor system for the wall temperature, which computes the U-value according to the ISO 6946:2017 [59]. The 
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three-day monitoring time was established according to ISO 9869-1:2014, as the walls met the condition of thermal 

stability before and during the measurement, which was verified with the probe [58,60].  

 

2.3. Baseline model settings 

 

The baseline model was built for the most common strategies used in the case studies for coping with heat in the cooling 

season and cold in the heating season, i.e. natural ventilation supplemented by mechanical ventilation, and electric 

heating, respectively, as evidenced in the monitoring stage [54], and based on the typical case study described in section 

2.1.. Starting from the as-built survey technical drawings in Autodesk AutoCAD, the models were developed with 

EnergyPlus v8.9.0. via DesignBuilder v6.1.6., due to being the most employed software for modelling vernacular 

dwellings [4]. Table 1 summarises the input data of the models informed by the in situ monitoring and physical survey.  

Regarding weather data, and despite its considerable impact on the simulation outputs’ accuracy, the overwhelming 

majority of vernacular modelling studies use the nearest reference weather station template with historical meteorological 

national data, contributing to increased uncertainty and model inaccuracies [4,36]. In this study, the authors used 

Elements v1.0.6., an open-source cross-platform software tool to edit custom weather files for building modelling, to edit 

the EnergyPlus Weather File of the case studies’ nearest station (Badajoz) according to the outdoor data collected in situ. 

Figure 2 displays the comparison between the edited weather file informed by the in situ weather data measurements and 

the Badajoz weather station template. 

 

Fig. 2. Comparison between Badajoz’s template weather file and the edited weather file informed by the in situ climate 

data measurements in SVV, in winter (top) and summer (bottom). 

 

2.4.  Model calibration and validation 
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A three-step approach illustrated in Fig. 1, and whose technical mechanisms are detailed in Fig. 3, was implemented for 

validating the case study models, composed of: sensitivity analysis, calibration and validation, and multi-criteria decision-

making (MCDM). 

2.4.1.  Sensitivity analysis (SA) 

 

The Morris SA [61] was conducted to reduce the calibration parameters. Exploring the full input space (1.073.741.824 

possible iterations) with EnergyPlus’s parametric shell, i.e. jEPlus, proved to be computationally-prohibitive. Thus, the 

Morris or elementary effects method, based on the One-at-a-Time (OAT) design [62] for global SA, was chosen for being 

the most used in building performance [63–68], providing greater reliability and a more comprehensive impact of input 

uncertainty on output performance than local SA methods [69–72], and a good accuracy-efficiency trade-off [68]. The 

main aim was to ascertain the models’ parametric effect on the statistical error indicators MAE and RMSE regarding 

indoor air temperature (Ta). Ta was selected over RH due to the latter’s dependency on the former. As mentioned in the 

introductory section, the most used indexes for vernacular model validation have been deemed unsuitable for 

hygrothermal model validation of heritage buildings.  
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Table 1. Summary of the baseline models settings. 

 

Settings Parameters Input data Source of baseline data 

General settings Weather data Modified EPW template In situ long-term monitoring [54] 

 Geometry Drawn in AutoCAD As-built survey [39] 

 Air velocity 0.15 m/s In situ long-term monitoring 

 Calculation options 4 time steps for naturally-conditioned models Software recommendation 

  6 time steps for mechanically-conditioned ones Software recommendation 

Construction settings    

External and internal walls Thickness (m) 0.60 As-built survey; in situ experimental measurement; Portuguese tradicional 

L1 Lime sand render; L2 Soft U-value (W/m2.K) 1.273 (EW) / 1.172 (IW) construction systems handbook [73]; ISO 10456 [74]; ISO 9869-1:2014 [58] 

limestone and earth gravel masonry; R-value (m2.K/W) 0.786  

L3 Lime plaster    

    

Roof Thickness (m) 0.12 Portuguese traditional construction systems handbook; ISO 10456 

L1 Single hollow clay Arabic tile; U-value (W/m2.K ) 3.13  

L2 Lime mortar; L3 Arabic tile R-value (m2.K/W) 0.345  

    

Ground Thickness (m) 0.04 Portuguese traditional construction systems handbook; ISO 10456 

L1 Ceramic tiles; L2 Lime mortar; U-value (W/m2.K) 1.53  

L3 Earth R-value (m2.K/W) 0.17  

    

Envelope Airtightness 0.8 ac/h average constant rate; 24/7 schedule Technical literature [5] 

 Linear thermal bridging, Psi values:  Software default value based on BRE IP 1/06 [75] 
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 Roof-wall (W/m.K) 0.18  

 Wall-ground floor (W/m.K) 0.24  

 Wall-wall (W/m.K) 0.14  

Cooling | Heating settings    

Convection algorithms Inside convection TARP convection algorithm Default based on ASHRAE algorithms 

 Outside convection DOE-2 convection model   Default based on MoWitt and BLAST detailed convection models [76] 

    

Heating data    

Fireplace and wood stoves Heating fuel Dual fuel appliances (mineral + wood) Monitoring data [54] 

 Air temperature distribution Mixed Monitoring data; ISO 7726 [77] 

 Heating schedule 07:30 – 23:00 Occupant survey [55] 

Electric Heating fuel Convective, electricity from grid Monitoring data [54] 

 Air temperature distribution Mixed Monitoring data; ISO 7726 [77] 

 Heating schedule 07:30 – 23:00 Occupant survey 

 Energy consumption (kWh/m2/month) 3 Occupant survey 

 CoP (Coefficient of Performance) 0.89 Software default value 

Unheated - -  

    

Cooling data    

Natural ventilation Definition method: min fresh air per person (l/s) 2.5 ASHRAE 62.1-2013, Addendum 2015 [78] 

 Schedule 07:00-09:00/22:00-23:00 Occupant survey 

 Delta T and wind speed coefficients Constant at 0.4 Software default value 

 Air distribution mode Mixed Monitoring data; ISO 7726 [77] 

Mechanical ventilation Schedule in living room 12:00-22:00 Occupant survey 

 Definition method: min fresh air per person (l/s) 2.5 ASHRAE 62.1-2013, Addendum 2015 [78] 

    

Other gains Miscellaneous: power density (W) 350 Software default value 
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 Radiant fraction 0.2 Software default value 

Comfort radiant temperature Mean radiant temperature calculation Zone averaged Software recommended method for spaces with no windows 

weighting    

Lighting settings   Normalised power density (W/m2/100 lux) 5.0 Occupant survey 

 Luminaire type Suspended Occupant survey 

 Radiant fraction 0.42 Software default value 

 Visible fraction 0.18 Software default value 

 Schedule ON 12:00-13:00; 21:00-23:00 Occupant survey 

 Lighting target (lux) 20 Monitoring data; EN 17037 [79] 

Occupancy settings    

Activity and metabolic rate Living room miscellaneous (met) (W/m2) 2.0 | 115 ASHRAE 55-2013 [80]; occupant survey 

 Seated, quiet/watching TV (met) (W/m2) 1.0 | 60  

 Bedroom sleeping (met) (W/m2) 0.7 | 40  

Clothing Winter living room/bedroom (clo) 1.3 | 1.5 ASHRAE 55-2013; occupant survey 

 Summer living room/bedroom (clo) 0.54-0.57  

    

Occupancy schedule Living room 07:30/23:00, 7 days per week Occupant survey 

 Bedroom 23:00/07:00, 7 days per week  

    

Occupancy density Living room/bedroom (people/m2) 0.096/m2 (2 people for 20,91 m2) Occupant survey 
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Hence, this research adopted the error statistical indicators recommended for heritage buildings in [47], for assessing the 

difference between the dwellings’ in situ monitored and simulated Ta. The dwellings’ main living area was chosen as the 

single thermal zone for calculations. 

For each parameter, the Morris method computes the average of the absolute value of elementary effect (EE) on the 

objectives, which is an indicator of the parameters’ influence on the output. The EEs, i.e. approximations of the first-

order partial derivatives of the model [68], are estimated at sampled points randomly selected from a grid of values 

resulting from the parameter space discretisation based on the parameter division into a chosen number of levels. Starting 

from a grid basepoint, a step is taken, with random trajectory, by varying one parameter value at a time. With each step 

an EE value is obtained matching the change in the model outcome from varying one input value. The distributions of the 

first-order EEs for the whole parameter set can then be used for ranking purposes, as the two sensitivity indexes obtained, 

i.e. mean (μ) and standard deviation (σ) of the EEs, allow for input parameters to be classified into three groups: 

negligible effects, large linear effects without interactions, large nonlinear or interaction effects [81]. A further index, μ*, 

displaying the total effects of the input factor, has been introduced [72,82]. 

Table 2 showcases the 15 screening parameters, along with the baseline values and respective ranges defined according to 

presumed uncertainty and the technical literature. This process was established in jEPlus v2.1.0. and then run in 

jEPlus+EA v2.1.0. and EnSimS for the Morris SA. A script in Python v3.10 was integrated for optimising the MAE and 

RMSE calculation, which were computed per the following formulas given in [47]: 

(1) 𝑀𝐴𝐸 =  
∑ |𝑚𝑖−𝑠𝑖|𝑛

𝑖=1

𝑛
 

 

(2) 𝑅𝑀𝑆𝐸 =  √
∑ (𝑚𝑖−𝑠𝑖)2𝑛

𝑖=1

𝑛
 

 

Where n is the number of data samples, mi refers to the measured data, and si is the simulated data. 

Table 2. Summary of the baseline models settings. 

 

N 
 

Element Variables Baseline data Range for SA  

P4  External wall U-value (W/m2.K) 1.273 1.0 – 1.6 

P1   Density (kg/m3) 1800 1300 - 2500 

P2   Specific heat (J/kg.K) 900 600 - 1000 

P3   Thermal absorptance (0-1) 0.9 0.7 – 0.95 

P5  Partition wall U-value (W/m2.K) 1.273 0.9 – 1.4 

P6   Density (kg/m3) 1800 1300 - 2500 

P7   Specific heat (J/kg.K) 900 600 - 1000 

P14  Roof U-value (W/m2.K) 3.13 0.5 – 3.5 

P13   Thermal absorptance (0-1) 0.9 0.7 – 0.95 

P8  Envelope Airtightness (ACH) 0.8 0.5 – 1.85 
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P11   Linear thermal bridging, Psi values (1)   

   Roof-wall (W/m.K) 0.18 0.04 – 0.5 

   Wall-ground floor (W/m.K) 0.24 0.04 – 0.5 

   Wall-wall (W/m.K) 0.14 0.04 – 0.5 

P15  HVAC  Ventilation flow rate (l/s per person) 2.5 2.0 – 5.0 

P12   Miscellaneous loads (W/m2) 17 10.0 – 50.0 

P9  Occupancy density Number of people per area  0.096/m2 0.05 – 0.15 

P10  Lighting  Normalised power density (W/m2 / 100 lux) 5.0 3.0 – 8.0 

(1) See Table 1 for data source. 

2.4.2.  Calibration 

 

Based on the findings of the SA regarding the most relevant parameters, a multi-objective optimisation-based calibration 

was implemented in jEPlus+EA v2 using a genetic algorithm (GA): the Non-dominated Sorting Genetic Algorithm 

(NSGA-II). A multi-objective optimisation (MOO) was chosen to simultaneously target both the statistical error 

indicators MAE and RMSE regarding Ta as the objective functions that guide the algorithm in the solution search. This 

was implemented by virtue of a second Python script automating the uncertainty analysis for each simulation according to 

the formulas presented in 2.4.1.. The reference periods for the calibration matched the in situ monitoring in 2015 [54], i.e. 

from July 5th to August 16th and from January 16th until February 27th, 2015. The models were calibrated separately 

due to the divergence in occupancy behaviour between summer and winter conditions, e.g. ventilation flow.  

Genetic Algorithm simulation. GA is an evolutionary Pareto-based elitist strategy that successfully solves MOO 

problems by simultaneously optimising two or more objectives of conflicting nature [83]. Despite being common practice 

for decision-making in the building sector due to their relative simplicity, non-evolutionary-based methods exhibit 

drawbacks such as being limited to expert knowledge and best construction practice [84–87], partial solution assessment 

in trial-and-error simulation evaluations with no guarantee of finding optimal solutions [88–91], and the time-consuming 

feature of exhaustively searching the entire solution space [92–94], which inhibit their application in MOO problems 

[95]. The literature on GAs’ performance suggests these are the most popular and robust heuristic approach to MOO 

problems in the field of building optimisation [84,88,96–117]. NSGA-II, in particular, was established as the most 

resorted strategy for obtaining a better spread of solutions and convergence than other multi-objective evolutionary 

algorithms (MOEAs) [95,118,119], which explains its selection for the present research. 

GA’s solution generation mechanisms [87,101,120–123] are modelled on Darwin’s evolutionist theory of the survival of 

the fittest and natural selection mechanisms [124], where organisms gradually self-modify to produce generations better 

adapted to their environment and become dominant in their population [120]. For a comprehensive background on the 

Pareto-based optimisation concept, GA, and MOO, the interested reader can refer to [83]. 

Table 3 lists the calibration NSGA-II settings. The input parameters with most impact on computational burden and 

reliability of GA are the population size and the stopping criterion. 
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• A reliable population size ranges from 2-6 times the decision variables [105,109,111,125–130]. Thus, it was set 

at 20, i.e. four times the parameters. Values below this threshold could possibly affect the calibration end result 

by narrowing the solution sets [101,131] while values above it would increase convergence time without 

benefiting the solution finding process [132]. 

• The maximum number of generations (gMAX) was used as the stopping criterion, i.e. GA stops searching after 

the maximum number of iterations that it is set to run for, due to being the most resorted to in building retrofit 

GA-based optimisation [83]. No official recommendations exist for the gMAX. Moreover, given the broad range 

labelled as robust in the literature, i.e. between 10-200 generations [105,109,111,126,127,129,130,133], this 

research determined the gMAX value though numerical tests assessing the trade-off between computational 

burden and reliability. The authors investigated a range from 10 (minimum value found in the literature [83]) to 

200 (EA default settings) and examined whether the solutions remained unchanged beyond a specific number of 

generations. While the improvement was clear from 140 to 150 generations, it was minimal from 150 onwards, 

with near overlap of the last two generations (see Appendix B). Thusly, 150 generations were adopted for the 

calibration. 

• The genetic operators were tuned according to the most used values in the literature, which stand between 40-

100 %  and 5-40 %, for crossover and mutation, respectively [83], so as to avoid loss of population diversity and 

premature convergence. 

Table 3. Genetic settings for the optimisation-based calibration 

GA Settings  Values 

Exploration strategy  NSGA-II  

Population Initial sampling size 20 

Operators Crossover rate (%) 100 

 Mutation rate (%)  20 

 Tournament size  2 

Termination criterion Maximum generations 150 

 

Figure 3 further details the technical calibration process, and the interlocking of the different pieces of the process. 

 

2.4.3.  Validation and solution ranking 

 

The selection of the Pareto front’s best solution is referred to as the multi-criteria decision-making (MCDM) and can be 

conducted by means such as threshold compliance and the Utopia Point Method [84,111]. Here, a two-tier validation 

approach was developed for increased robustness, based on monitored indoor air temperature (12 weeks), surface 

temperature (72 hours), and relative humidity (12 weeks). It firstly entailed contrasting the Pareto-optimal solutions with 

objective function, i.e. MAE and RMSE, accuracy thresholds and secondly measuring the optimal solutions against the 
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analysis of residuals frequency (Fi), i.e. the difference between measured and simulated data, thresholds. The thresholds 

were adopted according to the most recent recommendations on dynamic hygrothermal historical building model validation 

[47]. A two-level validation process allows validation at different levels, as one RMSE and MAE value is obtained per 

solution, while Fi takes place for each time step (15 minutes). Specifically, as per [47], a model is considered validated 

when the MAE and RMSE values are within the ≤ 1 ºC/5 % (LV1) or ≤ 2 ºC/10 % (LV2) and when Fi ≥ 95 % of the overall 

dataset is within ± 1 ºC/5 % (LV1) or ± 2 ºC/10 % (LV2) intervals for Ta, Ts, and RH. Although an additional validating 

humidity parameter, such as humidity ratio or specific humidity, would have been desirable, the data were unavailable, 

which was acknowledged in the study limitations.  

Subsequently, in a second step, Compromise Programming (CP) was implemented as a MCDM method for the validated 

solutions [134,135]. Through this method, the best solution is the closest to the ideal or Utopian point [126] that 

minimises both objective functions. For this purpose, a distance function considering the path from the nodes to the goal 

must be analysed. Here the Chebyshev distance function was adopted for performing superiorly to other approaches 

[136]. The CP problem definition thus aimed at minimising the Chebyshev distance, as follows: 

𝛼𝑗 ≥  (
|𝑍𝑗

∗ − 𝑍𝑗(𝑥)|

|𝑍𝑗
∗ − 𝑍∗𝑗|

) ∗ (𝑝𝑗) 

 

Where 𝛼𝑗is the Chebyshev distance, Zj (x) is the objective function, Zj is the Utopian point which represents the ideal 

minimum solution, Zj is the Nadir point (anti-ideal) of the jth objective, and pj is the corresponding weight factor. 

 

3. Results 

3.1.  U-value in situ measurements and standard assumptions  

The results from the in situ experimental measurement of the U-values averaged 1.273 W/m2.K for the external walls, 

bettering their theoretical average performance calculated based on the Portuguese traditional construction systems 

handbook [73] at 1.32 W/m2.K. This high thermal transmittance value is in line with historical solid uninsulated walls, as 

is the lower in situ findings versus the calculated values. The baseline input data for modelling the external walls were 

based on the in situ measurements while the U-values from the remaining envelope were set according to the calculations 

from the traditional construction handbook [73] and ISO 10456. It would have been interesting to extend the external 

walls’ U-value measurement to the entire envelopes, for the comprehensive model characterisation and comparison with 

theoretical values, which is acknowledged in the limitations section of this paper. 

3.1. Parameter screening 

Natural and mechanical ventilation model: The plot of the mean value and standard deviation obtained in the SA, 

suggested that the top five parameters influencing the MAE and RMSE regarding Ta were: the roof U-value, the 
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miscellaneous loads, airtightness, external wall U-value, and partition wall U-value (see Fig. 4.), with the first two clearly 

standing out. The parametric sensitivity to the MAE and RMSE globally followed the same trend, with slight differences  
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Fig. 3. Technical process for the calibration and validation of the vernacular case study models. 
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that did not impact the sensitivity ranking. That the roof thermal transmittance was the top influencing parameter was 

aligned with the authors’ expectations given its extremely high theoretical U-value. Furthermore, it could be inferred that 

this feature would be key, not only for calibrating but also for future retrofit decision-making. That the internal 

miscellaneous gains from equipment had more impact than the external and partition walls thermal transmittance was a 

surprising finding, yet, previous research has reported it as the leading influencing parameter accounting for uncertainties 

regarding thermal comfort [137]. Airtightness ranked within the top effects, and the authors would expect the final 

calibration value to exceed the literature-based baseline. Lastly, the walls’ thermal transmittance is a well-known 

influencing factor on the Ta and thermal comfort, all the more so in uninsulated heritage. 

Electric heating model: the five parameters bearing the most influence on the MAE and RMSE regarding Ta were quite 

similar to the summer model, i.e. the roof U-value, the miscellaneous loads, airtightness, external wall U-value, and the 

linear thermal bridging (see Fig. 4.). In this case, the influence of the first three parameters is noteworthy. The need to 

optimise the linear thermal bridging parameters (Psi values) for the winter model is coherent due to being one of the 

weaknesses of the case studies. For this model, the solar absorptance-related inputs have negligible effects which may be 

explained by the season’s different solar radiation. Please find the Morris method representation in the Appendix A. 
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Fig. 4. Elementary effects on the MAE and RMSE of the average indoor air temperature (Ta) for the natural and 

mechanical ventilation model (a) and the electric heating model (b). 

 

3.2. Model hygrothermal calibration 

The SA revealed that the top influential parameters were the roof U-value, miscellaneous gains, airtightness, external and 

partition wall U-value, and linear thermal bridging. Since applying brute force search is infeasible from a time 

perspective, i.e. requiring 28.3544 years to achieve completion, a GA-based calibration was chosen as a suitable 

alternative to solve this MOO problem. 

The above-mentioned parameters were then calibrated for each model, with NSGA-II needing only 1144 and 1129 

simulations, in the winter and summer models respectively, to find the best solutions, and taking three hours in a PC with 

an Intel Core i5 processor 430M (2,27 GHz) and 6 GB of RAM. The scatter plot in Fig. 5 displays the NSGA-II 

optimisation where the best and feasible solutions (points) for simultaneously minimising the targets are provided. The 

red points are Pareto-optimal featuring the parameter set with the best trade-off values between both targets found by the 

GA. The Pareto frontier composed of nine and six optimal solutions for the summer and winter models, respectively, is 

displayed in the Appendix C. 

As for the summer model, all nine best GA-found solutions radically reduced the RMSE value down to 0.0734, i.e. by 

95 %, and the MAE to a range between 0.29 and 0.30, decreasing by around 78 %, with solution 1 (S1) offering the 

lowest MAE value. Nearly all input parameters set to be calibrated also exhibit a decrement regarding their baseline 

values. Specifically, the roof U-value improved by 25 % in all Pareto-optimal solutions, at 2.5 W/m2.K, a value aligned 

with its uninsulated and heat infiltration characteristics. The miscellaneous loads are also optimised at a lower value, i.e. 

10 W/m2, in all six solutions. By the same token, all solutions diminished the external and partition wall U-value when 

compared to the in situ-measured value: 1.27 to 1.00 W/m2.K. However, and as expected, the airtightness and linear 

thermal bridging increased to be more akin to the actual one. The airtightness, in particular, suggested at 1.85 ac/h by the 

best solutions, more than doubles its baseline value (0.8 ac/h). Even though the maximum range value was set based on 

the technical literature, it is possible that, due to the case studies’ use patterns, this might even be exceeded. 

Regarding the winter model, all six optimal solutions significantly reduced the statistical error indicators RMSE and 

MAE, with S1 and S2 reducing RMSE by more than 50 % and S5 and S6 reducing MAE by 54 %. The parameters set to 

be calibrated were overall reduced, with the external wall and roof U-value, miscellaneous loads, airtightness, and linear 

thermal bridging being parallel to the summer model. The values found for the partition wall, however, range between 0.9 

and 1.23 W/m2.K, slightly exceeding the baseline data at their upper limit. 
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Fig. 5. Scatter plot of the GA optimisation output from jEPlus + EA for the summer (a) and winter (b) models. Red: 

Pareto-optimal points; grey: feasible points. 

 

3.3.  Model hygrothermal validation 

Table 4 displays the results from the models’ validation stage through the RMSE, MAE, and analysis of the frequency of 

residuals thresholds, regarding the indoor air temperature, surface temperature, and relative humidity. 

For the winter model, while all Pareto-optimal solutions complied with LV1 threshold for MAE and RMSE concerning 

Ta, at the RH level, compliance is only observed for the LV2 accuracy range. Thus, based on the objective function 

thresholds all optimal solutions found by NSGA-II would be validated, with Ta holding better accuracy regarding 

measured data. Out of these, only one solution (S3) complied with Fi’s LV2 thresholds (≥ 95 % of residuals, ± 2 ºC). 

While Fi reveals a better outcome for Tas than for RH (100 % within threshold), both parameters failed to qualify for LV1 

match (≥ 95% of residuals, ± 1 ºC), ranging between 83 % for Tas to 78 % for RH (see Appendix D2). On the basis of a 

single optimal solution being validated, the decision-making process for the winter model would end at this stage by 

calibrating the model according to the features of S3 (Appendix C). This translated into an accuracy improvement of 51 
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% and 54 % for the RMSE and MAE, respectively. Airtightness (P8) was the parameter undergoing the biggest 

adjustment, while the partition wall specific heat (P7) exhibited only minor modification. Said accuracy improvement can 

also be detected in Fig. 7., where a representative week of the calibrated Tas is contrasted with the baseline and measured 

Tas, and in the dispersion chart representing the correlation between the measured Tas versus baseline (grey dots) and 

calibrated (orange dots) data. The blue line depicts the perfect fit of measured versus measured, and, thus, the closer to 

that reference axis the highest the accuracy. The calibrated dot cloud is clearly more centred around the reference axis and 

shows a lesser degree of dispersion, bettering the performance of the baseline simulation. 

For the summer model, all Pareto-optimal solutions largely qualify for LV1 accuracy for MAE and RMSE concerning 

Ta and Ts. Analogously to the winter model, at the RH level, compliance is only observed for the LV2 accuracy range, 

albeit significantly bettering their winter counterpart, with RH RMSE and MAE lowering by 60 % and over 50 % on 

average. As for the Fi in the following step, conversely to the winter model, all solutions complied with the LV2 

threshold, with Ta and Ts exhibiting the most favourable residuals distribution (100 % within the threshold) and also 

complying with LV1 match threshold. As in the winter model, RH displays less concordance than the latter parameters, 

with the highest percentage distribution being 78 and 98 for LV1 and LV2 thresholds, respectively (See Appendix D1).  

The MCDM process thus proceeded to the Compromise Programming stage to determine the closest solution to the 

Utopia Point, as can be seen in the Appendix E. The results showed that S4 exhibited the shortest Chebyshev distance, 

followed by S5, with S1 and S9 displaying the worst values. The model was then calibrated per the features of S4, which 

resulted in a noteworthy accuracy improvement of 80 % for the RMSE and 81 % in terms of the MAE. Airtightness (P8) 

was anew the most altered parameter, by 131 % in regard to the BM, while the calibrated roof thermal absorptance value 

(P13) was akin to the baseline. The difference between the measured, baseline, and calibrated data can be observed for a 

representative week in Figures 6 and 7, evidencing the accuracy enhancement of the calibrated data regarding the BM.  
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Table 4. Frequency of residuals contrasted with the validation thresholds for the summer and winter models, respectively. 

 

 Ta Fi RH Fi Ts Fi Ta RMSE Ta MAE RH RMSE RH MAE Ts RMSE Ts MAE 

 LV1 LV2 LV1 LV2 LV1 LV2 LV1 LV2 LV1 LV2 LV1 LV2 LV1 LV2 LV1 LV2 LV1 LV2 

SUMMER                   

S1 100% 100% 77% 97% 95% 100% 0.29 0.25 5.92 4.54 0.81 0.64 

S2 100% 100% 77% 97% 95% 100% 0.29 0.24 5.86 4.51 0.82 0.65 

S3 100% 100% 77% 97% 95% 100% 0.29 0.24 5.85 4.50 0.82 0.65 

S4 100% 100% 78% 98% 96% 100% 0.29 0.24 5.83 4.48 0.80 0.63 

S5 100% 100% 75% 98% 96% 100% 0.29 0.24 5.82 4.48 0.80 0.63 

S6 100% 100% 78% 98% 96% 100% 0.30 0.24 5.79 4.46 0.79 0.62 

S7 100% 100% 74% 97% 96% 100% 0.30 0.24 5.77 4.45 0.81 0.64 

S8 100% 100% 74% 98% 96% 100% 0.30 0.24 5.77 4.43 0.89 0.63 

S9 100% 100% 75% 97% 96% 100% 0.31 0.24 5.76 4.44 0.81 0.64 

VT ± 1 ºC ± 2 ºC ± 5 % ± 10 % ± 1 ºC ± 2 ºC ≤ 1 ºC ≤ 2 ºC ≤ 1 ºC ≤ 2 ºC ≤ 5 % ≤ 10 % ≤ 5 % ≤ 10 % ≤ 1 ºC ≤ 2 ºC ≤ 1 ºC ≤ 2 ºC 

WINTER                   

S1 83% 100% 74% 93% - - 0.70 0.59 9.48 7.28 - - 

S2 83% 100% 75% 94% - - 0.70 0.59 9.43 7.22 - - 

S3 83% 100% 78% 95% - - 0.70 0.59 9.20 6.83 - - 

S4 83% 100% 77% 94% - - 0.71 0.59 9.27 7.00 - - 

S5 83% 100% 72% 92% - - 0.71 0.59 9.77 7.65 - - 

S6 83% 100% 74% 93% - - 0,71 0.59 9.48 7.28 - - 

VT ± 1 ºC ± 2 ºC ± 5 % ± 10 % ± 1 ºC ± 2 ºC ≤ 1 ºC ≤ 2 ºC ≤ 1 ºC ≤ 2 ºC ≤ 5 % ≤ 10 % ≤ 5 % ≤ 10 % ≤ 1 ºC ≤ 2 ºC ≤ 1 ºC ≤ 2 ºC 

 

Ta Fi: Indoor Temperature Residuals Frequency; RH Fi: Relative Humidity Residuals Frequency; Ts Fi: Surface Temperature Residuals Frequency; Ta RMSE: Indoor Temperature 

RMSE; Ta MAE: Indoor Temperature MAE; RH RMSE: Relative Humidity RMSE; RH MAE: Relative Humidity MAE; Ts RMSE: Surface Temperature RMSE; Ts MAE: Surface 

Temperature MAE; VT: Validation Threshold; LV1: Level 1; LV2: Level 2. 
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Fig. 6. Representative week of measured versus baseline and calibrated indoor air temperature, for the summer (a) and 

winter (b) models. The representative summer week (1st-8th of August) was chosen for being the hottest week of the 

monitoring while the winter representative week (16th-23th of February) was selected over the coldest week due to an 

atypical weather event. 

 

Fig. 7. Dispersion graphic: measured indoor air temperature versus baseline and calibrated data, for the summer (a) and 

winter (b) models. 
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4. Conclusion 

4.1.  Summary of main findings 

This paper set forth a methodology for the calibration and validation of vernacular case study models, with the intent of 

building a common framework for counteracting the high degree of dispersion amongst vernacular modelling 

studies and foster more robust research. It aimed to, for the first time, address hygrothermal calibration in 

vernacular dwellings with heritage-adequate error indexes coupled with a two-tier validation scheme. Additionally, 

it strove to meet the following criteria: highest degree of accuracy alongside time-efficiency, baseline data based on on-

site data collection, and transparency regarding the calibration and validation parameters, period, and thresholds used. 

Following the in situ data collection that encompassed the as-built survey, environmental and thermophysical monitoring, 

and occupant surveying of 22 vernacular dwellings in Southern Portugal, the hygrothermal modelling method was 

composed of three main steps: the sensitivity analysis, the optimisation-based calibration, and the validation and 

MCDM. 

• Sensitivity analysis: conducted to ascertain the model’s parametric effect on the statistical error indicators MAE 

and RMSE regarding indoor air temperature. The top influential parameters were found to be the roof U-value, 

miscellaneous gains, airtightness, external and partition wall U-value, and linear thermal bridging. 

• Calibration: a GA multi-objective optimisation-based calibration was implemented as an alternative to other 

time-consuming and infeasible search techniques, simultaneously minimising the objective functions of RMSE 

and MAE. NSGA-II found Pareto frontiers composed of nine and six optimal solutions for the summer and 

winter models, respectively, taking approximately three hours each. All optimal solutions significantly decreased 

the RMSE and MAE, especially in the summer model. 

• Validation: three validating parameters (indoor air temperature, surface temperature, and relative humidity) 

were adopted. Based on the objective function thresholds all winter optimal solutions found by NSGA-II were 

validated, with Ta holding better accuracy regarding measured data. Yet, the subsequent validation step against 

the Fi thresholds revealed that only one winter optimal solution met the LV2 accuracy threshold, thus stopping 

the validation process with an accuracy improvement of 51 % and 54 % for the Ta RMSE and Ta MAE, 

respectively, and very strong correlation between the calibrated and the measured data. In the summer model, all 

optimal solutions were validated according to the RMSE and MAE LV1 threshold for Ta and Ts and LV2 for 

RH, bettering the validation results of the winter model. By the same token, all complied with Fi’s LV2 

thresholds, with Ta and Ts also qualifying for LV1 accuracy. MCDM was then conducted through Compromise 

Programming to determine the closest solution to the Utopia Point and calibrate the model accordingly, resulting 

in a noteworthy accuracy improvement of 80 % for the Ta RMSE and 81 % for Ta MAE. 
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The strong correlation found for both models between calibrated and measured values as well as the accuracy 

enhancement of the calibrated data regarding the BM obtained via the methodology developed, highlighted that it is not 

only possible but efficient to use GAs to obtain calibrated models of vernacular dwellings that robustly predict real 

building performance and can foster better decision-making for retrofitting heritage buildings. 

 

4.2. Limitations of the study and suggestions for further work 

 

Concerning the on-site measurements, it would have been interesting to extend the external walls’ U-value measurement 

to the entire envelopes, for the comprehensive model characterisation and comparison with theoretical values. 

Nonetheless, the latter were sourced from a traditional buildings Portuguese handbook [73], with the intent of reducing 

the experimental-theoretical gap. The authors acknowledge that the exact location of the sensors was not investigated by 

means of thermography as suggested in ISO 6781:1983 [138] and it would be desirable to include it in future work. 

Nonetheless, the triple sensor scheme of the probe used aims at ensuring a result that is representative of the whole 

element as indicated in ISO 9869-1-2014 and compliant with ISO 6946:2017. Moreover, although not essential, had the 

technical means been available, it would have been desirable to use an additional validating humidity parameter. 

However, a double validation step was conducted for enhanced robustness using three validation parameters. Moreover, 

future research might consider getting further insight into the airtightness of these types of dwellings, encompassing 

blower-door testing and widening the upper airtightness range for the calibration process of the models. 

Finally, future work is needed to extend this GA-based MOO calibration methodology to heritage retrofit decision-

making, and specifically inhabited vernacular dwellings, targeting both thermal comfort and the quantification of 

conservation parameters. This could, perhaps, be achieved via the Analytic Hierarchy Process and the definition of 

heritage protection legislation as constraints in the MOO problem. 
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Appendix 

Appendix A. Details of the in situ monitoring conducted. 

 

 Parameter Measurement length   Location of measurement Standard complied with 

  LT (1) ST (2) PIT (3)   

       

Thermal comfort Air temperature ◼   Living room, bedroom, outdoors ISO 7726 [77], ASHRAE 55 [80] 

       

 Relative humidity ◼   Living room, bedroom, outdoors ISO 7726, ASHRAE 55 

       

 Mean radiant temperature  ◼  Living room ISO 7243, ISO 7726, 

      EN 27726 

 Surface temperature  ◼  Living room/bedroom - 

       

 U-value  ◼  Living room/bedroom ISO 9869-1:2014 [58], ISO 6946:2017 [59] 

       

 Air velocity   ◼ Living room ASHRAE 55, ISO 7726 

       

       

Other Indoor air quality   ◼ Living room EN 15251 [65] 

Environmental parameters Illuminance   ◼ Living room, outdoors EN 15251 

      EN 12464-1:2011 [66] 

 Noise level   ◼ Living room, outdoors EN 15251 

       

(1) Long-term; (2) Short-term; (3) Point-in-time. 
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Appendix B. Morris method representation for summer (a) and Winter (b) models. 
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Appendix C. Pareto fronts resulting from the GA-based multi-objective optimisation for model calibration, in function of 

the number of maximum generations (gmax). 
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Appendix D. Features of the Pareto Front for the summer and winter models, respectively. 

Solution RMSE MAE P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 

SUMMER                  

BM  1.4322279 1.2806087 1800 900 0.900 1.273 1.172 1800 900 0.800 0.096 1.000 7.190 17 0.900 3.130 2.500 

S1 0.2866159 0.2461452 2100 999 0.860 1.000 0.900 2500 733 1.850 0.050 0.600 9.590 10 0.940 2.500 2.000 

S2 0.2885968 0.2406363 2100 733 0.860 1.000 0.900 2500 733 1.850 0.050 0.600 9.590 10 0.700 2.500 2.000 

S3 0.2896586 0.2394249 2500 600 0.940 1.000 0.900 2500 733 1.850 0.050 0.600 9.590 10 0.940 2.500 2.000 

S4 0.2905343 0.2380866 2500 733 0.780 1.000 0.900 2500 733 1.850 0.050 0.600 9.590 10 0.940 2.500 2.000 

% DIFF BM -80 % -81 % 39 % -19 % -13 % -21 % -23 % 39 % -19 % 131 % -48 % -40 % 33 % -41 % 4 % -20 % -20 % 

S5 0.2910137 0.2377589 2100 866 0.700 1.000 0.900 2500 733 1.850 0.050 0.600 9.590 10 0.700 2.500 2.000 

S6 0.3011555 0.2363003 2100 999 0.780 1.000 0.900 2100 733 1.850 0.050 0.600 9.590 10 0.780 2.500 2.000 

S7 0.3024440 0.2362210 1300 999 0.860 1.000 0.900 2500 733 1.850 0.050 0.600 9.590 10 0.860 2.500 2.000 

S8 0.3032757 0.2360333 1700 999 0.700 1.000 0.900 2500 733 1.850 0.050 0.600 9.590 10 0.780 2.500 2.000 

S9 0.3053097 0.2360279 2100 600 0.780 1.000 0.900 2500 733 1.850 0.050 0.600 9.590 10 0.940 2.500 2.000 

WINTER                  

BM  1.4322279 1.2806087 1800 900 0.900 1.273 1.172 1800 900 0.800 0.096 1.000 7.190 17 0.900 3.130 - 

S1 0.6996679 0.5891419 1300 600 0.700 1.000 0.900 2100 866 1.850 0.050 0.600 9.590 10 0.700 2.500 - 

S2 0.6997473 0.5882981 1300 600 0.700 1.000 1.233 2100 999 1.850 0.050 0.600 9.590 10 0.780 2.500 - 

S3 0.7016192 0.5875125 1300 600 0.700 1.000 1.233 2500 866 1.850 0.050 0.600 9.590 10 0.700 2.500 - 

% DIFF BM -51 % -54 % -28 % -33 % -22 % -21 % 5 % 39 % -4 % 131 % -48 % -40 % 33 % -41 % -22 % -20 % - 

S4 0.7061431 0.5870416 1300 600 0.700 1.000 1.233 2100 866 1.850 0.050 0.600 9.590 10 0.700 2.500 - 

S5 0.7096275 0.5868355 1300 600 0.700 1.000 0.900 2500 866 1.850 0.050 0.600 9.590 10 0.700 2.500 - 

S6 0,7129966 0.5868369 1300 600 0.700 1.000 1.400 2500 866 1.850 0.050 0.600 9.590 10 0.700 2.500 - 

BM: Baseline Model; P1: External wall density; P2: External wall specific heat; P3: External wall thermal absorptance; P4: External wall U-value; P5: Partition wall U-value; P6: 

Partition wall density; P7: Partition wall specific heat; P8: Airtightness; P9: Occupancy; P10: Lighting; P11: Linear thermal bridging; P12: Miscellaneous loads; P13: Roof thermal 

absorptance; P14: Roof U-value; P15: Ventilation flow rate. 



 29 

Appendix E1. Residuals frequency distribution for indoor air temperature, relative humidity, and surface temperature 

regarding the summer model (S4). 
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Appendix E2. Residuals frequency distribution for indoor air temperature and relative humidity regarding the winter 

model (S3). 
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Appendix F. Illustration of the Pareto fronts with the Utopia and Nadir points, for the summer (a) and winter (b) models. 
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