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Abstract. Brain barriers are crucial sites for cerebral energy supply, waste removal, immune
cell migration, and solute exchange, all of which maintain an appropriate environment for neuro-
nal activity. At the capillary level, where the largest area of brain–vascular interface occurs,
pericytes adjust cerebral blood flow (CBF) by regulating capillary diameter and maintain the
blood–brain barrier (BBB) by suppressing endothelial cell (EC) transcytosis and inducing tight
junction expression between ECs. Pericytes also limit the infiltration of circulating leukocytes
into the brain where resident microglia confine brain injury and provide the first line of defence
against invading pathogens. Brain “waste” is cleared across the BBB into the blood, phagocy-
tosed by microglia and astrocytes, or removed by the flow of cerebrospinal fluid (CSF) through
perivascular routes—a process driven by respiratory motion and the pulsation of the heart,
arteriolar smooth muscle, and possibly pericytes. “Dirty” CSF exits the brain and is probably
drained around olfactory nerve rootlets and via the dural meningeal lymphatic vessels and
possibly the skull bone marrow. The brain is widely regarded as an immune-privileged organ
because it is accessible to few antigen-primed leukocytes. Leukocytes enter the brain via the
meninges, the BBB, and the blood-CSF barrier. Advances in genetic and imaging tools have
revealed that neurological diseases significantly alter immune–brain barrier interactions in at
least three ways: (1) the brain’s immune-privileged status is compromised when pericytes are
lost or lymphatic vessels are dysregulated; (2) immune cells release vasoactive molecules to
regulate CBF, modulate arteriole stiffness, and can plug and eliminate capillaries which impairs
CBF and possibly waste clearance; and (3) immune–vascular interactions can make the BBB
leaky via multiple mechanisms, thus aggravating the influx of undesirable substances and cells.
Here, we review developments in these three areas and briefly discuss potential therapeutic ave-
nues for restoring brain barrier functions. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.9
.3.031914]
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1 Introduction

Brain bordering tissues comprise the glia limitans, blood–brain and blood-cerebrospinal fluid
(CSF) barriers, meninges, and skull bone marrow. They allow communication between the brain
and peripheral immune system, facilitate cerebral supply of oxygen, glucose, ions, and various
regulatory molecules while promoting the efflux of metabolic waste and limiting the influx of
neurotoxic molecules, pathogens, and leukocytes. Over the past 15 years, the proposed existence
of the glymphatic system, (re)discovery of the meningeal lymphatics, and advances in our
understanding of cerebral immunosurveillance, the blood–brain barrier (BBB), and blood
supply have given important new insight into how the brain functions. The brain exhibits
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an immune-specialized status to minimize damage to its largely non-proliferating (and hence
long-lived) cells, and therefore, leukocyte–vascular interactions and trafficking are tightly con-
trolled. Neuroinflammation and microvascular dysfunction are hallmarks of various neurologi-
cal diseases including, but not limited to, Alzheimer’s disease (AD), stroke, brain tumors,
epilepsy, and multiple sclerosis (MS). Capillaries are the site of the greatest vascular resistance
within the brain1 and provide the largest surface area for solute exchange.2 Control of capillary
function is therefore crucial for regulating energy supply, BBB maintenance, and immune
trafficking.

Following an overview of the brain vascular network and CSF transport routes, we will
review recent advances in immune cell trafficking, immune modulation of cerebral blood flow
(CBF), and BBB properties in various neurological diseases.

2 Overview of the Brain Vasculature and CSF Transport Routes

Blood enters the cerebral cortex from its surface through penetrating arterioles (PAs), goes
through a vast network of capillaries for brain–blood and blood–brain solute exchange, and exits
via ascending venules (AVs) (Fig. 1).

CBF is controlled by smooth muscle cells (SMCs) around arteries and arterioles and by peri-
cytes with contractile processes wrapping circumferentially around capillaries.3–6 Advances in
tools to optogenetically depolarize and transgenically label pericytes, to image their vasomotor
tone and intracellular Ca2þ (½Ca2þ�i) activity in vivo, have revealed that pericytes throughout the
capillary bed are contractile and that those of at least the first to third capillary branching order
from PAs (where first-order refers to the first branch) contribute to neuronal activity evoked
increases in CBF (Fig. 1).7–13 Pericytes are endowed with a wide range of ion channels allowing
them to sense metabolic stimuli from the blood and brain to control CBF and solute transport
appropriately (see Refs. 14–16 for transcriptome databases and Ref. 17 for a detailed review).

Respiratory motion, ciliary beating, vessel pulsation driven by the heart and spontaneous
vasomotion of SMCs, and possibly pericytes of the first to third capillary branching order drive
the flow of CSF, which facilitates brain buoyancy, waste clearance, and brain antigen presen-
tation to systemic immune cells.18–24 CSF is generated by choroid plexus epithelial cells in the
cerebral ventricles and circulates in the subarachnoid space from where it can enter the para-
vascular space of PAs (Fig. 1). Pulsations or spontaneous vasomotion move CSF either in a
“reverse” manner back up the para-arterial spaces of PAs or through the brain via the postulated
“glymphatic” system (involving water flow through the vascular endfeet of astrocytes), which
drains cerebral interstitial fluid (ISF) possibly along AVs.18,20,25–27 This allows CSF to collect
waste products and soluble antigens from the brain.

3 Immune Surveillance and Trafficking in the Brain: Pericytes as
Immune Gatekeepers

3.1 Immune Surveillance

The brain is surveyed by microglia and astrocytes in the parenchyma, macrophages (MΦ) in the
perivascular space, and by peripheral immune cells capturing brain antigens in the CSF and
blood (Table 1).

Microglia are highly ramified cells that constantly survey the brain parenchyma for infection
or injury,31–33 phagocytose dead neurons,34 monitor and prune synapses,35–37 and regulate
neuronal activity,38 in part by forming purinergic somatic junctions with neurons39 and also
by releasing adenosine onto neuronal A1 receptors.40 By extending and retracting their highly
motile processes, microglia screen the entire brain parenchyma every few hours.33 A second
mode of process motility called “chemotaxis” occurs when microglia send out processes toward
sites of brain injury to confine brain damage, phagocytose cell debris, and limit secondary brain
injury.41 Clearance of waste products is facilitated by tunnelling nanotubes connecting neigh-
bouring microglia.42 Moreover, astrocytes, which are also capable of phagocytosis,43–47 occupy
distinct phagocytic territories from those of microglia to aid in debris removal.48 Microglial
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immunophenotypic features can vary considerably across brain regions,49 highlighting their het-
erogenous nature. Microglia also closely associate with capillaries to modulate their functions
(Fig. 2), as discussed in detail below.

It is now evident that brain immune surveillance is not restricted to microglia, but also
involves brain border-associated immune cells that have phenotypic properties distinct from
microglia as revealed by recent high dimensional single-cell cytometry studies.30,50 Border-
associated immune cells screen CSF-derived molecules in the perivascular spaces, meninges
(dura, arachnoid, and pia), choroid plexus, deep cervical lymph nodes, and possibly the

Fig. 1 Organization of the brain vasculature, proposed waste clearance pathways and immune
cells involved in brain surveillance. Blood in pial arteries enters the cerebral cortex parenchyma
down PAs, goes through capillaries to supply oxygen and glucose to neurons, and exits the brain
via AVs. Blood oxygenation decreases as it passes through the capillary bed, as indicated by the
vessel color transitioning from red to blue. The PA is referred to as the zeroth-order vessel, the
first branch off the arteriole as the first-order capillary, the branches of the first-order capillary as
the second-order capillary and so on. Smooth muscle cells wrapping pial arteries and PAs, and
pericytes with contractile processes around capillaries, control CBF by adjusting vessel diam-
eter. CSF, which circulates in the subarachnoid space between the pia mater and arachnoid
membrane, enters the perivascular space of PAs. Vessel pulsation driven by the heart, sponta-
neous vasomotion of SMCs and possibly first- to third-order capillary pericytes, creates a flow of
CSF, which drains ISF waste either via reverse perivascular transport in small spaces of the PA
wall, or through the brain via the glymphatic system (so called because AQP4 water channels in
astroglial endfeet facilitate the exchange of CSF and ISF) possibly exiting via perivenular path-
ways to the subarachnoid space and dura. ISF might be drained (perineurally) along olfactory
nerve rootlets into lymph vessels (not shown), via the dural meningeal lymphatics, across the
BBB and/or venous sinuses into the blood and possibly through skull channels into the calvarial
marrow. APCs (DCs, MΦ, and B cells) in the dura can capture CSF-derived brain antigens and
present them to T cells, which modulate cognitive function by releasing neuromodulatory cyto-
kines. The skull’s hematopoietic niche supplies leukocytes to the meninges. Cerebral waste
molecules are also removed across ECs into the blood or phagocytosed by microglia and astro-
cytes. Microglia scan the brain for damage or infection related signals, prune synapses, at least
in part by being programmed by T cells, regulate CBF, and NVC via purinergic signaling, repair
damaged vessels by facilitating EC ligation and promote EC tip fusion during development,
“anastomosis.” During aging, pericyte contraction and possibly neutrophil plugging (as occurs
in AD) lead to a reduction of microvascular blood flow and may contribute to capillaries becoming
pruned and phagocytosed by microglia.
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Table 1 Types of immune cell discussed in this review.

Peripheral immune cells

Cell type Location
% of blood
leukocytes

Numbers in
blood

(103∕μl) Main immunological role

Neutrophil Peripheral
blood

16* (mice) 1.4* (mice) Recruited to sites of infection/injury to kill
via phagocytosis, release of granular
contents or via pathogen trapping in
extracellular traps; usually the first
peripheral cells recruited to inflamed
tissues.

60** (human) 3.4**
(human)

Monocyte Peripheral
blood

5* (mice) 0.4* (mice) Patrolling phagocytic cells involved in
clearance of debris, phagocytosis,
capturing and killing microbes once
recruited to tissues.

5** (human) 0.26**
(human)

B lymphocyte Peripheral
blood

77* (mice) Total
lymphocyte
count : 6.87*
(mice)

Differentiate into plasma cells or memory
B cells upon antigen recognition to
produce antigen-specific antibodies for
long-lasting immunity against secondary
antigen challenges.

CD4+
T lymphocyte

Peripheral
blood and CSF

27** (human) 1.52**
(human)

Recognize major histocompatibility
complex (MHC) class II on APCs and aid
recruitment of other immune cell subsets.

CD8+
T lymphocyte

Peripheral
blood and CSF

Recognize MHC class I and kill via
secretion of cytokines, cytotoxic granules
or by inducing apoptosis.

Major tissue immune cell types

Cell type Location
% of CNS
leukocytes Physiological role

PVM Perivascular
space,
meninges, and
choroid plexus

∼10*** Myeloid cells closely associated with the
vasculature which scan the perivascular
space, phagocytose debris and initiate
recruitment of peripheral leukocytes.

Microglia Brain
parenchyma

∼80*** Resident immune cells of the brain that
patrol the parenchyma, send out
processes toward sites of injury to confine
damage; scavenge foreign material,
debris and synapses for removal;
involved in synaptic pruning,
neurogenesis and axonal growth.

DC Meninges and
choroid plexus

∼3*** Role in antigen capture, processing and
presentation to T cells to propagate
immune responses.

Mast cell Meninges,
choroid plexus,
and
parenchyma

∼0.5*** Derived from haematopoietic stem cells,
long lived and resident cells, where they
can interact with glia cells to orchestrate
inflammation. Role not fully determined.

*8–10 week old male mice.28

**Male adults.29

***2 month old C57BL6 mice as assessed by mass cytometry.30
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skull.51,52 CSF antigens drained from the brain can enter the dura, where antigen-presenting cells
(APC) [including dendritic cells (DCs), MΦ, and B cells] capture brain antigens and present
them to patrolling T cells53 (Fig. 3). In the dura, endothelial and mural cells (mainly pericytes
and SMCs) recruit T cells by secreting the chemokine CXCL12, which binds to CXCR4 on
T cells to promote their migration from the blood through the fenestrated endothelium of the
dural venous sinuses.55,56 T cells modulate neuronal function probably by secreting cytokines
from the meninges,57,58 or by migrating from the meninges into the brain, for instance, to pro-
gram microglia to prune synapses59 or regulate neural stem cell proliferation.60 CSF in the dura
can also drain through skull channels into the overlying bone marrow, which generates a rich
pool of leukocytes that populates the meninges.61–66 Moreover, leukocytes may survey the brain
in the CSF following their entry from the blood via the choroid plexus and possibly their

Fig. 3 Dural immune cells survey brain antigens supplied by the draining CSF. CSF antigens may
enter the dura through arachnoid granulations and become captured by APCs including DCs, MΦ,
and possibly B cells. Endothelial (EC) or mural cell release of CXCL12 recruits T cells across the
fenestrated endothelium of dural venous sinuses (on left), allowing T cells to survey antigens pre-
sented by APCs. CSF antigens are presented to immune cells in cervical lymph nodes (not shown)
by being drained along perineural and dural lymphatic routes. Meningeal immune cells are repo-
pulated by immune cells generated in the skull bone marrow. Figure created using BioRender.54

Fig. 2 Microglia–vascular interactions in the murine cerebral cortex—confocal images from
murine brain slices depicting the cortical parenchymal vascular bed. Microglia (green: labeled for
Iba1) are often closely associated with the vasculature (magenta: pericytes visualized using NG2-
DsRed transgenic mice) and have processes that can directly contact the abluminal vessel wall.
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movement along the perivascular space.67 The architecture of the vasculature, its cellular com-
position, and its perivascular spaces are diverse across the brain and its bordering tissues, leading
to differences in the accessibility to and function of its associated immune cells [for detailed
reviews on central nervous system (CNS) tissue immune cell differences see Refs. 68 and 69].

In the past, CSF was assumed to leave the brain either across the cribriform plate along
(perineural) olfactory nerve rootlets into lymph vessels or by entering the blood via arachnoid
villi and granulations somehow connecting to venous sinuses.70–72 Recent studies, however,
suggest instead that CSF is also drained into the dura (possibly via arachnoid granulations) from
where CSF enters the meningeal lymphatics, which project to deep cervical lymph nodes55,73–76

(Fig. 3). However, to date, the mechanism by which CSF crosses the arachnoid barrier into the
venous sinus or dural lymphatics remains unknown. In fact, tight junctions between epithelial-
like cells comprising the arachnoid should hinder the efflux of CSF and its constituents.
Arachnoid granulations have thus been proposed to feature specialized structures for efflux, such
as one-way valves or vacuole-forming channels.77 Furthermore, the relative contributions of
olfactory perineural, venous sinus, and dural lymphatic routes to CSF efflux are unclear and
a topic of ongoing discussion.77,78

Peripheral blood leukocytes (Table 1) can also enter the brain across the BBB. Migration
occurs across post-capillary vascular segments that connect to AVs. This is a two-step process:
passage (1) across the vascular wall into the perivascular space, and subsequently (2) across the
glia limitans that comprises the border between the perivascular space and the brain
parenchyma.56 In the absence of neuroinflammation, leukocyte migration across the BBB is rare,
and restricted to activated T cells, which cross the vasculature in an antigen non-specific
manner.79 T cells need to recognize their cognate antigen from APCs in the perivascular space
for them to cross the glia limitans.80 Pericytes may also be able to internalize and present antigens
to T cells, in addition to stimulating the expansion of and cytokine secretion from T cells already
primed by APCs.81,82 During neuroinflammation, however, neutrophils, monocytes, and B cells
are also recruited across the BBB into the parenchyma (see Fig. 4). Erythrocytes are also key
components of both immunosurveillance and the inflammatory response, by scavenging and
sequestering mitochondrial deoxyribonucleic acid (DNA) via toll-like receptor 9 (TLR-9).90

During inflammation, the binding of DNA from bacteria, plasmodia, and mitochondria to eryth-
rocyte TLR-9 increases neutrophil infiltration into the spleen, enhances interferon signaling and
promotes anaemia by erythrophagocytosis.91 Erythrocytes additionally scavenge chemokines,
thus regulating chemokine concentrations in the plasma.92

3.2 Pericyte Control of Leukocyte Trafficking

Recruitment of leukocytes into the brain is a key hallmark of numerous CNS disorders.93,94 For
example, neutrophils enter the brain parenchyma early in the progression of AD.94,95 Following
stroke, neutrophils may extravasate into the parenchyma96–98 or become trapped and confined
within the neurovascular unit.99 In addition, the parenchymal infiltration of highly activated T
and B cells is a probable driver of early MS pathology.100 Upregulation of adhesion molecules by
ECs is considered a significant contributing factor to leukocyte influx in CNS disease95,101 and
now a role for pericytes in leukocyte recruitment in the CNS is starting to emerge.

Since pericytes embedded in the basement membrane constitute the outermost layer of blood
vessels, they are ideally situated to control multiple components of the immune response, as has
been highlighted in the periphery. For example, during tumor necrosis factor (TNF) or interleu-
kin ðILÞ-1β induced inflammation in the murine cremaster muscle, neutrophils are guided via
pericyte intercellular adhesion molecule 1 (ICAM-1) to pericyte gaps to breach the vessel wall
and enter the interstitium.102 In addition, in murine inflamed ear skin, pericytes on capillaries and
arterioles aid chemotactic interstitial migration by interacting with neutrophils and monocytes
via ICAM-1, and further support neutrophil migratory responses by providing chemokines,
including macrophage migration inhibitory factor, C-C Motif Chemokine Ligand 2 (CCL2),
and C-X-C Motif Chemokine Ligand 1 (CXCL1).103

Intriguingly, while pericytes orchestrate and facilitate leukocyte entry in the periphery, in
the CNS it was recently demonstrated that pericytes reduce the permissiveness of the vascu-
lature to leukocyte entry. Mice lacking the PDGFβ retention motif, Pdgfbret∕ret (producing a
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75% reduction in the number of pericytes in the brain) exhibit an intense influx of leukocytes
in health and disease, presumably mediated by loss of pericyte-evoked suppression of ICAM-1
and vascular adhesion molecule 1 (VCAM-1) expression on ECs.104,105 This raises important
questions regarding the function of pericytes during leukocyte recruitment in the brain: do
brain pericytes prevent leukocyte entry unlike pericytes in other organs such as the cremaster
muscle or ear skin, and mechanistically, how is this mediated? Do pericytes physically hinder
the recruitment of leukocytes to the interstitium, or do they produce factors involved in main-
taining homeostasis to reduce immune cell entry, which may also impact the endothelial cell
(EC) phenotype? This has been previously suggested by a study in the mouse retina, whereby
depletion of pericytes induced a pro-inflammatory phenotype in ECs, characterized by
increased expression of CCL2 or VCAM-1.106 In this context, one emerging mediator in

Fig. 4 Interaction of leukocytes with, and entry across, the BBB. The neurovascular unit is com-
prised of a single layer of ECs, contractile pericytes, and smooth muscle cells embedded in the
basement membrane, as well as astrocytes and neurons. Neurons and astrocytes send signals to
the mural contractile cells to regulate CBF. Perivascular MΦ reside in the perivascular space that
is lined with the end-feet of astrocytes forming the glia limitans. Microglia are present in the brain
parenchyma but can make direct contact with pericytes via their numerous processes. Infectious
agents and tissue damage are detected by these tissue resident immune cells via pattern recog-
nition receptors such as toll-like receptors, which in turn induce transcription and translation of
inflammatory cytokines to activate ECs, promoting leukocyte entry and increasing permeability
to small molecules. Leukocyte entry occurs across post-capillary vascular segments adjoining
ascending venules, where ECs initially upregulate P and E selectin to capture leukocytes in
the blood via their respective carbohydrate ligands (e.g., P selectin/PSGL1 interactions). Rolling
reduces the speed of leukocytes, allowing prolonged contact time with the endothelium.
Subsequent firm adhesive interactions occur via immobilized chemokine ligation to GPCRs on
leukocytes, which switches leukocyte integrins into a high affinity state (e.g., ICAM-1/LFA-1 inter-
actions). In the periphery, the majority of leukocyte migration occurs in a paracellular manner,
through the junctions of adjacent ECs.83 However, in the CNS during exacerbated inflammation
T cells can migrate through the body of the EC: a transcellular route84 which occurs due to a lack of
T cell crawling induced by high ICAM-1 expression.85 Additionally, ACKR1, a non-signaling atypi-
cal chemokine receptor, mediates the shuttling of chemokines across the BBB, which could also
contribute to the mediation of transcellular migration.86 It is thought the transcellular route is the
preferred mode by which neutrophils move through the brain EC layer.87 Approximately 50% of
paracellular movement of leukocytes across the vessel wall occurs at tricellular junctions of ECs of
the CNS (where three ECs meet).88 After crossing the endothelial layer into the perivascular
space, leukocytes must then pass the glia limitans layer89 to enter the brain parenchyma.
Figure created using BioRender.54
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pericyte biology is IL-33, which is released via PDGFRβ signaling. IL-33 is considered to be
an “alarmin” secreted by a wide range of stromal cells, which polarizes microglia toward an
anti-inflammatory phenotype in mouse models of AD.107,108 As such, a lack of pericyte-
derived IL-33 could further exacerbate immune cell recruitment and impact EC responses—
aspects that remain to be investigated.

Furthermore, pericytes are involved in neuronal control of the CNS immune response, by
sensing and relaying signals to neurons early in systemic inflammation. Following systemic
lipopolysaccharide (LPS) stimulation in mice, PDGFRβ-expressing pericytes express high
levels of the chemokine CCL2 during the initial acute phase of inflammation. Importantly,
CCL2 acts on CCR2, the chemokine’s receptor on neurons, and enhances excitatory synaptic
transmission.109 Given the early release of CCL2 from pericytes in this model, it will be impor-
tant to define whether this is a transient response and if it is necessary for chronic inflammatory
responses. Does pericyte-CCL2 work synergistically with, or independently from, CCL2 pro-
duced by microglia? Indeed, CCL2 is also a key factor that recruits monocytes and T cells to sites
of inflammation,110,111 suggesting that pericyte-derived CCL2 may also act as a chemotactic
molecule in this manner.

Chemokines are presented to leukocytes to facilitate migration into inflamed tissues -a proc-
ess facilitated in part by the binding of tissue-derived chemokines on the abluminal side of ECs
to atypical chemokine receptor 1 (ACKR1), a receptor that facilitates the internalization, trans-
portation, and presentation of chemokines to leukocytes on the luminal aspect of ECs.92,112 For
example, in the murine CNS, ACKR1 is upregulated in ECs during inflammation and shuttles
chemokines across the BBB to be presented luminally, whereas erythrocyte ACKR1 acts as a
chemokine reservoir.86 Other members of the ACKR family are involved in chemokine scavenge
and degradation.92 To the best of our knowledge, no studies have investigated the expression and
function of ACKRs on brain pericytes, despite RNAseq data suggesting brain pericytes could
express some classes of ACKRs.14,16 Thus, pericytes may play a role in the retention, presen-
tation, or degradation of chemokines via ACKRs, which is yet to be investigated.

In cancer, pericyte deficiency leads to increased leukocyte infiltration in murine experimen-
tally induced tumors, IL-6 upregulation, and hypoxia.113 Importantly, the interaction of glioblas-
toma cells with human pericytes induces expression of anti-inflammatory cytokines IL-10 and
TGF-β, which prevent attack of the tumor by host T cell mechanisms, hence promoting tumor
survival.114,115 Furthermore, targeting glioma-derived pericytes can increase chemotherapeutic
drug effusion into tumors.116 Hence, not only do pericytes provide a barrier to leukocyte entry
in healthy conditions, but they can propagate tumor growth and malignancy by limiting tumor
invasion by the host’s immune system. However, pericytes also play key roles in the vascula-
rization of tumors via angiogenesis,117 therefore, suggesting a complicated role for pericytes in
cancer.

In summary, it is now clear that pericytes are key mediators in the sensing and propagation of
the inflammatory response. However, the role of pericytes seems to be highly organ-specific and
dependent on the inflammatory stimulus. Crucially, detailed analysis of pericyte-leukocyte inter-
actions in the CNS is required to understand whether mechanisms are shared between the CNS
and the periphery.

4 Immune Cell Control of Blood Supply to the CNS

Over 100 years after their discovery, which highlighted their association with the vasculature (see
Ref. 118 for a historical overview), microglia are beginning to be recognized as an important
modulator of microvascular blood flow in the healthy and diseased adult CNS.5,119–121 Peripheral
immune cells and microglia generate peptides, purines, catecholamines, cytokines, chemokines,
and reactive oxygen species (ROS) with established vasoactive properties. These soluble
molecules modulate CBF, whether released locally from microglia or invading immune cells,
from the perivascular space,122 or into the circulation from distal tissues such as the gut.123,124

Immune cells may also alter CBF by scavenging vasoconstrictors such as noradrenaline and
endothelin-1 (as occurs in the periphery125,126), degrading matrix proteins regulating vessel stiff-
ness,127 contributing to the formation of capillary blocks,128–131 and eliminating capillaries by
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phagocytosis.132,133 Here, we review some of these emerging roles of immune cells in CBF
control.

4.1 Microglia form Purinergic Junctions with Capillaries to Control CBF

Microglia can interact with capillaries by sensing purines released from pericytes, ECs or
astrocyte endfeet on capillaries and, in pathology, by sensing entry of fibrinogen into the
parenchyma from the blood.134–136 The purines, mainly adenosine triphosphate (ATP) and its
hydrolysis product adenosine diphosphate (ADP), are sensed by microglial P2Y12 receptors
(P2Y12Rs).

119 Microglia are the only cells expressing P2Y12Rs in the CNS parenchyma,137

although in the blood, ADP also activates P2Y12Rs on platelets, enhancing their
aggregation.138 Fibrinogen activates microglia by binding to the integrin receptor Mac1 [clus-
ter of differentiation (CD)11b/CD18].134 P2Y12R stimulation mediates β1 integrin activation in
microglial processes required for chemotaxis toward sites of ATP/ADP released from capil-
laries, as occurs when brain injury releases ATP from damaged cells and raises ½ATP�o.139–141
Interestingly, microglial processes contact 83% of pericytes on capillaries, and cover 15% of
the EC surface, predominantly at sites of mitochondria,120 which provide ATP released via
capillary pannexin 1 (PANX1).119 High levels of P2Y12Rs at the bulbous tips of microglial
processes likely facilitate these contacts.142 Furthermore, 30% of all microglia somata are
closely associated with capillaries.119 Microglia also contact capillary segments where astro-
cyte endfeet are absent, forming an integral part of the glia limitans,120,143–145 and so are ideally
placed to modulate CBF.

Contradictory data exist on the role of microglia in CBF control. In P2Y12R or PANX1 defi-
cient mice, microglia-capillary interactions are reduced, and CBF is increased, suggesting that
microglia confer vascular tone by a mechanism dependent on purinergic signaling.119 This is
consistent with pharmacological microglial depletion increasing capillary diameter and CBF.119

Others, however, did not detect changes in CBF upon microglial depletion,120 possibly reflecting
differences in anaesthetics used or brain regions imaged. Conceivably, CBF changes in P2Y12R

or PANX1 deficient mice may also be evoked by reductions in platelet aggregation in these
mice.146,147 Furthermore, PANX1 modulates a wide range of physiological functions including
inflammasome assembly, dendritic spine development, and sleep-wake cycle patterns,148–150

which may change CBF. Interestingly, global PANX1 KO in mice protects against cerebral
infarction in ischaemia,151–153 and this is at least partially mediated by endothelial (but not mural
cell) PANX1 KO reducing contractile tone and attenuating leukocyte infiltration.154 In contrast,
P2Y12R blockade increases infarct size and microglial elimination reduces CBF after experimen-
tal stroke in murine models.39,120 Microglial depletion, P2Y12R knock-out, or pharmacological
P2Y12R blockade in mice also reduce neuronally evoked increases in CBF by ∼16%,120 sug-
gesting that microglia may contribute to neurovascular coupling (NVC). Importantly, P2Y12R

expression is reduced in various neurological diseases as shown in humans in AD and MS and
in murine models of ischemic stroke,155–157 which may therefore alter microglia-capillary
interactions132,135,158 and impair NVC159–161 in these diseases.

In summary, these studies suggest a role for microglia-mediated CBF control beyond that of
vessel growth during development162–164 (Fig. 1) and warrant further research into the mecha-
nisms by which PANX1 and P2Y12Rs control CBF.

4.2 Immune Cells Signal to Mural Cells Directly via the Blood or CSF and
Block Capillaries in Disease

Microglia and cerebral perivascular macrophages (PVMs) signal directly to mural cells to modu-
late CBF. This is facilitated by their close association with mural cells. Unlike microglia, how-
ever, PVMs lack ramified processes and P2Y12Rs, and are located outside the glia limitans and
within the perivascular space, closely juxtaposed to PAs and capillaries of at least the first to third
branching order122,165 (Fig. 1). Peripheral immune cells also regulate mural cell contractile tone,
although probably on a slower timescale, by releasing signaling molecules into the blood or
CSF.123,166–168 Molecules released into the blood may act on ECs at the luminal side of the
BBB, whereas those in the CSF may modulate vascular tone by entering the brain through the
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glia limitans at the pial surface or by being transported along perivascular and glymphatic routes
(Figs. 1 and 3). Importantly, the glia limitans, arachnoid mater, and dural vasculature allow the
passage of molecules up to ∼40 kDa in size (e.g., 40-kDa dextran or HRP),25,169–171 which is
larger than the size of most cytokines (∼5 to 25 kDa). Leukocytes in the meninges may therefore
release molecules into the CSF to modulate CBF.

In the healthy murine brain, circulating leukocytes stall transiently in 0.4% of cerebral capil-
laries, possibly by interacting with the glycocalyx or selectins on ECs128,172–174 (Fig. 4). However
in disease, disruption of the glycocalyx, upregulation of selectins and adhesion molecules or any
narrowing of the capillary lumen evoked by pericyte contraction or oedema may cause leuko-
cytes, which are less distensible and larger than erythrocytes, to become trapped in CNS capil-
laries. Neutrophil blocks were shown to occur in rodent models of stroke, diabetic retinopathy,
sepsis, cerebral malaria, AD, and subcortical vascular dementia.128–131,175–180

Similar vascular blocks by leukocytes can be observed in patients with AD95 and stroke,99

although the human leukocyte blood composition is remarkably different from that of mice
(Table 1), in that there are more neutrophils and less lymphocytes (Table 1). In stroke patients,
live computed tomography imaging of granulocytes labeled with a radioactive tracer revealed
that granulocyte accumulation in regions of cerebral infarction correlates with worse neurologi-
cal outcome and infarct volume.181,182 Since ischaemic stroke or the toxic build-up ofAβ oligom-
ers in AD leads to pericytes constricting capillaries near their somata, where most circumferential
processes are located,5,8 leukocytes may become trapped near pericyte somata as suggested by
our data in a rodent model of stroke [Fig. 5(a)].183 Formation of capillary blocks may also be
enhanced by neutrophils aggregating with platelets, possibly by generating extracellular DNA
traps as occurs in arterial clots of ischemic stroke patients184,185 or by the release of inflammatory
molecules as described below.

Fig. 5 Mural cell leukocyte interactions modulating blood flow. (a) In vivo two-photon imaging of a
neutrophil stalled near a pericyte soma in a cerebral capillary 1.5 h after bilateral common carotid
artery occlusion in an adult mouse expressing dsRed under the pericyte NG2 promoter. Blood
neutrophils are labeled using an antibody conjugated to Ly6G (0.1 mg∕kg i.v.). Arrow indicates
the narrowed lumen diameter at the pericyte soma. (b) Major ion channels and GPCRsmodulating
mural cell contractile tone in response to immune molecules. Stimulation of GPCRs coupled to Gq,
G12∕13, and Gi and Ca2þ influx through CaVs promotes contraction, whereas GPCRs coupled to
Gs, Kþ efflux and GC activity reduce contraction. Immune cells may modulate contractility by
releasing angiotensin II (Ang II), TNF-α, adenosine, PGE2, and NO. NO generated by nitric oxide
synthase (NOS) activates mural cell GC, which promotes vasodilation by enhancing the activity of
MLCP. NO levels are increased by IL-1β and reduced by IL-17 and IL-6 negatively regulating
eNOS and by •O2 reacting with NO. Figure created in part using BioRender.54
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4.3 Modes of Mural Cell Contraction by Immune Molecules

There are numerous immune-related molecules with known effects on blood flow. They include
adenosine, angiotensin II (Ang II), prostaglandin E2 (PGE2), IL-1α, and nitric oxide (NO)
generated by microglia,120,121,186–188 histamine produced by mast cells,189–194 fractalkine
(FKN) released by neurons,121 IL-17 generated by T helper cells,123 TGF-β released from astro-
cytes,195,196 IL-10 released from T regulatory cells197 and ROS, IL-1α, IL-1β, IL-6, and TNFα
generated by various immune cells (Table 2).

There are established mechanisms by which these immune molecules may modulate the con-
tractile tone of pericytes and SMCs [Fig. 5(b)]. Molecules may directly act on mural cells or
signal through neighboring cells such as ECs to modulate the activity of mural cell ion channels,
guanylyl cyclase (GC), or G-protein coupled receptors (GPCRs). GPCRs coupled to Gq∕11,
Gs, Gi∕o, or G12∕13 α subunits can influence a wide range of Ca2þ-, Cl−-, Naþ-, or Kþ-permeable
surface membrane ion channels to regulate mural cell contractile tone. The surface membrane
ion channels involved can be broadly divided into those having a hyperpolarizing or depolarizing
influence on surface membrane potential (Vm). In addition there are Ca2þ-permeable channels
in internal stores that are gated by inositol trisphosphate (IP3) generated by Gq∕11 activating
phospholipase C.

Depolarization evokes Ca2þ influx from the extracellular milieu via voltage-gated Ca2þ

channels (CaVs). This ½Ca2þ�i rise causes Ca2þ to bind to calmodulin (CaM). The Ca2þ-
CaM complex then activates myosin light chain kinase (MLCK), which in turn phosphorylates
the myosin light chain (MLC) of myosin II causing actin-myosin crossbridge cycling and con-
traction [Fig. 5(b)]. In mural cells, GqPCR agonists activate MLCK by raising ½Ca2þ�i.
Hyperpolarization, on the other hand, is primarily evoked by Kþ efflux, for instance, via inward
rectifier Kþ (Kir2.1 and Kir2.2) or ATP-sensitive Kþ (KATP; Kir6.1) channels,

14,217–219 causing
voltage-gated calcium channels to close and vessels to dilate.

Signaling via GC or GPCRs coupled to Gs, Gi∕o, or G12∕13 modulates the activity of myosin
light chain phosphatase (MLCP), which dephosphorylates MLC to reduce contraction. While
GC and GsPCRs enhance MLCP activity by facilitating cAMP production via adenylate cyclase
(AC), GiPCRs and G12∕13PCRs have an opposing effect; they negatively regulate MLCP
by inhibiting AC or stimulating rho-associated protein kinase, respectively, thus evoking
contraction.220 GsPCR agonists such as adenosine can also hyperpolarize mural cells by evoking
Kþ efflux via KATP channels.221

4.4 Microglia and Peripheral Immune Cells Release Vasoactive Molecules
to Control Blood Flow

Microglia generate vasodilating adenosine by hydrolyzing ATP using the membrane-bound
ectoenzymes CD39 and CD73.39,40 This may facilitate capillary dilation, at least in conditions
of hypercapnic CO2 challenge in mice,119,120 and it may also contribute to adenosine-evoked
increases in CBF during NVC.222 Adenosine relaxes pericytes via Gs-coupled adenosine recep-
tors [Fig. 5(b)]. In contrast, ATP and ADP contract pericytes by stimulating P2X receptors (ATP-
gated channels mediating cation influx) and Gq-coupled P2Y1 and P2Y2 receptors (promoting
Ca2þ release from stores), respectively.223–227 ATP hydrolysis by microglia may thus attenuate
contractile tone.

Microglia can also produce the prostanoid PGE2 via cyclooxygenase (COX)
14,186 and IL-1β

via the NLRP3 inflammasome.141,201 PGE2 evokes capillary dilation by stimulating Gs-coupled
EP4 receptors on pericytes and Gq-coupled endothelial EP1 receptors,11,200 whereas IL-1β acti-
vates its receptors predominantly on ECs, which increases CBF by promoting the release of
NO.202–205 However, prolonged IL-1β application was found to enhance hypoperfusion,211 likely
by promoting inflammation and leukocyte infiltration.203

Since microglial ½Ca2þ�i transients are partly driven by the activity of neurons228 and regulate
COX, and NLRP3 and matrix metalloproteinase (MMP)-mediated cleavage of membrane-bound
cytokines into their soluble forms,229–233 it is conceivable that neurotransmitters modulate micro-
glial-evoked changes in CBF. Indeed, the factors controlling the release of various vasoactive

Barkaway, Attwell, and Korte: Immune–vascular mural cell interactions: consequences for immune cell. . .

Neurophotonics 031914-11 Jul–Sep 2022 • Vol. 9(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 01 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



T
ab

le
2

P
os

si
bl
e
pa

th
w
ay

s
m
ed

ia
tin

g
im

m
un

e
ce

ll
re
gu

la
tio

n
of

va
sc

ul
ar

to
ne

in
he

al
th

an
d
di
se

as
e.

E
xp

ec
te
d
va

so
m
ot
or

ef
fe
ct

G
en

er
at
in
g
ce

ll
ty
pe

A
go

ni
st

M
ec

ha
ni
sm

R
ef
er
en

ce
s

V
as

od
ila
tio

n
or

in
cr
ea

se
d
bl
oo

d
flo

w

M
ic
ro
gl
ia

N
O

S
tim

ul
at
es

m
ur
al

ce
ll
G
C

18
8,
19

8

ad
en

os
in
e

G
s
P
C
R
-c
ou

pl
ed

ad
en

os
in
e
re
ce

pt
or
s
on

m
ur
al

ce
lls

40
,1
20

,1
99

P
G
E
2

G
s
P
C
R
-c
ou

pl
ed

E
P
4
re
ce

pt
or
s
on

pe
ric

yt
es

an
d
G

q
-c
ou

pl
ed

en
do

th
el
ia
lE

P
1
re
ce

pt
or
s

11
,1
4,
18

6,
20

0

IL
-1
β

IL
-1

re
ce

pt
or

m
ed

ia
te
d
re
le
as

e
of

N
O

an
d
P
G
E
2

14
1,
19

9,
20

1–
20

5

IL
-1
α

P
ia
la

rt
er
y
di
la
tio

n
18

7

M
ic
ro
gl
ia
,
pe

riv
as

cu
la
r
M
Φ
,

bl
oo

d
an

d
m
en

in
ge

al
le
uk

oc
yt
es

R
O
S

A
T
P
-g
at
ed

an
d
C
a2

þ -
ac

tiv
at
ed

K
þ
ch

an
ne

ls
in

S
M
C
s

16
5,
20

6–
20

9

T
re
gu

la
to
ry

ce
lls

IL
-1
0

R
ed

uc
es

A
ng

II
ev

ok
ed

re
le
as

e
of

•
O

2
–

19
7

M
as

t
ce

lls
hi
st
am

in
e

C
ap

ill
ar
y
di
la
tio

n
19

1

V
ar
io
us

le
uk

oc
yt
es

T
N
F
α

In
cr
ea

se
s
bl
oo

d
flo

w
by

st
im

ul
at
in
g
N
O

re
le
as

e
21

0

V
as

oc
on

st
ric

tio
n
or

de
cr
ea

se
d
bl
oo

d
flo

w
M
ic
ro
gl
ia

T
hr
om

bo
xa

ne
-A
2

G
q
P
C
R
-c
ou

pl
ed

th
ro
m
bo

xa
ne

A
2
re
ce

pt
or
s
on

m
ur
al

ce
lls

7,
14

IL
-1
β

In
fla

m
m
at
io
n
an

d
le
uk

oc
yt
e
in
fil
tr
at
io
n

20
3,
21

1

A
ng

io
te
ns

in
II

G
i
an

d
G

q
-c
ou

pl
ed

A
ng

II
ty
pe

1
re
ce

pt
or
s
on

m
ur
al

ce
lls

12
1

M
ic
ro
gl
ia
,
P
V
M
,
bl
oo

d
an

d
m
en

in
ge

al
le
uk

oc
yt
es

,
pe

ric
yt
es

R
O
S

C
a2

þ
re
le
as

e
fr
om

st
or
es

in
pe

ric
yt
es

;
re
du

ce
s
N
O

bi
oa

va
ila
bi
lit
y;

st
im

ul
at
es

re
le
as

e
of

en
do

th
el
in
-1

ac
tiv
at
in
g
G
q-
co

up
le
d
E
T
A
re
ce

pt
or
s
on

pe
ric

yt
es

16
5,
20

6–
20

8,
21

2–
21

4

N
eu

ro
ns

F
K
N

S
tim

ul
at
es

m
ic
ro
gl
ia

to
re
le
as

e
A
ng

II
ac

tin
g
on

A
ng

II
ty
pe

1
re
ce

pt
or
s
on

m
ur
al

ce
lls

12
1

G
ut

T
he

lp
er

ce
lls

IL
-1
7

N
eg

at
iv
el
y
re
gu

la
te
s
eN

O
S

by
en

ha
nc

in
g
its

T
hr
49

5
ph

os
ph

or
yl
at
io
n

12
3,
12

4

V
ar
io
us

le
uk

oc
yt
es

IL
-6

N
eg

at
iv
el
y
re
gu

la
te
s
eN

O
S

by
in
hi
bi
tin

g
its

ph
os

ph
or
yl
at
io
n
at

S
er
11

77
21

5,
21

6

M
as

t
ce

lls
hi
st
am

in
e

D
ep

ol
ar
iz
es

an
d
co

nt
ra
ct
s
pe

ric
yt
es

vi
a
hi
st
am

in
e
(H

1
)
re
ce

pt
or
s

18
9,
19

2–
19

4

A
st
ro
cy

te
s

T
G
F
-β

E
xc
es

si
ve

pr
od

uc
tio

n
re
du

ce
s
C
B
F
po

ss
ib
ly

by
in
du

ci
ng

m
ur
al

ce
ll
lo
ss

19
5,
19

6

Barkaway, Attwell, and Korte: Immune–vascular mural cell interactions: consequences for immune cell. . .

Neurophotonics 031914-12 Jul–Sep 2022 • Vol. 9(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 01 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



prostanoids (via COX) and cytokines (via NLRP3 or MMPs) are largely unexplored in immune
cells. Transcriptome studies, for instance, suggest that microglia are uniquely endowed14 with
the enzyme thromboxane A2 synthase (downstream of COX) that generates the prostanoid
thromboxane A2, which contracts pericytes, whereas the cytokine IL-1α is generated in micro-
glia and evokes dilation of pial arteries.7,14,187

Neurons also signal to microglia to alter blood flow via the chemokine fractalkine
(FKN/CX3CL1). FKN is predominantly present in neurons (membrane-bound or released in
a soluble form) and binds to CX3CR1 selectively expressed in microglia orMΦ.234 In the healthy
brain, FKN promotes synaptic strength, neurogenesis, and memory formation and may act as a
“find me” signal for microglia to clear neuronal debris,201,235,236 but, after stroke, signaling via
FKN reduces CBF, enhances neuronal apoptosis and worsens neurological outcome in
mice.120,237,238 In the mouse retina, application of soluble FKN (mimicking its release from dam-
aged neurons239) evokes rapid capillary constriction, possibly by a mechanism involving micro-
glial release of Ang II acting on Gi and Gq-coupled Ang II type 1 receptors.121 Furthermore, our
unpublished data show that FKN contracts pericytes and decreases blood flow in the murine
cerebral cortex. Blocking CX3CR1 may thus provide a therapeutic approach to reduce the con-
traction of pericytes that contributes to the no-reflow of blood in capillaries after stroke.8,206,240

ROS generated by NADPH oxidase (NOX2) in immune cells can be released in the brain by
microglia, PVMs or infiltrating leukocytes,165,207,208 in the blood by circulating leukocytes such
as neutrophils (e.g., after stroke in humans241) or from the meninges into the brain (e.g., after
traumatic brain injury170). ROS directly modulate the contractile tone of pericytes and SMCs; in
pericytes by stimulating Ca2þ release from stores (possibly via endothelin-1 release5), which
raises ½Ca2þ�i and enhances vasoconstriction206,212 and in SMCs by activating ATP-gated and
Ca2þ-activated Kþ channels, which hyperpolarize Vm and evoke vasodilation.206,209 ROS release
following ischemic stroke induces pericyte contraction and contributes to capillary no-reflow,
which can be partially reversed with a NOX2 blocker.206

Superoxide (•O2) generated by NOX2 can also react with endothelial-derived NO to form
peroxynitrite, thus reducing NO bioavailability.213 Indeed, NO-mediated increases in CBF
evoked by neuronal activity are impaired by PVMs producing •O2, for instance, in response
to Ang II binding to AT1 receptors214 or Aβ activating the innate immunity receptor
CD36.122 Aβ also evokes release of ROS from pericytes (via NOX4) and from microglia (via
NOX2), causing pericyte contraction by a mechanism dependent on downstream release of
endothelin-1 activating Gq-coupled ETA receptors.5 ROS and endothelin-1 are also thought
to contribute to cerebral hypoperfusion in patients with MS.242,243 The anti-inflammatory cyto-
kine IL-10 released by T regulatory cells largely prevents the Ang II evoked release of •O2 and
restores NVC,197 which is consistent with the cerebroprotective function of IL-10 after stroke
in mice.244

In mice on a high salt diet, gut T helper (TH17) cell release of IL-17 into the circulation
reduces the activity of eNOS, which reduces CBF by 25%.123,124 Elevated levels of IL-17 found
in the blood of patients with AD, MS and stroke245 and infiltrating neutrophils releasing IL-17 in
the cortex of AD mice95 may reduce endothelial NOS (eNOS) activity in a similar manner.
Furthermore, elevated plasma levels of IL-6, which promotes coagulation and negatively
regulates eNOS (by inhibiting its phosphorylation at Ser1177),215,216 were associated with
CBF decreases in aging individuals, stroke patients, and in patients recovered from
COVID-19.246–248

Importantly, systemic infection evoked decreases in CBF may enhance cognitive decline in
patients. For instance, 62% of hospitalized COVID-19 patients present with a reduction in brain
energy supply, most commonly, in the form of an ischemic stroke249 and 34% show neurological
and psychiatric deficits in the six months following COVID-19 infection.250 Cerebral ischemia
evoked by capillary constriction is thought to be a major cause of brain injury in patients with
sepsis,251–254 which occurs when the immune system excessively generates cytokines in response
to infection. A similar “cytokine storm” occurs in severe COVID-19 patients255 although, similar
to human immunodeficiency virus (HIV), SARS-CoV-2 induces profound lymphopenia, in par-
ticular a reduction in CD4+ and CD8+ T cells.256,257 Notably, a decline in CD4+ T cells in HIV
patients or in a macaque model of AIDS correlates with a decrease in CBF.258,259 Although res-
piratory failure is a major risk factor for cerebral ischemia in COVID-19 patients, SARS-CoV-2
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also impairs the cerebral vasculature directly by inducing pericyte contraction,260 EC death,261

and microthrombi formation.262 Systemic infection also exacerbates cerebral hypoperfusion in
AD patients, presumably by inducing the release of cytokines,263 which is expected to accelerate
cognitive decline in these patients.264 Interventions aimed at restoring CBF following severe
infection may thus help to improve cognition in these patients.

5 Do Immune Cells Contribute Significantly to the Maintenance and
Disruption of the Blood–Brain Barrier?

The BBB is a highly specialized vascular barrier that limits the influx of serum proteins, leuko-
cytes, and toxic substances such as glutamate and ATP into the brain parenchyma and pumps out
waste—functions that are primarily mediated by ECs, pericytes, and astrocytes (Fig. 4). The BBB
results from: (1) transendothelial tight junctions between ECs that confer a high resistance to para-
cellular diffusion of solutes, (2) suppression of endocytic vesicle-mediated transcytosis of macro-
molecules such as proteins and peptides, and (3) solute carriers that transport carbohydrates,
vitamins, amino acids, hormones, monocarboxylic acids, and nucleotides.2,265 CNS ECs
exhibit a BBB-specific gene expression profile, with similar core changes in gene expression being
observed across different CNS disorders.266 This specialized layer of ECs is held together by tight
junctions (e.g., occludin and claudin, which link the cytoskeleton through scaffolding proteins such
as zonula occludens-1) and adherens junctions (cadherins, which connect intracellular actin fila-
ments via α, β, and γ catenins).267 The BBB maintains low levels of permeability-enhancing pro-
teins on ECs including the Tie2 ligand angiopoietin-2 and the plasmalemma vesicle-associated
protein, which is required for endothelial vesicle trafficking. Expression of various leukocyte adhe-
sion molecules (ICAM1, VCAM1, activated leukocyte cell adhesion molecule (ALCAM), and
galectin-3) are also suppressed. This is to limit leukocyte influx, which can contribute to BBB
leakiness caused by disruption of EC junctional molecules and the extracellular matrix via
leukocyte release of (1) pro-inflammatory cytokines, such as TNF,268 (2) ROS,269,270 or
(3) MMPs.271–275 These leukocyte-derived molecules are also able to induce neurotoxicity.276

In the brain, ECs show a lower rate of transcytosis than ECs of any other organ.277 This is in
part because the major facilitator superfamily domain—containing 2a (Mfsd2a) protein, a
sodium-dependent lysophosphatidylcholine transporter—supresses transcytosis in capillaries
(but notably not in arterioles278) because lipids transported by MFSD2a establish a unique lipid
composition of CNS EC plasma membranes that inhibits endothelial caveolae vesicle
formation.279,280 With age, MFSD2a becomes downregulated, whereas caveolin vesicle density
is increased, in association with reduced pericyte coverage and increased BBB permeability.15 In
addition, the level of MFSD2a is reduced upon LPS exposure, suggesting its expression can be
modulated by inflammation.281 Interestingly, lymphocyte transcellular migration (migration
through the EC body) relies on the translocation of ICAM-1 to caveolae-rich domains of
ECs, to create a path through which the lymphocyte can migrate,282 and ECs, which exhibit
low MFSD2a levels have high ICAM-1 expression.283 Thus, the same factors regulating trans-
cytosis of molecules may also influence transcellular migration of lymphocytes.

Key to the development and maintenance of the BBB are pericytes, which are essential for
the development of tight junctions between ECs,105,284,285 the expression of MFSD2a in ECs280

thus suppressing permeability-enhancing proteins,104,105 the stabilization of tight junctions by
secretion of angiopoietin-1,286 and inducing growth of the endothelial tube, which is suggested
to widen capillary diameters near pericyte somata.5,8 Pericyte deficiency in mutant mice (with
low levels of PDGFRβ or lacking the PDGF-BB retention motif) severely impairs the BBB. This
results in an influx of toxic blood-borne solutes (e.g., cytokines and serum proteins), impaired
NVC,9,284 disrupted expression of leukocyte adhesion molecules,105 activation of microglia, and
damage to neurons.285 Accordingly, in AD patients’ brains, pericyte loss correlates with
enhanced BBB leakage.287 Additionally, increased soluble PDGFRβ in the CSF correlates with
increased measures of BBB dysfunction and cognitive impairment,288,289 highlighting the key
importance of this cell type for maintaining a healthy BBB and avoiding pathology. Activation of
the CypA-MMP9 pathway in pericytes (e.g., in ApoE4 carriers) can contribute to BBB break-
down, highlighting how crucial this cell type is for barrier function.290,291
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Ablation of microglia in the healthy murine CNS does not compromise BBB integrity.103,292–294

However, microglia do play a key role in the rapid repair of the vasculature upon BBB impair-
ment. Specifically, in a manner dependent on ADP-sensing P2Y12 receptors, microglia extend
processes toward, and aggregate at, sites of vascular damage (as induced by laser injury) and seal
the broken vessel using a mechanism dependent on E-cadherin.295 In addition, microglia may
also secrete trophic factors to encourage endothelial growth.295 This phenomenon has been fur-
ther explored in zebrafish with respect to MΦ, where these cells physically repair vessels by
pulling two endothelial ends together in a microfilament-dependent manner.296 Thus, immune
cells can repair damage by providing adhesive molecules and by physical traction.

Recent data also suggest that microglia play dual roles in the regulation of the BBB, depen-
dent on the timing of the inflammatory response. Initially, following LPS challenge in mice,
microglial contact with cerebral blood vessels protects BBB integrity, by increasing expression
of the tight junctional protein claudin-5,297 a phenomenon that has also been shown to be medi-
ated by astrocytes.298 However, prolonged inflammation results in a more activated microglial
phenotype, resulting in phagocytosis of astrocytic end-feet and BBB integrity loss.297 In mild
hypoxia in the spinal cord, microglial depletion enhances tight junction loss and BBB
permeability.293 In the brain following stroke in mice, microglia migrate toward the hypoxic
vasculature and, in principle, aid repair by phagocytosing and clearing damaged sites.
However, this leads to a positive feedback loop, where the vasculature becomes leaky to the
blood serum components albumin and fibrinogen, which upregulates expression of inflammatory
cytokines, and promotes further recruitment of microglia.132 Indeed, deposition of fibrinogen in
the parenchyma as a consequence of BBB dysregulation in mouse models of MS induces vas-
cular microglia clustering, contributing to neuronal damage.135 Therefore, while the primary role
of microglia is protective, the consequences of their actions can be damaging to the parenchyma,
as occurs following ischaemia and in AD patient brains.299 These studies highlight that the role
microglia play, whether protective or destructive, is very much dependent on the type of injury,
and the time frame.

While microglia play key roles in the regulation of the BBB, peripheral leukocytes predomi-
nantly contribute to BBB breakdown during pathology. These actions can be mediated by ROS
and MMP release, which damage EC junctions, for example by interfering with the β-catenin
complex.300 Neutrophils are rich sources of these mediators, and contribute to the breakdown of
the BBB in various neurological pathologies,95,301,302 and T cells have also been shown to medi-
ate damage in this manner.303 Infiltrating T cells can perturb the BBB via the action of cytokines
IL-17 and IL-22,304 which release ROS from ECs, disrupting tight junctions.305

In addition, prolonged stalling of neutrophils in vessels may impair the integrity of the BBB
by enhancing endothelial actin depolymerization and the breakdown of adherens junctions
between ECs, as occurs in the periphery.306 More recently, neutrophil extracellular traps
(NETs) have been observed to form both intravascularly and extravascularly during neurological
disease, which may contribute to BBB permeability increases.95,302 NETs are structures formed
by highly activated neutrophils that extrude DNA and intracellular contents to capture patho-
gens, degrade bacterial toxic factors, and kill bacteria.307 Neutrophils from mice subjected to
stroke are more likely to form NETs, and removal of NETs reduces BBB leakage and improves
pericyte coverage.302 The mechanism by which NETs induce BBB breakdown is not yet clear,
but since NETs expose and spill intracellular content (histones, and granule content including
proteases), it is likely that proteases and ROS contribute.

In summary, microglia can play protective and detrimental roles in the regulation of the BBB,
but peripheral blood leukocytes are predominantly destructive in pathology.

6 Summary and Possible Therapeutic Avenues

Immune–vascular interactions are a therapeutic target for various neurological diseases.
CBF decreases occurring after stroke or early in the progression of AD could, for instance,
be therapeutically targeted by inhibiting FKN receptors or blocking ROS production,
respectively.5,8,120,308–310 This may reduce the plugging of capillaries by blood leukocytes,
improve energy supply, and reduce capillary pericyte and neuronal loss in later stages of
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disease.288,311 Pericyte degeneration also occurs early in human MS, and pericyte-deficiency in
an MS mouse model is lethal due to excessive immune cell influx.104,312 A possible therapeutic
strategy may thus aim to restore pericyte coverage to improve barrier function in these diseases.

Another clinical approach could involve recruiting immune cell subsets with protective prop-
erties to the diseased brain. Promising murine studies highlight that recruitment of regulatory
T cells improves cognitive function in AD,313,314 promotes microglia-mediated oligodendrogen-
esis following stroke,315 prevents Ang II evoked disruption of NVC197 and ameliorates neutro-
phil MMP-9 mediated BBB breakdown.316 Furthermore, augmenting immunosurveillance of the
brain by enhancing lymphatic drainage (promoting antigen exposure to immune cells) facilitates
the CD8+ T cell mediated clearance of brain tumors.317 A similar approach could be adopted to
manipulate pericytes to allow drug and immune cell access specifically to tumors.

In conclusion, immune–vascular interactions play both homeostatic and pathogenic roles in
the CNS depending on the context and injury. This field is currently at an exciting stage, where
future work will identify new therapeutic avenues to help combat CNS disease.
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