
Journal Name

On the determination of Lennard-Jones parameters for
polyatomic molecules†

Huangrui Mo,abc Xiaoqing You,∗ab, Kai Hong Luo,d and Struan H Robertsone

Characterizing the key length and energy scales of intermolecular interactions, Lennard-Jones pa-
rameters, i.e., collision diameter and well depth, are prerequisites for predicting transport properties
and rate constants of chemical species in dilute gases. Due to anisotropy in molecular structures,
Lennard-Jones parameters of many polyatomic molecules are only empirically estimated or even un-
determined. This study focuses on determining the effective Lennard-Jones parameters between a
polyatomic molecule and a bath gas molecule from interatomic interactions. An iterative search
algorithm is developed to find orientation-dependent collision diameters and well depths on inter-
molecular potential energy surfaces. An orientation-averaging rule based on characteristic variables
is proposed to derive the effective parameters. Cross-interaction parameters for twelve hydrocar-
bons with varying molecular shapes, including long-chain and planar ones, interacting with four
bath gases He, Ar, N2, and O2 are predicted and reported. Three-dimensional parametric surfaces
are constructed to quantitatively depict molecular anisotropy. Algorithmic complexity analysis and
numerical experiments demonstrate that the iterative search algorithm is robust and efficient. By
using the latest experimental diffusion data, it is found that the proposed orientation-averaging rule
improves the prediction of cross-interaction Lennard-Jones parameters for polyatomic molecules, in-
cluding for long-chain molecules that challenge the consistency of previous methods. By introducing
characteristic variables, the present study shows a new route to determining effective Lennard-Jones
parameters for polyatomic molecules.

1 Introduction
As the prerequisites for predicting many physical properties of
chemical species,1–3 Lennard-Jones parameters play an impor-
tant role in simulating physical and chemical phenomena span-
ning gaseous, liquid, and solid phases.4–6 Characterizing the
key length and energy scales of non-bonding pair interactions,
Lennard-Jones parameters are also an important component for
many well-known and widely used potentials/force fields such as
the Lennard-Jones potentials,7 MolMod,8 TraPPE,9 OPLS-AA,10

COMPASS11 and many others. Therefore, their accurate determi-
nation is of fundamental importance in chemical kinetics, trans-
port phenomenon, and molecular dynamics simulations.4,6,12,13

For instance, high-fidelity modelling of chemically reacting
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flows of gases requires chemical kinetic, thermodynamic, and
transport properties of chemical species and their mixtures over a
wide range of temperatures.6,14,15 While chemical kinetic param-
eters such as rate constants are needed for describing chemical
reaction processes, transport properties such as diffusivity, vis-
cosity, and thermal conductivity are needed for describing mass,
momentum, and energy transfer behaviours. To predict rate con-
stants by solving master equations16–19 and transport properties
of chemical species in dilute gas by using the gas kinetic the-
ory, particularly the Chapman-Enskog theory and its higher or-
der corrections,2,20 the Lennard-Jones parameters of the involved
species are essential information.6,21,22 Although considerable
research has been directed to their measurement and theory,
Lennard-Jones parameters of many species still bear large uncer-
tainties or remain undetermined.12,23–28 Meanwhile, sensitivity
studies by various researchers29–31 have revealed that transport
properties determined from Lennard-Jones parameters can have
large impacts on simulation results such as concentration distri-
butions, flame propagation and extinction, and pollutant produc-
tion.

The Lennard-Jones parameters of a pair of interacting
molecules consist of two components related to intermolecular
interactions: the collision diameter, the separation distance at
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which the intermolecular potential energy equals zero, and the
well depth, the minimal value of the intermolecular potential en-
ergy. In the literature, optimizing initially guessed potential pa-
rameters by using macroscopic thermophysical property data as
optimization constraints4,5 or by using transport data combined
with the inversion of the Chapman-Enskog relations25,32,33 as
well as experimental measurements using neutron/x-ray diffrac-
tion,34,35 molecular beam scattering,26,36 or spectroscopy37–39

were the primary means to obtain Lennard-Jones parameters.
Lennard-Jones parameters optimized from macroscopic data are
a posteriori estimates and often involve the empirical Lorentz-
Berthelot or modified Lorentz-Berthelot combining rule to de-
scribe cross interactions. Meanwhile, parameters obtained from
experiments are usually scarce and limited in thermodynamic
conditions and molecular types.12,40 With advances in computa-
tional chemistry, it becomes increasingly feasible to directly calcu-
late Lennard-Jones parameters from interatomic interactions de-
scribed by force fields obtained from quantum mechanical calcu-
lations, such as ab initio fitted potentials.41–43 This first-principle
calculation approach can achieve a priori predictions without the
need of pre-acquired experimental data and theoretically can be
applied to any chemical species.

To determine the self- or cross-interaction Lennard-Jones pa-
rameters for polyatomic molecules through first-principle calcu-
lations, a major challenge arises from the presence of complex
molecular interactions and structural anisotropy.2,20 Many re-
searchers have attempted to tackle this challenge. Hirschfelder
et al. 2 described a spherical average method that spherically av-
erages the anisotropic intermolecular interactions to obtain an
effective isotropic potential, from which the effective Lennard-
Jones parameters can be readily derived. Monchick and Green 44

examined the spherical average method and found good predic-
tion on transport and scattering cross sections for systems like
HCl-He. In studying collisional energy transfer in toluene-Ar sys-
tems, Lim 45 suggested finding the effective Lennard-Jones pa-
rameters for arbitrary intermolecular potentials by averaging the
collision diameter and well depth on each relative orientation.
Using the benzene-Ar system, Bernshtein and Oref 41 proposed
obtaining effective dynamic potential, collision diameter, and well
depth by averaging the intermolecular interactions resulting from
a large set of collision trajectories. Employing interatomic Buck-
ingham potentials fitted from high-level quantum chemistry cal-
culations, Jasper and Miller 43 evaluated the spherical average,
collision diameter and well depth average, and trajectory average
approaches and suggested that the collision diameter and well
depth average approach, which is referred to as one-dimensional
minimization method,43,46 balances accuracy and efficiency by
the explicit treatment of anisotropy while avoiding expensive tra-
jectory calculations. A review of the efforts taken by some of the
aforementioned researchers was provided by Lendvay.46

Furthermore, the self- and cross-interaction Lennard-Jones pa-
rameters for polyatomic molecules are also difficult to evaluate
directly. Binary diffusion coefficients can be an ideal reference
for evaluating cross-interaction parameters, since the binary dif-
fusion coefficients of two mixing species can be analytically pre-
dicted by their effective cross-interaction Lennard-Jones parame-

ters via the Chapman-Enskog theory. In a span of about a decade,
McGivern, Manion and co-workers measured the binary diffusion
coefficients of normal alkanes ranging from C1 to C8 interact-
ing with bath gases He and N2 using reversed-flow chromatog-
raphy.47–50 Employing this consistent and contemporary set of
experimental diffusion data,49,51,52 Liu et al. 49 found that pre-
dictions by effective Lennard-Jones parameters obtained via aver-
aging collision diameters and well depths on relative orientations
show marked deviations from experimental data for long-chain
alkanes like n-heptane. To address this limitation, Liu et al. 49

proposed an alternative theoretical model for binary diffusion co-
efficients of long-chain molecules using gas-kinetic theory anal-
ysis for slender bodies, which, however, cannot be applied to
polyatomic molecules with more general structures. Therefore,
resolving the current inconsistencies in the effective Lennard-
Jones parameters between polyatomic molecules and bath gas
molecules is of theoretical interest and practical importance.

When a polyatomic molecule interacts with another molecule,
the intermolecular interaction and related potential parameters
on each relative orientation can be considered as certain and in-
herently determined by electronic structures. To better capture
the effective Lennard-Jones parameters between a polyatomic
molecule and a bath gas molecule, the underlying task could lie
in finding a proper averaging rule to account for the statistical ef-
fects of molecular rotations and randomly oriented collisions dur-
ing a large number of molecular encounters. The present work
aims to explore the existence of such averaging rules. By intro-
ducing two characteristic variables representing repulsive and at-
tractive energy scales, a new orientation-averaging rule based on
the characteristic variables is proposed. By using the complete set
of experimental binary diffusion data of McGivern, Manion and
co-workers,47–50 it will be shown that this new rule improves the
prediction of effective Lennard-Jones parameters for polyatomic
molecules interacting with bath gases and resolves the inconsis-
tency of the Chapman-Enskog theory based diffusion prediction
for long-chain molecules. Meanwhile, an iterative search algo-
rithm is developed to robustly and efficiently find orientation-
dependent collision diameters and well depths on complex in-
termolecular potential energy surfaces, which provides prerequi-
site data for the averaging step. In addition, three-dimensional
parametric surfaces of Lennard-Jones parameters are constructed
in this study to quantitatively depict anisotropic interactions in
polyatomic molecules.

2 Theory and methods
Lennard-Jones parameters, namely collision diameter σ and well
depth ε, are the basic parameters of the Lennard-Jones m-6 po-
tentials, which describe orientation-independent intermolecular
interaction as the following form

φ(r) = ε
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where φ(r) denotes the intermolecular potential energy, r is the
separation distance between the centers of mass of the molecules,
σ is the collision diameter at which φ(r = σ) = 0, and ε =

−min{φ(r)} = −φ(r = rmin) is the depth of the potential well at r
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= rmin, m is an integer such as m = 9, 12, . . . and represents the
steepness of the repulsive energy.

As σ and ε represent the root and minimum of intermolecu-
lar potential energy respectively, they can also be linked to other
widely used potentials such as the Buckingham potentials53,54
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where ε and rmin remain the well depth and well depth location
respectively, rmin can be related to σ by φ(r = σ) = 0, such that
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and α is an additional parameter used to measure the steepness
of the repulsive energy.

Characterizing the length and energy scales of the intermolec-
ular interaction of a molecular pair, Lennard-Jones parameters
also play an integral role in the derivation of many fundamen-
tal kinetic and transport quantities, such as hard sphere colli-
sion cross section πσ2, reduced temperature T ∗ = kBT/ε, colli-
sion integrals Ω(l,s) (l = 1,2, . . . , s = 1,2, . . .), and total collision
rate

√
8kBT/(πµ)πσ2Ω(2,2),1,2,15,55 where kB is the Boltzmann

constant and µ is reduced mass.
One first-principle approach for obtaining Lennard-Jones pa-

rameters is to calculate the parameters from ab initio interatomic
potentials.41,43 However, as illustrated in Fig. 1, for an interacting
molecular pair A+M, where A and M denote the target species
and bath gas respectively, their intermolecular potential is a func-
tion of relative position, orientation, and internal degrees of free-
dom.38,56 Consequently, the determination of the corresponding
intermolecular σ and ε is not straightforward and requires ded-
icated treatment of the anisotropic effects in intermolecular po-
tential energy surface.

y

x

z r·e
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Fig. 1 Schematic diagram illustrating a target molecule A interacting
with a bath gas molecule M.

Since intermolecular interactions are generally much weaker
than intramolecular interactions,1,56 a separable approximation
can be adopted to describe the total potential energy surface of
A+M:

φA+M(RA,RM,r,Ω) = φA(RA)+φM(RM)+φA−M(r,Ω) (4)

where φA+M is the total potential energy of A+M, RA and RM

represent the internal coordinates of the target species A and bath
gas M respectively, r and Ω denote the separation between cen-

ters of mass and relative orientation of A and M respectively, φA

and φM are the intramolecular potential of isolated A and M re-
spectively, φA−M is the intermolecular potential between A and M
and is reduced to a function of r and Ω, i.e., φA−M = φA−M(r,Ω).

To describe the anisotropic intermolecular potential φA−M, a
sum of pairwise atom-atom interactions can be used to approxi-
mate the potential energy surface:

φA−M(r,Ω) = ∑
i∈A

∑
j∈M

φi j(ri j) (5)

and the interatomic potential φi j(ri j) can be adequately described
by a modified Buckingham potential,43 referred to as exp-6,

φi j(ri j) = Ei j exp(−ri j/Bi j)−C6
i j/(r

6
i j +D6

i j) (6)

where Ei j, Bi j, Ci j, and Di j are fitted parameters for interatomic
interactions. i j represents the interacting binary atoms with one
atom from the target molecule A and the other from the bath gas
molecule M, and ri j is the interatomic distance.

In order to derive the effective collision diameter σ and well
depth ε for the intermolecular potential φA−M, ensembles of
A+M pairs are needed to sample the anisotropic intermolecu-
lar potential energy surface, which lead to a set of orientation-
dependent values of φA−M(r,Ω). The idea of the spherical average
method44 is to average the potentials over orientations to obtain
an isotropic potential:

φSA(r) =
NΩ

∑
n=1

φA−M(r,Ωn)/NΩ (7)

where Ωn denotes the n-th sampled orientation, and NΩ is the
total number of sampled orientations. The effective collision di-
ameter and well depth can then be derived as

φSA(σ) = 0 (8a)

ε =−min{φSA(r)} (8b)

Another widely used method is to first determine the collision
diameter σn and well depth εn for φA−M(r,Ωn) with orientation
Ωn, n = 1, . . . ,NΩ, and then average the collision diameters and
well depths over orientations to obtain the effective collision di-
ameter and well depth:43,45

σ =
NΩ

∑
n=1

σn/NΩ (9a)

ε =
NΩ

∑
n=1

εn/NΩ (9b)

In determining σn and εn, the simplest solution is to directly
scan the potential curve φA−M(r,Ωn) using Ns uniformly dis-
tributed sample points. The computational load then is Wscn =

O(NΩNs), where NΩ is the number of orientations, and Ns is the
number of sample points per orientation. When Ns is increased, to
obtain a higher accuracy for σn and εN , Wscn will increase substan-
tially due to the scaling factor by NΩ. Therefore, it is necessary
to develop iterative search methods for finding σn and εn on Ωn
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with much higher efficiency.

As shown in Fig. 2, when a polyatomic molecule A, such as
C24H12, interacts with a bath gas molecule M, such as He, the
intermolecular potential φA−M(r,Ωn) built on interatomic poten-
tials, such as exp-6, can possess the following numerical charac-
teristics:

φA−M(r,Ωn)→ 0, r ≥ rc (10a)

φA−M(r,Ωn)< 0, σn < r < rc (10b)

φA−M(r,Ωn) = 0, r = σn (10c)

φA−M(r,Ωn)> 0, rm < r < σn (10d)

φA−M(r,Ωn) oscillates, 0 < r ≤ rm (10e)

and the intermolecular force f =−dφ/dr correspondingly has the
following numerical characteristics:

fA−M(r,Ωn)→ 0, r ≥ rc (11a)

fA−M(r,Ωn)< 0, rmin < r < rc (11b)

fA−M(r,Ωn) = 0, r = rmin (11c)

fA−M(r,Ωn)> 0, rm < r < rmin (11d)

fA−M(r,Ωn) oscillates, 0 < r ≤ rm (11e)

in which rc represents the value of intermolecular separation at
which φA−M(r,Ωn) and fA−M(r,Ωn) are smaller than a given con-
vergence tolerance for root finding, and rm represents the value of
intermolecular separation at which φA−M(r,Ωn) and fA−M(r,Ωn)

falsely become non-positive. The existence of rm can be caused by
the overlap of atoms between A and M at a small r or by the Buck-
ingham catastrophe2 in the exp-6 interatomic potential, which
causes the intermolecular potential and force to approach −∞ for
r→ 0.

In the intermolecular potential energy surface, the existence of
unphysical rm and rc can severely undermine the robustness of
an iterative search method for σn and εn, which are the roots
of the intermolecular potential and force, respectively. Jasper
and Miller 57 explored a Newton-Raphson technique to improve
search efficiency but noted that the solution process would break
for short molecular distances. Considering that initial guesses or
intermediate calculations in the region 0< r≤ rm or r≥ rc can eas-
ily break a root search method, and rm and rc cannot be known a
priori and change with Ωn, in order to develop a robust method,
a projection preprocessing is proposed in this study to determine
the lower bound of the initial iteration interval [rl ,ru] such that

rl = max{rA−i ·eA−M}+∆r+max{rM− j ·eM−A}, for ∀i∈ A, ∀ j ∈M
(12)

where rA−i = ri− rA is the position vector of atom i in A relative
to the center of mass of A; similarly, rM− j = r j− rM is the position
vector of atom j in M relative to the center of mass of M, eA−M =

(rM− rA)/|rM− rA| is the unit direction vector from the center of

mass of A to that of M, eM−A = −eA−M, and ∆r = 0.1Å is a small
distance used to avoid molecular overlap.

The determined lower bound rl guarantees that the closest two
atoms from A and M for any orientation Ωn will have a minimum
distance of ∆r, at which the intermolecular potential and force
will generally be positive. However, practical tests on a set of
A+M revealed that, when A is a highly planar molecule such as
coronene, about 5% of sampled orientations still showed negative
values. Therefore, an extra local search step is used to further ad-
just the value of rl , in which the value of φA−M(rl ,Ωn) (when solv-
ing for σn) or fA−M(rl ,Ωn) (when solving for εn) is first checked,
if it is positive, then rl is well determined; otherwise, search in
the interval r ∈ [rl ,rl +5] along the direction eM−A with step size
2∆r until φA−M(r,Ωn) or fA−M(r,Ωn) is positive, and rl is then de-
termined as the value of r corresponding to the termination step.
Typically, this extra local search process takes about 10 steps for
those initially non-positive φA−M(rl ,Ωn) or fA−M(rl ,Ωn).

For the upper bound ru of the initial iteration interval [rl ,ru], as
φA−M(r,Ωn) or fA−M(r,Ωn) usually features a close-to-zero long
tail for relatively large r, the search for |φA−M(ru,Ωn)| > ec or
| fA−M(ru,Ωn)|> ec, where ec is the chosen convergence tolerance,
can be expensive and dependent on the value of ec. Therefore,
no special requirement on ru is imposed except that ru is large
enough, for example, ru = 20Å, such that σn and εn are initially
included in the iteration interval [rl ,ru]. Consequently, a large
portion of the target function |φA−M(r,Ωn)| or | fA−M(r,Ωn)| in the
initial iteration interval [rl ,ru] can be well within the convergence
tolerance or even be zero. In order to ensure the correct conver-
gence to σn or εn rather than to a random point in the long tail
region, a modified bisection search is proposed for root searching
over the iteration interval [rl ,ru]:

Step 1 Calculate Ns = log2[(ru− rl)/er], where er is a predefined
error tolerance for root searching;

Step 2 Compute rk = (rl + ru)/2;

Step 3 If φA−M(rk,Ωn) · φA−M(rl ,Ωn) > 0 (when solving for σn)
or fA−M(rk,Ωn) · fA−M(rl ,Ωn) > 0 (when solving for εn), set
rl = rk and keep ru, otherwise, set ru = rk and keep rl;

Step 4 k = k+1;

Step 5 Repeat steps 2-4 until k ≥ Ns.

This modified bisection search will guarantee convergence to σn

or εn within the error tolerance of er, even when the target func-
tion has many close-to-zero/zero values in the long tail region,
since the length of the iteration interval will be (ru− rl)/2Ns ≤ er

after Ns iterations and the Step 3 ensures that σn or εn is always
within the iteration interval.

After successfully finding the collision diameters and well
depths of individual orientations, which can be considered as
certain and inherently determined by electronic structures, the
next critical step is to determine the effective values. Concern-
ing the inconsistencies in using the Chapman-Enskog theory with
effective Lennard-Jones parameters obtained by directly averag-
ing the orientation-dependent σn and εn, it is of theoretical in-
terest and practical importance to explore whether alternative
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Fig. 2 Calculated intermolecular interactions for C24H12 +He pair at one random orientation Ωn illustrating the unphysical behaviours caused by
interatomic potentials and overlapping atoms. (a) Intermolecular potential curve. (b) Intermolecular force curve. The core regions are shown at the
top right corners.

averaging rules can better resolve anisotropic effects for poly-
atomic molecules. In this study, new characteristic variables
η = εσ12 and ξ = εσ6 as well as the Boltzmann weighting fac-
tor w = exp(ε/kBT ) with T = 298K are introduced, in which η

and ξ represent the strength of the repulsive and dispersive inter-
actions in the Lennard-Jones 12-6 potential form respectively. In
addition to the conventional spherical average in Eq. (7) (denoted
as SA) and σ -ε-based arithmetic average in Eq. (9) (denoted as
σ -ε-AM), three additional average rules based on the introduced
variables and weight are constructed, which are η-ξ -based arith-
metic average (denoted as η-ξ -AM):

η =
NΩ

∑
n=1

ηn/NΩ (13a)

ξ =
NΩ

∑
n=1

ξn/NΩ (13b)

σ = (η/ξ )1/6 (13c)

ε = (ξ 2/η) (13d)

σ -ε-based Boltzmann weighting (denoted as σ -ε-BW):

σ =
NΩ

∑
n=1

σnwn/
NΩ

∑
n=1

wn (14a)

ε =
NΩ

∑
n=1

εnwn/
NΩ

∑
n=1

wn (14b)

and η-ξ -based Boltzmann weighting (denoted as η-ξ -BW):

η =
NΩ

∑
n=1

ηnwn/
NΩ

∑
n=1

wn (15a)

ξ =
NΩ

∑
n=1

ξnwn/
NΩ

∑
n=1

wn (15b)

σ = (η/ξ )1/6 (15c)

ε = (ξ 2/η) (15d)

In this study, to calculate the effective collision diameter and
well depth, ensembles of A+M pairs are prepared via a Monte
Carlo sampling procedure designed as follows. As illustrated in
Fig. 1, the total geometry of A+M depends on the internal coor-
dinates RA and RM, the relative orientation Ω, and the center-
of-mass separation r. RA and RM are obtained from equilib-
rium structures, which ignores multiconformers and temperature-
dependent vibrations of molecules, as their effects on the final
ensemble averages are generally small.43 As a result, the intro-
duced Boltzmann weighting in the σ -ε-BW and η-ξ -BW rules can
be regarded as approximating the expensive trajectory average
method41 by assigning larger weights to intermolecular interac-
tions with deeper potential wells. During the Monte Carlo sam-
pling, the center of mass of RA is held fixed at the origin of the co-
ordinate system with the principal moment of inertia axes aligned
with the z-, y-, x-axis in the order of increasing principal moment
of inertia. The orientation Ω is equated as Ω ≡ (eA−M,eM,θM), in
which eA−M is the unit direction vector pointing from the center
of mass of A to the center of mass of M and is randomly sampled
from a uniform distribution in space, eM is a randomly sampled
unit vector passing the center of mass of M and acts as the self-
rotating axis of M, and θM is the rotational angle of M about the
axis eM and is randomly sampled from a uniform distribution in
[0,2π]. At each orientation Ωn, two r samples at r = rl and r = ru
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are initially generated via the projection preprocessing described
before. It is worth noting that the orientation definition Ω defined
in Fig. 1 consists of five degrees of freedom (two in eA−M, two in
eM, and one in θM) and applies to a system of two nonlinear tops.
For other types of systems the number of degrees of freedom rep-
resented by Ω is progressively reduced as the complexity of col-
liders are altered from nonlinear top, to linear top and, finally, to
atom. For instance, when A is a nonlinear molecule like CH4 and
M is a monatomic molecule like He, the self-rotating vector eM

and angle θM are no longer effective, and so Ω is then uniquely
determined by the two degrees of freedom in eA−M.

Effective Lennard-Jones parameters for a set of 48 A+M target-
bath pairs are discussed, in which A = methane (CH4), acety-
lene (C2H2), ethylene (C2H4), ethane (C2H6), propane (C3H8),
n-butane (n-C4H10), n-pentane (n-C5H12), n-hexane (n-C6H14),
n-heptane (n-C7H16), n-octane (n-C8H18), n-nonane (n-C9H20),
coronene (C24H12) and M = He, Ar, N2, O2. The equilibrium
structures of the molecules are obtained from the NIST Compu-
tational Chemistry Comparison and Benchmark Database.58 The
geometric shapes of target molecules can be roughly categorized
as quasi-spherical (CH4), linear (C2H2), planar (C2H4, C24H12),
and straight-chain (CnH2n+2, n = 2, . . . ,9). Python was used to
perform the ensemble generation, to integrate the Large-scale
Atomic/Molecular Massively Parallel Simulator59 (LAMMPS) for
evaluating the intermolecular potential φA−M(r,Ω), and to imple-
ment the aforementioned five averaging rules for obtaining ef-
fective Lennard-Jones parameters. Since only intermolecular in-
teractions need to be sampled from static molecular configura-
tions, the intramolecular potentials are not required. The inter-
atomic potential parameters Ei j, Bi j, Ci j, and Di j in Eq. (6) are
obtained from Ref.60 and are tabulated in the Supporting Infor-
mation. These interatomic parameters were fitted from MP2 and
QCISD(T) level of energy calculations based on CH4 +M systems
and assumed to be transferable to other hydrocarbon targets.43

For each A+M system, NΩ = 10,000 random orientations {Ωn}
were sampled and evaluated. For the systems considered in this
study, the one-sigma uncertainties of the effective collision diam-
eters and well depths estimated using the bootstrap method61

are converged within 0.3% for the chosen NΩ, even for the most
anisotropic ones.

3 Results and discussion

3.1 Efficiency comparison and analysis

When finding collision diameters and well depths for A+M on in-
terval [rl ,ru] with number of orientations NΩ and spatial error er,
the computational load for a direct scanning approach is Wscn =

O(NΩ(ru− rl)/er), while the proposed iterative search method has
Witr = O(NΩ log2[(ru− rl)/er]), where, O(n) represents the evalu-
ation of the intermolecular potential for n times. The change of
algorithmic complexity from Wscn to Witr can result in a significant
reduction of computational cost.

To further demonstrate the efficiency benefits, numerical ex-
periments were conducted for the C24H12 +He pair on the initial
sampling interval [rl = 0.1Å,ru = 20Å]. The analytical computa-
tion load and practical computation time of the direct scanning

and iterative search method are compared and shown in Table 1,
in which NΩ is the predefined number of orientations, er is the
predefined spatial error for position sampling on each orientation,
Wscn and Witr are the analytically derived computational loads de-
scribed above, and tscn and titr are the practical computation time
for the direct scanning and iterative search method, respectively.

Results show that, for a given NΩ, an order of magnitude of
decrease of er can lead to an order of magnitude of increase of
the required computation time for the direct scanning approach,
while the corresponding increase of computation time is only
about 1.2 times for the iterative search method. With the same NΩ

and er, the ratio of the practical computation time titr / tscn closely
agrees with the ratio of analytical computation load Witr/Wscn for
all the tested NΩ and er, in which the small discrepancies are
mainly caused by the extra preprocessing steps. While the de-
termined effective parameters are identical within the resolution
range of er, the required titr can be orders of magnitude smaller
than tscn, particularly for a small er. For instance, when NΩ = 104

and er = 0.2Å, titr is about 9.6% of tscn, and when NΩ = 102 and
er = 0.002Å, titr is only about 0.15% of tscn. The efficiency gain
of the iterative search method can be further enlarged with de-
creasing er, which represents increasing spatial accuracy of the
sampled parameters. When using er = 0.2Å, which represents
100 samples per orientation for the direct scanning approach, if
the obtained solutions of σn are substituted into Eq. (6) for evalu-
ating the residual intermolecular potential, it is found that the
residual intermolecular potentials at some orientations can be
evaluated at about 100K, which are relative far from the sup-
posed zero potential value. For er = 0.002Å and NΩ = 104, the
computational load Wscn = O

(
108) would become too expensive

for the direct scanning approach, but Witr = O
(
1.4×105) is still

very manageable for the iterative search method. These results
demonstrate the efficiency and robustness of the proposed iter-
ative search method for finding orientation-dependent collision
diameters and well depths.

3.2 Effective collision diameters and well depths

The calculated effective collision diameters and well depths of
A + M systems by different averaging rules are shown in Ta-
ble 2. The empirical Lennard-Jones parameters for A+M in Ta-
ble 2 were obtained according to the following procedure: For
a self-interaction A+A system, the combined viscosity and sec-
ond virial coefficient fitted parameters from Tee et al. 32 were
adopted if available. Otherwise, the viscosity fitted parameters
from Hirschfelder et al. 2 and the correlation estimated param-
eters from Wang and Frenklach 25 were used accordingly. The
currently chosen empirical parameters are classical and widely
used in transport property calculation packages such as TRAN-
LIB.62 The empirical cross-interaction parameters for A+M were
then derived by the Lorentz-Berthelot combining rules12 using
the A+A and M+M parameters

σi j =
σii +σ j j

2
(16)

6 | 1–13Journal Name, [year], [vol.],



Table 1 Comparison of analytical computation load and practical computation time of the direct scanning and iterative search method for finding
orientation-dependent collision diameters and well depths

NΩ er Witr Wscn Witr/Wscn titr(s) tscn(s) titr / tscn

102 2.0×10−1 O
(
7.0×102) O

(
104) 7.0×10−2 8.1×101 7.6×102 1.1×10−1

103 2.0×10−1 O
(
7.0×103) O

(
105) 7.0×10−2 7.8×102 7.6×103 1.0×10−1

104 2.0×10−1 O
(
7.0×104) O

(
106) 7.0×10−2 7.8×103 8.1×104 9.6×10−2

102 2.0×10−2 O
(
1.0×103) O

(
105) 1.0×10−2 9.7×101 7.4×103 1.3×10−2

103 2.0×10−2 O
(
1.0×104) O

(
106) 1.0×10−2 9.8×102 7.7×104 1.3×10−2

102 2.0×10−3 O
(
1.4×103) O

(
106) 1.4×10−3 1.2×102 7.8×104 1.5×10−3

and
εi j = (εiiε j j)

1
2 (17)

in which i j, ii, and j j denote the parameters for A+M, A+A, and
M+M, respectively. The parameters for M+M, M = He, Ar, N2,
O2, were obtained from Jasper and Miller 43 and are tabulated in
the Supporting Information.

A direct comparison between the predicted Lennard-Jones pa-
rameters by different averaging rules and the empirical parame-
ters suggests that the agreement on collision diameters is much
better than that on well depths. For the majority of normal
alkane-bath gas pairs, such as CnH2n+2 +M with n ≤ 7, the de-
viations in the predicted collision diameters and well depths by
the conventional σ -ε-AM rule are within 5% and 20% of the em-
pirical ones, respectively. However, deviations can vary signifi-
cantly from the empirical parameters for large molecules, such as
about 40% over-prediction in collision diameter and about 80%
under-prediction in well depth for CnH2n+2 +M pairs, n > 7.

The reason for the above wide range of deviations is com-
plicated. A major issue is that a direct comparison between
the Lennard-Jones parameters predicted from atomic interactions
and the parameters empirically derived from macroscopic viscos-
ity data may not be very useful in evaluating the accuracy of the
predicted parameters, due to difficulties like the non-uniqueness
and uncertainties in deriving the empirical Lennard-Jones param-
eters via Chapman-Enskog relations.12,40,63 Therefore, a much
more robust comparison using the latest experimental diffusion
data is described later to evaluate the effectiveness of the pre-
dicted effective parameters by different averaging rules as well as
the collected empirical parameters.

3.3 Parametric surfaces and anisotropic effects
Relatively little effort has been directed toward quantitatively re-
vealing the anisotropic effects in collision diameters and well
depths of complex molecules and their relation to molecular
structures. Taking advantage of the developed iterative search
algorithm and the designed Monte Carlo sampling procedure in
this study, three-dimensional parametric surfaces of collision di-
ameters and well depths can be quantitatively constructed and
visualized. These parametric surfaces can characterize the spa-
tial properties of the intermolecular potential energy surfaces and
enrich the understanding of anisotropic interactions. Figure 3
presents the three-dimensional parametric surfaces of the colli-

sion diameter σ , well location rmin, and well depth ε for several
target-He pairs. The complete set of 144 parametric surfaces for
all the target-bath pairs studied here is given in the Supporting
Information.

It is observed that the shapes of collision diameter surfaces (the
left column in Fig. 3) closely correlate with the overall shapes of
the target molecules, and the well location surfaces (the middle
column in Fig. 3) are generally enlarged versions of the collision
diameter surfaces. The well depths surfaces (the right column
in Fig. 3) appear to be influenced by more factors, such as the
overall shapes of molecules, types of atoms, and the structural
arrangement of a given atom type, and thus reveal more compli-
cated spatial distributions.

For normal alkanes with either quasi-spherical (such as CH4)
or straight-chain shapes (such as n-C9H20), the global minima of
well depths usually appear at hydrogen atoms that are farthest
away from the center of mass, and global maxima of well depths
tend to locate between those hydrogen atoms. Compared with
normal alkanes, a complexity related to structural arrangement
of atoms can be observed for molecules like C24H12. When the
target molecule is a normal alkane, the bath gas molecule will
mainly interact with hydrogen atoms, as the carbon atoms are
mostly obscured by hydrogen atoms. When the target molecule is
changed from a normal alkane to a planar C24H12, a large portion
of interactions will be directed to unhindered carbon atoms. Con-
sequently, bath gas interactions with both hydrogen atoms and
carbon atoms can impact the well depth surface of C24H12, and
this structural arrangement effect imposes more requirements in
optimizing interatomic potential parameters.

From the constructed quantitative parametric surfaces, it is
evident that the size, shape, and atom types of molecules can
largely influence the anisotropy of intermolecular interactions
and hence the Lennard-Jones parameters. Straight-chain and pla-
nar molecules with large sizes tend to have strong anisotropies.
Therefore, these molecules present much more challenges and
hence can better differentiate the accuracy of calculation meth-
ods and averaging rules in determining effective parameters from
the orientation-dependent collision diameters and well depths.

3.4 Evaluation on accuracy and averaging rules

To examine the Lennard-Jones parameters in Table 2, an ideal ref-
erence can be binary diffusion coefficient, which represents one
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Table 2 Calculated effective collision diameters and well depths by different averaging rules with empirical parameters for a set of target-bath pairs

Target Bath Averaging rules Ref. data
σ -ε-AM η-ξ -AM σ -ε-BW η-ξ -BW SA Empirical

σ (Å) ε (K) σ (Å) ε (K) σ (Å) ε (K) σ (Å) ε (K) σ (Å) ε (K) σ (Å) ε (K)

CH4 He 3.32 30.9 3.37 27.9 3.32 31.0 3.37 28.0 3.40 27.7 3.13 41.332

Ar 3.53 163.3 3.56 153.3 3.52 164.4 3.55 154.5 3.58 151.7 3.50 150.932

N2 3.67 143.5 3.74 129.2 3.66 144.7 3.72 130.3 3.76 127.4 3.68 127.632

O2 3.56 152.5 3.65 129.4 3.54 155.6 3.63 132.0 3.67 130.7 3.57 133.832

C2H2 He 3.34 42.0 3.63 25.7 3.32 42.4 3.62 26.0 3.69 27.6 3.34 46.52

Ar 3.79 94.5 4.01 75.2 3.80 94.6 4.01 75.3 4.06 75.3 3.72 170.12

N2 4.23 41.7 4.35 38.2 4.23 43.1 4.36 39.5 4.40 37.0 3.90 143.92

O2 3.67 150.2 3.94 99.5 3.63 154.1 3.90 101.8 4.01 95.6 3.79 150.92

C2H4 He 3.49 42.1 3.68 30.6 3.47 42.5 3.67 30.7 3.70 32.3 3.39 47.332

Ar 3.81 149.9 3.95 124.7 3.79 150.9 3.94 125.1 3.98 124.3 3.77 172.932

N2 4.06 101.4 4.18 88.7 4.05 102.9 4.17 90.0 4.24 85.4 3.94 146.332

O2 3.78 173.4 3.96 131.1 3.74 179.3 3.93 133.5 4.02 128.4 3.83 153.432

C2H6 He 3.63 41.5 3.76 33.8 3.62 41.8 3.75 33.9 3.80 33.8 3.40 52.932

Ar 3.86 196.8 3.97 169.2 3.84 200.1 3.95 170.3 4.00 169.1 3.78 193.632

N2 4.03 163.2 4.15 138.9 4.01 165.4 4.13 140.0 4.21 134.1 3.95 163.732

O2 3.88 192.4 4.03 154.0 3.84 199.2 3.99 157.1 4.08 153.7 3.84 171.732

C3H8 He 3.87 48.5 4.10 35.2 3.86 48.9 4.09 35.3 4.16 34.3 3.71 55.332

Ar 4.11 222.3 4.31 172.0 4.07 227.7 4.28 173.7 4.36 169.2 4.08 202.332

N2 4.29 180.4 4.49 141.0 4.25 184.0 4.46 142.5 4.58 130.8 4.26 171.232

O2 4.13 220.2 4.36 162.2 4.07 229.8 4.31 166.2 4.46 154.8 4.15 179.532

n-C4H10 He 4.05 54.8 4.57 29.5 4.03 55.5 4.55 29.5 4.71 27.6 3.79 63.832

Ar 4.31 245.8 4.79 145.0 4.23 254.3 4.72 144.9 4.90 137.9 4.17 233.432

N2 4.50 196.2 4.95 120.9 4.43 201.5 4.90 121.3 5.12 103.5 4.34 197.432

O2 4.33 245.5 4.82 140.0 4.22 259.9 4.74 141.5 5.00 124.1 4.23 207.032

n-C5H12 He 4.22 59.6 5.09 23.6 4.18 60.6 5.07 23.4 5.30 21.6 3.93 69.632

Ar 4.48 264.0 5.31 117.2 4.35 276.5 5.22 113.8 5.48 108.5 4.31 254.432

N2 4.68 208.8 5.46 99.1 4.58 216.1 5.40 97.3 5.72 80.4 4.48 215.232

O2 4.51 265.2 5.33 114.5 4.34 285.3 5.22 112.3 5.58 97.8 4.37 225.732

n-C6H14 He 4.35 64.2 5.64 18.7 4.30 65.4 5.62 18.3 5.96 15.7 4.25 65.72

Ar 4.62 281.1 5.85 93.6 4.44 296.0 5.74 87.6 6.13 80.7 4.62 240.32

N2 4.83 220.5 6.01 80.0 4.69 229.2 5.92 76.7 6.35 61.6 4.80 203.32

O2 4.64 283.7 5.88 92.2 4.42 307.8 5.74 87.0 6.21 75.7 4.69 213.12

n-C7H16 He 4.45 68.0 6.22 15.0 4.39 69.3 6.19 14.6 6.54 12.7 4.15 79.732

Ar 4.74 295.7 6.43 75.8 4.51 312.3 6.30 67.8 6.72 64.7 4.52 291.232

N2 4.95 230.4 6.58 65.2 4.79 240.0 6.49 60.5 6.99 47.7 4.70 246.332

O2 4.76 299.1 6.45 74.9 4.49 325.9 6.29 67.3 6.85 59.4 4.59 258.332

n-C8H18 He 4.54 71.3 6.80 12.3 4.47 72.7 6.76 11.8 7.19 10.0 4.99 58.32

Ar 4.83 308.6 7.01 62.2 4.57 325.5 6.86 53.7 7.35 51.4 5.37 213.22

N2 5.05 239.3 7.15 53.8 4.86 249.2 7.05 48.6 7.61 38.6 5.54 180.42

O2 4.85 313.0 7.02 61.8 4.55 341.0 6.85 53.4 7.46 48.2 5.43 189.12

n-C9H20 He 4.61 74.2 7.34 10.5 4.53 75.6 7.30 10.0 7.78 8.3 5.44 52.12

Ar 4.91 320.1 7.55 53.1 4.63 337.1 7.40 44.3 7.95 42.7 5.82 190.62

N2 5.14 247.3 7.70 45.9 4.93 257.4 7.59 40.5 8.23 31.7 5.99 161.22

O2 4.93 325.5 7.57 52.9 4.60 354.6 7.38 43.9 8.07 39.2 5.88 169.02

C24H12 He 5.01 143.8 6.53 37.4 4.59 165.3 6.47 31.3 6.73 36.3 5.37 100.125

Ar 5.65 243.0 6.90 116.2 5.45 249.7 6.86 106.8 7.08 110.1 5.75 365.925

N2 6.34 81.2 7.22 65.6 6.46 87.5 7.23 72.8 7.37 58.9 5.92 309.525

O2 5.51 443.3 6.80 155.2 4.42 618.7 6.55 97.1 7.04 137.1 5.81 324.625

8 | 1–13Journal Name, [year], [vol.],



x (Å)

−4 −3 −2 −1 0 1 2 3 4
y (Å

)

−4−3
−2−1

0 1 2 3 4

z
(Å
)

−4
−3
−2
−1
0
1
2
3
4

(a) CH4, σ

x (Å)

−4 −2 0 2 4
y (Å

)
−4

−2
0

2
4

z
(Å
)

−4

−2

0

2

4

(b) CH4, rmin

x (K)

−40−30−20−10 0 10 20 30 40
y (K

)

−40−30
−20−10

010
2030

40

z
(K
)

−40
−30
−20
−10
0
10
20
30
40

(c) CH4, ε

x (Å)

−8−6−4−2 0 2 4 6 8
y (Å

)

−8−6
−4−2

0 2 4 6 8

z
(Å
)

−8
−6
−4
−2
0
2
4
6
8

(d) n-C9H20, σ

x (Å)

−8−6−4−2 0 2 4 6 8
y (Å

)

−8−6
−4−2

0 2 4 6 8
z
(Å
)

−8
−6
−4
−2
0
2
4
6
8

(e) n-C9H20, rmin

x (K)

−100 −50 0 50 100
y (K

)

−100
−50

0
50

100

z
(K
)

−100

−50

0

50

100

(f) n-C9H20, ε

x (Å)

−8 −6 −4 −2 0 2 4 6 8
y (Å

)

−8−6
−4−2

0 2 4 6 8

z
(Å
)

−8
−6
−4
−2
0
2
4
6
8

(g) C24H12, σ

x (Å)

−8 −6 −4 −2 0 2 4 6 8
y (Å

)

−8−6
−4−2

0 2 4 6 8

z
(Å
)

−8
−6
−4
−2
0
2
4
6
8

(h) C24H12, rmin

x (K)
−200−100 0 100 200

y (K
)

−200
−100

0
100

200

z
(K
)

−200
−100
0

100
200

(i) C24H12, ε

Fig. 3 Three-dimensional parametric surfaces of the collision diameter σ , well location rmin, and well depth ε by the developed iterative search
method for a set of target-He pairs. The black dot at the origin, red dots, and blue dots represent the center of mass, carbon atoms, and hydrogen
atoms, respectively. The distance from the origin to a point on the surface presents the magnitude of the quantity on that orientation. The molecular
geometries in σ and rmin surfaces are of actual size, while those in ε surfaces are scaled up isotropically to better relate atoms with extrema on the
parametric surfaces.
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(f) n-C8H18 + He

Fig. 4 Comparison of binary diffusion coefficients of several normal alkanes in He or N2. Symbols are experimental diffusion data; solid lines are
calculated by empirical parameters; dashed lines are calculated by Lennard-Jones parameters obtained via different averaging rules. The complete
comparison for normal alkanes from C1 to C8 is provided in Supporting Information.
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of the major macroscale outcomes resulting from molecular inter-
actions.2 Compared with the collected empirical Lennard-Jones
parameters, the predicted parameters in this study are via first-
principle calculations and do not involve the empirical Lorentz-
Berthelot combining rules. Therefore, comparisons between bi-
nary diffusion coefficients measured by experiments and those
calculated by the predicted Lennard-Jones parameters are able to
directly reflect the effectiveness of the predicted parameters in
the context of the Chapman-Enskog theory.

The Chapman-Enskog theory20 is arguably the most successful
theory for predicting transport coefficients of dilute gases based
on the kinetic theory.2,64,65 The binary diffusion coefficient can
be formulated as

Di j =
3

16

√
2π(kBT )3/mi j

Pπσ2
i jΩ

(1,1)∗ (18)

where T is temperature, P is pressure, mi j is reduced mass of
A+M, Ω(1,1)∗ is a reduced collision integral that depends on the
reduced temperature T ∗ = kBT/εi j. After obtaining σi j and εi j,
the calculation of Di j in this study was facilitated by a computer
code developed by Kee et al. 62 .

Comparison of the binary diffusion coefficients calculated by
the effective Lennard-Jones parameters of different averaging
rules and by the collected empirical parameters with experimen-
tal diffusion data was conducted. Due to the availability of ex-
perimental diffusion data, the comparison is currently limited to
normal alkanes. The employed experimental diffusion data are
from McGivern and Manion47,48,50 and Liu et al. 49 , which cover
diffusion coefficients at 1 atm pressure of normal alkanes in He or
N2 from C1 to C8 except the n-C7H16. The present dataset repre-
sents by far the latest and probably the most complete experimen-
tal diffusion data on normal alkanes. The complete comparison is
shown in 12 plots and is provided in the Supporting Information.
Because diffusion coefficients predicted by effective parameters
related to σ -ε-BW and η-ξ -BW rules are almost identical to those
related to σ -ε-AM and η-ξ -AM rules, respectively, diffusion coef-
ficient curves of the former are omitted in the plots. The plots for
CH4, n-C4H10, n-C6H14, and n-C8H18 are shown in Fig. 4 to better
facilitate discussion. Note that only He related experimental data
are available for n-C6H14 and n-C8H18.

As can be seen, diffusion coefficients calculated by the empiri-
cal Lennard-Jones parameters from Tee et al. 32 and Hirschfelder
et al. 2 agree well with the experimental diffusion data for bath
gas N2 but have large deviations for bath gas He in most cases.
A similar behaviour can also be observed for the conventional σ -
ε-AM rule. For example, the deviations for results of empirical
parameters and σ -ε-AM rule at 600K are about 41% and 31%,
respectively, in the n-C6H14 + He case (Fig. 4e) and are about
25% and 40%, respectively, in the n-C8H18 + He case (Fig. 4f).
These marked deviations agree with the results of Liu et al. 49 ,
which motivated their development of an alternative theoretical
model for binary diffusion coefficients of long-chain molecules
using gas-kinetic theory analysis for slender bodies.49

Compared with the σ -ε-AM rule, the traditional spherical aver-
age (labeled as "SA" in Fig. 4) performs fairly well for the exam-

ined 12 cases covering 7 normal alkanes and bath gases He and
N2. This finding at some level contradicts that made by Jasper
and Miller 43 . The main reason for this contradiction may be at-
tributed to the different choices of reference data. Jasper and
Miller 43 mainly used the empirical parameters from Tee et al. 32

and Hirschfelder et al. 2 as the reference data and also used the
empirical Lorentz-Berthelot combining rules for evaluation. As
discussed earlier, the current use of the contemporary experimen-
tal diffusion data from McGivern, Manion and co-workers47–50 as
reference data has several advantages over the empirical param-
eters, such as avoiding the possible non-uniqueness and uncer-
tainties in deriving the empirical Lennard-Jones parameters via
Chapman-Enskog relations as well as the Lorentz-Berthelot com-
bining rules for inferring binary Lennard-Jones parameters. This
result shows the importance of consistent and contemporary ex-
perimental transport data for verifying theoretical and numerical
models at the meso- and micro-scales. The overall better perfor-
mance of the spherical average over the σ -ε-AM rule indicates
that averaging energies may better capture the intermolecular in-
teraction statistics than directly averaging the collision diameters
and well depths does.

When comparing the spherical average (SA) with the newly
proposed η-ξ -AM rule, the maximum errors both happen at the
highest measured temperatures. Among all the examined 12
cases, the maximum in 12 maximum errors by the spherical av-
erage (SA) and the η-ξ -AM rule are 19% and 12%, respectively.
The average of 12 maximum errors by the spherical average (SA)
and the η-ξ -AM rule are 8% and 6%, respectively. In addition,
the accuracy of the spherical average deteriorates for very long-
chain molecules such that its maximum errors for n-C6H14 and
n-C8H18 become about 7% and 15%, respectively. Meanwhile, the
maximum errors of the η-ξ -AM rule for n-C6H14 and n-C8H18 are
only about 4% and 2%, respectively. As suggested by Jasper and
Miller 43 , the rapid increase of errors from n-C6H14 to n-C8H18
by the spherical average can be due to the increased portion of
mixing repulsive walls with attractive regions during spherically
averaging potentials around highly anisotropic molecules, which
affects the subsequently derived effective parameters. The pro-
posed η-ξ -AM rule in this study avoids this issue by explicitly
averaging the anisotropic energy scales.

These quantitative results suggest that the η-ξ -AM rule can
produce the most accurate results among the evaluated averag-
ing rules, and this rule can maintain good consistency in accuracy
for very long-chain molecules, which indicates that the η-ξ -AM
rule built on averaging the characteristic repulsive and dispersive
energies can be more effective in representing the statistical out-
comes of frequent molecular rotations and collisions.

4 Conclusions
In this work, the first-principle determination of effective
Lennard-Jones parameters for polyatomic molecules interacting
with bath gas molecules has been investigated. To efficiently and
robustly find orientation-dependent collision diameters and well
depths on intermolecular potential energy surfaces, an iterative
search algorithm built on projection preprocessing and modified
bisection strategy is developed and validated. To quantitatively
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depict molecular anisotropy, three-dimensional parametric sur-
faces of Lennard-Jones parameters are constructed. To derive the
effective Lennard-Jones parameters, a new orientation-averaging
rule based on characteristic variables, the η-ξ -AM rule, is pro-
posed and evaluated.

Effective Lennard-Jones parameters for twelve saturated and
unsaturated hydrocarbons with varying molecular shapes, includ-
ing long-chain and planar ones, interacting with four bath gases
He, Ar, N2, and O2 are reported. By comprehensive quantitative
comparisons against empirical Lennard-Jones parameters, vari-
ous averaging methods, and latest experimental diffusion data, it
is found that the proposed η-ξ -AM rule can produce the most ac-
curate results among the evaluated averaging rules and resolves
the observed inconsistencies in using the Chapman-Enskog the-
ory for polyatomic molecules, which is a problem of theoretical
interest and practical importance.

Compared with previous averaging methods, the η-ξ -AM rule
explicitly averages the characteristic repulsive and dispersive en-
ergies, which could better capture intermolecular interactions
than directly averaging collision diameters and well depths does.
Meanwhile, this rule avoids mixing the repulsive walls with at-
tractive regions in the averaging process for highly anisotropic
molecules, which is a potential issue in the spherically averaging
potential energies approach. By introducing characteristic vari-
ables η and ξ , the current work shows a new route to determining
effective Lennard-Jones parameters for polyatomic molecules.

The historical development of averaging rules suggests that
further advancement of the current and related topics may rely
on the further acquisition of consistent and contemporary exper-
imental transport data that can be used to verify theoretical and
numerical models at the meso- and micro-scales.
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