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Abstract. We introduce a novel statistic to probe the statistics of phases of Fourier modes
in two-dimensions (2D) for weak lensing convergence field κ. This statistic contains com-
pletely independent information compared to that contained in observed power spectrum.
We compare our results against state-of-the-art numerical simulations as a function of source
redshift and find good agreement with theoretical predictions. We show that our estimator
can achieve better signal-to-noise compared to the commonly employed statistics known as
the line correlation function (LCF). Being a two-point statistics, our estimator is also easy
to implement in the presence of complicated noise and mask, and can also be generalised
to higher-order. While applying this estimator for the study of lensed CMB maps, we show
that it is important to include post-Born corrections in the study of statistics of phase.

Keywords: gravitational lensing, non-gaussianity

ArXiv ePrint: 2109.08047

c© 2022 The Author(s). Published by IOP Publishing
Ltd on behalf of Sissa Medialab. Original content from

this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must
maintain attribution to the author(s) and the title of the work,
journal citation and DOI.

https://doi.org/10.1088/1475-7516/2022/05/006

mailto:D.Munshi@ucl.ac.uk
mailto:takahasi@hirosaki-u.ac.jp
mailto:Jason.McEwen@ucl.ac.uk
mailto:t.kitching@ucl.ac.uk
mailto:bouchet@iap.fr
https://arxiv.org/abs/2109.08047
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2022/05/006


J
C
A
P
0
5
(
2
0
2
2
)
0
0
6

Contents

1 Introduction 1

2 Weak lensing bispectrum 2

3 Third-order phase statistics in projection 4
3.1 Line correlation function in projection 4
3.2 Cumulant correlators of phases in projection 5

4 Results and discussion 6

5 Conclusions and future prospects 9

A All-sky expressions 11

B Higher-order LCFs 13

1 Introduction

The weak lensing surveys which include Canada-France-Hawaii Telescope(CFHTLS),1 PAN-
STARRS,2 Dark Energy Surveys (DES)3[1], Prime Focus Spectrograph,4 WiggleZ5[2],
BOSS6[3], KiDS[4] and Subaru Hypersuprimecam survey7(HSC) [5] are already providing
important cosmological insights. The future large scale structure (LSS) surveys Euclid8[6],
Rubin Observatory9[7] and Roman Space Telescope10 list weak lensing as their main science
driver and are expected to take us beyond the standard model of cosmology [8] by answering
some of the most profound questions regarding the nature of dark matter and dark energy
(equivalently the modified theories of gravity) [9, 10] and nature of neutrino mass hierar-
chy [11].

Weak lensing observations target the low-redshift universe and small scales where the
perturbations are in the nonlinear regime and statistics are non-Gaussian [12]. Many dif-
ferent estimators exist which probe the higher-order statistics of weak lensing maps [13].
These include the well known real-space one-point statistics such as the cumulants [14] or
their two-point correlators also known as the cumulant correlators as well as the associated
PDF [15] and the peak-count statistics [16]. In the harmonic domain the estimators such
as the Skew-Spectrum [17], Integrated Bispectrum [18] kurt-spectra [19], morphological es-
timator [20], integrated tripsectrum [21], Betti number [22], extreme value statistics [23],
position-dependent PDF [24], density split statistics [25], response function formalism [26]

1https://www.cfht.hawaii.edu/Science/CFHTLS.
2https://panstarrs.stsci.edu.
3https://www.darkenergysurvey.org.
4http://pfs.ipmu.jp.
5http://wigglez.swin.edu.au.
6http://www.sdss3.org/surveys/boss.php.
7http://www.naoj.org/Projects/HSC/index.html.
8http://sci.esa.int/euclid.
9http://www.lsst.org/llst home.shtml.

10https://roman.gsfc.nasa.gov.
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estimators for shapes of the lensing bispectrum [27] are some of the statistical estimators and
formalism recently considered by various authors in the context of understanding cosmolog-
ical statistics in general and weak lensing in particular.

The power spectrum (equivalently two-point correlation function) and bispectrum
(equivalently three-point correlation function) depend differently on the cosmological param-
eters. Thus a combined analyses of these two different statistics allow us to break degeneracies
and obtain tighter constraints on the parameter values [28, 29].

The gravitational clustering in the quasilinear and nonlinear regime generates coupling
of Fourier modes that results in correlation of their phases [30]. The power spectrum does
not contain any phase information [31]. Notable initial work on statistical evolution of
phases of the Fourier modes in gravitational clustering in the quasilinear regime can be
found in [32, 33]. These studies relied on a perturbative framework and were tested against
numerical simulations [34]. A universal behavior in evolution of phases of the Fourier modes
in the nonlinear regime was reported in [35].

In recent years an estimator known also as the line correlation function (LCF) to mea-
sure for three-point (third-order) phase correlations was introduced in [36] (also see [37]).
This was used in many different contexts. The possibility of improving the cosmological
constraints using phase correlations were studied in [38, 39]. In the context of redshift-space
distortions this was used in [40]. The growth rate of perturbation were probed in [41]. One
of the motivation in this paper is to introduce the third-order phase correlation functions for
projected surveys in general and weak lensing surveys in particular. We introduce third-order
estimators using both two- and three-point statistics.

We note here in passing that in addition to the summary statistics listed above, in recent
years many novel techniques have gained popularity. These include Bayesian hierarchical
modelling, likelihood-free or forward modelling approaches. However, it is important to
realise that many of these methods often rely on simulations that are based on lognormal
approximation or high-order Lagrangian theories and are only approximate compared to
accurate ray tracing simulations which can be rather expensive (however, see also [42, 43]).

At leading order the LCF takes contributions from the bispectrum. However, at smaller
separations, it also take contribution from higher-order statistics. The perturbative treat-
ment breaks down at smaller separation. The LCF encodes information that is highly com-
plementary to that contained in the power spectrum. Next, we will introduce a two-point
statistics also known as cumulant-correlator which can probe phase bispectrum with a higher
signal-to-noise.

The LCF has also been employed to distinguish various morphological types of collapsed
objects [37]. In addition to the LCF other real space triangular configurations (TCF) have
been considered for the study of third-order phase statistics, e.g., [44] employed TCF to
probe the characteristic scale of ionized regions during the epoch of reionization from 21cm
interferometric observations.

This paper is organised as follows. In section 2 we introduce the weak lensing bispec-
trum. In section 3 we briefly review the modelling of the third-order phase statistics. In
section 4 we discuss our results. The conclusions are drawn in section 5.

2 Weak lensing bispectrum

The projected weak lensing convergence κ is a line-of-sight integration of the underlying
three-dimensional (3D) cosmological density contrast δ. The κ(θ) at a position θ can be

– 2 –
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expressed as follows:

κ(θ) =
∫ rs

0
dr ω(r) δ(r,θ); ω(r) = 3ΩMH

2
0

2c2a

dA(r − rs)dA(r)
dA(rs)

. (2.1)

Here dA(r) is the comoving angular diameter distance at a comoving distance r. The kernel
ω(r) encodes geometrical dependence; a is the scale factor, H0 is the hubble constant and
ΩM is the cosmological density parameter. dA(r) and dA(rs) are comoving angular diameter
distances at a comoving distances r and rs. We have assumed all sources to be at a single
source plane at a distance rs.

The power spectrum P κ(l) and the bispectrum Bκ(l1, l2, l3) for the convergence maps
are defined through the following expression:

〈κ(l1)κ(l2)〉 = (2π)2δ2D(l1 + l2)P κ(l1); |li| = li (2.2a)
〈κ(l1)κ(l2)κ(l3)〉 = (2π)2δ2D(l1 + l2 + l3)Bκ(l1, l2, l3). (2.2b)

The two dimensional Fourier transform of κ(θ) is denoted as κ(l) with l being the two-
dimensional wave vector. we denote the two-dimensional Dirac delta function as δ2D. We will
use Pδ and Bδ to denote the power spectrum and bispectrum respectively of the underlying
three dimensional cosmological density contrast δ. In the tree level standard perturbation
theory the bispectrum Bδ(k1,k2,k3) can be expressed in terms of the kernel F2(k1,k2) and
power spectrum as follows [30]:

BPT
δ (k1,k2,k3) = PL

δ (k1)PL
δ (k2)F2(k1,k2) + cyc.perm. (2.3a)

F2(k1, l2) = 5
7 + 1

2

[
k1
k2

+ k2
k1

](k1 · k2
k1k2

)
+ 2

7

(k1 · k2
k1k2

)2
; ki = |ki|. (2.3b)

The perturbative bispectrum as BPT
δ which depends on the linear power spectrum PL. Here,

ki represents 3D wave vectors and their moduli are represented as ki. In the flat-sky approx-
imation, the convergence power spectrum P κ and bispectrum Bκ can be expressed in terms
of the underlying power spectrum Pδ and Bδ using the following line-of-sight integrations:

P κ(l) =
∫ rs

0
dr
ω2(r)
d2
A(r)

Pδ

(
l

dA(r) ; r
)

; (2.4a)

Bκ(l1, l2, l3) =
∫ rs

0
dr
ω3(r)
d4
A(r)

Bδ

( l1
dA(r) ,

l2
dA(r), ,

l3
dA(r) ; r

)
. (2.4b)

In the highly nonlinear regime many different halo-model based fitting functions have been
proposed. We will use the most recent fitting function presented in ref. [45] known to be more
accurate compared to the previous fitting functions. We will use these expressions in our
calculation for the Line Correlation Function (LCF) for the κ field. Notice that bispectrum
only represents the leading contribution. Higher-order correction also get contributions from
higher-order statistics such as the trispectrum which we have ignored in our study,

For the validation of our theoretical results we use simulation that adopted cosmological
parameters consistent with the WMAP 9 year result Ωm = 1 − ΩΛ = 0.279, Ωcdm = 0.233,
Ωb = 0.046, h = 0.7, σ8 = 0.82 and ns = 0.97.

– 3 –
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3 Third-order phase statistics in projection

We will introduce the two-point correlation function ξ(θ) of the weak lensing convergence κ
through the following expression:

ξ(θ) = 〈κ(θ0)κ(θ0 + θ)〉 = 1
4π

lmax∑
2

(2l + 1)ClPl(cos θ) ≈ 1
2π

lmax∑
2
l ClJ0(lθ). (3.1)

Here Pl is the Legendre polynomial and l represents the angular harmonics. Also, J0 rep-
resents the Bessel Function of order zero of the first kind. The angular power spectrum Cl
of convergence κ is identical to Pκ(l) for the flat-sky approximation. We will specialise the
discussion to weak lensing convergence κ in the following section, For the purpose of discus-
sion here κ is a generic two-dimensional (2D) field defined over the celestial sphere. We will
consider a flat patch of the sky for our discussion. The position vector θ is defined using the
polar angle φ and Cartesian unit vectors i and j:

θ = θ( î cosφ+ ĵ sinφ) (3.2)

Next we will consider two third-order statistics in projection.

3.1 Line correlation function in projection

We will denote the LCF as L2(θ) which is defined through the following expression as a
function of the angular scale θ is

L2(θ) = 〈ε(θ0 + θ)ε(θ0)ε(θ0 − θ)〉. (3.3)

The LCF is a angle-averaged three-point collapsed correlation function where the three-
points are in a collinear configuration. The two outer points are equidistant from the central
point situated at θ0 at a distance θ. As represents the survey area. Assuming isotropy and
homogeneity the estimator L(θ) depends only on the separation angular scale θ and does
not depend on the position angle θ0. We consider the following convention for the Fourier
transform relating ε(l) and ε(θ). Where, ε(θ) is a real field constructed from the phases
ε(l) of the convergence map and is constructed from the κ(l) and its amplitude |κ(l)|, i.e.,
ε(l) = κ(l)/|κ(l)|. The two-dimensional wave vector is denoted by l. Then

ε(θ) =
∫

d2l
(2π)2 exp(θ · l)ε(l)W (l). (3.4)

The W (l) represents the smoothing window. We will not consider observational mask. The
real-space statistics can be estimated by constructing non-overlapping square patches outside
the masked region. The three-point correlation function of ε(θ) can be expressed as follows:

〈ε(l1)ε(l2)ε(l3)〉 ≡ (2π)2Bε(l1, l2, l3)δ2D(l1 + l2 + l3). (3.5)

The LCF in terms of the bispectrum can be expressed as follows:

L2(θ) =
∫
dφ

2π

∫
d2l1

(2π)2

∫
d2l2

(2π)2

∫
d2l3

(2π)2 〈ε(l1)ε(l2)ε(l3)〉

× exp i[l1 · θ0 + l2 · (θ + θ0) + l3 · (θ − θ0)]. (3.6)

– 4 –
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Following the derivation in [32, 33], the three-point correlation function of the phase can be
written in terms of the convergence bispectrum Bκ(l1, l2, l3)

〈ε(l1)ε(l2)ε(l3)〉 = (2π)2

As

(√
π

2

)2
Bκ(l1, l2, l3)√

Pκ(l1)Pκ(l2)Pκ(l3)
δ2D(l1 + l2 + l3) (3.7)

Using eq. (3.7) in eq. (3.3) we arrive at the following expression:

L2(θ) =
∫

d2l1
(2π)2

∫
d2l2

(2π)2
Bκ(l1, l2, l1 + l2)√

Pκ(l1)Pκ(l2)Pκ(|l1 + l2|)

∫
dφ

2π exp [i(l1 − l2).θ] (3.8a)

L2(θ) =
∫

d2l1
(2π)2

∫
d2l2

(2π)2
Bκ(l1, l2, l1 + l2)√

Pκ(l1)Pκ(l2)Pκ(|l1 + l2|)
J0(|l1 − l2|θ). (3.8b)

We have used the following Bessel’s first integral11 (eq. (71) of Mathsworld) to reduce
eq. (3.8a).

Jn(x) = 1
2π in

∫ 2π

0
exp[i(x cos τ + inτ)]dτ. (3.9)

Here, Jn denotes the Bessel functions of the first kind of order n.
In addition to the LCF of phases introduced in eq. (3.8a)–eq. (3.8b) we will also consider

the following associated estimator:

Π2(θ) =
∫

d2l1
(2π)2

∫
d2l2

(2π)2B
κ(l1, l2,−l1 − l2)

∫ 2π

0

dφ

2π exp [i(l1 − l2).θ]. (3.10a)

Π2(θ) =
∫

d2l1
(2π)2

∫
d2l2

(2π)2B
κ(l1, l2,−l1 − l2)J0(|l1 − l2|θ). (3.10b)

The derivation of eq. (3.10b) follows the same steps as the derivation of eq. (3.8b). We have
used these estimators as an intermediate step before applying the estimators presented in
eq. (3.8b). However, they can be used as an independent non-Gaussianity estimator for the
convergence κ — similar to other data compression techniques, e.g., skew-spectrum

The Effective Field Theory (EFT) provides a framework to extend the SPT results to
smaller scales. Including the additional counter-terms from EFT in the expression of the
kernel F2 will extend the validity of results based on SPT to smaller angular scales not just
for gravity induced non-Gaussianity but also for primordial non-Gaussianity [47].

Generalisation of our work to include tomography can be done by suitable modification
of the bispectrum and then using them in subsequent expressions. However, it would be
more interesting to do a complete 3D analysis of phases using spectroscopic or photometric
redshift data. We will present the result of such an analysis elsewhere.

3.2 Cumulant correlators of phases in projection

The line correlation function considers a collapsed configuration of a triangle with equidistant
points from the central location. The other collapsed configuration that is commonly used in
the literature was introduced in [49] in the context of density contrast in 3D and are known
as the cumulant correlators. The two-to-one correlator defined below is of the lowest-order

11Bessel function of the first kind, http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html.
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in the family of cumulant correlators and can be constructed cross-correlating a squared ε(θ)
map with itself:

Cε21(θ) = 〈ε2(θ0)ε(θ0 + θ)〉 = 1
4π
∑
`

(2`+ 1)P`(cos θ)Sε` . (3.11)

Here Sε` is the skew-spectrum of the ε(θ) map constructed from its bispectrum Bε

Sε(l2) =
∫ ∞

0

l1dl1
2π

∫ 1

−1

dµ

2π
√

1− µ2
Bκ(l1, l2,−(l1 + l2))√
Pκ(l1)Pκ(l2)Pκ(|l1 + l2|)

(3.12a)

Sε` = 1
4π
∑
`1`3

Bκ
`1`2`√

Pκ(l1)Pκ(l2)Pκ(l)
(2`1 + 1)(2`2 + 1)

(
`1 `2 `
0 0 0

)2

(3.12b)

Here µ denotes the cosine of the angle betwwn l1 and l2 i.e. µ = (l1 · l2)/(l1l2) with li = |li|.
Here the quantity in parentheses is the well-known Wigner-3j symbol. For more detailed
derivation of flat-sky vs. all-sky correspondence see appendix A. In appendix B. we have
presented generalisation to higher-order.

The interest in cumulant correlators stems from the fact that they are two-point corre-
lations but carry information about three-point statistics. They can be generalised easily to
higher order. The information content is in general different for various triangular configu-
rations. For an equilateral configuration see [44].

4 Results and discussion

In this section we will discuss the results of our numerical investigations for various estimators
and compare them against theoretical predictions.

Maps. To validate our analytical results we use the publicly available all-sky weak lensing
maps generated by [46].12 The ray-tracing through N-body simulations were used to generate
these maps. These simulation used 20483 particles to follow the evolution of gravitational
clustering. To generate the convergence κ and the corresponding shear γ maps multiple lens
planes were used; the source redshifts used were in the range zs = 0.05–5.30. We have chosen
the maps with zs = 0.5, 1.0, 2.0 for our study. For CMB maps the lensing potentials were
constructed using the deflection angles which were used to construct the lensing potentials
and eventually the κ maps. These maps include post-Born corrections [50]. The convergence
maps were generated using an equal area pixelisation scheme in HEALPix13 format [51].

The set of maps we use in this study are generated at Nside = 4096 and were cross-
checked against higher resolution maps constructed at a higher resolution Nside = 8192, 16384
for consistency. These maps constructed at different resolution were found to be consistent
with each other up to the angular harmonics ` ≤ 2000.

For our study, we have used high resolution maps Nside = 4096. These maps were
degraded to various lower resolution Nside = 2048. In figure 1 we show one such map for
the source redshift zs = 0.5 (left panel) and the corresponding phase map (right panel). We
analysed these maps using publicly available software TreeCorr14 for the computation of
two- and three-point correlation functions. The two-point correlation functions are shown in
figure 2 for various redshifts.

12http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing.
13https://healpix.jpl.nasa.gov.
14https://rmjarvis.github.io/TreeCorr/_build/html/index.html.
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Map

-0.001 0.0001

Phase Map

-0.001 0.0001

Figure 1. The left-panel depicts an all-sky convergence or κ(θ) map for source redshift z = 0.5
whereas the right-panel shows the corresponding phase ε(θ) (defined in eq. (3.4)) map for the same
source redshift. We use the publicly available maps discussed in [46].

101 102

 [arcmin]
10 6

10 5

10 4

10 3

(
)

z_s=2.0
z_s=1.0
z_s=0.5

Figure 2. The two-point correlation function ξ(θ) defined in eq. (3.1) for the convergence map κ
is shown as a function of θ. The dot-dashed, dashed and dotted lines correspond to the theoretical
predictions for various redshifts as indicated. The solid lines correspond to the estimates from nu-
merical simulations. The maps used were degraded to Nside = 2048 before computing the correlation
function.

LCF for κ. The line correlation function Π2(θ) defined in eq. (3.8b) is being plotted as a
function of θ In figure 3. From left to right we show results for source redshifts zs = 2.0, 1.0
and 0.5. We have presented the mean results estimated from ten all-sky maps. No noise was
included in our study. Degraded maps with Nside = 2048 and 512 were respectively used to
estimate the correlation function for the range θs = 1′–10′ and 10′–100′. The fitting function
presented in [45] was used to compute the theoretical predictions.

LCF for phase. In figure 4 the LCF L∈(θ) is being plotted as a function of θ (in arcmin).
The solid lines correspond to the ones defined in eq. (3.10b) and the dashed-lines correspond
to estimates from simulated all-sky weak lensing maps. Panels from left to right correspond
to zs = 2.0, 1.0 and 0.5 respectively. The dashed-lines in each panel correspond to theoret-
ical predictions computed using Born approximation. We have checked that the post-Born
corrections do not make any appreciable difference. We have used ten realisations of all-sky
maps to compute the numerical estimates. No noise was included. Degraded maps with
Nside = 2048 and 512 were respectively used to estimate the correlation function for the

– 7 –
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PT
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BiHalo
PT

100 101 102
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10 9

10 8
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2(
)

zs = 0.5
BiHalo
PT

Figure 3. The line correlation function Π2(θ) is being plotted as a function of θ (in arcmin). The solid
lines correspond to theoretical predictions defined in eqs. (3.10a)–(3.10b). We use a fitting function
to model the underlying bispectrum. The dashed lines are based on perturbation theory (PT) results
eq. (2.3b). The points are estimates from simulated all-sky weak lensing maps. Panels from left to
right correspond to zs = 2.0, 1.0 and 0.5 respectively We use the fitting function proposed by [45]
for the bispectrum. The simulation results show an ensemble average computed from 10 all-sky maps
using publicly available software TreeCorr[48].
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Figure 4. The line correlation function L2(θ) defined in eqs. (3.8a)–(3.8b) is being plotted as a
function of θ (in arcmin). From left to right we show results for source redshifts zs = 2.0, 1.0 and
0.5. The theoretical predictions correspond to Nside = 2048. The dashed-lines correspond to results
computed using perturbation theory and the solid lines are obtained using a non-perturbative fitting
function. We use the fitting function proposed by [45] for the bispectrum. The simulation results show
an ensemble average computed using 10 all-sky maps. The three-point correlation function L2(θ) was
computed from the phase maps using publicly available software TreeCorr[48].

range θs = 1′–10′ and 10′–100′. We use `max = 2Nside for our study. The theoretical results
were computed using the fitting function presented in [45].

Skew-spectrum for phase. In addition to the LCF we have also introduced the skew-
spectrum estimator, not for κ(θ), but for the phase maps ε(θ) (denoted as Sε`) defined in
eq. (A.9b). For the bispectrum we have used the nonlinear fitting function [45] and for the
perturbative calculations we have used the SPT result in eq. (2.3b). We have presented three
redshifts zs = 0.5, 1.0 and 2.0 in figure 5 in different panels as indicated. The simulation
results compare reasonably well against nonlinear predictions. We also see departure at
high-` which is a result of pixelisation. Our simulation results are derived using Nside = 2048
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Figure 5. The solid lines correspond to the skew-spectrum corresponding to the phase maps Sε`
defined in eq. (A.9b) is being plotted as a function of θ (in arcmin). From left to right we show results
for source redshifts zs = 2.0, 1.0 and 0.5. The theoretical predictions correspond to Nside = 2048.
We use the fitting function proposed by [45] for the bispectrum. We also show the results from
perturbation theory (dashed-lines).

which are generated by degrading maps originally created at Nside = 4096. For PT results to
be valid the maps need to be smoothed. We have also included zs = 1100.0 in our analysis
which is relevant for CMB studies. The results are plotted in figure 5 and for CMB lensing
in figure 7. We found that even with a single all-sky realisation we can estimate the Sε` with
a very high degree of accuracy. We have included realistic noise though it is expected from
our previous study [17] inclusion of noise will not change our findings completely.

The importance of Post-Born (PB) corrections for CMB lensing, was underlined in
many recent studies, e.g., ref. [17]. While such corrections do not make any significant
contribution they do play important role for high redshift CMB studies. In figure 7 we
have shown the nonlinear results with and without PB corrections. Inclusion of Post-Born
corrections is important to reproduce the simulation results. The maps used were of resolution
Nside = 2048. Higher-order generalisations of L2 is presented in section B.

Cumulant correlators for phase. The cumulant correlators (CCs) carry equivalent infor-
mation compared to the skew-spectrum Sε` as they can be constructed from skew-spectrum.
The theoretical cumulant correlator Cε21(θ) using eq. (3.11). The numerical results were com-
puted using the TreeCorr. The results are shown in figure 6. This alows computation of CCs
without broad binning as was the case for LCF. The deviation from theoretical prediction in
the low-θ regime is related to the pixelisation effect. A comparison with the results presented
for L2 in figure 4 confirms very high S/N in Cε21(θ). The generalisation to higher-order is
straightforward and can by cross-correlating p-th power of ε(θ),i.e., εp(θ) against its q-th
power, i.e., 〈εq(θ1)εq(θ2)〉.

5 Conclusions and future prospects

The primary aim of this paper was to introduce statistics of Fourier phases in the context
of weak lensing studies. We have introduced the three-point phase correlation LCF to probe
the non-Gaussianity in weak lensing convergence maps used in the study of galaxy clustering
L2. In addition, an associated three-point statistics Π2 was also introduced for probing
statistics of κ maps. We have used a set of state-of-the-art all-sky simulations of weak
lensing convergence maps to test our theoretical results as a function of source redshift.
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Figure 6. The lines correspond to the cumulant correlator Cε21(θ) defined in eq. (3.11). is being
plotted as a function of θ (in arcmin). From left to right we show results for source redshifts zs = 2.0,
1.0 and 0.5. The theoretical predictions correspond to Nside = 2048. We use the fitting function
proposed by [45] for the bispectrum (solid lines). The dots represent the cumulant correlators defined
in eq. (3.11) computed from one all-sky phase map by cross-correlating the squared phase map ε2(θ)
with itself ε(θ). We have used the publicly available software TreeCorr. Theoretical predictions
correspond to the one computed using the fitting function proposed by [45] for the bispectrum. The
deviations from the theoretical predictions at smaller angular scales is an effect of pixelisation.
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Figure 7. The skew-spectrum Sε` corresponding to phase maps ε(θ) for the source redshift zs = 1100 is
plotted as a function angular wave number `. Three different curves are shown Nonlinear (solid-lines),
Linear (dotted-lines) and Nonlinear with Post-Born corrections included (dashed-lines) along with
results from simulations. The simulation results correspond to an ensemble average of five independent
all-sky simulations. The simulations have Nside = 2048. Theoretical results were computed using
`max = 4096.

We have generalised both Π2(θ) and L2(θ) to higher-order. Next, we have adopted the
cumulant correlator typically used for 3D density field and 2D convergence maps for statistics
phases. We showed that available theoretical models can reproduce the numerical results
with reasonable accuracy and our results can be used to select the range to retain in order
to maintain a given level of theoretical accuracy. While we have focussed on weak lensing
convergence, the statistical estimators presented here will be useful in other areas cosmology,
e.g., galaxy clustering (in real and redshift space) and in clustering of Lyman-α absorbers.

Several extensions are possible on the theoretical front. The Effective Field Theory
(EFT) provides a framework to extend the validility domain of the standard perturbation
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theory (SPT). A formulation of the phase statistics in EFT will improve its domain of valid-
ity. It will also be interesting to formulate the phase-statistics directly for shear. Theoretical
modelling of bispectrum generated by intrinsic alignment [52] will also be useful. The per-
turbative regime is not particularly affected by gas physics. Nevertheless, k-cut filtering can
be included [53] to filter out particularly sensitive modes.

Finally, our study was performed in a rather idealized observational setting to establish
a baseline. Realistically complex follow-up studies will be presented in future. We haven’t
computed the signal-to-noise for our estimators. Any computation of the scatter will involve
modelling of higher-order correlation functions and relatively higher-dimensional integrals.
We will present such results and a Fisher-based analysis independently and jointly with the
power spectrum elsewhere.
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A All-sky expressions

Our primary aim in this appendix is to develop all-sky estimators presented in the text
of the paper. Following [54–56] the spherical polar co-ordinate (θ, φ), radial co-ordinate
r = 2 sin θ/2 ≈ θ Equivalently in the harmonic domain |l| = ` and φl denotes the polar angle:

κ(θ) = 1
(2π)2

∫
κ(l) exp(il · θ)d2l ≈

∑
`m

κ`mY`m(θ) (A.1)

The flat-sky κ(l) and its all-sky harmonic counterpart κ`m are related by the following ex-
pression:

κ(l) =
√

4π
2`+ 1

∑
m

imκ`m exp(imφl) (A.2a)

κ`m =

√
2`+ 1

4π

∫
dφl
2π exp(−imφl)κ(l) (A.2b)

The spherical harmonic basis Y`m(θ, φ) and rhe flat sky basis are related by the following
expressions:

Y`m(θ, φ) = (−1)m
√

(2`+ 1)(l −m)!
4π(`+m)! Pm` (cos θ) exp(imφ) (A.3a)

P−m` (cos θ) = (−1)m (l −m)!
(l +m)!P

m
` (cos θ) (A.3b)

Using the expressions eq. (A.3b) in eq. (A.3a) we obtain the flat-sky counterpart of the
spherical harmonics:

Y`m(θ, φ) = Jm(`θ)

√
`

2π exp(imφ). (A.4a)
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If we use the following expansion of the plane wave:

exp(il · θ) =
∑
m

imJm(`θ) exp[im(φ− φl)]

≈
√

2π
`

∑
m

imY`m(θ) exp(imφl). (A.4b)

Next, we consider the case of bispectrum and related estimator:

〈κ`1m1κ`2m2κ`3m3〉c ≡ Bκ
`1`2`3

(
`1 `2 `3
m1 m2 m3

)
. (A.5)

Here the quantity in parentheses is the well-known Wigner-3j symbol which enforces the
rotational invariance. It is only non-zero for the triplets (`1, `2, `3) that satisfy the triangular
condition and `1 + `2 + `3 is even. The reduced bispectrum bκ`1`2`3 is useful in directly linking
the all-sky bispectrum and its flat-sky counterpart. For the convergence field κ, bκ`1`2`3 is
defined through the following expression:

Bκ
`1`2`3 :=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
bκ`1`2`3 . (A.6)

The flat-sky bispectrum is similarly defined through:

〈κ(l1)κ(l2)κ(l3)〉c = (2π)2δ2D(l1 + l2 + l3)Bκ(l1, l2, l3). (A.7)

The flat-sky bispectrum Bκ(l1, l2, l3) is identical to the reduced bispectrum bκ`1`2`2 for high
multipole [58]. This can be shown by using the following asymptotic relationship:

G`1m1,`2m2,`3m3 ≡
∫
dΩ̂Y`1m1(Ω̂)Y`2m2(Ω̂)Y`3m3(Ω̂)

=

√
(2`1 + 1)(2`2 + 1)(2`+ 1)

4π

(
`1 `2 `
0 0 0

)(
`1 `2 `
m1 m2 m3

)
≈ (2π)2δ2D(l1 + l2 + l3). (A.8a)

The skew-spectrum in the flat-sky is given by [57]:

S(l2) =
∫ ∞

0

l1dl1
2π

∫ 1

−1

dµ

2π
√

1− µ2B
κ(l1, l2,−(l1 + l2))

β(l1θs)β(l2θs)β(|l1 + l2|θs). (A.9a)

S` =
∑
`1`3

bκ`1`2`.
(2`1 + 1)(2`2 + 1)

4π

(
`1 `2 `
0 0 0

)2

β`1(θs)β`2(θs)β`(θs). (A.9b)

Here the β functions represent the smoothing window functions and µ is the cosine of the
angle between vector l1 and l2 i.e. µ = (l1 · l2)/(l1l2), where |li| = li. The skewness in terms
of these expressions is given by:∫ ∞

0

dl

2πS
ε(l) =

∑
`

(2`+ 1)S`. (A.10)
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B Higher-order LCFs

In this section we consider generalisation of the third-order LCFs to higher-order. The family
of LCFs can be seen as a natural extension of two-point cumulant correlators often used in
the literature. LCFs can be thought of as three-point generalisation of two-point cumulant
correlators. The following statistics are relevant for the kappa field as well as the for the
phases. In this section we generalise the line-correlation to higher order. The fourth- and
fifth-order generalisations are as follows.

L4(θ) ≡
∫ 2π

0

dφ

2π 〈ε(θ0 + θ)ε2(θ0)ε(θ0 − θ)〉

=
∫

d2l1
(2π)2 · · ·

∫
d2l3

(2π)2

Bκ
(4)(l1, l2, l3,−l1 − l2 − l3)√
Pκ(l1) . . . Pκ(|l1 + l2 + l3|)

J0(|l2 − l3|θ) (B.1a)

We have omitted the numerical prefactor. Equivalently we can generalise eq. (3.10b) to
fourth-order:

Π4(θ) ≡
∫ 2π

0

dφ

2π 〈κ(θ0 + θ)κ2(θ0)κ(θ0 − θ)〉

=
∫

d2l1
(2π)2 · · ·

∫
d2l3

(2π)2B
κ
(4)(l1, l2, l3,−l1 − l2 − l3)J0(|l2 − l3|θ). (B.1b)

Here, B(4)
κ is the trispectrum for the convergence field and is defined as follows:

〈κ(l1) · · ·κ(ln)〉 = (2π)2δ2D(l1 + · · ·+ ln)B(n)
κ (l1, · · · , ln) (B.2)

The extension to higher-order can be done in a straight-forward manner:

L5(θ) ≡
∫ 2π

0

dφ

2π 〈ε(θ0 + θ)ε3(θ0)ε(θ0 − θ)〉

=
∫

d2l1
(2π)2 · · ·

∫
d2l4

(2π)2

Bκ
(5)(l1, · · · , l4,−l1 · · · − l4)√
Pκ(l1) · · ·Pκ(|l1 + · · ·+ l4|)

J0(|l3 − l4|θ) (B.3)

There are no numerical fitting functions beyond bispectrum. Nevertheless, the possibility of
upcoming experiments to detect the higher-order correlation has fuelled development in this
area in recent years. Notice that these estimators can be useful in diectly probing galaxy
clustering in real [38] as well as in redshift space [40] with suitable modifications.
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