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Abstract 

Background:  Synaptic dysfunction is an early core feature of Alzheimer’s disease (AD), closely associated with cogni‑
tive symptoms. Neuregulin 1 (NRG1) is a growth and differentiation factor with a key role in the development and 
maintenance of synaptic transmission. Previous reports have shown that changes in cerebrospinal fluid (CSF) NRG1 
concentration are associated with cognitive status and biomarker evidence of AD pathology. Plasma biomarkers 
reflecting synaptic impairment would be of great clinical interest.

Objective:  To measure plasma NRG1 concentration in AD patients in comparison with other neurodegenerative dis‑
orders and neurological controls (NC) and to study its association with cerebrospinal fluid (CSF) core AD and synaptic 
biomarkers.

Methods:  This retrospective study enrolled 127 participants including patients with AD at mild cognitive impairment 
stage (AD-MCI, n = 27) and at dementia stage (n = 35), non-AD dementia (n = 26, Aβ-negative), non-AD MCI (n = 
19), and neurological controls (n=20). Plasma and CSF NRG1, as well as CSF core AD biomarkers (Aβ 42/Aβ 40 ratio, 
phospho-tau, and total tau), were measured using ELISA. CSF synaptic markers were measured using ELISA for GAP-43 
and neurogranin and through immunoprecipitation mass spectrometry for SNAP-25.

Results:  Plasma NRG1 concentration was higher in AD-MCI and AD dementia patients compared with neurologi‑
cal controls (respectively P = 0.005 and P < 0.001). Plasma NRG1 differentiated AD MCI patients from neurological 
controls with an area under the curve of 88.3%, and AD dementia patients from NC with an area under the curve of 
87.3%. Plasma NRG1 correlated with CSF NRG1 (β = 0.372, P = 0.0056, adjusted on age and sex). Plasma NRG1 was 
associated with AD CSF core biomarkers in the whole cohort and in Aβ-positive patients (β = −0.197–0.423). Plasma 
NRG1 correlated with CSF GAP-43, neurogranin, and SNAP-25 (β = 0.278–0.355). Plasma NRG1 concentration cor‑
related inversely with MMSE in the whole cohort and in Aβ-positive patients (all, β = −0.188, P = 0.038; Aβ+: β = 
−0.255, P = 0.038).

Conclusion:  Plasma NRG1 concentration is increased in AD patients and correlates with CSF core AD and synap‑
tic biomarkers and cognitive status. Thus, plasma NRG1 is a promising non-invasive biomarker to monitor synaptic 
impairment in AD.
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Introduction
Synaptic impairment is a core feature of Alzheimer’s dis-
ease (AD) and one of the earliest detectable changes [1, 
2]. Neuropathological examination has demonstrated 
that synaptic demise shows a higher association to cogni-
tive decline than amyloid plaque load or neurofibrillary 
tangle pathology [3, 4]. Positron emission tomography 
(PET) imaging using synaptic tracers indicates that syn-
aptic density is significantly reduced in the hippocampus 
in AD patients, especially in its early symptomatic stages 
[5, 6]. The evaluation of several synaptic proteins has 
been achieved in the cerebrospinal fluid (CSF) [7–10]. 
Presynaptic synaptosomal-associated protein 25 (SNAP-
25), synaptotagmin, or growth-associated protein-43 
(GAP-43) as well as post-synaptic neurogranin levels are 
altered in AD CSF and are reliable biomarkers of synap-
tic impairment, as early as in the preclinical stage of the 
disease [11, 12]. Those synaptic biomarkers also contrib-
ute to the understanding of the underlying pathological 
processes of the cognitive decline. Alteration of current 
CSF synaptic biomarkers appears to show specificity to 
AD, indicating AD as the pathology with the highest syn-
aptic involvement [11, 12]. Moreover, the different syn-
aptic proteins involved in various processes in pre- and 
post-synaptic compartments most likely reflect different 
mechanisms at play at the synapse [13]. Thus, synaptic 
biomarker investigation appears as a key tool to investi-
gate the pathological mechanisms responsible for synap-
tic damage.

Regarding blood, the presynaptic betasynuclein 
measured using quantitative mass spectrometry could 
discriminate AD and CJD from controls and other neu-
rodegenerative disorders [14]. Other synaptic markers 
have been explored in blood but so far, due to the exist-
ence of peripheral expression or of other factors of varia-
bility, there is no validated reliable biomarker of synaptic 
pathology [13]. Plasma markers allow for easy, cost-effec-
tive, and repeated measurements both in research and 
in clinical settings. Synaptic impairment markers are a 
category of biomarkers expected to be most closely cor-
related with cognitive function. It would make a synap-
tic plasma biomarker of high interest for monitoring AD 
progression, as well as for screening and inclusion, and 
measure of the therapeutic response in clinical trials.

Neuregulin 1 (NRG1), a protein encoded by the NRG1 
gene, is a member of the epithelial growth factor (EGF) 
family. They constitute ligands with a high affinity for 
ErbB tyrosine kinase receptors. NRG1 is implicated in 
many processes during neural development including 

the proliferation of neuronal progenitors, neuron migra-
tion and survival, axon guidance, glial development, and 
myelination, as well as synaptogenesis [15, 16]. In the 
adult brain, NRG1 is expressed in multiple regions and 
regulates neurotransmission and synaptic plasticity [17]. 
Membrane-bound, NRG1 requires processing by a pro-
tease to initiate release and signaling. Among implicated 
proteases, NRG1 can undergo cleavage by the β-site amy-
loid precursor protein cleaving enzyme 1 (BACE1) at 
multiple sites [18–20]. Proteolytic processing results in 
the secretion of soluble forms that will further activate 
ErbB receptors, mainly at the post-synaptic level. NRG1 
and its receptor ErbB4 levels have been found altered in 
the human AD brain, both in the hippocampus and cor-
tex [21, 22]. In CSF, two studies including our prior work 
have reported modified NRG1 levels in AD patients com-
pared with controls and to patients with non-AD-related 
cognitive decline [23, 24].

The purpose of our study was to investigate plasma 
NRG1 levels in a cohort of patients with cognitive decline 
due to AD, non-AD-related cognitive decline, and neu-
rological controls and to assess its association with core 
AD CSF biomarkers, CSF synaptic markers, and cogni-
tive status.

Methods
Cohort
A total of 127 patients from the Cognitive Neurology 
Center, Lariboisière Fernand Widal Hospital, Univer-
sité Paris Cité, was retrospectively included in our study 
comprising patients with AD at the stage of mild cogni-
tive impairment (AD-MCI, n = 27) and at the stage of 
dementia (n = 35), non-AD-related mild cognitive decline 
(non-AD MCI, n = 19), non-AD dementia (n = 26), and 
neurological controls (NC, n = 20).

Patients had undergone CSF biomarker analysis from 
2012 to 2015 including Aβ 42/Aβ 40 ratio, tau phospho-
rylated on threonine 181 (p-tau), and total-tau (t-tau) 
measurements, in the context of the diagnostic workup of 
a cognitive complaint. Consensus diagnoses were made 
by neurologists, geriatricians, neuropsychologists, neu-
roradiologists, and biologists after comprehensive neu-
rological examination, neuropsychological assessment, 
brain imaging, and CSF biomarker analysis, according to 
current diagnostic criteria [25–29].

All AD patients met the NIA-AA research framework 
criteria and displayed a CSF profile on the AD continuum 
[26]. AD-MCI patients followed Albert et al. definition of 
MCI due to AD [25]. The non-AD MCI group comprised 
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subjects with cognitive decline unrelated to AD, encom-
passing diagnosis of psychiatric disorders, systemic dis-
orders, or non-neurodegenerative disorders. The non-AD 
dementia group included patients with dementia with 
Lewy bodies (DLB, n = 6), behavioral variant frontotem-
poral dementia (FTD, n = 9), and vascular dementia (VD, 
n = 7). Non-AD MCI and non-AD dementia patients had 
normal amyloid ratio Aβ 42/40 and normal or abnormal 
p-tau and t-tau. NC included patients with subjective 
cognitive decline, anxiety, depression, or sleep apnea syn-
drome, presenting with normative or sub-normative cog-
nitive scores, normal CSF biomarkers, and an absence of 
cognitive decline at follow-up.

This study was approved by the Bichat Hospital Eth-
ics Committee of Paris Diderot University (N°10–037, 
18/03/2010) and all the participants have given their 
written consent.

CSF biomarkers
CSF was obtained through a lumbar puncture; the sec-
ond and third milliliters were collected and centrifuged 
to prevent blood contamination. The supernatant was 
stored at − 80 °C until further analysis.

CSF core AD biomarkers (Aβ 42, Aβ 40, p-tau, and 
t-tau) were analyzed at the Department of Biochemistry 
at Lariboisiere University Hospital Paris, France, using 
commercially available INNOTEST® kits (Fujirebio 
Europe NV, Gent, Belgium) in a delay of 1 month after 
collection. CSF profiles were analyzed according to the 
following cut-offs: A+: Aβ42/Aβ40 ratio < 0.076; T+: 
p-tau > 58 pg/mL; N+: t-tau > 340 pg/mL [26]. Patients 
were classified as Aβ-positive and Aβ-negative according 
to the Aβ42/Aβ40 ratio.

CSF NRG1 concentration was measured using the 
Human NRG1 DuoSet ELISA kit (R&D Systems, Minne-
apolis, MN) as reported in Mouton-Liger et al. [24].

All the CSF synaptic markers were assessed at the 
Clinical Neurochemistry Laboratory at the Sahlgrenska 
University Hospital (Mölndal, Sweden). CSF neurogranin 
and CSF GAP-43 concentrations were measured using 
in-house developed ELISAs [8, 10]. CSF SNAP-25 con-
centration was measured by immunoprecipitation mass 
spectrometry according to a validated method [9, 11].

Plasma NRG1 measurement
Blood samples were obtained through venipuncture 
under fasting condition and collected into ethylenedi-
aminetetraacetic acid (EDTA) tubes. Samples were cen-
trifuged at 2000×g for 20 min at 4°C. Plasma supernatant 
was collected and frozen at −80°C until further use. Prior 
to analysis, samples were centrifuged at 2000g for 10 
min after thawing at room temperature. Plasma NRG1 
was assessed using the Human NRG1 DuoSet ELISA 

kit (R&D Systems) in Mölndal, Sweden, following the 
manufacturer’s protocol. This assay has been shown to 
be highly sensitive to human NRG1 alpha-subunit with a 
sensitivity of 125–4000 pg/mL [24, 30, 31]. Plasma sam-
ples from study participants were analyzed in duplicates. 
Intra-plate and inter-plate coefficients of variation were 
respectively 5.9% and 7.4%. Ten samples (7.9% of sam-
ples total) were below the detection limit of the assays, 
including 4 NC, 3 AD, 2 non-AD dementia, and one non-
AD MCI other patient. For those samples, plasma NRG1 
levels were interpolated from the standard curve or if 
this was not possible due to the very low signal the val-
ues were imputed to the lowest interpolated value. One 
outlier sample (plasma NRG1 value > mean+5SD) was 
excluded from the analysis.

Statistical analysis
Participants’ characteristics were examined in 5 groups: 
NC, AD-MCI patients, AD dementia, non-AD MCI, 
and non-AD dementia. Patients were also divided into 
Aβ-positive and Aβ-negative groups according to their 
CSF Aβ42/Aβ40 ratio using the clinically validated cut-
off. Data are expressed as mean (standard deviation) for 
continuous variables or percentage (%) for categorical 
variables. We used the Kruskal-Wallis test to compare 
age and Mini-Mental State Examination (MMSE) scores 
between groups and Pearson’s chi-square for sex. Fluid 
biomarker levels were log-transformed prior to analysis 
and compared using a one-way ANCOVA adjusted on 
age and sex followed by a post hoc least significant differ-
ence (LSD) test for pairwise group comparisons, adjusted 
for multiple comparisons (Bonferroni). Delay between 
sample collection and analysis was added in the model to 
test for association with biomarker levels. Linear regres-
sion adjusted on age and sex was used to explore the 
association between CSF and plasma NRG1. A receiver 
operator curve (ROC) analysis was performed to study 
the accuracy of plasma NRG1 in differentiating the dif-
ferent groups. The association of plasma NRG1 with core 
AD CSF biomarkers and CSF synaptic markers and with 
MMSE was explored by linear regression adjusted on age 
and sex in the whole cohort and in regard to Aβ status.

A p-value (P) < 0.05 was overall considered significant. 
Statistical analyses were performed using SPSS IBM 27.0 
(IBM, Armonk, NY) and GraphPad Prism 9 (GraphPad 
Software, San Diego, CA, USA).

Data availability
The datasets analyzed during the current study are avail-
able from the corresponding authors on a reasonable 
request.
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Results
Cohort
Demographics and biomarker values in our cohort are 
reported in Table  1. A detailed description of non-AD 
dementia patients is reported in Supplemental Table  1. 
AD-MCI, AD dementia, and non-AD dementia patients 
were older than NC and non-AD MCI patients (P = 
0.003 – P < 0.001). There was no difference regarding 
sex between groups (P = 0.155). All further analysis 
was adjusted on age and sex, unless otherwise specified. 
AD-MCI and AD dementia patients displayed decreased 
CSF Aβ42/Aβ40 ratio and increased p-tau and t-tau lev-
els compared with other groups. CSF synaptic markers 
neurogranin, GAP-43, and SNAP-25 were significantly 
higher in AD patients compared to NC and displayed 
high accuracies in identifying AD (Supplemental Fig. 1). 
AD-MCI, non-AD MCI, AD dementia, and non-AD 
dementia patients had decreased MMSE compared to 
NC. Delay between the collection of samples and analy-
sis was not associated with biomarker levels in uni- and 
multivariate analysis (results not presented); thus, it was 
not further added as a covariate.

Plasma NRG1 levels across groups
A higher concentration of plasma NRG1 was found 
in AD dementia patients compared to NC after 

adjustment on age and sex (940.3 versus 378.9 pg/mL, 
P < 0.001, Fig.  1A). AD-MCI patients also displayed 
higher concentrations compared to NC (707.6 versus 
378.9 pg/mL, P = 0.005). Non-AD dementia had higher 
levels compared to NC (615.5 versus 378.9 pg/mL, P = 
0.014). Plasma NRG1 concentration did not differ sig-
nificantly between NC and non-AD MCI patients. Par-
ticipants were then dichotomized according to their Aβ 
status defined by CSF Aβ42/Aβ40 ratio (Supplemental 
Table  2). Aβ-positive patients displayed higher plasma 
NRG1 concentration than Aβ-negative patients (774.0 
versus 538.4 pg/mL, P = 0.023, Fig. 1B).

Plasma NRG1 accuracy in identifying AD
We studied plasma NRG1 accuracy in discriminat-
ing AD patients from other diagnosis groups (Fig. 1C). 
Plasma NRG1 showed good performance in differen-
tiating AD patients from NC both at MCI stage (AUC 
= 88.3%, 95% CI: 77.2–0.99.6%) and at dementia stage 
(AUC = 87.6%, 95% CI: 76.9–98.2%). When compar-
ing AD-MCI to non-AD MCI patients, plasma NRG1 
showed similar accuracy (AUC = 86.4%, 95% CI: 74.7–
98.3%). However, its discriminating power was lower 
between AD patients and non-AD dementia patients 
(AUC = 69.3%, 95% CI: 55.7–82.3%).

Table 1  Demographics and biomarker values

Data are shown as mean (SD) or n (%), as appropriate. The Kruskal-Wallis test was used to compare age between groups and Pearson’s chi-square to compare sex. 
Fluid biomarker levels and MMSE were compared with a one-way ANCOVA adjusted by age and sex followed by the least square difference test adjusted for multiple 
comparisons

Abbreviations: Aβ42 amyloid-beta 42, Aβ40 amyloid-beta 40, AD Alzheimer’s disease, AD-MCI MCI due to Alzheimer’s disease, CSF cerebrospinal fluid, GAP-43 growth-
associated protein 43, LoE level of education, MCI mild cognitive impairment, MMSE Mini-Mental State Examination, NRG1 neuregulin 1, p-tau phosphorylated tau, 
SNAP-25 synaptosomal-associated protein 25, t-tau total tau
# P < 0.05 compared to neurological controls

n = 127 Neurological controls
n = 20

Non-AD MCI
n = 19

AD-MCI
n = 25

AD dementia
n = 37

Non-AD dementia
n = 26

P-value

Age, years 60.6 (9.6) 61.1 (8.4) 70.3 (5.8)# 67.7 (7.9)# 68.1 (7.0)# <0.001
Female, n (%) 70% (14) 63% (12) 68% (17) 62% (23) 38% (10) 0.155

LoE, years 11.6 (3.8) 9.7 (2.5) 11.0 (3.9) 9.0 (3.5)# 11.2 (3.4) 0.050
MMSE 27.42 (1.6) 25.0 (2.3)# 25.1 (2.4)# 18.2 (4.3)# 22.8 (5.4)# <0.001
CSF biomarkers
  CSF Aβ42, pg/mL 1041.6 (264.4) 987.2 (326.0) 516.4 (122.5)# 548.3 (135.9)# 919.3 (428.7) <0.001
  CSF Aβ42/Aβ40 ratio 0.129 (0.045) 0.092 (0.029) 0.051 (0.027)# 0.045 (0.017)# 0.104 (0.033) <0.001
  CSF p-tau, pg/mL 33.7 (10.7) 40.7 (17.2) 79.2 (22.9)# 95.7 (32.5)# 45.2 (20.5)# <0.001
  CSF t-tau, pg/mL 196.0 (66.7) 223.0 (100.6) 501.7 (203.4)# 703.9 (285.2)# 305.2 (152.1)# <0.001
  CSF NRG1, pg/mL 295.8 (107.1) 324.4 (137.5) 312.8 (157.8) 403.9 (155.1)# 315.0 (134.4) 0.044
  CSF neurogranin, pg/mL 208.1 (69.5) 213.6 (84.7) 364.4 (83.1)# 351.4 (91.9)# 230.2 (107.9) <0.001
  CSF GAP-43, pg/mL 1677.2 (616.2) 2004.8 (987.9) 3422.9 (1087.9)# 3787.6 (1388.7)# 2348.8 (1267.8)# <0.001
  CSF SNAP-25, pg/mL 6.7 (2.2) 8.2 (3.5) 13.1 (3.7)# 17.1 (5.3)# 7.8 (3.9) <0.001
Plasma biomarker
  Plasma NRG1, pg/mL 378.9 (400.7) 488.4 (392.2) 707.6 (562.7)# 940.3 (737.5)# 615.5 (486.3)# <0.001



Page 5 of 11Vrillon et al. Alzheimer’s Research & Therapy           (2022) 14:71 	

Correlation to CSF NRG1
Plasma and CSF NRG1 concentrations correlated in 
the overall cohort (β = 0.372, P = 0.0056, adjusted 
on age and sex) (Fig.  2A). This correlation was also 
detected in the Aβ-positive group (β = 0.292, P = 
0.034). No correlation was observed between plasma 
and CSF NRG1 in the Aβ-negative group (β = 0.156, 
P = 0.305).

Correlation to AD biomarkers
Plasma NRG1 displayed a weak inverse correlation with 
CSF Aβ42/Aβ40 ratio in the whole cohort (β = −0.197, 
P = 0.043, adjusted on age and sex, Fig. 2B). This correla-
tion was stronger in the Aβ-positive group (β = −0.372, 
P = 0.003). CSF p-tau and CSF t-tau displayed a stronger 
correlation with plasma NRG1 in the whole popula-
tion (respectively: β = 0.361, P < 0.001 and β = 0.423, P 

Fig. 1  Plasma NRG1 levels across groups and correlation to CSF NRG1. A Box plots displaying plasma NRG1 levels across diagnosis groups. Levels 
were compared using a one-way ANCOVA adjusted on age and sex followed by a post hoc LSD test adjusted for multiple comparisons. B Box plot 
displaying plasma NRG1 levels in Aβ-positive patients (n = 62) and Aβ-negative patients (n = 55). Levels were compared using a one-way ANCOVA 
adjusted on age and sex followed by a post hoc LSD test adjusted for multiple comparisons. C ROC curves displaying plasma NRG1 accuracy in 
differentiating AD patients from neurological controls (AUC = 87.6%, 95% CI: 76.9–98.2%), AD dementia from non-AD dementia patients (AUC = 
69.3%, 95% CI: 55.7– 82.3%), AD-MCI from NC (AUC = 88.3%, 95% CI: 77.2–0.99.6%), and AD-MCI from non-AD MCI patients (AUC = 86.4%, 95% 
CI: 74.7–98.3%). Abbreviations: Aβ, amyloid-beta; AD, Alzheimer’s disease; AUC, area under the curve; MCI mild cognitive impairment; LSD test, 
least square difference test; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; NRG1, neuregulin 1; ROC, receiver operator 
characteristics
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< 0.001) (Fig. 2C, D). These correlations were both sus-
tained in the Aβ-positive patients (CSF p-tau: β = 0.430, 
P < 0.001; CSF t-tau: β = 0.209, P < 0.001). There was no 
correlation between plasma NRG1 and CSF Aβ42/Aβ40 
ratio, p-tau, and t-tau in Aβ-negative patients.

Association to synaptic biomarkers and to cognition
We studied the association of plasma NRG1 with three 
CSF synaptic biomarkers, neurogranin, GAP-43, and 
SNAP-25, after adjustment on age and sex (Fig.  3). 
Plasma NRG1 levels were overall associated with CSF 
GAP-43 levels (β = 0.355, P < 0.001) (Fig. 3A). This asso-
ciation remained significant in Aβ-positive patients (β 
= 0.434, P < 0.001) but not in the Aβ-negative group. 
Similarly, plasma NRG1 levels were associated with CSF 
neurogranin levels, in the whole cohort (β = 0.278, P = 
0.002) and in the Aβ-positive patients (β = 0.322, P = 
0.007) (Fig.  3B). CSF SNAP-25 levels were associated 
with plasma NRG1 in the whole cohort (β = 0.327, P = 
0.001) as in the Aβ-positive (β = 0.375, P = 0.004) and in 
Aβ-negative group (β = 0.339, P = 0.026, Fig. 3C).

MMSE scores were significantly associated with 
plasma NRG1 levels after adjustment on age and sex (β 

= −0.188, P = 0.038, Fig. 3D). This association was sus-
tained in the Aβ-positive group (β = −0.255, P = 0.037) 
but not in the Aβ-negative group.

Discussion
Accessible biomarker monitoring synaptic dysfunc-
tion and loss would be of great clinical use in AD for 
early diagnosis, prediction, and monitoring of cognitive 
decline and for drug evaluation. In this study, we report 
that plasma synaptic marker NRG1 (i) was increased in 
AD patients already at the MCI stage; (ii) had a promis-
ing AUC to discriminate AD patients both at MCI and 
dementia stage, from NC; (iii) was associated with CSF 
AD biomarkers in Aβ-positive individuals; (iv) correlated 
with CSF synaptic markers; and (v) was inversely corre-
lated with cognition.

NRG1 is expressed at the synapse in multiple brain 
regions, including those preferentially affected in AD, as 
the hippocampus and entorhinal cortex [32–34]. Post-
mortem studies have reported NRG1 accumulation in 
neuritic plaques in association with dystrophic neurites, 
activated astrocytes, and microglia in human AD brains 
[21, 22]. NRG1- and ErbB4-directed immunoreactivity 

Fig. 2  Association to AD CSF biomarkers. Association of plasma NRG1 with A CSF NRG1 B CSF Aβ42/Aβ40 ratio, C CSF p-tau, and D CSF t-tau, 
studied using linear regression adjusted on age and sex, in the whole cohort and in regard to Aβ status. Solid lines indicate the regression line 
and dashed lines, the 95% CI in Aβ-positive and Aβ-negative groups. Abbreviations: Aβ+, amyloid-beta positive; Aβ-, amyloid-beta negative; 
Aβ42, β-amyloid 42; Aβ40, β-amyloid 40; AD, Alzheimer’s disease; 95% CI, confidence interval; CSF, cerebrospinal fluid; NRG1, neuregulin 1; p-tau, 
phosphorylated tau; t-tau, total tau
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was observed in the hippocampus located in neuronal 
cell bodies and dendrites [22]. Interestingly, NRG1 can 
be measured in human fluids [17, 23, 24, 30, 31, 35, 36]. 
Increased levels of CSF NRG1 in AD compared with con-
trols and with non-AD-related cognitive decline have 
been reported in the literature, including our prior work 
[23, 24]. In Pankonin et  al., CSF NRG1 was increased 
in AD patients from an early stage of the disease. More 
recently, in a larger cohort using the most recent AD 
diagnosis criteria including CSF biomarkers, we have 
confirmed those results [24]. CSF NRG1 was significantly 
associated with CSF AD core biomarkers, suggesting a 
possible implication in AD pathophysiological processes. 
Moreover, CSF NRG1 levels correlated with other CSF 
synaptic markers, also suggesting that NRG1 was mainly 
originating from the synapse.

A previous study has already reported increased lev-
els of plasma NRG1 in AD patients, with higher levels 
in advanced disease [35]. However, in this work, AD 
was clinically diagnosed with no biomarker to confirm 
the underlying AD pathophysiological process and cor-
relation with CSF NRG1 levels was not studied. Our 
study brings evidence that plasma NRG1 is increased 

in patients with confirmed underlying amyloid pathol-
ogy, already at the MCI stage. It is interesting to note as 
APP, at the origin of Aβ, and NRG1 are both cleaved by 
BACE1 in the brain [18, 20].

Plasma NRG1 levels were significantly correlated 
with CSF levels in the whole cohort and this association 
was sustained in the Aβ-positive patient group. The 
existence of extracerebral expression of NRG1 is known 
but the significant correlation between plasma and CSF 
levels indicates that plasma level modifications sub-
stantially arise from the central nervous system [37]. 
Thus, this flags plasma NRG1 levels as a potential sur-
rogate for brain NRG1 modifications in AD. Our cohort 
was phenotyped using the measure of validated CSF 
biomarkers: GAP-43, neurogranin, and SNAP-25. Con-
sistently with the existing literature, CSF synaptic bio-
marker levels were found to be altered in the AD group 
at MCI and dementia stages and they displayed inter-
esting performance in separating the AD group from 
the control group. Significant correlation of plasma 
NRG1 with CSF synaptic markers in the Aβ-positive 
patients also supports that detected NRG1 changes are 
related to synaptic modifications.

Fig. 3  Association to CSF synaptic biomarkers and cognition. Association of plasma NRG1 with A CSF GAP-43, B CSF neurogranin, C CSF SNAP-25, 
and D MMSE, studied using linear regression adjusted on age and sex, in the whole cohort and in regard to Aβ status. Solid lines indicate the 
regression line and dashed lines, the 95% CI in Aβ-positive and Aβ-negative groups. Abbreviations: Aβ+, amyloid-beta positive; Aβ-, amyloid-beta 
negative; 95% CI, 95% confidence interval; CSF, cerebrospinal fluid; GAP-43, growth-associated protein 43; MMSE, Mini-Mental State Examination; 
NRG1, neuregulin 1; SNAP-25, synaptosomal associated protein 25
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There was a significant association between plasma 
NRG1 levels and MMSE in our whole cohort as well as 
in the Aβ-positive patients. This finding is in agreement 
with the previous studies in plasma and CSF again show-
ing that NRG1 levels associate with cognition already at 
early stages of the disease [23, 24, 35].

Plasma NRG1 also displayed increased levels in non-
AD dementia compared to NC and its accuracy in identi-
fying AD at the dementia stage was moderate. In a study 
on vascular dementia, plasma NRG1 levels were found to 
be increased and inversely correlated to cognitive sever-
ity [38]. Neuropathological studies and synaptic CSF 
biomarker results have highlighted the fact that synapse 
dysfunction is a prominent feature in AD but that it is not 
entirely specific to it [39, 40]. It can also be observed in 
non-AD dementia, although to a much lesser extent than 
in AD, a finding in line with our results [41].

An underlying mechanistic question to this marker is 
whether alterations in NRG1 levels are related to a gen-
eral process of synaptic degeneration and clearance or 
whether these changes occur as a response, positive or 
negative, to the development of AD pathology or to an 
increase in synaptic synthesis and release.

NRG1-ErbB4 signaling is important in regulating syn-
aptic function at both excitatory and inhibitory syn-
apses in the adult brain under physiological conditions 
[42, 43]. NRG1–ErbB4 signaling appears implicated 
in short-term synaptic plasticity through modulation 
of glutamatergic transmission. ErbB4 co-localizes and 
interacts with PSD95, a postsynaptic scaffold protein 
essential for the assembly and function of glutamater-
gic synapses [44]. Studies have shown that the pair can 
both suppress the induction and the expression of LTP 
[45, 46]. However, the NRG1 effect on neurotransmis-
sion might vary between brain regions. NRG1 adminis-
tration decreased NMDA-receptor-mediated excitatory 
postsynaptic potentials in slices of the prefrontal cortex 
[47]. NRG1 decreased synaptic transmission in entorhi-
nal CA1 but increased in response to entorhinal corti-
cal stimulation in rats [48]. The levels of NRG1–ErbB4 
signaling also impact GABAergic transmission and regu-
late signal integration by pyramidal neurons [43]. There 
is also evidence to support that NRG1 regulates long-
term plasticity in the brain and NRG1 has been shown 
to stimulate the expression of receptors for key neuro-
transmitters, including glutamate, GABA, and ACh [49, 
50]. Finally, NRG1–ErbB4 pathway is also implicated in 
neuron survival in different cellular populations includ-
ing cortical neurons, dopaminergic neurons, motor neu-
rons, and cochlear sensory neurons [42]. NRG1 was first 
identified as a major susceptibility gene in schizophrenia 
[51, 52]. Mutant NRG1 mice display both excitatory and 
inhibitory synaptic impairment and schizophrenia-like 

behavioral disorder [53]. While loss of NRG1 signaling 
has been shown to be pejorative to synaptic transmission, 
excessive NRG1 activity is also associated with synaptic 
dysfunction resulting from alteration of LTP at gluta-
matergic synapses [34, 54]. In line with those findings, 
evidence suggests that NRG1 increase may specifically 
influence cognitive function and neuropathology in AD 
[55–57]. Although not formally established, the mecha-
nism of the increase of NRG1 could be explained by the 
increased levels and activity of BACE1 observed in AD 
[55]. Yet, its beneficial or detrimental effect is not solved. 
In experimental works, NRG1 overexpression could res-
cue APP-induced toxicity in primary cortical neurons 
[56]. In an AD mouse model, NRG1 treatment prevented 
amyloid β-induced impairment of long-term potentiation 
in hippocampal slices via its receptor ErbB4 [58]. Con-
versely, other experimental works have suggested a nega-
tive effect of the NRG1-ErbB4 signaling in AD. Perfusion 
of NRG1 in the hippocampus decreased LTP in the AD 
mouse model as well as in control mice [59]. Further 
understandings of NRG1 response upon amyloid pathol-
ogy will allow to specify the exact synaptic events associ-
ated with CSF and plasma NRG1 modifications observed 
in AD patients.

In addition to contributing to better understanding of 
AD mechanisms, our finding that plasma NRG1 levels 
could reflect synaptic impairment in AD may have major 
practical utility. The development of blood biomarkers 
measuring Aβ, tau, and neurodegeneration processes has 
known great advancement recently, but, to date, there are 
no validated blood biomarkers reflecting synaptic pathol-
ogy [13]. Recent studies have reported that the measure 
of markers of AD hallmarks in plasma such as Aβ42, 
p-tau 181, p-tau217, and p-231 can identify and monitor 
AD brain pathology with high accuracy, demonstrating 
that they can be used as non-invasive tools in AD diagno-
sis [60–62]. As synaptic impairment is one of the earliest 
abnormal features in AD, already present at the preclini-
cal phase, an accessible non-invasive synaptic marker 
would be of high added value for early diagnosis [12].

Moreover, synaptic markers hold important promise 
for monitoring the effects of disease-modifying treat-
ments on synaptic degeneration. Compared with CSF 
markers, validated blood-based synaptic AD biomark-
ers would provide a fast, acceptable, and cost-effective 
method of early detection, diagnosis, and follow-up as 
well as a screening and follow-up tool in therapeutic tri-
als. Our work shows that plasma NRG1 levels could be 
one of these potential biomarkers.

Limitations
This study has several limitations. The correlation 
between plasma and CSF NRG1 remained moderate. 
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Further studies will be needed to understand if this vari-
ability is related to the blood-brain barrier’s passage, 
NRG1 metabolism in plasma, matrix effects, or interac-
tion with peripheral NRG1. In our cohort, cognition was 
evaluated using MMSE, a general test. A study of plasma 
NRG1 relation to cognition using neuropsychological 
assessment with tests evaluating specifically episodic 
memory should give more robust evidence. We could not 
include measurements of AD-specific blood biomarkers 
such as p-tau or Aβ. Finally, confirmation of our results 
in larger cohorts is needed, including larger samples of 
non-AD dementia patients. A study of plasma NRG1 at 
the preclinical phase will also be needed to better charac-
terize its kinetic on the whole AD spectrum.

Conclusion
Our results suggest that plasma NRG1 is a novel bio-
marker for synaptic dysfunction/degeneration in AD. 
Plasma NRG1 showed a significant increase in AD 
patients already at the MCI stage and correlated with 
biomarkers for AD pathology, as well as with established 
CSF biomarkers for synaptic dysfunction in AD. As a 
novel blood synaptic marker, plasma NRG1 may improve 
the diagnosis of neurodegenerative disorders and may 
also be useful to monitor clinical disease progression and 
therapeutic response in clinical trials of novel disease-
modifying drug candidates.
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