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Abstract—Model-driven engineering (MDE) of software sys-
tems from precise specifications has become established as an
important approach for rigorous software development. However,
the use of MDE requires specialised skills and tools, which has
limited its adoption.

In this paper we describe techniques for automating the
derivation of software specifications from requirements state-
ments, in order to reduce the effort required in creating MDE
specifications, and hence to improve the usability and agility of
MDE. Natural language processing (NLP) and Machine learning
(ML) are used to recognise the required data and behaviour
elements of systems from textual and graphical documents, and
formal specification models of the systems are created. These
specifications can then be used as the basis of manual software
development, or as the starting point for automated software
production using MDE.

Keywords-Requirements formalisation; Model-driven engineer-
ing; Agile development.

I. INTRODUCTION

Model-driven engineering (MDE) advocates the develop-
ment of software systems based on the central use of precise
models of the systems. The technical aspects necessary to
employ MDE have been successfully addressed, with the stan-
dardisation of modelling languages such as UML and OCL,
and the availability of many supporting tools for software
specification and automated code generation (for example
[11], [33], [26]). However, the usability of MDE and of
specification/modelling languages remains a barrier to the
widespread use of MDE, and most software practitioners still
prefer to work at the code level. Graphical models such as
UML class diagrams or state machines can be time-consuming
to create and maintain for large systems. The semantics of
these models may themselves be ambiguous.

We use natural language processing (NLP) and machine
learning (ML) to derive models from natural language require-
ments statements and from sketches. This aims to reduce the
effort involved in producing specifications from requirements.
In an agile development context, parts of a system may be
developed in different iterations, and their requirements are
analysed using techniques such as interviews and exploratory
prototyping in close collaboration with customer representa-
tives. The techniques described in this paper can be used
to accelerate this collaborative construction of models and
prototypes from requirements, and enable customers to quickly
see the semantic consequences of different requirements state-
ments.

Our overall requirements formalisation process is shown
in Figure 1. Natural language requirements in text form are
used as the input, in addition, OCR is used to extract textual
elements from schematic diagrams in requirements documents.
An NLP toolset is used to produce an annotated text, including
identification of nouns, verbs, etc, and sentence structures.
These annotated sentences are then classified using a decision
tree, and semantic analysis of the classified sentences is then
carried out. This analysis uses a background knowledge base
consisting of glossaries, both general and domain-specific. The
result is a formal UML model consisting of class and use case
definitions. These can be graphically visualised, and used to
produce prototypes for review with customers. The process
is iterative – firstly because errors in the NLP or semantic
analysis steps may have arisen due to ambiguities in the
requirements text, and secondly because customers may realise
(as a result of the review step) that their original statements
need revision or extension.

We use the AgileUML toolset as the basis for this work [11].
The toolset provides UML and transformation specification
facilities, in the UML-RSDS subset of UML, including graph-
ical class diagram and use case models, and additional state
machine, interaction diagram and SysML support. To facilitate
faster creation and editing of class diagrams and use cases, the
textual KM3 notation can be used as an alternative to diagrams
[12]. We aim to provide automated RE support for software
modelling across a wide range of domains, however with the
capability to utilise domain-specific background knowledge
bases and models when these are available.

In Sections I-A and I-B we summarise the different forms
of NLP and ML technique which are relevant for automated
requirements engineering (RE). In Sections II-A, II-B and II-C
we define specific techniques for formalisation of data and
behavioural requirements from natural language statements.
Section III evaluates these techniques on examples taken from
diverse datasets of requirements statements.

Section IV surveys related work, and Section V gives
conclusions. We provide all data of our evaluation cases and
results in [5].

A. Natural Language Processing (NLP)

NLP is a collection of techniques for the processing of
natural language text, including part-of-speech (POS) tag-
ging/classification, tokenisation and splitting of text into sen-
tences, lemmatisation, syntax analysis, dependency analysis



Fig. 1. Automated requirements engineering in the agile MDE process

and reference correlation. NLP tools include Stanford NLP
[32], Apache OpenNLP [4], iOS NLP Framework, and Word-
Net [36].

The standard parts of speech include [28]: Determiners –
tagged as DT , eg., “a”, “the”; Nouns – NN for singular
nouns and NNS for plural; Proper nouns – NNP and NNPS;
Adjectives – JJ, JJR for relative adjectives, JJS for superla-
tives; Modal verbs – MD such as “should”, “must”; Verbs
– VB for the base form of a verb, VBP for present tense
except 3rd person singular, VBZ for present tense 3rd person
singular, VBG for gerunds, VBD for past tense; Adverbs –
RB; Prepositions/subordinating conjunctions – IN.

For specialised purposes, additional parts of speech may be
defined, as in [37]. NLP has been a key element of automated
RE approaches, eg., [6], [10]. However, the trained models
available with the existing NLP tools are usually oriented
towards general English text, which differs significantly from
the subset of English typically used in software require-
ments statements. In particular, requirements statements do
not usually use colloquial or casual English, and they use
computing/software terminology. Words such as “persisted”,
“form”, “schema” and “backlog” are used in a more specific
way in software descriptions, compared to their use in general
English. The existing models therefore sometimes misclassify
words in requirements statements (eg., “stores” is misclassified
as a noun by both Stanford NLP and Apache OpenNLP, even
when used as a verb, and “existing” used as an adjective is
often misclassified as a gerund). For this reason we decided
to re-train a POS tagging model using a corpus of 19 require-
ments statements which we collected for data and behavioural
requirements analysis (Sections II-A, II-B, II-C). The corpus
contains 1267 sentences.

Retraining of the tagger reduced the error rates on 5 new
test cases (containing 427 sentences) from 0.4% per word and
9.4% per sentence, to 0.2% per word and 5.6% per sentence.
The retrained tagger was effective in removing the more
serious errors originally encountered, however some tagging
and syntax analysis errors still arise in some cases.

B. Machine Learning (ML)

Machine learning covers a wide range of techniques by
which knowledge about patterns and relationships between
data is gained and represented as implicit or explicit rules in a
software system. ML can be used for classification, translation
or prediction. In particular, ML is used to create the part-of-
speech and other models used in NLP tools. ML techniques
include K-nearest neighbours (KNN), decision trees, inductive
logic programming (ILP) and neural nets. A key distinction
can be made between techniques such as decision trees and
ILP where explicit rules are learnt from data, and techniques
such as neural nets where the learned knowledge is in an
implicit form (consisting of the weights of connections in the
trained network). In recent years there have been substantial
advances in neural networks (recurrent neural networks or
RNNs) which possess a ‘memory’ of a sequence of inputs,
enabling them to perform prediction tasks and process data
(such as natural language texts or programs) that consist of a
connected sequence of elements (sentences) [25]. In principle,
such networks should be capable of making use of information
distributed amongst multiple sentences in a requirements state-
ment, in order to provide a more integrated analysis, compared
to approaches which analyse sentences in isolation. However,
the main application of ML within requirements formalisation
has been sentence and word classification, using neural nets
or decision trees [35]. In this paper we also use a decision tree
classifier to classify requirements sentences into categories.

Toolsets for ML include Google MLKit, Tensorflow, Keras,
ScikitLearn and Theano.

II. AUTOMATED REQUIREMENTS FORMALISATION OF
SOFTWARE APPLICATIONS

Software requirements statements are typically expressed
in a combination of natural language text and informal dia-
grams, with text as the predominant element. Requirements
statements may include non-technical issues, such as the roles
of stakeholders in the development process [29]. In this paper
we only consider the technical requirements of the data and
functionality of the system to be constructed.



There are typically four main stages in any requirements
engineering process [34]:

1) Domain analysis and requirements elicitation
2) Evaluation and negotiation
3) Requirements specification and formalisation
4) Requirements validation and verification.

Our automated requirements engineering techniques focus
upon requirements formalisation in order to carry out the re-
quirements specification of technical requirements, and do not
address requirements elicitation in an active sense. However,
the process may clarify the understanding of requirements by
the customer and developer by providing a formal model and
visualisation of requirements statements.

We aim to extract formalised class diagrams and use case
models suitable for the AgileUML subset of UML, so that
these can be used as the starting point of model-driven
development of the software application. The formalisation
process can be divided into extraction of a data model (Section
II-A) and extraction of a behavioural model (Sections II-B,
II-C). In both parts, a three stage process is used: (i) NLP
to obtain linguistic information on requirements statements;
(ii) classify requirements statements using a ML classifier or
heuristics; (iii) semantic analysis of classified statements.

A. Deriving data model specifications from requirements
statements

There has been extensive research into the extraction of
UML and other models from requirements statements ex-
pressed in natural language [35], [38]. However, despite ad-
vances in NLP and ML techniques [25] for text analysis and
translation, it is still beyond the state of the art to automatically
extract technical information from arbitrary English text, so
we restrict consideration to requirements statements which
consist of sentences in present tense, and to be in subject-verb-
object format with a direct object (SVO format). There are
many different styles of requirements statements. Embedded
control systems are usually defined with respect to particular
hardware (the EUC), and a detailed specification of the EUC
should already exist, and can be referred to in order to identify
named entities in the requirements statement. For example, the
production cell case study [18] and diffusion pump [9] are
of this kind. This is also the case for telecom system spec-
ifications based on particular communications technologies
and protocols [1]. However, even general information system
requirements statements may be expressed in terms of specific
implementations and APIs, and in such cases, we assume
the existence of formal models of the relevant components.
Our approach accommodates this situation by integrating the
requirements formalisation approach with the model editor of
AgileUML, so that any prior existing model can be loaded
and its elements searched to identify and classify named
terms in the analysed requirements statement. For the NWDAF
telecoms system, a detailed data model is defined in [2], and
we formalise this as a KM3 model (mmNWDAFcomplete.km3
in [5]) to support behavioural requirements formalisation.

In the first stage of formalisation, we restrict attention to
specifications of data.

To assist in statement classification and semantic analysis,
we define a knowledge base of software requirements termi-
nology, including parts-of-speech (POS) information on words,
synonyms, and semantic properties of terms (eg., that “radius”
is likely to denote a non-negative real-valued attribute).

For specific domains such as finance or telecoms, a domain-
specific knowledge base is also necessary, to capture informa-
tion on terms with a specialised meaning in the domain, such
as “share”, “term”, “equity” and “fixed-income” in finance,
and “connection” and “cell” in telecoms. The domain-specific
knowledge base takes precedence over the general knowledge
base, and both could be used to retrain NLP models to provide
correct POS and sentence analysis for requirements statements
(Section I-A).

We use the Stanford NLP toolset [32] and Apache OpenNLP
[4] to perform part-of-speech tagging of English sentences,
to construct syntax trees, and to identify dependencies within
sentences. The resulting information is then used as input for
a decision-tree classifier (CART) which identifies sentences as
either:

1) Definitions of classes, including attributes of the class
2) Definitions of specialisation/generalisation relations be-

tween classes
3) Definitions of associations (reference features of classes)
4) Definitions of invariants or other logical constraints of

classes.
Sentences in the requirements statements should be decom-
posed so that each sentence falls into only one of the above
categories.

After classification, a detailed syntactic and semantic anal-
ysis can be applied to extract model content from the text
information. Successive sentences are analysed taking account
of the partial formal models already obtained from preced-
ing sentences, so that models are progressively elaborated.
Contradictions, redundancy and omissions within requirements
statements could also be identified during this process.

Examples of data definition requirements sentences from the
k3 case of [13] are:

A class shall be either a non-clinical class
or a clinical class.

A non-clinical class shall specify the
course name, lecture room requirements
and instructor needs.

A clinical class shall specify the course
name, lecture room requirements,
clinical site needs,
lecture instructor needs and
clinical lab instructor needs.

In order to classify sentences as one of the above four
categories, a CART decision tree was constructed from train-
ing data, with decisions based on several features: (i) the
similarity of the main verb to one characteristic of the clas-
sification category (eg., similarity to “have”, “has”, “holds”,



“consists”, “specifies”, “comprises”, “is defined by”, “stores”,
“records” or “maintains”, in the case of class definitions);
(ii) occurrences of terms (such as “instance” after a candi-
date class name) indicating the classification category; (iii)
sentence structure and intra-sentence dependencies from NLP
syntax and dependency analysis; (iv) classifications of terms
as attributes, classes or references from the general knowledge
base.

In order to detect synonyms, we use a thesaurus and word
distance measures of name edit distance (NSS) [17] and name
semantic similarity (NMS) [14]. Users can set a threshold for
the level of similarity which is to be regarded as significant.

We also use the thesaurus format [7] to represent domain
and general background knowledge in knowledge bases. An
example from the general requirements knowledge base is:

<CONCEPT>
<DESCRIPTOR>diameter</DESCRIPTOR>
<POS>NN</POS>
<SEM type="double"

stereotype="nonNegative">attribute</SEM>
<PT>diameter</PT>
<NT>gauge</NT>
<NT>thickness</NT>
<NT>width</NT>
</CONCEPT>

Any preferred term (PT) or non-preferred term (NT) in the
concept word group will be treated as having the same
semantics and part of speech defined in the SEM and POS
clauses.

The data requirements statement classifier was trained on a
set of 19 cases (application requirements documents) contain-
ing 95 requirements statements. The trained classifier and the
requirements formalisation algorithm were then evaluated on
a separate test set of 11 cases containing 67 statements (Table
I). These cases include extracts from [29], [20] and [15], and
three cases from [13]. Thus 59% of the dataset is used for
training, and 41% for testing.

The induced decision tree is:

|--- has-verb <= 0.50
| |--- is-verb <= 0.50
| | |--- relates-verb <= 0.50
| | | |--- class: other
| | |--- relates-verb > 0.50
| | | |--- class:

association-definition
| |--- is-verb > 0.50
| | |--- class: specialisation
|--- has-verb > 0.50
| |--- class: class-definition

It is noticeable that decisions are based entirely on verb kind,
and that aspects such as the kind of elements in the statement
or occurrences of words such as “instance/instances” were not
significant, due to the low frequency of such discriminator
information in the dataset. We encoded the above rules into

the AgileUML toolset to perform the sentence classification
stage.

Subsequent to classification, detailed semantic analysis
takes place in three phases successively applied over the
sequence of sentences in the requirements statement:

1) Recognition of classes:
a) Classes already existing in the software model or

recognised in a previous sentence;
b) Classes according to background knowledge in

the general or specialised knowledge base (eg,
“bond”);

c) Classes according to their role in the sentence
(eg., as the subject of the principal form of class
definition sentence);

d) Proper nouns (tagged as NNP or NNPS) – the
singular form of the noun is taken as the class
name. A more liberal approach could be to also
consider other nouns (NN or NNS) with an initial
capital as proper nouns, if they do not appear as
the first word of a sentence.

Inheritance relations are established based on the sen-
tences classified as defining specialisations.

2) Recognition of attributes:
a) Attributes already known from the pre-existing

software model or from previous sentences;
b) Attributes according to background knowledge

(eg., “radius”, “name”);
c) Attributes according to the role in the sentence (eg.,

in the object of class definition sentences, and not
a class or role).

The types, multiplicities and stereotypes of attributes are
also extracted.

3) Reference recognition:
a) References already known from the pre-existing

software model or from previous sentences;
b) References according to background knowledge

(eg., “parent”, “neighbours”);
c) Reference according to sentence form (eg., “Each

project consists of a series of workpackages”);
d) Name is initial lower case, and initial uppercased

singular form of name is the name of a known class
(eg, “bonds”, “investor”).

Reference types, multiplicities and stereotypes are also
extracted (eg., “series” suggests an {ordered} stereotype
on a feature).

Formalised data models are represented as KM3 format spec-
ifications of class diagrams.

Traceability of the specification with respect to the require-
ments is achieved by recording a many-many relation which
identifies which requirements statement elements contributed
to the definition of each derived model element. The originat-
ing elements of a model element x are recorded as stereotypes
of x. Thus it is possible to identify which requirements
statements contributed to the definition of x.



For example, the formalisation of the k3 case includes the
following classes:

class Class {
stereotype originator="1";

}

class Non-clinicalClass extends Class {
stereotype originator="1";
stereotype modifiedBy="2";

attribute courseName : String;
attribute lectureRoomRequirements :

Set(String);
attribute instructorNeeds : Set(String);

}

class ClinicalClass extends Class {
stereotype originator="1";
stereotype modifiedBy="3";

attribute courseName : String;
attribute lectureRoomRequirements :

Set(String);
attribute clinicalSiteNeeds : Set(String);
attribute lectureInstructorNeeds :

Set(String);
attribute clinicalLabInstructorNeeds :

Set(String);
}

originator refers to the sentence which led to the creation of
the class, and modifiedBy to sentences which led to augmen-
tation of its definition.

Traceability assists in an iterative approach to requirements
formalisation, whereby a specifier can identify the require-
ments statements which lead to incorrect model elements,
and hence modify the statements before re-applying the for-
malisation procedure. Discussion and agreement of changes
with the customer/stakeholders may need to take place if
they significantly impact the requirements. Ideally, the textual
requirements specification and its formalisation should be
maintained together.

B. Deriving behavioural model specifications from require-
ments statements

Subsequent to data formalisation, a further phase of be-
havioural formalisation can be applied, which can utilise
the extracted data specification for a case. For example, the
NWDAF case [2], stroke assistant case [15] and k3 case [13]
each contain both data and behavioural requirements.

We assume that behavioural requirements are of two kinds:
• Expected functionalities/services offered by the system,

expressed as user stories. These can be formalised as
UML use cases in AgileUML.

• Operation specifications for operations/methods of par-
ticular classes, expressed in terms of the expected inputs
and outputs of these operations.

In this section we focus upon the first case, and Section
II-C considers the formalisation of operations. The sentence
classification stage for behavioural requirements uses heuristic

rules (based on the main verb and structure of the sentences)
instead of an ML-derived classifier.

User stories are the principal form of behaviour requirement
used in agile methods. They express some unit of functionality
which a user of the system expects from the system, in other
words, the use cases which the system should support. User
stories are typically expressed in the format

[actor identification] goal [justification]

where the actor identification and justification are optional.
For example:

“As an A, I wish to B, in order to C”
The actor identification defines which system actor the use
case is for. The goal describes the intended use case actions,
and the justification explains its purpose. These correspond to
the graphical use case form of Figure 2.

Fig. 2. Use case derivation from user stories

Other alternative formats for user stories are
“The A should be able to B, in order to C”
“The A must be able to B, so that C”
“The system must allow A to B”
“The system shall provide B”
“A will be able to B”

or simply B by itself.
In each format, a reference to any actor A occurs prior

to B. A modal verb (“should”, “must”, etc) identifies the
obligation to provide the functionality B. Statements B and
C typically refer to the classes and features recognised in
the data formalisation stage. B should begin with a verb in
infinitive form (the tag VB). In the absence of a formalised
data model, classes are recognised according to background
knowledge and their role in the sentence.

In addition to the background knowledge file
output/background.txt on nouns, we also provide a knowledge
base output/verbs.txt of verbs and their classifications (read,
edit, create, delete, other). This file is in the same thesaurus
format as the background file for nouns, and can be edited
by the user to provide further information on verbs. User
stories that represent standard functionalities such as creating,
editing, deleting and reading instances of a class, can be
classified into these categories based on the verbs used in the
goal part B of the user story. The classified sentence is then



formalised as a use case in KM3 format. The semantics of
the use case depends on the classification of the user story,
for example:

• createE use case – has a result variable of type E, and
input parameters p$x for any data feature p of E referred
to in the statement. The use case postcondition

E→exists(ex |
ex.p1 = p1$x & ... & ex.pn = pn$x &
result = ex)

can be specified, where the conjunction is over all the
input parameters p1 to pn for E features.

• editE use case – has a parameter ex of type E, and input
parameters p$x for any data feature p of E referred to in
the statement. There are also parameters for other classes
mentioned in the statement. The postcondition

ex.p1 = p1$x & ... & ex.pn = pn$x

can be specified.
The actor A of a use case is recorded in a stereotype actor =
“A” of the formalised use case. If A is a class name, then an
instance of the actor becomes the first parameter of the use
case. Eg., an example of a creational use case is the following
from the k3 user stories:

Program Administrators/Nursing Staff
Members shall be able to
create a new Program of Study.

This is formalised as:

usecase createANewProgramOfStudy : Program
{ parameter px :

ProgramAdministrators_
NursingStaffMembers;

stereotype originator="4";
stereotype
actor="ProgramAdministrators_

NursingStaffMembers";
stereotype create;

::
true =>

Program->exists( programx |
result = programx );

}

Data dependencies between classes and use cases can then
be computed and shown visually.

C. Deriving operation specifications from requirements state-
ments

Operation definitions in natural language typically consist
of several parts:

• The operation name and identification of the class/module
it belongs to;

• Input parameters;
• Preconditions/assumptions and other restrictions on how

it can be used;

• Internal behaviour and processing, including calls to other
operations;

• Output parameters;
• Postconditions and results.

All of these elements will be used in producing formalised
operation specifications. Other aspects, such as non-functional
requirements on performance, are not analysed.

The first step in operation formalisation is to classify
statements and statement parts into the above categories. This
is carried out based on the terminology used, eg., words such
as “responds”, “returns” are indicative of a description of
output parameters. The identification of parameter names and
types is performed in the same manner as the identification
of class data features (Section II-A). Sentences which refer
only to input parameters are assumed to express preconditions,
whilst sentences involving output parameters are considered to
express postconditions. Internal processing, including condi-
tional behaviour, is recognised from the form of the main verb,
and from occurrences of conditional terms. Such processing
is listed, in the order of the textual statements, within the
operation activity. Reference correlation is used to link implicit
references to the same operation in separate sentences. This
analysis is not able to extract precise functional definitions.
Some form of specification by-example analysis would be
necessary to achieve this [16].

III. EVALUATION

In this section we evaluate our requirements formalisation
process using a wide range of requirements statements across
several different domains. We use three industrial cases from
avionics, medical and telecoms domains, and the published
datasets [21], [13].

Our evaluation procedure is to assess the correctness of
sentence classifications with respect to a manual classification
produced by a requirements engineer (the second author),
and to assess the correctness of formalised models with
respect to reference models manually produced by a modelling
expert (the first author). The elements (classes, attributes,
references and use cases) of formalised models are compared
wrt the elements of reference models. We use the F-measure
F = 2∗p∗r

p+r where precision p = correct identifications
total identified and recall

r = correct identifications
total correct . Thus for example, if the behavioural

formalisation derives two correct use cases out of three iden-
tified, but two further use cases have not been recognised,
we have p = 2/3, r = 2/4, and F = 0.57. In principle this
evaluation procedure could be automated.

A. Data requirements formalisation

Table I shows the accuracy measures for the classifier and
formalisation process on the evaluation cases. The size of the
case is shown as the number of sentences in the case. The
execution time taken for classification and formalisation is also
shown.

The results show a consistently high accuracy in classi-
fication, and a generally good accuracy for formalisation.
Both recall and precision should be high for formalisation,



TABLE I
EVALUATION OF DATA REQUIREMENTS FORMALISATION.

Case Classification Formalisation Execution
(Size) F-measure F-measure Time (s)
1 (1) 1.0 0.9 0.316
2 (5) 1.0 0.95 0.366
3 (6) 1.0 0.82 0.405
4 (5) 0.8 0.74 0.385
5 (5) 0.8 0.96 0.385
6 (14) 0.93 0.81 0.654
7 (4) Track former [20] 0.75 0.74 0.517
8 (8) Stroke assistant [15] 0.88 0.85 0.304
k1 (2) [13] 1.0 0.86 0.4
k2 (8) [13] 0.88 0.77 1.1
k3 (9) [13] 1.0 0.84 0.67
Averages 0.91 0.84 0.5

since incorrect and incomplete formalisations are equally a
hindrance to developers. In all of these evaluation cases recall
and precision for formalisation were both over 0.65.

B. Formalisation of user stories

A large dataset of behavioural requirements statements for
22 software applications defined by user stories is given by
[21]. In total there are 1678 user stories in the dataset cases.
We use this dataset to evaluate our use case formalisation
approach, together with 5 other cases, including the large
CONNECT case of 408 user stories from [22]. Table II
shows the accuracy of use case classification and the accuracy
of the formalised UML models, with respect to the results
obtained by the modelling expert. The combined time taken
for classification and formalisation is also shown.

TABLE II
EVALUATION OF USE CASE REQUIREMENTS FORMALISATION.

Case Classifier Formalisation Execution
(# sentences) F-measure F-measure Time (s)
Stroke assistant (8) [15] 1.0 0.92 0.37
Banking app (4) 1.0 0.89 0.33
g02 (99) 0.93 0.92 1.42
g03 (60) 0.95 0.91 0.98
g04 (51) 0.98 0.96 0.74
g05 (53) 1.0 0.92 1.03
g08 (68) 0.97 0.93 1.2
g10 (98) 0.96 0.94 0.55
g11 (74) 0.98 0.97 1.1
g12 (53) 0.96 0.88 0.78
g13 (53) 1.0 0.95 0.92
g14 (67) 0.98 0.95 1.1
g16 (66) 0.98 0.95 1.1
g17 (64) 1.0 0.9 1.1
g18 (101) 1.0 0.94 1.5
g19 (138) 0.99 0.97 0.85
g21 (73) 0.96 0.95 1.1
g22 (83) 0.86 0.96 0.7
g23 (56) 0.98 0.94 0.47
g24 (52) 1.0 0.98 0.47
g25 (100) 0.98 0.96 0.68
g26 (100) 0.98 0.97 0.69
g27 (115) 0.97 0.93 2.03
g28 (60) 1.0 0.93 0.8
CONNECT (408) [22] 0.89 0.93 10.2
FABS (94) [22] 0.97 0.91 1.7
k3ucs (26) [13] 0.96 0.94 0.82
Averages 0.97 0.94 1.29

The averages for use case formalisation are higher than
those for data formalisation (Table I), which is perhaps due
to the more structured nature of user stories, compared to
the wide variety of ways in which data requirements can be
expressed. On the other hand, the execution time is longer, due
to the substantially larger texts in the behaviour requirements
cases. The main source of imprecision in behaviour formali-
sation is due to errors in tagging, eg., tagging of “And” as a
NNP instead of CC. In addition, (i) general concepts such as
“Application”, “UI” or “System” are incorrectly recognised as
classes; (ii) successive nouns in the actor identification part
are not combined, but become separate classes, eg., “Camp
Administrator” is represented as two separate classes.

These issues could be corrected by (i) defining a separate
list of keywords/blocked words, which cannot be used as class
names; (ii) automatically combining successive nouns in the
actor identification.

We prefer to leave (ii) as a developer choice, so that if they
want the combined term to become a class, they can write it
as one word “CampAdministrator”, etc.

C. Operation requirements formalisation

To evaluate the effectiveness of the operation formalisa-
tion approach, we use 5 examples of operation specification,
including the track former case [20] and the Network Data
Analytics Function (NWDAF) from [1]. Only relatively few
examples of operation specification were available in the cases
we considered. Table III shows the results of this evaluation.

TABLE III
EVALUATION OF OPERATION REQUIREMENTS FORMALISATION.

Case Classifier Formalisation Execution
(# sentences) F-measure F-measure Time (s)
Ops. Ex. 1 (7) 1.0 1.0 0.833
Pre-post test (11) 0.82 0.77 0.919
Ops. Ex. 2 (5) 1.0 0.82 0.739
Track former [20] (7) 0.86 0.72 1.225
NWDAF [1] (7) 0.57 1.0 0.818
Averages 0.85 0.86 0.91

The results for operation formalisation are somewhat lower
than for user story formalisation, due to the greater variability
in the forms in which operation requirements are expressed.

IV. RELATED WORK

Two recent systematic literature reviews (SLR) of papers
in the field of automated requirements engineering are [35],
[38]. The review [35] considers 54 studies in the field of ML
and NLP-assisted RE for software modelling, while [38] con-
siders 404 papers which use NLP techniques for general RE
activities. The surveys identified that most adopted approaches
were semi-automated rather than fully-automated. A lack of
widespread adoption and of industrial evaluation is highlighted
as a problem with the surveyed approaches [38].

Subsequent to these SLRs, further relevant papers [8], [30],
[31], [37] have been published.

In general, NLP/ML approaches for requirements formal-
isation have used NLP analysis of source texts to produce



enhanced requirements statements, which are then used as
inputs to a semantic analysis stage, which identifies seman-
tic elements in the statements and extracts these as formal
model elements and relations. The approaches for semantic
analysis divide between heuristic approaches with expert-
provided explicit rules used to classify and formalise statement
elements, eg., [23], [27], or ML approaches with supervised
learning, eg., [39]. Heuristic approaches have the advantage
of encoding expert knowledge, however they can be inflexible
in their analysis, and restrictive in the forms of input texts
which they can process, whilst ML approaches are in-principle
more flexible and wider in their coverage of requirements
statements, but can lack rationales for their empirically-derived
rules. Our approach uses a hybrid of heuristic and ML
techniques based on NLP-derived linguistic information, as
described in Sections II-A, II-B, II-C. We found that a heuristic
approach was sufficient for user story formalisation, since
these have a restricted format and consistent structure, but
ML was necessary to analyse the more diverse forms of data
requirements statements.

Apart from the lack of industrial application identified
by [38], systematic comparative evaluation of different re-
quirements formalisation approaches is lacking. In addition,
flexibility and user-customisation of tools for requirements
formalisation is an important issue. In future work we aim to
construct a tool framework for automated RE which facilitates
the use of alternative approaches and tool customisation. This
will enable comparative evaluations of different approaches to
be systematically carried out.

Because natural language is ambiguous and imprecise, it is
unrealistic to expect any requirements formalisation process to
be 100% automated and accurate. In particular, the limitations
of NLP impose a certain margin of error on any analysis
based on NLP [19]. Instead, as in the approach of [8], we
aim to provide a tool which assists the software specifier by
deriving the substantial majority of the semantic content of
a requirements statement from natural language documents,
and then enables iterative refinement of the specification based
on interactive correction and clarification of the requirements
statement.

V. SUMMARY

Overall, our requirements formalisation approach provides
a means to rapidly build models from natural language re-
quirements, and to visualise, analyse and prototype systems
from formalised requirements. The approach has the distinc-
tive advantage of being integrated into an established MDE
toolset, enabling the use of existing models to support the
formalisation of new requirements.
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