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ABSTRACT
Path following is one of the indispensable tools for autonomous ships, which ensures that autonomous
ships are sufficiently capable of navigating in specified collision-free waters. This study proposes a
novel path following approach for autonomous ships based on the fast marching (FM) method and
deep reinforcement learning (DRL). The proposed approach is capable of controlling a ship to follow
different paths and ensuring that the path tracking errors are always within a set range. With the help
of the FMmethod, a grid-based path deviation map is specially produced to indicate the minimum dis-
tance between grid points and the path. Besides, a path deviation perceptron is specifically designed
to simulate a range sensor for sensing the set path deviation boundaries based on the path deviation
map. Afterwards, an agent is trained to control a ship following a circular path based on the DRL.
Particularly, the approach is validated and evaluated through simulations. The obtained results show
that the proposed method is always capable of maintaining high overall efficiency with the same strat-
egy to follow different paths. Moreover, the ability of this approach exhibits a significant contribution
to the development of autonomous ships.

1. Introduction
The maritime transport industry plays a pivotal role in

the development of the world economy. However, ship acci-
dents occur from time to time, bringing serious risks to so-
ciety and the environment [1]. Improving the safety of mar-
itime traffic and improving the efficiency of shipping have
always been important research topics in academia [2][3].
At the same time, autonomous ships are considered to be
a promising future for the development of maritime safety
[4][5][6]. To address this problem, Yan et al. [7][8] put for-
ward the Navigation Brain System (NBS), which is an in-
telligent system composed of three subsystems a perception
module, a cognitionmodule and a decision andmanipulation
module. As an integral part of this system, path following
has attracted widespread attention from academia and indus-
try [9].

In general, the path following of an autonomous ship
consists of guidance and controlmodules [10][11]. The guid-
ance module acts as a decision-maker and aims to gener-
ate behavior instructions according to the perception infor-
mation. The line-of-sight (LOS) guidance law is a typical
guidance algorithm, which was first introduced into the ship
motion control by Fossen [12]. Afterwards, numerous stud-
ies were conducted to develop the LOS guidance law. The
proportional [13], integral [14] and adaptive [15] LOS guid-
ance laws were proposed to address different path following
requirements. The traditional LOS [12] converts the path

∗Corresponding author
wangshuwu@whut.edu.cn (S. Wang); xpyan@whut.edu.cn (X. Yan);

feng.ma.whut@gmail.com (F. Ma); peng.wu.14@ucl.ac.uk (P. Wu);
yuanchang.liu@ucl.ac.uk (Y. Liu)

ORCID(s):

following task into the heading tracking task, and can meet
requirements of speed control at the same time. The pro-
portional LOS (PLOS) [13] is provided to follow the path of
a moving target at a rate proportional to the rotation rate of
the LOS in the same direction. And the integral LOS (ILOS)
[14] is specially put forward for working in the presence of
actuator gain uncertainty and unknown environment distur-
bances. The adaptive LOS (ALOS) [15] is usually designed
based on the maneuverability of the ship.

Moreover, the control module makes actual commands
in accordance with the behavior instructions provided by the
guidance system. Various algorithms have been developed
as control modules to implement path following. These in-
clude the proportional derivative (PD) and proportional in-
tegral derivative (PID) control [16], sliding mode control
(SMC) [17], backstepping control [18] and model predictive
control (MPC) [19], etc. The SMC [17] is a discontinuous
nonlinear control method. Its feedback control law is not a
continuous function of time and the structure of the control
law varies according to the change of the state track posi-
tion. The backstepping [18] introduces a known Lyapunov
function into the control module and gradually corrects the
deviation between the set trajectory and the actual trajectory
to realize the global adjustment or tracking of the system.
The MPC [19] solves a finite-time open-loop optimization
problem online based on the current measurement informa-
tion and applies the first element of the obtained control se-
quence to the controlled object.

However, most approaches have limitations of depen-
dency on prior knowledge of dynamic modeling and uncer-
tainty modeling. In addition, it is usually difficult to tune the
parameters of the path-following algorithm with two layers
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(guidance and control).
In recent years, machine learning, especially reinforce-

ment learning (RL), has been successful in complex con-
trol problems, such as the inverted pendulum [20], which
provides new insight into the path following control of au-
tonomous ships. In [21], an actor-critic method was applied
to find a policy for course tracking of a ship, and the LOS
guidance law was employed as a guidance module. Woo
et al. [22] proposed a deep RL (DRL) based controller for
path following of an unmanned surface vehicle with the help
of the vector field guidance method, and the performance
of different stages of the trained policy showed great self-
learning ability of the proposed method. The applied RL
approach makes it easy to get a good performance controller.
However, to match the controller, it still requires significant
efforts to tune the parameters of guidance modules. To ad-
dress this challenge, Martinsen et al. [23] developed the
DRL to solve the straight path following problem directly for
underactuated marine vessels without using the two layers
(guidance and control) structure, which avoids complex pa-
rameter tuning problems. Nonetheless, the adaptability for
different path following tasks is not developed in the studies
above mentioned. In addition, few studies are well discussed
the path deviation boundary problem of path following.

By summarising current studies about path following of
ships, research gaps remain. First, it typically requires con-
siderable effort to adapt the guidance and control modules
to each other. Moreover, most of the studies only focus on
the robustness of path-following methods without well de-
veloping the maximum path deviation limitation. Finally,
the reuse of the RL-based policy in different path following
tasks needs to be further studied.

To address the above problems, an approach with the
characteristic of parameters self-tuning, maximum path de-
viation limitation configurable and learned strategy reusable
needs to be proposed. With the intention of achieving the
above goals, a novel path following controller was designed
based on the DRL. Meanwhile, a path deviation map and
a path deviation perceptron were specially designed for the
controller. The main contributions of the proposed method
to path following of autonomous ships are as follows: 1)
a parameters self-tuning path following controller based on
the DRL is employed to guide the ship to follow the path di-
rectly instead of converting the path following problem into
a course tracking problem; 2) through a novel design of the
path deviation perceptron, great flexibility can be achieved
by configurable maximum path deviation limitation before
training. 3) a new path following Markov decision process
(MDP) has been proposed to ensure the reusing of the learned
control strategy.

The rest of this paper is organized as follows. In Section
2, the ship motionmodel andmethodology used in this paper
are introduced. Section 3 details the proposed path follow-
ing approach. The proposed fast marching (FM) and DRL
based path following method is verified and compared with
traditional methods by simulations in Section 4. Section 5
concludes this paper and discusses future research.

2. Ship motion model and methodology
In this section, amanoeuvringmathematicalmodel group

(MMG) [24][25] based ship motion model, the ALOS guid-
ance law, the FM method, and the DRL are described in de-
tail.
2.1. Ship motion model

Usually, ship motion models are used to validate pro-
posed control methods in simulations. In this way, the accu-
racy, precision and robustness of new methods can be tested
at a low cost. Ship motion models are divided into two cate-
gories by different ways of modeling, which are hydrody-
namic models [26][27] and responsive models [28]. The
Abkowitz hydrodynamic model [29] and the MMG [24] are
two hydrodynamic models widely used. The MMG-based
ship motion model was adopted for validating in this study
since it is more simple but accurate enough.

At the very beginning, a set of coordinate systems should
be defined. Fig. 1 shows the two coordinate systems used in
this study. o0−x0y0 is the space-fixed coordinate system and
o−xy is themoving ship-fixed coordinate system. Plane x0−
y0 coincides with the still water surface. In the coordinate
system o − xy, o is taken at midship. x and y axes point
towards the bow and starboard of the ship, respectively.

0x

0y0o

x

y

o

U

umv 
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Figure 1: Coordinate Systems.

Heading angle  is defined as the angle between x0 and
x axes. � is the rudder angle and r is the yaw rate. u and vmindicate the ship velocity components in x and y axis direc-
tions, respectively. U is the total velocity and � is the draft
angle of the ship. Gravity center G of the ship is located at
(xG, 0) in o − xy system. Then, the lateral velocity compo-
nent at the center of gravity v is expressed as v = vm + xGr.The MMG based ship motion model of a ship can be

Shuwu Wang et al.: Preprint submitted to Elsevier Page 2 of 18

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



A novel path following approach for autonomous ships based on fast marching method and deep reinforcement learning

defined as follows:
(

m + mx
)

u̇ −
(

m + my
)

vmr − xGmr2 = X
(

m + my
)

v̇m +
(

m + mx
)

ur + xGmṙ = Y
(

IzG + x2Gm + Jz
)

ṙ + xGm
(

v̇m + ur
)

= N

⎫

⎪

⎬

⎪

⎭

, (1)

where m is the ship mass. mx and my are the added mass in
x and y axis directions, respectively. xG is the longitudinal
coordinate of the ship gravity center. IzG is the moment of
ship inertia around the gravity center and Jz is the addedmo-
ment of inertia. u̇, v̇m and ṙ are the change rate of u, vm and
r, respectively. X, Y andN represent the longitudinal force,
the transverse force and the transverse moment, respectively,
and are expressed as follows:

X = XH +XR +XP +XA
Y = YH + YR + YA
N = NH +NR +NA

⎫

⎪

⎬

⎪

⎭

, (2)

where subscripts H , R and P denote the hull, the rudder
and the propeller of the ship, respectively. The subscript A
denotes the wind forces.

The expressions XH , YH andNH related to the hull are
defined as follows:

XH = (1∕2)�LdU2X′
H
(

v′m, r
′)

YH = (1∕2)�LdU2Y ′H
(

v′m, r
′)

NH = (1∕2)�L2dU2N ′
H
(

v′m, r
′)

⎫

⎪

⎬

⎪

⎭

, (3)

where � is the density of water. L is the ship length between
perpendiculars and d is the ship draft. X′

H and Y ′H are the
longitudinal and lateral force coefficients of the ship. N ′

H is
the force moment coefficient.

The expressions of effective rudder forces and moments
acting on the rudder are defined as:

XR = −
(

1 − tR
)

FN sin �
YR = −

(

1 + aH
)

FN cos �
NR = −

(

xR + aH ⋅ xH
)

FN cos �

⎫

⎪

⎬

⎪

⎭

, (4)

where tR is the steering resistance deduction factor. FN is
the rudder normal force. aH is the rudder force multiplier.
xR and xH are the longitudinal positions of the rudder and
the acting point of the additional lateral force, respectively.

The hydrodynamic force acting on the propeller is de-
fined as:

XP =
(

1 − tP
)

T , (5)
where T is the propeller thrust and tP is the propeller thrust
deduction factor.

The surge force, lateral force, and yaw moment due to
steady and constant wind are expressed as follows:

XA = (1∕2)�aAXV 2ACXA
(

�A
)

YA = (1∕2)�aAY V 2ACY A
(

�A
)

NA = (1∕2)�aAYLV 2ACNA
(

�A
)

⎫

⎪

⎬

⎪

⎭

, (6)

Table 1
List of parameters used for aerodynamic force coefficients CXA,
CY A and CNA in this study.

CXA CY A CNA
n 3 3 2
a0 0.159 0 0
a1 -1.459 -0.004 -0.002
b1 0.139 -0.756 0.001
a2 0.063 0 0.133
b2 -0.012 0.002 -0.042
a3 0.262 0.002 -
b3 -0.077 0.118 -
w 0.970 0.998 1.006

where �a denotes the air density. VA denotes the relative
wind speed and �A denotes the relative wind direction. AXand AY are the front and the profile wind pressure area, re-
spectively. CXA, CY A and CNA denote the aerodynamic
force coefficients expressed as a function of the relative wind
direction �A.The head wind of the ship is defined as �A = 0°, the
starboard wind as �A = 90°, and the following wind as �A =
180°. �A and VA are defined as follows:

�A = arctan 2
(

vA, uA
)

VA =
√

u2A + v
2
A

uA = u + UW cos
(

�W −  
)

vA = vm + UW sin
(

�W −  
)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (7)

where uA and vA are the relative wind velocity components
in x and y axis directions, respectively. UW denotes the ab-
solute wind speed and �W denotes the absolute wind direc-
tion.

For the full-scale (320m) KVLCC2 ship, the front wind
pressure area AX corresponds to 1161 m2, and the profile
wind pressure area AY corresponds to 4258m2 [30]. There-
fore, wind pressure areasAX andAY for a 7meters KVLCC2
ship are equal to 0.56m2 and 2.04m2, respectively. In addi-
tion, the aerodynamic force coefficients CXA, CY A and CNApredicted by Yasukawa [30] are shown with red solid lines
in Fig. 2. The following function was used to fit the coeffi-
cients in this research.

f
(

�A
)

= a0+
n
∑

k=1

(

ak cos
(

kw�A
)

+ bk sin
(

kw�A
))

, (8)

Parameters of equation (8) for coefficientsCXA,CY A and
CNA are listed in Table 1. And the blue dashed lines shown
in Fig. 2 indicate the coefficients used in this research.

The effect of sea current [31] was also considered in this
research. The horizontal current components in surge and
sway are defined as:

uC = UC cos
(

�C −  
)

vC = UC sin
(

�C −  
)

}

, (9)
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Figure 2: Aerodynamic force coefficients.

where UC and �C are the current velocity and direction, re-
spectively.

When calculating the trajectory of the ship in the space-
fixed coordinate system o0−x0y0, the relative velocity com-
ponents u and v should be replacedwith the absolute velocity
components ur and vr, which are defined as follows:

ur = u − uC
vr = v − vC

}

, (10)

Other parameters not developed in detail refer to thework
of Yasukawa [24]. And the 7 meters KVLCC2 ship motion
model was used in this study.
2.2. Adaptive LOS (ALOS) guidance law

The LOS guidance law has the advantages of accurate
target tracking and simple calculation. It was widely used
in the fields of underwater and surface vehicle path follow-
ing control. And it showed a good performance. The path
for LOS guidance is usually formed by segmented lines or
curves located between waypoints. The straight-line path
was selected for the path following of ships in this research.
During the path following, the first step is to find the LOS
points. There are different ways of generating the LOS point
[32][33]. The way named as LOS-2 described in [32] is
adopted in this research. Furthermore, the radius of the LOS
circle is defined as follows:

RLOS =
{

nL, |e| ≤ nL
e + mL, |e| > nL (11)

where RLOS denotes the radius of the LOS circle. L is the
ship length and e is the path deviation. The coefficients m
and n in this study are set to 1 and 3, respectively.

When the ship starts to move away from the current tar-
get waypoint or enters the current acceptance circle, the tar-
get waypoint point of LOS guidance will change to the next
waypoint [33]. Usually, the radius of the acceptance circle
is set with a constant value in traditional LOS guidance law.
However, different acceptance circles are required for the
path following of ships. When the included angle between
adjacent path lines is small, the ship needs to make a turn
early, which means that a big acceptance circle is required.
On the contrary, a small acceptance circle is required for high
path tracking accuracy when the included angle is big. The
ALOS [33] was specially designed for such requirements.

The radius of the acceptance circle is defined as follows:

R(Δ�) =

{

l
(

�
Δ� − 1

)2
L + Rmin,Δ� ≥ �0

Rmax, 0 ≤ Δ� < �0
, (12)

�0 =
�

√

Rmax−Rmin
lL + 1

, (13)

where R(Δ�) is the radius of the acceptance circle needed.
Δ� is the included angle between adjacent path lines. L is
ship length. Rmin andRmax are the maximum and minimum
acceptance circle radius, respectively. l is an undetermined
coefficient, which needs to be determined according to the
ship maneuverability. In this research, tuned coefficient l is
set to 13.0. Rmin and Rmax are set to 0.5L and 9L, respec-
tively.
2.3. Fast marching method

The FM method [34] was designed to calculate the ar-
rival times of a monotonic wave by solving the Eikonal equa-
tion. Usually, the FM method works on a grid map whose
points are divided into three categories: 1) Far points, which
denote the points that the wave has not arrived and whose
arrival times are not computed yet; 2) Trial points, which
represent the points that the wave will arrive soon, whose
arrival times have been calculated already but may be up-
dated in later computations; 3) Accepted points, which indi-
cate the points that the wave has already passed and whose
arrival times will not be changed.

Starting from the original Accepted point, arrival times
of the points on the grid map are iteratively calculated. In
the beginning, all points of the grid map are marked as Far
points and infinity arrival times, and the start point is marked
as Accepted point, whose arrival time is set to zero. Dur-
ing each iteration, points adjacent to the Accepted point are
marked as Trial points, and arrival times of these points are
calculated. After that, the Trial point with the shortest ar-
rival time will be marked as the Accepted point, and a new
iteration begins.

The detailed calculation process of the FMmethod refers
to [35] and [36]. The total travel cost from the start point can
be obtained after the iteration computation.
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Agent

Environment

Action

at 

Reward

rt 

State

st 
rt+1 
st+1 

Figure 3: The MDP interaction framework of agent and envi-
ronment.

2.4. Deep reinforcement learning
The DRL is described in this section. Firstly, the MDP

normally used for environment modeling is introduced. And
then policy gradient and deep deterministic actor-critic algo-
rithms are discussed.
2.4.1. Markov decision process (MDP)

An MDP describes a learning environment in which ob-
jectives can be learned through continuous interaction be-
tween the agent and the environment. Furthermore, a 4-
element tuple can be used to represent an MDP:

M = [s, a, r, p], (14)
where s = s1, s2, . . . , st, st+1 represents a dynamic environ-
ment with st representing the state at time t. a = a1, a2, . . . ,
at, at+1 indicates the action performed by the agent and atindicates the action taken at time t. r = r1, r2, . . . , rt, rt+1denotes the reward generated by the environment with rt de-noting the reward at time t.  ∈ [0, 1] is the discount factor
for an accumulated discounted reward. p is the transition
probability function defined as:

pass′ = P
[

st+1 = s′ ∣ st = s, at = a
]

. (15)
Fig. 3 shows the interaction framework of an agent and

an environment. The agent selects an action at according to
observed environment state st. Then the environment up-
dates its state to st+1 and returns an reward rt+1 to the agentfor responding the action at [37]. The selection of actions
is constrained by a policy function (�(a ∣ s)), which defines
the probability mapping from state to action. The state-value
function of state s and the action-value function of state s for
a policy � are defined as:

v�(s) = E�

[ ∞
∑

k=0
krt+k+1 ∣ st = s

]

. (16)

q�(s, a) = E�

[ ∞
∑

k=0
krt+k+1 ∣ st = s, at = a

]

. (17)

The goal of an RL problem is to find an optimal policy
�∗, which can achieve a maximal accumulated discounted
reward. That is to find either the maximum state-value func-
tion or the maximum action-value function as:

�∗ = argmax
�

v�(s) = argmax
�

q�(s, a). (18)

2.4.2. Policy gradient and deep deterministic
actor-critic algorithm

The policy gradient based RL algorithm [38] was put
forward to deal with situations involving continuous action
space, in which the calculation of value function based RL
algorithms such as Tabular Q learning [39] and Deep Q Net-
work (DQN) becomes computationally expensivewith aweak
guarantee of convergence. In this subsection, policy gradi-
ent based RL algorithms have been well researched for the
continuous control of ship path following. Similar to param-
eterizing a value function, a policy can be parameterized as:

�(a ∣ s,�) = Pr
{

at = a ∣ st = s, �t = �
}

, (19)
where � ∈ ℜd′ is the parameter vector of policy in real do-
mainℜ with a dimension of d′. A scalar performance mea-
sure of the policy is defined as J (�) and a gradient ascent
can be defined to maximise J (�) as:

�t+1 = �t + �∇J
(

�t
)

, (20)
where � ∈ [0, 1] is the learning rate. ∇J (�t) is the approx-imated gradient of the performance measure J (�t). In an
episodic learning case, J (�) can be described as:

J (�) =
∑

s∈S
d�(s)v�(s) =

∑

s∈S
d�(s)

∑

a∈A
��(a ∣ s)q�(s, a),

(21)
where d�(s) is the stationary distribution of Markov chain
for �� . Thus, ∇J (�) can be written as:

∇J (�) ∝
∑

s∈S
d�(s)

∑

a∈A
q�(s, a)∇���(a ∣ s). (22)

The policy gradient method consists of two important
components, which are the policy model (��(a ∣ s)) and the
value function (q�(s, a)). Multiple methods, such as REIN-
FORCE [40] and its variations, are introduced to use a sam-
ple return to measure the value function. In order to enhance
the learning performance, the policy update is assisted with
estimating the value function, which is the core of the policy
gradient actor-critic method. By parameterizing the value
function, the actor-critic method operates in a way that the
value function parameters are updated by the critic whereas
the policy function parameters are updated by the actor ac-
cording to the direction suggested by the critic.

The policy can be either stochastic or deterministic. A
stochastic policy represents a conditional probability distri-
bution and is more applicable in a stochastic environment,
where exploration is favored to find an optimal policy update
result. However, this exploration always results in high com-
putational complexity costs. To address this problem, the
deterministic policy is proposed to explicitly depict a map-
ping (�� , � ∈ ℜm) from state to action: S → A. The deter-
ministic policy gradient (DPG) [38] was proposed using the
actor-critic method abiding by the same rule with stochastic
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policy gradient. Performance measure J (�) of DPG can be
described as:

J (�) = ∫S
��(s)q

(

s, ��(s)
)

ds, (23)

where ��(s) is the state distribution. The gradient of the per-
formance measure J (�) is defined as:

∇J (�) = ∫S
��(s)∇aq�(s, a)∇���(s)

|

|

|

|a=��(s)
ds

= Es∼��
[

∇aq�(s, a)∇���(s)||a=��(s)
]

.
(24)

To ensure a sufficient and satisfactory exploration, an
off-policy learning strategy is adopted for the DPG so that
a stochastic policy �(a ∣ s) is used to generate the training
trajectories. The new performance measure and its gradient
are expressed as:

J�(�) = ∫S
��(s)q�

(

s, ��(s)
)

ds, (25)

∇J (�) = Es∼��
[

∇aq�(s, a)∇���(s)||a=��(s)
]

. (26)
The deep deterministic policy gradient (DDPG) [41] is

proposed by combining the DPG andDQN. It retains the fea-
ture of DQN that the Q-function is stably learned by expe-
rience replay. The pseudocode of the DDPG is presented in
Algorithm 1. Besides, the DDPG extends the discrete action
space to continuous action space with the help of the actor-
critic framework and learns a deterministic policy [42]. Both
the critic and actor have two networks with the same struc-
ture, which are the online critic/actor network and the tar-
get critic/actor network, respectively. The network param-
eters of DDPG are updated similar to that of DQN, i.e. by
minimizing the loss between the estimated values and tar-
get values. Additionally, noise  is added when selecting
an action from the policy ��(s), which enables a satisfactoryexploration in state and action spaces for the DDPG shown
as:

a = ��(s) + . (27)
Besides, different from the DQN, the target network of

the DDPG is soft updated instead of staying frozen during
some period of time, which stabilizes the learning process:
�′ ← �� + (1 − �)�′ with � ≪ 1.

3. The proposed approach
The framework of the proposed path following approach

is shown in Fig. 5. This section details the main components
of the approach. At first, a path deviation map and a corre-
sponding perceptron are specially proposed and designed,
respectively. Then, the MDP for path following consider-
ing path deviations is analyzed and put forward. Afterwards,
the environment of path following used in this paper is con-
structed. Finally, the training process of the path following
agent is detailed.

3.1. Path deviation map and perceptron
Path following is one of the major research contents of

autonomous ships, and path deviation is an important eval-
uation index of path following. This subsection proposes a
method to construct the path deviation map based on the FM
method. After that, a path deviation perceptron is designed
to sensor the path deviation boundary.
3.1.1. Path deviation map based on FM method

The proposed method is for tracking the planned path di-
rectly according to the path deviation. Therefore, a method
to get the path deviation of the ship at any position is needed.
The path deviation map needed can be a grid map. The value
at each grid point in the grid map represents the minimum
distance between the grid point and all path points. There-
fore, using the map, the path deviation can be easily obtained
regardless of the ship’s position on the map. By sensing the
path deviation, the ship can adjust its course to reduce the
path deviation and ensure that it follows the path smoothly.

Remark 1. To get the path deviation map, it is neces-
sary to calculate the minimum distance between each grid
point and all path points. Direct calculation of the distance
is computationally expensive and is constrained by the num-
ber of grid points and the number of path points. Therefore,
other solutions need to be found. Based on the research of
the FM method in Section 2.3, we found that the arrival time
matrix is exactly the path deviation map when the speed of
the front expansion is set to 1 and all the path points are
defined as Accepted points. By contrast, the FM method is
more efficient and is only constrained by the number of grid
points.

There are two steps to calculate the path deviation map
using the FMmethod. Step one is to round and project all the
path points onto a grid map to get grid path points. Step two
is running the FM method to generate an arrival time ma-
trix by taking the grid path points as input. The arrival time
matrix is precisely the path deviation map. The calculation
process of path deviation map when using the FM method
is illustrated in Fig. 4. In Fig. 4(a), path points are set as
Accepted points and marked with green color. During the
following iterations (Fig. 4(b)-(d)), the path deviations are
calculated based on the FM method referring to [36]. In ad-
dition, as shown in Fig. 5, the path deviationmap showswith
color map and different colors indicate different path devia-
tion values. It is easy to obtain the path deviation value of a
ship from the map.
3.1.2. Path deviation perceptron

Path following studied in this paper requires that the path
deviation does not exceed the set value during the entire path
following process. In other words, the ship can only appear
in specific areas and cannot exceed it during the path follow-
ing process after the maximum path deviation ep is set. Forexample, as shown in Fig. 6, the path deviation boundaries
are shown as dashed lines, and the ship is not allowed to ex-
ceed the dashed lines surrounding the set path. Therefore, it
is necessary to design a path deviation perceptron to sense
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Algorithm 1: Deep deterministic policy gradient (DDPG) [41].
Randomly initialize critic network Q (

s, a ∣ �Q
) and actor network � (s ∣ ��) with weights �Q and ��.

initialize target networks Q′ and �′ with weights �Q′ ← �Q and ��′ ← ��.
initialize replay buffer Rb with sizeNb.
for episode = 1,⋯ ,Me do

initialize a random process  for action exploration.
Receive initial observation state s1.
for t = 1,⋯ , Ns do

Select action at = �
(

st ∣ ��
)

+t according to the current policy and the exploration noise.
Execute action at and observe reward rt and observe new state st+1.Store transition (st, at, rt, st+1

) in Rb.
Sample a random minibatch ofNm transitions (si, ai, ri, si+1

) from Rb.
Set yi = ri + Q′

(

si+1, �′
(

si+1 ∣ ��
′
)

∣ �e′
)

.
Update critic by minimising the loss: L = 1

N
∑

i=1
(

yi −Q
(

si, ai ∣ �Q
))2.

Update the actor policy using the sampled policy gradient:
∇��J ≈

1
N
∑

i∇aQ
(

s, a ∣ �Q
)

|

|

|s=si,a=�(si)
∇��� (s ∣ ��)

|

|

|

|si
.

Update the target networks: �Q′ ← ��Q + (1 − �)�Q′ , ��′ ← ��� + (1 − �)��′ .
end

end
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Figure 4: The calculation process of path deviation map when using the FM method.
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Figure 5: The framework of the proposed path following approach.

the path deviation boundary at any time during the entire
path following process.

Remark 2. Based on the path deviation map obtained by
the method described in Section 3.1.1, it is easy to determine
the location of any set path deviation boundary. After that, a
special perceptron was designed to sense the path deviation
boundary. As shown in Fig. 6, the perceptron simulates a
range sensor and emits laser beams to detect the path devi-
ation boundary. When the beams detect the boundary, the
distance between the ship and the boundary in a certain az-
imuth can be obtained. Besides, if the distance exceeds the
maximum detection range of the perceptron, the distance will
be set to the maximum value dp.The parameters of the perceptron should meet the fol-
lowing conditions:

� = �
(nc − 1)

, (28)

di ≤ dp, i = 1, 2, ..., nc , (29)

xi =
di
dp
, xi ∈ [0, 1], (30)

where � is the angle between two neighbor beams and nc isthe number of laser beams. The maximum detection range
of the beam is dp. And di is the distance value obtained by
laser beam i. xi is the normalized distance value of di.
3.2. MDP design for path following

Based on the special design of the path deviation map
and perceptron, a path following MDP can be defined. In
this subsection, the state space, action space and reward are
detailed.
3.2.1. State space and action space design

In the path following problem, the ship observation state
represents the current ship status according to the ship infor-
mation as shown in Fig. 5. The ship information used in this
study includes ship coordinates (x, y), ship heading  and
ship yaw rate r.

Remark 3. The ship observation state is characterized
by the normalized distance values xi ∈ [0, 1] of laser beam i.
i.e. xi = 0 when the ship exceeds the path deviation bound-
ary and xi = 1 when the laser beam i does not detect the
boundary. In other cases, xi is between 0 and 1. Besides,
taking into account the inertia of the ship, the observation
state is also characterized by the ship yaw rate r.

At time step t, the actual observation state of the ship is
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Figure 6: Overview of the path deviation perceptron.

shown as follow:
st =

[

x1(t), x2(t),… , xnc (t), r(t)
]

, (31)

where xi(t) is the normalized distance value at time step t. stis the actual state of ship at time step t. Note that the actual
state st+1 is resulted from state st, taking action at.In RL, the agent interacts with the environment by taking
actions in various systems states. The action taken by the
agent is the rudder angle in this study. The action space is
defined as follow:

at = [�(t)] , (32)
where �(t) is the command of rudder angle at time step t.

Usually, the action of the DDPG is oscillating or fluctu-
ating during the decision process, which will be difficult to
apply to the actual ship control system directly. To address
this issue, the simple moving average (SMA) method was
adopted to smooth the action serials.

ak,t+1 = ak,t +
1
k
(

at+1 − at−k+1
)

, (33)

where ak,t and ak,t+1 are the SMAvalueswith samplingwidth
k at time step t and t + 1, respectively. a1−k, a2−k,…, a−1and ak,0 are equal to a0. In this research, sampling width k
was set to 6.

3.2.2. Reward design
The reward design plays a critical role in RL. The envi-

ronment returns reward signal rt+1 to the agent when action
at is taken by the agent. The value of rr+1 represents the
immediate reward after transition from state st to state st+1with action at. Path following aims to maintain a low path
deviation during the whole procedure. Therefore, the reward
function is defined as:

rt+1 =

{

−1, if the ship exceeds the boundary.
1 − 2e(t+1)

ep
, otherwise.

(34)
where e(t + 1) is the path deviation of the ship at time step
t + 1. ep is the set maximum deviation value. The negative
reward of −1means the agent is penalized if the next state is
not feasible or the ship exceeds the boundary. The 1− 2e(t+1)

epfunction normalises the path deviation et+1 to a reward signalin the range of [-1, 1]. Note that the termination will be set
to T rue if the ship exceeds the path deviation boundary or
the episode completes at this step.
3.3. Path following control using deep

deterministic policy gradient
In this work, a path following control was achieved using

the DDPG algorithm. A training strategy has been designed
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as shown in Fig. 5. The observation state designed for the
path following environment allows a ship to learn an optimal
path following policy by interacting with the environment
using a rudder action signal. Besides, such an observation
state and the training strategy provide an extendibility for
ship path following in different scenarios.

Remark 4. Once the policy network’s parameters have
been successfully updated, the trained policy network can be
easily applied in a new path following task. Also, new path
deviation requirements can be easily adapted by adopting
new maximum detection ranges of beams. A circular path
was involved in the training procedure. During the test-
ing phase, different cases were designed for validating the
adaptability of the proposed path following approach. Bene-
fiting from the specific observation state and reward designs,
the ship in different path following cases can reuse the policy
learned from the training procedure.

As shown in Fig. 7, a structure with two hidden layers
(each layer containing 400 and 300 neurons respectively) has
been adopted for both actor and critic networks in the DDPG
algorithm. Besides, the Ornstein-Uhlenbeck (O-U) process
 was added for action selection to fully explore state and
action space. The O-U process can be defined as:

t+1 =t + �OU
(

�OU −t
)

+ �OU (0, 1), (35)
wheret andt+1 are the values of O-U process at times t
and t+1, respectively. 1 is set to zero.  (0, 1) is a Gaus-
sian process with a mean of 0 and a standard deviation of 1.
In this work, the parameters of O-U process are specified as
�OU = 0, �OU = 0.15, �OU = 0.2. Other parameters for
DDPG based path following control can be viewed in Table
2.
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Figure 7: The neural network design for the actor-critic frame-
work.

3.4. Environment of path following
The environment of path following for the RL training

consists of two parts, i.e. the ship dynamic model (see Sec-
tion 2.1) and the MDP definition of path following (see Sec-
tion 3.2). Algorithm 2 depicts how the path following en-
vironment is formulated. All parameters of the ship should
be set before the start of the first episode. And the parame-
ters of the path following should also be configured. In each
episode, the environment randomly selects the start position

Table 2
List of parameters used for deep deterministic actor-critic al-
gorithm in this study.

No. Parameter Value

1 Actor learning rate ra 0.0001
2 Critic learning rate rc 0.001
3 Soft update � 0.01
4 Discount rate  0.9
5 Memory size Nb 2000
6 Minibatch size Nm 16
7 Hidden layer 1 400 units
8 Hidden layer 2 300 units

and heading of the ship in a set range. At each time step of
an episode, action at generated by the agent is determined
at state st. Then, taking action at as input, the position and
heading of the ship are updated using equation (2)-(5). Af-
terwards, state st+1 and immediate reward rt can be calcu-
lated with equation (30), (31) and (34). This process repeats
until the T ermination is equal to T rue. Note that the envi-
ronment would carry out the termination of an episode when
the ship exceeds the boundary or the maximum time step has
been reached.
3.5. Agent training

The target of the path following task is to minimize the
overall travel cost from the start point to the goal point. The
overall travel cost in this study is a cumulative value which is
the sum of the reward defined in equation (34). Such a path-
following task is intended to train an agent for future path
following control in different path tasks. The training pro-
cess is an episodic task. In each step of an episode, a set of
historical path following experiences are randomly sampled
from the replay buffer for the agent to learn policies by mini-
mizing the travel cost. This training process repeats until the
average episode reward converges. The historical path fol-
lowing experience is collected in each step during the whole
training procedure.

The RL agent training and policy application follow the
procedure presented in Fig. 8. At the beginning of the pro-
cedure, the RL training parameters such as the learning rate
and the discount rate, and the path following parameters such
as the path deviation and the perception beam count should
be configured. During the training period, the agent interacts
with the path-following environment for storing transition in
the replay buffer. Then, the agent is trained with experience
replay. Once the training is converged, the learned path fol-
lowing policy needs to be validated in different path follow-
ing cases. In the application phase, the policy can be saved
for future path-following tasks when it is feasible in all test-
ing cases. Otherwise, more episodes will be needed for the
training procedure.

As with most reinforcement learning algorithms, the use
of non-linear function approximators nullifies any conver-
gence guarantees. However, it is still possible to ensure a
stable learning process with a special design of the MDP
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Algorithm 2: Environment of the path following problem.
Set the parameters of the ship.
Configure the parameters of path planning.
for episode = 1,⋯ ,Me do

Randomly select the start position and heading of the ship according to a set range.
Set T ermination = False.
Calculate the state s1 with equation (30) and (31).
for t = 1,⋯ , Ns do

Generate action input at from the agent according to state st.Calculate the new positions and headings of the ship with equation (2)-(5).
Update the state st+1 with equation (30) and (31).
Get the immediate reward rt with equation (34).
if the ship exceeds the boundary then

Set T ermination = T rue.
break.

end
end
Set T ermination = T rue.

end
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Figure 8: The agent training and policy application procedure of the reinforcement learning (RL).

[41]. In this way, the convergence of the path following er-
rors can be guaranteed.

4. Simulation results and analysis
To verify and validate the performances of the proposed

path following approach, a set of simulations have been car-
ried out in this section. This work aims to develop a path fol-
lowing policy by employing the DDPG algorithm with the
help of the path deviation map and perceptron. More impor-
tantly, the trained policy network can be directly applied to
new path following tasks without further training. It should
be noted that a steady wind (UW = 2.0m∕s, �W = 30°)
and a constant current (UC = 0.08m∕s, �C = 60°) as not
observed external disturbances were introduced into all the
testing cases but not into the training procedure. The sim-
ulation results in this section are presented in the following

ways:
1) Demonstrating the path following performance of the

designed DRL structure. The training results of the devel-
oped DDPG algorithm on a circular path are presented in
Section 4.1;

2) Validating the effectiveness of the proposed path fol-
lowing approach. Using the trained policy network in Sec-
tion 4.1, simulations of path following results demonstrating
on the same circular path are presented in Section 4.2;

3) Validating the adaptability and advancement of the
proposed approach by using different paths to follow. The
path following policy on a polyline path and a curved line
path are tested in Section 4.3 and Section 4.4, respectively.
4.1. Training results

The training of the proposed algorithm was carried out
on a circular path with a 7-meter KVLCC2 ship [24]. It is an-
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Table 3
List of parameters used for training

No. Parameter Value

1 Maximum step Ns 600
2 Maximum path deviation ep 10 m
3 Control period Ts 1 s
4 Initial position x [245, 255] m
5 Initial position y 150 m
6 Initial heading  90 or 270 °
7 Initial speed u 1.179 m∕s
8 Initial speed v 0 m∕s
9 Initial rudder angle �0 0 °
10 Rudder angle � [−10, 10] °
11 RPS nr 10.4 Hz
12 Perception distance dp 40 m
13 Perception beam count nc 8

ticipated that the ship can learn a generalized strategy by per-
forming training in a simple scenario and apply the learned
strategies to accommodate more complicated paths.

The circular path with a radius of 100m used for training
in this work is shown in Fig. 9. The solid line indicates the
path that needs to be followed, and the dashed line indicates
the boundary of the path deviation (maximum path devia-
tion). The parameters used in training are listed in Table 3.

0 50 100 150 200 250 300

y (m)

0

50

100

150

200

250

300

x
 (

m
)

Path

Boundary

Figure 9: The training environment for path following task.

A training environment with dimension of 300 m ∗ 300
mwas adopted. Themaximum stepsNs for a training episodewas set to 600 and the maximum path deviation ep for pathfollowing was set to 10m in this study. In addition, the con-
trol period Ts was set to one second. The parameters of the
ship used in this study are also listed in Table 3. It should
be noted that the initial speed was set to 1.179 m∕s, which
is the designed speed of the 7 meters KVLCC2. To improve

the adaptability of training strategies, the initial position x
and initial heading  of the ship during training were ran-
domly selected within a certain range. The rudder angle �
used in this study was limited to a range between −10° and
10°. Other important parameters for training such as the per-
ception distance dp and the beam count nc are also shown inTable 3. During training, an episode will be terminated if the
number of steps reaches the maximum step Ns or the ship
exceeds the path deviation boundary.

In order to have full visibility of the designed DRL based
path following approach, the randomness of the training pro-
cess has been taken into account by adopting a random seed
across the parameters within the built neural networks to
achieve reproducibility. The results are shown in Fig. 10
and Fig. 11. It can be observed that the steps of path fol-
lowing can fast converge to the maximum value (Fig. 10).
The cumulative reward value of the path following (Fig. 11)
can also converge, which confirms that the training has been
successful.
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Figure 10: The cumulative steps of the training.

0 200 400 600 800 1000

Episode

0

200

400

600

C
u

m
u

la
ti

v
e 

re
w

ar
d

Figure 11: The cumulative reward value of the training.

4.2. Testing case 1
The learned policy was directly used to test the perfor-

mance of path-following control by tracking the same circu-
lar path in this testing case. As shown in Fig. 12, a 7m initial
position error has been configured to verify if the ship can
take the correct manoeuvring actions and keep following the
path. Special parameters for the path following used in this
case are listed in Table 4. Other parameters can be viewed
in Table 3.

As shown in Fig. 12, the tracking trajectory of the path
following has been displayed with the red dash-dot line. Al-

Shuwu Wang et al.: Preprint submitted to Elsevier Page 12 of 18

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



A novel path following approach for autonomous ships based on fast marching method and deep reinforcement learning

0 50 100 150 200 250 300

y (m)

0

50

100

150

200

250

300
x

 (
m

)

Path

Boundary

Trajectory

Figure 12: The trajectory of path following in testing case 1.

Table 4
List of special parameters used in path following testing case
1.

No. Parameter Value

1 Start point ps (257, 150) m
2 Initial heading  90 °

though the initial position of the ship slightly deviates from
the path and environmental disturbances (wind and current)
are introduced, the ship is capable of reducing and maintain-
ing its path deviation by employing the trained policy. Such
a performance can be further validated by the quantities eval-
uation results shown in Fig. 13. The results show that the
ship has a good performance of keeping the path deviation at
a low level. Fig. 14 shows the rudder angle during the path
following procedure. It can be found that the ship is capable
of following the path with a small rudder angle changing.

Figure 13: The path deviation of path following in testing case
1.

Figure 14: The rudder angle of path following in testing case
1.

Table 5
List of special parameters used in path following testing case
2

No. Parameter Value

1 Start point ps (107, 50) m
2 Goal point pg (100, 750) m
3 Initial position pi (100, 50) m
4 Initial heading  90 °
5 Perception distance dp 60 m
6 Maximum path deviation ep 15 m

Table 6
List of waypoints and corresponding acceptance circle radiuses
used in path following testing case 2

No. Waypoints Radiuses

1 (100.00, 50.00) m -
2 (100.00, 100.00) m 3.50 m
3 (100.00, 200.00) m 30.45 m
4 (300.00, 300.00) m 30.45 m
5 (300.00 450.00) m 19.46 m
6 (100.00 600.00) m 19.46 m
7 (100.00 750.00) m 5.00 m

4.3. Testing case 2
In this test, the adaptability of the proposed method has

been verified by following a polyline path. The polyline path
consists of six waypoints and five straight lines. The color
map with contours of the path deviation corresponding to
the polyline is shown in Fig. 15. Special parameters such
as start point, goal point, initial position and initial heading
of the ship used in this test are listed in Table 5. Different
from the testing case 1, larger perception distance dp (60m)and maximum path deviation ep (15 m) were used for more
challenging path following tasks. In addition, the same envi-
ronmental disturbances were considered in this testing case.
Other parameters are outlined in Table 3.

For comparisons, a guidance and control systemwas used
to follow the path in the same condition. The ALOS guid-
ance law acted as the guidance module. Correspondingly, a
PD and a PID heading tracking controllers were used as the
control module. The radius of the acceptance circles used
in the ALOS guidance law was calculated by equation (12)-

Shuwu Wang et al.: Preprint submitted to Elsevier Page 13 of 18

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



A novel path following approach for autonomous ships based on fast marching method and deep reinforcement learning

Table 7
List of performance indexes of path following in testing case 2

Method Length (m) Time (s) Avg Speed (m∕s) Avg deviation (m) Max deviation (m)

Proposed 906.17 879 1.031 1.56 7.20
ALOS+PD 919.12 909 1.011 2.13 9.31
ALOS+PID 919.37 915 1.005 2.02 7.80

Table 8
List of special parameters used in path following testing case
3

No. Parameter Value

1 Start point ps (200, 50) m
2 Goal point pg (150, 700) m
3 Initial position pi (200, 50) m
4 Initial heading  0 °
5 Perception distance dp 60 m
6 Maximum path deviation ep 15 m

Table 9
List of waypoints and corresponding acceptance circle radiuses
used in path following testing case 3

No. Waypoints Radiuses

1 (200.00, 50.00) m -
2 (232.40, 53.59) m 43.40 m
3 (239.37, 86.48) m 8.38 m
4 (220.74, 132.88) m 11.65 m
5 (237.54, 180.08) m 3.50 m
6 (253.24, 227.58) m 3.55 m
7 (272.41, 273.88) m 3.67 m
8 (297.42, 317.18) m 3.50 m
9 (322.87, 360.28) m 3.70 m
10 (342.02 406.58) m 4.88 m
11 (344.39 456.58) m 3.93 m
12 (336.64 505.98) m 5.68 m
13 (309.36 547.95) m 4.37 m
14 (271.56 580.76) m 4.07 m
15 (227.26 604.12) m 4.63 m
16 (192.39 640.00) m 5.16 m
17 (173.02 686.20) m 9.31 m
18 (150.00 700.00) m 5.00 m

(13) and the tolerance for ships arriving at the goal point
was equal to 5 m. In the PD controller, the proportional and
derivative values were 1.80 and 10.00, respectively. And in
the PID controller, the proportional, integral and derivative
values were 2.32, 0.15 and 11.58, respectively. It should be
noted that all the parameters of the PD and PID controllers
have been tuned (manual and automatic) [43].

Using the same path following policy in Testing case 1,
the results revealing the tracking trajectories of the ship are
shown in Fig. 16. The start point is located at the bottom left
of the map shown as a blue dot and the goal point shown as a
red dot is located at the bottom right of themap. The planned
path is displayed with a black line. And the black circles

Table 10
List of parameters of PID controllers in testing case 3

Method Kp Ki Kd

ALOS+PD 1.80 0.00 10.00
ALOS+PID 2.32 0.15 11.58
ALOS+PID1 1.83 0.11 9.86
ALOS+PID2 1.68 0.10 9.72
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Figure 15: The path deviation color map with contours in
testing case 2.

along the path are the waypoints. The coordinates and the
corresponding acceptance circle radiuses of the waypoints
are listed in Table 6. It should be noted that a 7 m initial
position deviation was configured to simulate a step function
line and waypoint 2 was added to accelerate the convergence
rate of ALOS-based path followingmethods. There are three
kinds of trajectories shown in Fig. 16. The red dash-dot,
blue dotted and green dashed trajectories are generated by
proposed, ALOS PD and ALOS PID methods, respectively.
It can be observed that the ship is able to keep following
the set path, although the path deviations are slightly larger
near waypoint 5 owing to the environmental disturbances.
In fact, it is a challenge for ships to follow a sharp turn path
with disturbances.

Quantitative assessment of the path following methods
in this test is presented as shown in Fig. 17 and Fig. 18. It
can be seen that the ship has learned to adjust its rudder an-
gle to perform the path following control and reduce the path
deviation to a small range. The curves of path deviation and
rudder angle with time are indicated with different colors.
The red solid, blue dotted and green dashed curves represent
the results produced by the proposed, ALOS PD and ALOS
PID methods, respectively. According to Fig. 17, there are
3, 3 and 5 path deviation peaks (exclude the first peak at the
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Table 11
List of performance indexes of path following in testing case 3

Method Length (m) Time (s) Avg Speed (m∕s) Avg deviation (m) Max deviation (m)

Proposed 795.41 775 1.026 1.36 5.38
ALOS+PD 805.64 799 1.008 1.48 7.24
ALOS+PID 807.27 811 0.995 1.69 5.58
ALOS+PID1 809.59 813 0.996 2.16 13.13
ALOS+PID2 805.22 811 0.993 1.82 5.17
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Figure 16: The trajectory of path following in testing case 2.

start point) of the proposed, ALOS PD andALOS PIDmeth-
ods over 4 m, respectively. At the same time, the counts of
peaks become 0, 1 and 1 when over 7 m. What’s more, the
path deviation of the proposed method is always at a lower
level compared with other methods. Every time the ship
passes a turning waypoint, the path deviation will quickly
converge after a local peak. It is obvious that the proposed
method shows great ability in low path deviation path fol-
lowing, which indicates that the method has the potential to
be applied to the path following of autonomous ships. On the
basis of Fig. 18, the rudder angle changes of the above three
path following methods are not smooth enough during the
whole path following procedure. All three methods produce
large rudder angle changes near the waypoints. In addition,
the rudder angle of the proposed method fluctuates slightly
during the entire path-following procedure for keeping a low
path deviation. Therefore, a measure or a punishment could
be added to limit the rudder angle change during the strategy
learning procedure when the rudder angle change is required
to be smoother.

For further quantitatively analyzing the performance of
the above three path following approaches, the trajectory
length, sailing time and average speed of the ship are cal-
culated. At the same time, the average and maximum de-
viations of the ship during the path following procedure are
also calculated. The results are given in Table 7. It can be
easily found that the proposed method performs the best and
the ALOS PD method performs the worst among the three
methods. The proposed method has the shortest trajectory
length and sailing time which are 906.17 m and 879 s, re-
spectively. In addition, it has the highest average speed of
1.031 m∕s, in spite of the frequent changing of rudder com-

Figure 17: The path deviation of path following in testing case
2.

Figure 18: The rudder angle of path following in testing case
2.

mands. The above indexes indicate that the proposedmethod
has the highest overall efficiency. As for the deviations, the
proposedmethod has the smallest average deviation (1.56m)
andmaximum deviation (7.02m), respectively, which shows
outstanding safety performance during the whole sailing.
4.4. Testing case 3

The adaptability of the proposed method is further veri-
fied in this test by following a more complex curved. A par-
ticularly complex environment used for this test is shown in
Fig. 19. And a collision-free path is generated by the angle-
guidance fast matching square (AFMS) method [44] for this
test. Besides, the color map with contours of the path devia-
tion in this test is shown in Fig. 20. Based on the above two
figures, it can be found that ship collision avoidance can be
achieved by following the planned path with low path devia-
tions. Parameters for the path following used in this test are
detailed in Table 3 and Table 8.

In this case, the parameters of path-following methods
used for comparisons are the same as used in Testing case 2
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Figure 19: The planned path based on the angle-guidance fast
matching square (AFMS) method for testing case 3.
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Figure 20: The path deviation color map with contours in
testing case 3.

including the environmental disturbances described in Sec-
tion 2.1. Meanwhile, the path following policy learned in
Section 4.1 is reused again. Fig. 21 shows the results re-
vealing the trajectories of the ship. The blue dot and red dot
located at the two sides of the map are the start point and
goal point, respectively. The waypoints, whose coordinates
and corresponding acceptance circle radiuses are listed in
Table 9, are shown as a series of black circles along the path
(black solid line). Besides, the trajectories generated by the
three methods are shown with red dash-dot, blue dotted and
green dashed lines, respectively. It is obvious that all three
methods perform good during the whole path following pro-
cedure.
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Figure 21: The trajectory of path following in testing case 3.

In Fig. 22 and Fig. 23, the path deviation and rud-
der angle curves of different methods are shown with dif-
ferent colors. The results obtained by the proposed, ALOS
PD and ALOS PID methods are shown with red solid, blue
dotted and green dashed lines, respectively. The quantita-
tive results further confirm that the proposed method shows
great adaptability in path following among the three meth-
ods. However, through the analysis of Fig. 21 and Fig. 22, it
can be found that when the path curvature is very large, for
example during the initial stage of the path following, the
proposed method has a comparatively large path deviation.
To address this issue, it is expected to eliminate the above
shortcomings by reducing the radius of the circular path and
increasing the range of the rudder angle during training. In
addition, near the end of this path-following task, the pro-
posed method does not maintain the path deviation at a low
level very well owning to the environmental disturbances.
Fortunately, this situation does not always happen and can
be mitigated by introducing environmental disturbances into
the training procedure. Besides, the rudder angle of the pro-
posed method in this test also fluctuates as in testing case 2
as shown in Fig. 23. In order to get smoother rudder com-
mands in real ship control, it needs to take more effort into
reward function optimization.

Figure 22: The path deviation of path following in testing case
3.

Figure 23: The rudder angle of path following in testing case
3.

For further comparison, another two ALOS PID con-
trollers are introduced in testing case 3. All the parameters
of PID controllers used in this case are listed in Table 10.

Indexes used in Testing case 2 are also calculated in this
test for further quantitative evaluation of the above path fol-
lowing approaches. The values of the above indexes are
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given in Table 11. According to the average deviation, the
ALOS PD controller performs better than the ALOS PID
controllers. In addition, theALOSPID2 shows the best com-
petitiveness among the four traditional methods due to the
shortest trajectory length and the smallest maximum devi-
ation. It should be noted that the ALOS PID2 also has a
smallermaximumdeviation than the proposedmethod. How-
ever, the proposed method shows the highest overall effi-
ciency with the shortest trajectory length (795.41 m), the
shortest sailing time (775 s), the highest average speed of
1.026m∕s and the smallest average deviation (1.36m). Based
on the above comparison, it is evident that the proposedmethod
shows better effectiveness and adaptability in the path fol-
lowing task.

5. Conclusions and future work
In this work, a novel path following approach for au-

tonomous ships has been developed using the FM method
and the DRL. The FM method is used to generate the path
deviation map. And the DDPG algorithm is employed as
the underpinning strategy to achieve a path following con-
trol in continuous action spaces. The special design of the
path deviation map and perceptron for sensing the path de-
viation boundary makes the learned strategy can be easily
reused in different path following tasks without any further
training. The proposed method shows well competitiveness
compared to traditional methods (ALOSPD andALOSPID)
in simulations.

In further research, significant external disturbances and
large rudder angles need to be researched. It is necessary to
design an environmental disturbance observer for better per-
formance of DRL. The training of the DRL algorithm can
also be improved. On the one hand, to get better performance
in different path following tasks, more circular paths with
different radiuses can be introduced into the training pro-
cess. On the other hand, more advanced RL algorithms such
as Trust Region Policy Optimization (TRPO) and Proximal
PolicyOptimization (PPO) can guarantee non-decreasing long-
term reward by introducing a surrogate objective function
and a Kullback-Leibler divergence (KLD) constraint. Using
these new RL algorithms, the training performance, as well
as the complexity of implementation and computation, can
be improved.
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