
Facilitating Program Analysis
through Transformation

Zheng Gao

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

May 27, 2022

2

I, Zheng Gao, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indi-

cated in the work.

Some of the work presented in this thesis has previously been published or

submitted during my PhD study at University College London.

[1] Gao, Zheng, Christian Bird, and Earl T. Barr. ”To type or not to type:

Quantifying detectable bugs in JavaScript.” 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). IEEE, 2017.

[2] Gao, Zheng, Alexandru Marginean, Mark Harman, and Earl T. Barr. ”Retype:

Changing Types to Change Behaviour.” Submitted to OOPSLA 2016.

[3] Gao, Zheng, Martin Monperrus, Mark Marron, and Earl T. Barr. ”Val-

ueScope: Tracking Values to Their Origin.” Submitted to FSE 2020.

In addition, the following work has been published during my PhD programme.

These papers are relevant to my research. However they do not form part of the

thesis content.

[1] Gao, Zheng. ”Numerical program analysis and testing.” Proceedings of

the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering. 2014.

[2] Allamanis, Miltiadis, Earl T. Barr, Soline Ducousso, and Zheng Gao. ”Typ-

ilus: Neural type hints.” Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation. 2020.

Abstract

Computer programs are reaching every corner of human lives, becoming ever more

important. This, in turn, raises the cost of program malfunctions. Preventing or

diagnosing these malfunctions requires extensive program analysis, but not every

program is amenable to a specific analysis technique. For example, symbolic execu-

tion does not scale on programs involving floating point numbers or strings, due to

the limitations of contemporary SMT solvers. This thesis attempts to advance the

state of the art by utilising program transformation to facilitate analysis. To this end,

it first establishes that program transformation is indeed invaluable when used to

enable analysis. Specifically, it, departing from convention, views static typing as

a form of program transformation and empirically quantifies the early detection of

bugs static typing offers at the cost of type annotations. Then, it proposes TYPERITE,

a tool that serves as an enabler to program analysis. TYPERITE allows developers

to customise types via program transformation to detect domain-specific errors or

permit analysis. Finally, this thesis presents VALUESCOPE, a dynamic program

analysis that tracks a value of interest observed in an execution, like a NaN or a null,

through its propagation chain back to its origin.

Impact Statement

The knowledge and methods of program analysis presented in this thesis are bene-

ficial to the field of software quality improvement and could have impact on both

software engineering research and industry.

In academia, our publication that quantifies static typing’s benefits in early bug

detection has received 83 citations at the time of submitting this thesis according to

Google Scholar. Our tool, TYPERITE, can benefit researchers in computer science,

where tailored, specific retype operation is common.

In industry, our empirical study on TypeScript has incorporated invaluable

feedback from the language’s development team in Microsoft. This work has assured

the team that developing static typing for a dynamically typed language is worth

every penny and they offered an opportunity on further collaboration. The paper

also triggers heated online discussion on popular developer websites, including

Reddit and Hacker News. Our tool, VALUESCOPE, is designed to ease debugging by

tracking an erroneous value to its origins. It can help developers better understand

the program and faster localise the bugs.

Acknowledgements

I would like to express the deepest gratitude to my principal supervisor, Prof. Earl T.

Barr, who has not only guided me through this arduous doctoral journey, but also

offered warm support when I was struggling emotionally.

I would like to thank my subsidiary supervisors, Prof. Mark Harman and Prof.

Federica Sarro, for their valuable feedback on my research.

I would like to thank my family. Without their support, none of my achievement

would be possible.

I thank my colleagues in the Software Systems Engineering (SSE) research

group and the Centre for Research on Evolution, Search and Testing (CREST). The

SSE reading groups and the CREST Open Workshops have exposed me to state of

the art research topics and inspired my research.

I thank the Computer Science department of University College London for

their financial support granted through my doctoral studentship.

Contents

1 Introduction 13

1.1 Problem Statements . 14

1.2 Goal and Objectives . 16

1.3 Contributions . 16

1.4 Thesis Organisation . 18

2 Literature Review 19

2.1 Type System . 21

2.1.1 Specific Type Systems . 26

2.1.2 Other Advanced Type Systems 37

2.2 Symbolic Execution . 39

2.2.1 Handling Unknown via Concretisation 40

2.2.2 Constraint Encoding . 40

2.2.3 The State Of the Art in Symbolic Execution 43

2.3 Other Related Dynamic Analysis Techniques 44

2.4 Chapter Summary . 46

3 To Type or Not to Type: Quantifying Detectable Bugs in JavaScript 47

3.1 Problem Definition . 49

3.2 Methodology: Time-Travel Experiment 51

3.2.1 Leveraging Fixes . 53

3.2.2 Error Model . 54

3.2.3 Example . 55

Contents 7

3.3 Experimental Setup . 57

3.3.1 Corpus Collection . 57

3.3.2 Preliminary Study . 60

3.3.3 Annotation . 62

3.3.4 Annotation Tactics . 62

3.4 Results . 64

3.4.1 Inter-Rater Agreement . 65

3.4.2 Detecting Public Bugs . 65

3.5 Case Study . 68

3.6 Threats to Validity . 74

3.7 Chapter Summary . 75

4 Retype: Changing Types to Change Behaviour 76

4.1 Motivating Example . 80

4.2 Formalism . 82

4.2.1 Definitions . 82

4.2.2 The RETYPE Algorithm 84

4.2.3 Type Inference . 85

4.2.4 Retypeable Region . 86

4.2.5 Rewriting Type Contexts 87

4.2.6 Type Checking . 90

4.2.7 Semantics-Preservation under RETYPE 91

4.3 Implementation . 94

4.4 Evaluation . 97

4.4.1 Sanity Check . 97

4.4.2 The Utility of TYPERITE 98

4.4.3 Changing Behaviour . 102

4.4.4 TYPERITE’s Scalability 103

4.4.5 Qualitative Comparison 105

4.5 Chapter Summary . 107

Contents 8

5 ValueScope: Tracking Values to Their Origin 108

5.1 Problem Definition . 111

5.2 Discovering Value Origins . 113

5.2.1 Relation to Existing Work 118

5.3 Branching at Relevant Values . 119

5.3.1 Sensitivity . 120

5.3.2 Sensitivity under Testing 121

5.4 Implementation . 128

5.4.1 Transformation . 128

5.4.2 Relevance Analysis . 130

5.5 Evaluation . 131

5.5.1 Experimental Setup . 131

5.5.2 Results . 133

5.6 Chapter Summary . 136

6 Conclusion and Future Work 137

Bibliography 139

List of Figures

2.1 The formal syntax of the simply typed λ -calculus. 30

2.2 The typing rules of the simply typed λ -calculus. 31

2.3 The formal syntax of system F . 32

2.4 The typing rules of system F . 33

2.5 The additional typing rules of λ<:
→ with respect to those of λ→. . . . 35

2.6 The formal syntax of the gradually typed λ -calculus. 35

2.7 The definition of the type consistency relation ∼. 36

2.8 The typing rules of the gradually typed λ -calculus. 36

3.1 The random controlled trial. 52

3.2 Time travel experiment. 52

3.3 The error model of this experiment. 54

3.4 JavaScript coerces 3 to "3" and prints "30". From the fix, we learn

that this behavior was unintended and add annotations that allow

Flow and TypeScript to detect it. 55

3.5 The workflow of our experiment. 56

3.6 The automatic identification of fix candidates that are linked to bug

reports. 59

3.7 Venn Diagram of Flow- and TypeScript-detectable bugs. 66

3.8 The histogram of undetectable public bugs under both Flow and

TypeScript. 70

4.1 The definitions of fixed ’s operators in a file fixed .c. 81

4.2 Input code for TYPERITE in GSL specfunction. 81

List of Figures 10

4.3 etyped code for Figure 4.2. Type annotations and operator applica-

tions modified by TYPERITE appear in bold. 82

4.4 The core syntax of a language. RETYPE rewrites declarations, opera-

tor uses and function calls. 83

4.5 Input program of the running example in RETYPE’s core language. . 84

4.6 The definition of τn in our running example, including its type and

operators. 84

4.7 Code that is retypeable (white) and not (gray). 86

4.8 Retyping the example program in the core language : get type

context, extract the type assignments, construct Γ, and apply Φ. . . . 89

4.9 The Architecture of TYPERITE. 94

4.10 An example of taint analysis on explicit information flow. 99

4.11 Definition of SecuredString, to replace String. 100

5.1 The code snippet from file index.js in a GitHub repository CryptoSummary

at commit ef24e35. A user reports that this program generates a NaN

observed at line 88. 113

5.2 Data structures central to VALUESCOPE. 114

5.3 A code snippet that illustrates the need for c-trees. 115

5.4 The partial function hierarchy for function f (x,y,z) = x∗ y+ z and

B= {x = 1,y = 2,z = 3}. Arrows indicate partial applications. . . 124

5.5 The rewriting schema for VALUESCOPE’s program transformation. . 128

5.6 The rewriting schema of VALUESCOPE’s preprocessing. 130

5.7 Comparing fault localisation effectiveness. 133

5.8 A size comparison of the c-trees VALUESCOPE constructs and the

slices ORBS computes. 135

5.9 VALUESCOPE’s effectiveness in fault localisation for different com-

binations of w and d. 136

List of Tables

2.1 The three judgements needed to compose typing rules for λ→. . . . 30

2.2 The four judgements needed to compose typing rules for a type

system that supports subtyping. 34

3.1 The size statistics in LOC of the projects and fixes in our corpus,

which includes 398 projects1. 60

3.2 Under-approximation of the annotation tax in tokens and seconds

for bugs detected by either Flow or TypeScript. 74

4.1 The sanity check results. Retyping Successful? shows if TYPERITE

successfully changed the types twice; Sanity Check? reports if the

retyped programs passed the tests. 98

4.2 Changes that TYPERITE does for fixing security vulnerabilities. . . 101

4.3 Field bugs that can be fixed by using TYPERITE. 102

4.4 Scalability and effectiveness example for TYPERITE, applied to

globally retype all 363K line of code of Pidgin, a real world instant

messaging system that has several million users worldwide. Cate-

gory shows the categories of τo, and τn. For example retyping from

primitive to Abstract Data Types (ADT) is written as: ‘Prim→ ADT’.104

4.5 The results of the comparison between TYPERITE (R) and the type

migration feature in a popular IDE: IntelliJ IDEA (IJ). 105

5.1 The result’s entropy for the function f (x,y,z) = x∗ (y+ z) with the

binding B = {x = 0,y = 1,z = 2} in 7 different cases of partial

application. 126

List of Tables 12

5.2 The chances of the identified inception transitions hitting different

targets. 134

Chapter 1

Introduction

Born as calculating devices, computers are rapidly evolving and expanding their

reach. Computerisation has been an unstoppable trend in recent decades and is likely

to remain so in the foreseeable future. In academia, physicists and chemists use

computer programs to simulate experiments; mathematicians perform numerical

analysis in software; geneticists employ computers to study genes. In industry, more

and more traditional, mostly manual processes are becoming computer-aided, from

design to production, from quality assurance to maintenance. Even artists are using

software, for example, to compose music or produce digital paintings.

The prevalence of computer programs raises the cost of a program malfunction.

A study in 2002 commissioned by the Department of Commerce’s National Institute

of Standards and Technology revealed that software bugs cost the US economy

$59.5 billion annually [1]. More recently in 2017, a crash in British Airways’ IT

system caused the airline to cancel more than 700 flights and left tens of thousands

passengers stranded, including the author of this thesis. The system meltdown was

estimated to cost British Airways around £80 million [2]. In fact, a software failure

may cause more than just economic damage. On February 25, 1991, a fixed-point

truncation error prevented the Patriot missile system from intercepting an Iraqi Scud

that killed 28 American soldiers and wounded approximately 100 others [3].

As an ancient Chinese proverb goes, “The water that bears the boat is the same

that swallows it.” While enjoying the benefits that computers bring, we have to care-

fully manage them so that we are not “swallowed”. Program analysis aims to tackle

1.1. Problem Statements 14

precisely this problem. It is “the process of automatically analysing the behaviour of

computer programs regarding a property such as correctness, robustness, safety and

liveness” [4]. Program analysis not only can detect and eliminate functional defects,

but can optimise non-functional properties. To maximise its utility, program analysis

is often employed before software deployment. According to the Systems Sciences

Institute at IBM [5], fixing an error identified in maintenance costs up to 100 times

more than fixing one found during design.

Numerous program analysis techniques exist, such as type system, data-flow

analysis, symbolic execution, and testing. However, many effective analysis tech-

niques have limitations and target only a subset of all possible programs. For instance,

techniques based on SMT solvers, including symbolic execution and model checking,

struggle to scale when applied to programs that compute with floating point values,

due to the immature solver support for floating point arithmetic.

Another notable example is static typing. Employed in almost all mainstream

programming languages, type systems are one of the most successful program analy-

sis techniques. Broadly, static and dynamic typing are the two distinct realisations

of a type system. The former catches type errors early and does not impact the

program’s runtime performance, at the cost of requiring developers to enforce a rigid

type schema beforehand. The latter permits a more flexible and concise language

syntax, obviating developers’ need to add type annotations to code and reason with

types at compile-time. Therefore, programs composed in a language with dynamic

typing are beyond the reach of static typing by definition; type errors hidden in

those programs cannot be detected until runtime and are more likely to survive into

deployment and maintenance.

1.1 Problem Statements

Countless researchers strive to invent program analysis techniques, either outperform-

ing the state of the art for an existing problem or addressing a newly identified one.

In contrast, how to transform a program under investigation so that it is amenable to

existing program analysis is a field yet to be extensively explored. This thesis aims

1.1. Problem Statements 15

to fill the gap; the specific research problems that it tackles are discussed below.

Languages that implement dynamic typing, or dynamically typed languages,

such as JavaScript, Python, and Ruby, are rocketing in various popularity rankings.

Recent years, however, have witnessed an increasing uptake of optional type annota-

tions in dynamically typed languages. For JavaScript, Microsoft devises TypeScript,

a typed “superset” of JavaScript, and Facebook develops Flow, an optional type

checker for JavaScript. Python incorporates optional type annotations in version 3.5.

Industrial titans have followed suit: Facebook has released Pyre, Google Pytype, and

Microsoft Pyright. The incentives of such huge investments remain unclear. This

thesis asks the following questions:

What are the real-world benefits that optional type annotations have?

Types are invented to avoid the Russell’s paradox arising in the naı̈ve set

theory [6]. They are now a fundamental concept in programming, preventing bugs

and facilitating code comprehension, navigation, and completion. Some types,

however, are more difficult to reason with, because of their vast value domains

and the complex semantics of their supported operations. Floating point is among

them, due to its unintuitive arithmetic (e.g., the Associative and Distributive laws

do not hold). For example, researchers in abstract interpretation have to devise

novel, cumbersome abstract domains [7, 8, 9] to cope with floating point arithmetic.

Strings are worse still, because checking a nontrivial property, e.g., inclusion and

equivalence, are undecidable over string operations [10]. This thesis raises the

following question:

Can we design a transformation that replaces a type with another in a

program to enable some existing analyses on the transformed program?

Programs compute with values. Most values reside in variables and may propa-

gate from one variable to another. Variable to value bindings are not directly visible

to developers. When a value of interest manifests itself in a variable, where the value

was originated and how it propagated to this variable at the manifestation point are

often opaque. In the context of debugging, tracking an erroneous value to its origin

1.2. Goal and Objectives 16

is a fundamental task, because it helps localise the bug’s root cause. The most naı̈ve

approach to this task involves repeatedly inserting print statements and rerunning the

program, which is tedious and inefficient. This thesis raises the following question:

Can we develop an analysis technique that tracks a value of interest

through its propagation chain back to its origin?

1.2 Goal and Objectives
The goal of this thesis is to advance the state of the art in program analysis by

utilising transformation to make programs more amenable to analysis techniques. To

achieve this goal, the following objectives are set.

1. To quantify the benefits of optional type annotations in bug detection. Though

focusing on optional typing, a specific program analysis technique, this objec-

tive aims to address the more general research question: how beneficial can

program transformation be after facilitating program analysis?

2. To formulate a general program transformation that replaces a type with

another in a program so that some existing analyses are applicable to the

transformed program. This objective instantiates the general idea of facilitating

program analysis through transformation.

3. To devise a transformation that dynamically tracks a value of interest to its

origins. This objective requires exploration in both fields: designing a novel

program analysis and implementing the analysis via program transformation.

1.3 Contributions
The main contributions of this thesis are:

• This thesis quantifies the public bugs that static type systems detect and could

have prevented: 15% for both Flow 0.30 and TypeScript 2.0, on average.

• This thesis introduces and formalises retyping a program. This formalism

1.3. Contributions 17

1. injects the type-conversions that arise due to interactions with code that

is not retyped;

2. allows the controlled introduction new behaviour through the new, target

type; and

3. applies to both non-object-oriented languages and primitive types because

it uses term rewriting, not the subtype relation.

• This thesis presents a realisation of RETYPE in the tool TYPERITE and vali-

dates it:

1. demonstrating how it can be used to catch real world bugs, like an SQL

injection in hibernate, and automates taint analysis on implicit information

flow;

2. showing that TYPERITE scales to Pidgin, an open-source online chatting

client with 363K lines of code.

3. automating retyping, eliminating the need for a developer to assess

whether 120,096 operators need replacement or conversion when retyping

float to fixed point in the special functions of the GNU scientific library.

• This thesis defines parameter relevance: A principled means to track of value

of interest through computations that produce it by restarting on those values

most relevant to the initial value of interest.

• This thesis presents presents VALUESCOPE for JavaScript, which automates a

common debugging task: finding the origin and propagation of problematic

values, like a NaN. The key to VALUESCOPE’s performance is its capacity to

restart on new values of interest, computed using parameter relevance.

• This thesis experimentally demonstrates that VALUESCOPE outperforms a

state-of-the-art spectrum based fault localisation technique that uses the

DStar [11] ranking measure and Orbs [12], a dynamic program slicer, in

localising real world bugs.

1.4. Thesis Organisation 18

1.4 Thesis Organisation
This thesis covers several interconnected topics surrounding facilitating program

analysis through program transformation. The remainder of the thesis is organised

as follows.

Chapter 2 reviews literature on program analysis, especially type system,

symbolic execution and slicing, and summarises the research opportunities identified

from the review.

Chapter 3 presents an empirical study that quantifies the benefits of static

typing. Specifically, it investigates how many bugs in real-world JavaScript projects

could have been caught, had two static type systems, Flow and TypeScript, been

used during development.

Chapter 4 proposes TYPERITE, a general tool that changes the input program’s

semantics by changing its type schema, thereby facilitating program analysis or

optimising the program’s non-functional properties.

Chapter 5 describes VALUESCOPE, a debugging tool that employs program

transformation to locate the origin of a value observed at a particular state. VAL-

UESCOPE is conceptually an extreme development of type system, whose types are

singleton sets.

Chapter 6 proposes future work and concludes the thesis.

Chapter 2

Literature Review

Program transformation is any operation that takes a computer program and generates

another. Fundamentally, program transformation is an instance of term rewriting [13],

which formalises replacing the subterms of a formula with other terms. A formal

discussion of term rewriting, however, is beyond the scope of this thesis.

In many cases, the transformed program is required to be semantically equiva-

lent to the original one. Notable examples of semantics preserving program transfor-

mation include compilation and refactoring. In other cases, program transformation

changes the semantics of the original program in a predictable way [14]. The program

transformation this thesis discusses is not restricted to be semantics-preserving.

While program transformation can be manual, it is often more practical to devise

a system to automatically apply the required transformations. Indeed, compiler

developers have been paying more attention to a modular design, where different

components of a compiler, especially the front-end, can be cleanly exposed to the

users, thereby providing various services, such as source-to-source transformation.

Program transformation has many applications. In particular, this thesis uses

it to make the transformed programs amenable to program analysis. Broadly, two

kinds of program analysis exist: static and dynamic. Nielson et al. [15] define

static program analysis as “static compile-time techniques for predicting safe and

computable approximation to the set of values or behaviours arising dynamically

at run-time when executing a program on a computer.” Static analysis operates at

compile time, allowing developers to fix issues early in the development lifecycle. It

20

also attempts to reason about many, if not all, executions of a program at once. For

example, a program is guaranteed to be type correct with all inputs, if it passes a

sound static checker; Section 2.1 elaborates this point. In practice, however, static

analysis suffers from two problems. First, statically analysing an interesting property,

such as correctness, of programs written in a reasonably complex language is hard

and often undecidable. May alias analysis, the analysis of statically deciding whether

two pointers point to the same storage location in any execution, is a notable example.

By a reduction to the halting problem [16], Landi proves that “for languages with if-

statements, loops, dynamic storage, and recursive data structure”, may alias analysis,

the fundamental building block of many static analysis techniques, is undecidable. To

combat undecidability, static analysis often has to first build and then analyse some

approximation to the input program’s actual semantics. Approximation necessarily

leads to false positives/negatives, which hampers the utility of static analysis. Second,

many static program analysis techniques, such as static symbolic execution and model

checking, struggle to scale to programs at industry scale.

Dynamic program analysis, on the other hand, executes programs on a real

or virtual processor and analyse the observed runtime information. Testing is the

most ubiquitous dynamic program analysis technique due to its efficiency and ease

of use. The biggest drawback of dynamic program analysis is that it in general

underapproximates an input program’s semantics, because it covers only a limited

number of executions. Dijkstra’s famous observation that “testing can be used to

show the presence of bugs, but never to show their absence” [17] generally applies to

all dynamic program analysis techniques. Thus, for dynamic program analysis to be

effective, the target program needs to be executed with sufficient and representative

inputs to cover diverse execution paths.

Numerous program analysis techniques exist. This chapter reviews a selection

of them, aiming to set the background of and motivates the research presented

in this thesis. It starts with type system, a technique that resides in almost every

language’s compiler/runtime. Both Chapter 3 and Chapter 4 centre around type

system: Chapter 3 empirically quantifies the benefit of static type system on code

2.1. Type System 21

quality; Chapter 4 leverages type system to apply controlled program transformation.

This chapter then studies symbolic execution, which motivates Chapter 4 to extend

the application domain of symbolic execution. This chapter concludes with briefly

reviewing four dynamic program analysis techniques that relate to Chapter 5.

2.1 Type System
Despite its simplicity and elegance, naı̈ve set theory [18] has limitations. The

Russell’s Paradox [19] exemplified this fact by illustrating that some formalisations

in naı̈ve set theory could lead to a contradiction. To escape this paradox that had

shaken the foundations of mathematics, Russell proposed ramified theory of types

in 1908 [20]. At the core of this theory is a hierarchy of types; each mathematical

entity would be assigned a type to prevent circularity in reasoning. Enlightened

by Russell’s work, many researchers have realised the significance of types and

contributed to this field of study. Major landmarks include Ramsey’s simple theory

of types [21], Church’s simply typed λ -calculus [22], Martin-Löf’s constructive

type theory [23, 24], and Berardi, Terlouw, and Barendregt’s pure type systems [25,

26, 27]. Collectively, these researchers have established and nurtured type theory,

which now refers to a class of formal systems that centred around types. Informally,

types are a property of terms; they specify the available operations on the terms and

therefore constrain the behaviours of the terms. For example, Frege’s early work [28]

distinguished between objects, predicates, predicates of predicates, etc.. Therefore, a

first-order predicate applies to an object, but it cannot have a predicate as argument.

Because of its generality, type theory has applications in many disciplines, one

of which is type system in computer science. Ever since its inception, type system

has been extensively studied and become one of the most widely used lightweight

formal methods. As with many terms shared by large communities, it is difficult to

define “type system” in a way that is concise enough but also covers all its practical

usage by programming language designers. Pierce made the following attempt [29]:

A type system is a tractable syntactic method for proving the absence

of certain program behaviours by classifying phrases according to the

2.1. Type System 22

kinds of values they compute.

Two points deserve comments. First, type system is a verification technique aiming

to prevent some program behaviours which are often called type errors. Type error,

however, is a concept dependent on the underlying type system and lacks a universal

definition. To reflect the extent to which a programming language’s type system

forbids type errors, the term type safety is coined. Pierce summarised that a type safe

language must “protect its own abstractions” [29]. Second, type system classifies

terms according to the properties of the values that they will compute when executed.

A type system can be regarded as an approximation to the run-time behaviours of

the terms in a program. Though details vary, a type system typically consists of two

stages, 1) type assignment that associate every construct in a program with a type,

and 2) type checking that validates whether these constructs are used as permitted by

their types.

Three pairs of concepts that often cause confusion need further explanation,

namely static and dynamic typing, type annotation and type inference, and strong

and weak typing.

Static and Dynamic Typing A type system can perform type checking statically

before execution (i.e. static typing) or defer it to runtime (i.e. dynamic typing).

Programming languages that employ static or dynamic typing are called statically or

dynamically typed, respectively. Static typing analyses solely source code and offers

many unique benefits. For example, it detects type errors early in the development

cycle, thereby reducing bug costs; it improves program documentation and navigation

by providing typed interfaces, thereby increasing productivity. On the other hand,

static typing is rigid in enforcing type safety. Specifically, it desires developers to

decide the types of all terms in their programs beforehand; once decided, the type

of a term can no longer change. This design overhead, as opponents argue, slows

down the development for daily programming tasks. Static type systems are also

conservative: they can prove the absence of some bad program behaviours, but they

cannot prove their presence. Hence, static type systems may reject programs that

actually behave well at runtime. Formally, for a Turing-complete programming

2.1. Type System 23

language, in order to maintain soundness (i.e. failing all programs with type errors)

and therefore utility, static typing is inevitably incomplete (i.e. rejecting programs

without any type errors). For example, a program like

if <complex test > then <normal execution > else <type error >

will be rejected as ill-typed, even the <complex test> may always evaluate to true,

because a static analysis cannot determine the predicate’s result.

These reasons have led to the birth of dynamic typing that uses runtime type tags

to distinguish objects and update the tags when needed based on the def-use chain of

the objects. Consequently, in a typical dynamically typed language, developers are

free to change the type of a term. For instance, the code snippet below is rejected in

Java, but not in JavaScript, regardless of the original type of variable foo:

1 foo = 0;

2 foo = "hello";

This flexibility exempts developers from making explicit upfront commitment to

constraining the values an expression can consume or produce, which facilitates

the writing of reflective, adaptive code. More importantly, dynamic typing is able

to type check certain language features that are beyond the reach of static typing.

Downcasting is a notable example, because whether the object of the base class holds

a value of the derived class can be decided only at runtime.

Static Typing for Dynamically Typed Languges Dynamic typing gained much

momentum before circa 2010, illustrated by the surging industrial uptake of dynami-

cally typed languages back then, such as JavaScript, Python, and Ruby. In recent

years, however, this expansion of dynamic typing seems to have hit a bottleneck,

as dynamically typed languages set foot into the field of large scale, complex pro-

gramming. Most newly-designed, popular industrial languages, such as Go and Rust,

adopt static typing. Even within the dynamic typing community, static typing is

rising. For example, starting from version 3.5, Python started to gradually introduce

language features that allow developers to optionally annotate the types of local

variables, function parameters and returns (PEP 4841 and PEP 5262). Though Python
1https://peps.python.org/pep-0484/
2https://peps.python.org/pep-0526

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526

2.1. Type System 24

remains dynamically typed, third-party type checkers, such as mypy3, pytype4 and

pyre5, collect these type annotations, statically type check them, and provide useful

error messages. JavaScript is another notable example. Ever since Thiemann’s first

proposal [30], optional static typing for JavaScript has rapidly developed. Standalone

type checkers such as Flow, compilers supporting optional type annotation and type

inference such as Closure, and programming languages extending JavaScript with

optional static typing such as TypeScript and Dart, have emerged.

What is the intuition behind this turn of the tide? Chapter 3 answers precisely

this problem. It presents an empirical study that quantifies the benefit of optional

typing on code quality.

Empirical Studies on Static and Dynamic Typing Researchers have empirically

compared dynamic and static type systems [31, 32, 33, 34, 35, 36, 37]. These

studies perform the comparison along different dimensions, including development

productivity, code usability, and code quality. Prechelt and Tichy conducted a

controlled experiment, in which 34 subjects were divided into four groups, two

developing in C with a type system and other two without, to assess whether the type

system would benefit developers [38]. Hanenberg’s study [39] which ran for over a

year and involved 49 students is a notable achievement. Hanenberg wrote his own

language in two versions, one equipped with a static type system and the other with a

dynamic one. The subjects were then divided into two groups, and required to write

a simplified Java parser. For each student, Hanenberg recorded the development

time of the scanner and the number of passed test cases for the parser. The results

indicated that static type systems did not have a significant positive impact on both

the development time and the code quality.

Nonetheless, questions remain. Developers are well-paid so it is expensive to

study them. Thus, most studies are small scale or use students; while Hanenberg’s

scale is impressive, it still relies on students. Further, his custom language is itself an-

other confounding factor. In contrast, our experiment samples from what developers

3https://github.com/python/mypy
4https://github.com/google/pytype
5https://github.com/facebook/pyre-check

https://github.com/python/mypy
https://github.com/google/pytype
https://github.com/facebook/pyre-check

2.1. Type System 25

naturally do in the course of their work, in particular from approximately 537,709

commits they create. Thus, it avoids the cost of dedicated developer participation.

Moreover, the semi-automation and modular implementation of this experiment

offers great reproducibility and adaptability.

Type Annotation and Type Inference Original static type systems collect type

information from type annotations. Specifically, these type systems require devel-

opers to explicitly annotate their code and declare the types of self-defined objects,

such as local variables and functions. In order to alleviate the annotation burden on

developers, researchers have dedicated to devising a type inference algorithm that

can automatically deduce the types of different constructs based on only program

texts. Intuitively, such an algorithm starts with an implicit understanding of the

types of various atomic values (e.g. true is a boolean value and 13 is an integer)

and infers the type of an expression by aggregating the types of its sub-expressions.

On the following code snippet, a typical type inference algorithm will first decide

that variables a and b are of types int through knowing that values 1 and 2 are of

types int, then assign function foo a type int -> int -> int, and finally deduce that

variable c is of type int.

1 function foo (x, y) {

2 return x + y;

3 }

4 a = 1;

5 b = 2;

6 c = foo(a, b);

The most well-known type inference algorithm is Algorithm W. The origin of this

algorithm is the type inference algorithm for Curry and Feys’ simply typed λ -

calculus [40]. In 1969, Hindley extended this work and proved that their algorithm

always inferred the most general type [41]. In 1978, Milner, independently of

Hindley’s work, provided an equivalent algorithm, Algorithm W [42]. In 1982,

Damas and Milner finally proved that Algorithm W is complete and extended it to

support systems with polymorphic references [43].

Complete type inference, however, is generally undecidable for an expressive,

2.1. Type System 26

mainstream programming language. For example, type inference with polymorphic

recursion is provably undecidable [44]. In these cases, explicit type annotations are

required to help the underlying type systems resolve ambiguity.

Strong and Weak Typing The definitions of “strong” and “weak” typing are more

contentious than that of type system. Their frequent appearances in discussions or

even in literature, however, call for clarification. These terms originate from the

work published in 1970s. According to Liskov and Zilles, a strongly-typed language

must satisfy the requirement that “whenever an object is passed from a calling

function to a called function, its type must be compatible with the type declared

in the called function” [45]. Jackson defined a strongly typed language to be one

in which “each data area will have a distinct type and each process will state its

communication requirements in terms of these types” [46]. Nowadays, “strong” and

“weak” actually describe the extent to which a type system enforces type safety and

are more appropriate in a comparative setting. Additionally, some may confuse

strong typing with static typing. A statically typed language can be more weakly

typed than their counterparts, e.g. C; a dynamically typed language can be strongly

typed, e.g. Python.

Programming languages with certain features are often deemed less strongly

typed. For example, type coercions are commonly assumed to be error-prone, so

JavaScript is notorious for its permissiveness of type coercions [30, 47, 48, 49].

Pointers are another example. These beliefs, however, can be misleading. Pradel and

Sen empirically studied the usage of type coercions in a large corpus of real-world

JavaScript programs and revealed that most coercions (98.85%) were likely to be

harmless [50]. Due to these controversies, this thesis recommends against the vague

use of “strongly” or “weakly typed” to describe a programming language; instead,

one should be more precise, for example, discussing the presence or absence of

certain properties, like type safety or memory safety.

2.1.1 Specific Type Systems

Just relying on informal discussion is insufficient to truly understand specific type

systems. To accurately account for them, this thesis must first pick a proper formal-

2.1. Type System 27

ism. Though multiple formal models for type systems exist, such as term rewriting

systems [51] and term graph rewriting systems [52], typed λ -calculus [27] remains

the most widely used and therefore is employed throughout this section.

λ -Calculus As its name suggests, Typed λ -calculus is built upon λ -calculus, which

this thesis briefly reviews here. Lambda-calculus is a formal system that was de-

veloped by Church [53, 54] and investigated by many his contemporaries, such as

Turing [55], Kleene, and Rosser [56]. It models computation via function abstraction

and application and supports variable binding and substitution. λ -calculus is proved

to be Turing complete that it is able to simulate any Turing machine. Formally, in

λ -calculus, a λ expression 6 is defined as follows:

e ::= x | variable

λx.e | abstraction

e e application

A variable x is itself a λ expression; the abstraction of a variable x from a λ

expression e is an expression; the application of a λ expression to another one is also

an expression. A variable x that occurs within the scope of an abstraction λx.e is

bound; all other variables are free. A variable is bound by the syntactically innermost

enclosing λ , as in any block-structured programming language. An expression is

closed if it contains no free variables, otherwise it is open.

λ -calculus allows three kinds of reduction on λ expressions:

λx.e[x] →α λy.e[y] α-conversion

(λx.e1) e2 →β e1[e2/x] β -reduction

(λx.(e x)) →η e η-conversion

6While some existing literature treats λ term and λ expression as synonyms [57, 58], some online
article argues that a λ expression can be syntactically invalid and a λ term is a valid λ expression [59].
For simplicity, this thesis does not distinguish between them.

2.1. Type System 28

where e1[e2/x] means replacing every occurrence of x in e1 with e2. Alpha-

conversion, also known as α-renaming [60], allows the name of a bound variable

to be changed. Beta-reduction substitutes formal with actual parameters. Eta-

conversion can be applied only when e does not contain any free x and removes

redundant abstractions. The term redex, refers to any sub-expression reducible by

one of the reduction rules. An expression is in normal form if it contains no redexes.

Typing Rules Having revisited λ -calculus, this thesis now formally discuss type

systems. A type system is essentially a set of typing rules built upon a core syntax.

The typing rules are formulated with respect to an environment for the fragment

being type checked. They have a set of judgements as premises and another set as

conclusions. In general, a judgement has the form:

Γ ⊢ ψ

where Γ denotes a typing environment that encodes the assignment of types to

variables and ψ denotes an assertion whose free variables are declared in Γ. More

formally, Γ is a set of pairs x : τ , where x is a variable, τ its type, and the colon

operator the has-type relation. When Γ is empty, it is denoted as /0. This judgement

asserts that given Γ, ψ holds. A more specific judgement that most typing rules

involve, called the typing judgement, is typically of the form

Γ ⊢ e : τ

where e is a λ expression and τ a type. The typing judgement asserts that e has

a type τ with respect to a typing environment Γ for the free variables of e. Other

specific forms of judgements are also necessary. For example,

Γ ⊢ ⋄

states that the typing environment Γ is well-formed, which intuitively means that

Γ is constructed properly. An empty typing environment is well-formed. Given a

2.1. Type System 29

type system, one may apply its typing rules to establish a derivation that is a tree of

judgements with leaves at the top and a root at the bottom, where each judgement is

obtained from the ones immediately above it by some rule of the system. A valid

judgement is one that can be obtained as the root of a derivation. To verify the type

correctness of an expression, one can check the existence of a derivation for the

expression. If such a derivation does not exist, the expression is not typeable or

ill-typed. In other words, it has a type error. Otherwise, it is well-typed. The types

in a type system can be either basic types that are built-in, or new types that are

constructed using a type constructor on old types. Basic types can be considered as

ones built using nullary type constructors.

The remainder of this section reviews a list of major, specific type systems. It

starts with the simply typed λ -calculus that is the canonical and simplest instance of

a typed lambda calculus, and then investigates three extensions of the simply typed

λ -calculus. The goal of this literature review is to present the direction to which

contemporary type systems are heading, thereby identifying research opportunities.

This section concludes with an informal, brief discussion of other advanced typing

techniques.

Simply Typed λ -Calculus In 1940, Church introduced a typed interpretation of the

λ -calculus, known as the simply typed λ -calculus or λ→ [22]. Figure 2.1 details

its syntax. λ→ extends the syntax of untyped λ -calculus with a set of basic types

G, type annotations for bound variables in λx : τ.e, and a single type constructor

→ to build function types. λ→’s syntax also includes a set of constants C, which,

however, is not a necessity, because constants can be encoded using pure λ terms.

For example, the Church encoding [61] represents true in:

λ t. λ f . t

This explicit inclusion of constants is mainly for notational convenience. More

importantly, an expression that is valid with respect to the syntax of untyped λ -

calculus is also actually well-behaved, which is not the case for λ→. For example,

λx : γ.(x y) is not well-behaved, because x is of a basic type γ not a function type and

2.1. Type System 30

Variables x ∈ X
Basic Types γ ∈G
Constants c ∈ C
Types τ ::= γ | τ → τ

Expressions e ::= c | x | λx : τ.e | e e

Figure 2.1: The formal syntax of the simply typed λ -calculus.

Judgement Interpretation

Γ ⊢ ⋄ Typing environment Γ is well-formed.
Γ ⊢ τ Type τ is well-formed in Γ.
Γ ⊢ e : τ Typing environment Γ entails that expression e is of type τ .

Table 2.1: The three judgements needed to compose typing rules for λ→.

cannot be applied to y. Therefore, the verification of a given expression’s semantic

correctness is left to type checking.

The simply typed λ -calculus’s typing rules require only three simple judge-

ments, shown in Table 2.1. The judgement Γ ⊢ τ is actually redundant, since all

syntactically correct types are well formed in any environment Γ by construction.

This judgement, however, is necessary for more powerful yet complicated type

systems, which will be discussed later.

Using the presented judgements, the simply typed λ -calculus’s typing rules are

presented in Figure 2.2. The rule (Env /0) formalises the discussion above that an

empty typing environment is well-formed. The rule (Env x) expands an environment

Γ into a larger one Γ, x : τ , where the comma operator extends behaves like set

union, provided that τ is valid type in Γ. The rules (Type Basic) and (Type →)

construct types. While the former automatically include basic types into Γ, the latter

builds new types using the→ type constructor. The rule (Var) states that a variable x

has whatever type we assume it to have. The rule (Abs) assigns type τ1→ τ2 to a

function abstraction, if the function body receives type τ2 under the assumption that

the formal parameter has type τ1. The rule (App) associates a function application

e1 e2 with a type τ2, if the function e1 is of type τ1→ τ2 and the actual parameter

2.1. Type System 31

Env /0/0 ⊢ ⋄
Γ ⊢ τ x /∈ dom(Γ)

Env x
Γ, x : τ ⊢ ⋄

Γ ⊢ ⋄ τ ∈ Basic Type Basic
Γ ⊢ τ

Γ ⊢ τ1 Γ ⊢ τ2 Type→
Γ ⊢ τ1→ τ2

x : τ ∈ Γ Var
Γ ⊢ x : τ

Γ, x : τ1 ⊢ e : τ2 Abs
Γ ⊢ λx : τ.e : τ1→ τ2

Γ ⊢ e1 : τ1→ τ2 Γ ⊢ e2 : τ1 App
Γ ⊢ e1 e2 : τ2

Figure 2.2: The typing rules of the simply typed λ -calculus.

has type τ1. Collectively, these typing rules form the theoretical basis of λ→.

Despite being a syntactical extension of the untyped λ -calculus, λ→ is in fact

computationally weaker. In 1967, Tait demonstrated that β reduction of λ→ is

strongly normalising [62]. In 1991, Berger and Schwichtenberg presented a purely

semantic normalisation proof [63]. These important results show that λ→ is strongly

normalizing, so every well-typed expression in λ→ is reducible to a normal form;

that is, every program halts. Therefore, λ→ cannot simulate a Turing machine that

may never halt and is not Turing-complete.

Hindley Milner Type System Introduced independently by Hindley [41] and Mil-

ner [42], Hindley Milner type system [64] is a milestone in the development of

type systems. The core novelty of Hindley Milner type system is two fold: First, it

allows parametric polymorphism [65] by introducing the let type constructor, and

second, it proposes Algorithm W to fast deduce the most general type of a term

in a program without requiring type annotations from the developer. Algorithm W

is a recursive procedure: Given an expression whose type is to be inferred and a

type environment, it decomposes the expression into subexpressions and handles

them differently based on their kind. For example, if the subexpression is a variable,

Algorithm W simply looks up its type in the type environment. If the subexpression

is a function abstraction, Algorithm W adds a type variable for the parameter to the

type environment, recursively infers the type of the function body, and uses what is

learned about the function body to instantiate the parameter’s type. While in a worst

case scenario Algorithm W is DEXPTIME-complete in complexity [66], it can often

2.1. Type System 32

Variables x ∈ X
Types τ ::= T | Type Variable

τ → τ | Function Type
∀T.τ Universally Quantified Type

Expressions e ::= x | Variable
λx : τ.e | Abstraction

e e | Application
λT.e | Polymorphic Abstraction

e τ Type Instantiation

Figure 2.3: The formal syntax of system F .

achieve linear complexity in practice [67], if its scanning of the type environment is

well-engineered.

System F The simply typed λ -calculus is a first order formal system, as it lacks type

parameterisation and type abstraction. Girard [68] and Reynolds [69] independently

created system F , which extends the simply typed λ -calculus by introducing univer-

sal quantification over types. Hence, system F is a second order typed λ -calculus

that formalises parametric polymorphism and serves as the theoretical foundation

for programming languages such as Haskell and ML.

Figure 2.3 details the syntax of system F . Formally, system F includes a new

form of term, λT.e, indicates an expression e that is parameterised with a type

variable T that ranges over arbitrary types. With this new term, one may now write

generic functions. For example, in λ→, the identity function of a fixed type τ is

λx : τ.x; in system F , one can define the identity function of an arbitrary type as

λT.λx : T.x. Then they can instantiate the type parameter of this parametric function

with any given type τ , i.e. (λT.λx : T.x) τ , which produces back λx : τ.x. However,

λ→ is not able to assign a proper type to this term. Hence, system F adds the

universally quantified types. The term λT.e is of type ∀T.τ , meaning that for all T,

the body e has type τ (here e and τ may contain occurrences of T. For example, the

type of the parametric identity function is ∀T.T→ T.

Though the judgements that system F use are exactly the same as those in λ→

2.1. Type System 33

Env /0/0 ⊢ ⋄
Γ ⊢ τ x /∈ dom(Γ)

Env x
Γ, x : τ ⊢ ⋄

Γ ⊢ ⋄ T /∈ dom(Γ)
Env T

Γ, T ⊢ ⋄

Γ ⊢ ⋄ τ ∈ Basic Type Basic
Γ ⊢ τ

Γ ⊢ τ1 Γ ⊢ τ2 Type→
Γ ⊢ τ1→ τ2

Γ, T ⊢ τ Type ∀
Γ ⊢ ∀Tτ

x : τ ∈ Γ Var
Γ ⊢ x : τ

Γ, x : τ1 ⊢ e : τ2 Abs1
Γ ⊢ λx : τ.e : τ1→ τ2

Γ ⊢ e1 : τ1→ τ2 Γ ⊢ e2 : τ1 App1
Γ ⊢ e1 e2 : τ2

Γ, T ⊢ e : τ
Abs2

Γ ⊢ λT.e : ∀T.τ
Γ ⊢ e : ∀T.τ1 Γ ⊢ τ2 App2

Γ ⊢ e τ2 : [τ2/T]τ1

Figure 2.4: The typing rules of system F .

(Table 2.1), its typing rules are more complex. Figure 2.4 illustrates the complete

typing rules for system F . Compared against λ→ (Figure 2.2), the additional rules

are: (Env T), which extends the typing environment with a type variable; (Type ∀),

which constructs a quantified type ∀T.τ from a type variable T and a type τ which

may be parameterised with T; (Abs2), which abstracts parametric polymorphic;

and (App2), which instantiates a polymorphic abstraction with a given type, where

the substitution [τ2/T]τ1 replaces all the free occurrences of T in τ1 with τ2. As

a simple yet instructive example, let us build the derivation for id(∀T.T→ T)(id),

where id has type ∀T.T→ T. Applying the rule (App2) gives id(∀T.T→ T)(id)≡

((∀T.T→ T)→ (∀T.T→ T))(id); then applying the rule (App1) gives ((∀T.T→

T)→ (∀T.T→ T))(id)≡ ∀T.T→ T.

First Order Type System with Subtyping Subtyping, a kind of polymorphism,

intuitively captures the inclusion relation between types. An entity of a type can be

deemed an entity of any of its supertypes. Thus, this entity should be safely used

where an entity of its supertype is expected. Though not until 19080s had subtyping

been formalised by Reynolds [70] and Cardelli [71], it is core to the object-oriented

programming paradigm, so the underlying type systems must handle it. Broadly, two

kinds of subtyping exist: nominal subtyping, in which a type is another’s subtype

only when the developers explicitly declare so, and structural subtyping, in which

the structure of two types determines whether or not one is a subtype of the other.

2.1. Type System 34

Judgement Interpretation

Γ ⊢ ⋄ Typing environment Γ is well-formed.
Γ ⊢ τ Type τ is well-formed in Γ.
Γ ⊢ e : τ Typing environment Γ entails that expression e is of type τ .
Γ ⊢ τ1 <: τ2 Type τ1 is a subtype of τ2 in Γ.

Table 2.2: The four judgements needed to compose typing rules for a type system that
supports subtyping.

To model subtyping, <:, the subtyping relation operator must be added; τ1 <: τ2

asserts τ1 is a subtype of τ2. Consequently, a type system with subtyping utilises an

additional judgement, called the subtyping judgement, shown on the last row in Ta-

ble 2.2. One of the simplest type systems with subtyping is an incremental extension

of λ→, which we call λ<:
→ here. The syntax of λ<:

→ remains mostly unchanged with

respect to that of λ→, except for the inclusion of a type ⊤ that denotes a supertype of

all types. The typing rules for λ→ can also be ported without modification. However,

λ<:
→ does require extra typing rules to reason subtyping, as Figure 2.5 depicts. These

rules include: (Sub Refl) and (Sub Trans), which guarantee the reflexivity and the

transitivity of the subtyping relation; (Type ⊤), which extends a well-formed typing

environment with type ⊤; (Sub ⊤), which formally states that ⊤ is the supertype

of all types; (Subsumption), which connects a typing judgement with a subtyping

judgement, meaning that if an expression e is of type τ1 and τ1 is a subtype of τ2,

then e is of type τ2; and finally (Sub→), which deserves in-depth discussion. The

key concept behind this rule is type variance, which dictates how subtyping between

complex types relates to subtyping between their components. If the constructor of a

complex type preserves the subtyping relations of the simple types, it is covariant;

if it reverses the subtyping relations, it is contravariant. Here, the function type

constructor→ is contravariant in its parameter type but is covariant in its return type.

It is again Reynolds and Cardelli who first formally stated and later popularised this

rule [70, 71].

Gradual Typing Static and dynamic typing have complementary strengths and are

not necessarily exclusive. In practice, programming languages like Java that rely

heavily on static typing may still implement dynamic typing to check constructs

2.1. Type System 35

Γ ⊢ τ Sub Refl
Γ ⊢ τ <: τ

Γ ⊢ τ1 <: τ2 Γ ⊢ τ2 <: τ3 Sub Trans
Γ ⊢ τ1 <: τ3

Γ ⊢ ⋄ Type ⊤
Γ ⊢ ⊤

Γ ⊢ e : τ1 Γ ⊢ τ1 <: τ2 Subsumption
Γ ⊢ e : τ2

Γ ⊢ τ Sub ⊤
Γ ⊢ τ <:⊤

Γ ⊢ τ1 <: τ2 Γ ⊢ τ3 <: τ4 Sub→
Γ ⊢ τ2→ τ3 <: τ1→ τ4

Figure 2.5: The additional typing rules of λ<:
→ with respect to those of λ→.

Variables x ∈ X
Basic Types γ ∈G
Constants c ∈ C
Types τ ::= γ |? | τ → τ

Expressions e ::= c | x | λx : τ.e | e e
λx.e≡ λx :?.e

Figure 2.6: The formal syntax of the gradually typed λ -calculus.

whose types cannot be resolved at compile time, e.g. downcasting. Many computer

scientists have dedicated to the integration of both typing disciplines. Notation work

in this field includes: Dynamic Typecase that extends statically typed languages

with a type, often named Dynamic or Any, together with explicit forms for injecting

and projecting values into and out of the Dynamic type [72, 73]; and Soft Typ-

ing that applies static analysis to dynamically typed programs for the purposes of

optimisation [74] and debugging [75].

Gradual typing is yet another academic attempt to combine static and dynamic

typing within a single programming language [58]. The authors presented a formal

type system that lets the developers 1) control which program regions are statically

or dynamically typed and 2) add or remove type annotations without any unexpected

impacts on their program. Intuitively, gradual typing introduces a special type to

represent statically-unknown types, and relaxes type equality into type consistency, a

symmetric but not transitive relation, to accommodate the unknown type. Formally,

the gradually typed λ -calculus extends the simply typed λ -calculus with an unknown

type, denoted as ?. A function whose parameter is not annotated is syntactic sugar for

2.1. Type System 36

(CREFL) τ ∼ τ (CUNR) τ ∼? (CUNL) ?∼ τ

τ1 ∼ τ2 τ3 ∼ τ4(CFUN)
τ1→ τ3 ∼ τ2→ τ4

Figure 2.7: The definition of the type consistency relation ∼.

Γ x = ⌊τ⌋
GVar

Γ ⊢ x : τ

∆ c = τ GConst
Γ ⊢ c : τ

Γ, x : τ1 ⊢ e : τ2 GAbs
Γ ⊢ λx : τ.e : τ1→ τ2

Γ ⊢ e1 :? Γ ⊢ e2 : τ2 GApp1
Γ ⊢ e1 e2 :?

Γ ⊢ e1 : τ1→ τ2 Γ ⊢ e2 : τ3 τ3 ∼ τ1 GApp2
Γ ⊢ e1 e2 : τ2

Figure 2.8: The typing rules of the gradually typed λ -calculus.

a function whose parameter is of type ?. Figure 2.6 shows the complete syntax for the

gradually typed λ -calculus. The key novelty of gradual typing, however, lies on its

type consistency relation ∼, defined in Figure 2.7. The (CFUN) rule states that given

two functions, if their parameters and returns are type consistent, these two functions

are type consistent. Figure 2.8 details the typing rules for gradually typed λ -calculus.

The authors, however, overloaded the typing environment Γ to be a function from

variables to optional types (⌊τ⌋ or ⊥). The type system is parameterised on a

signature ∆ that assigns types to constants. The rule (GAPP1) states that when the

type of a function is unknown, applying it returns also an unknown type. The rule

(GAPP2) allows a function to be applied to an expression which is type consistent

with the function’s formal parameter. Based on the discussed formalisation, the

authors finally proved that the gradually typed λ -calculus is type safe.

In their subsequent work [76], Siek and Taha further adapted the to object-

oriented programming languages. In 2015, these authors observed that the term

“gradual typing” seemed to have been abused. To mitigate this issue, they published

a paper [77] in which they proposed a list of refined criteria for a type system to

qualify as gradual typing. Some argue that these requirements are too strict to be

met. Whether this is true remains an open question.

Optional type systems [78], which require type annotations to be omittable

and have no runtime semantics, are another attempt to integrate static and dynamic

typing. Like gradual typing, common implementations of an optional type system

2.1. Type System 37

also introduce the special type ? representing an statically unknown type. It differs

from gradual typing in that it does not have any soundness guarantee. Therefore,

researchers often also call it a form of unsound gradual typing. Recent years have

witnessed an increasing industrial uptake of optional typing, but how it is enforced

varies across languages. For example, TypeScript checks and then erases all type

annotations when transpiling to JavaScript, whereas Python’s type annotations simply

decorate the code, waiting to be used by separate type checkers.

2.1.2 Other Advanced Type Systems

In the field of type systems, what have been reviewed above are only a tip of the

iceberg and many other advanced typing techniques exist. This section briefly and

informally discusses some of them.

Intersection types Early type systems limit a term to have only one type. To model

function overloading which requires a term to have more than one type, Coppo

et al. introduced the intersection type constructor “∧” in the late 1970s [79] . They

presented a type assignment system CD, where the used context is implicit, and

proved that for a type τ and a λ -term in the β -normal form N, whether or not

N : τ (N has the type τ) is decidable. However, the CD is flawed. It was later

proved [80] that type inference for intersection type is not decidable, for terms that

are not in β -normal form. Also, the CD system is closed under β -equality only for

λ I-calculus [53], a restriction of the full λ -calculus. Finally, in the CD system, not

all terms under β -extension for the full λ -calculus can be typed [81].

In 1981, Coppo et al. extended the CD system with the CDV type assignment

system [82]. They formalised the sequence type formation object, previously ex-

pressed only in the Curry’s type system [79], and made the context explicit in a

sequent style presentation. Because of this, an additional deduction rule, elimination

for the intersection type constructor ∧, was required. They introduced the universal

type constant ω , first described by Girard [83], which can be assigned to any λ -term.

The introduction of ω provides some important results. CDV is closed under β -

equality for the full λ -calculus, while all the terms that have a head normal form [84]

are typeable, as opposed to CD systems, where only the terms with normal form

2.1. Type System 38

where typeable. All the proprieties proved for CD [79] systems, still hold for CDV

system. Bucciarelli et al. [85] compared the computational properties of the λ -terms

typeable with CDV type assignment system, with the ones typeable with Curry-style

type systems. There main result is the prove that all the functions uniformly [86]

definable by using intersection types, are also definable by using Curry types.

Neither the CD nor the CDV system is, however, complete, mainly because they

require a function to always return an atomic type or ω . Barendregt et al. [87]

introduced the BCD type assignment system, and proved its completeness, by

allowing the intersection type constructor to also appear on the right hand side of the

function type constructor→ (i.e. intersection types at function returns). However,

BCD systems have more than one way to infer a type, which makes it difficult for

computation. Rocca et al. [88] later proved the principal type schemes theorem for

BCD systems. Van Bakel [89] presented a restricted version of BCD systems, where

the BCD system was restricted to strict types. In this work, the types that are strictly

needed to assign a type to a term in BCD are considered strict types.

In general, type inference for intersection type based systems is undecidable.

Researchers have put a lot of effort in imposing restrictions to obtain decidability [90,

91, 92, 93, 85, 94, 95, 96, 97, 98, 99, 100, 101], the most studied being rank 2

intersection types [102]. Rank 2 intersection type systems assume that intersection

types might appear only on the left hand side of an function type constructor (→) [92].

Alves et al. [102] proved that any term typeable by a simple type in the rank 2

intersection type system can be typed into a new term in Curry-style system, with the

same type, by systematically transformations of intersection types in simple types,

using fresh variables. Coppo et al. [90] suggested the combination of intersection

type with universal quantification. Terauchi et al. [99] also treated the problem of

rank-2 intersection types with polymorphic recursion. In this work, the authors

proved the undecidability of rank-2 intersection type with polymorphic recursion,

and thus answered the open question posed in Jim’s work [93]. Coppo et al. [94]

defined another decidable restriction of the intersection types, without using the

rank 2 restriction. In their approach, they limited the notion of intersection, for

2.2. Symbolic Execution 39

allowing a term variable to have different types in its different occurrences. The

authors also present an unification based decidable type inference algorithm , and

proved the principal type property for their system. Later, Kfoury et al. [96] defined

a new intersection type system. The authors proved that for any rank-n restriction of

there system, where n is a finite number, the principal typings property, as well as

decidability hold. In the previous results, only restrictions up to rank-2 are proved

to be decidable. For decidable type inference in their system, they proposed a

new unification algorithm, called β -unification. Kfoury et al. [100] also defined a

methodology for computing compositional type inference, by using intersection type.

In their approach, the inference for a particular fragment is obtained only from the

inference results of its immediate subfragments, and thus obtained a very efficient

implementation of intersection types inference algorithms.

Union types Union types, the dual notion of intersection types, are implemented

in many programming languages, such as C, FORTRAN, ALGOL68, Pascal, and

Caml [103]. Barbanera et al. [104] first introduced a type system that uses both

intersection and union types, and proved that there exist translations from type

systems with union types to ones without. They demonstrated that anything one can

prove for a type system without union types can also be proved for the equivalent

system that uses union types. Since then, many researchers have realised the strength

of union types and made important contributions [105, 106, 107, 108, 109, 110, 111,

112, 113, 114].

2.2 Symbolic Execution

Symbolic execution (symex) binds symbols to variables during execution. When it

traverses a path, it constructs a path condition that define inputs (including environ-

mental interactions) that cause the program to take that path. Symex has some well

known limitations [115] including path explosion, coping with external code, and

out-of-theory constraints.

Harman et al. [116] introduced the concept of testability transformations,

source-to-source program transformations whose goal is to improve test data gen-

2.2. Symbolic Execution 40

eration. Following Harman et al., Cadar speculated that program transformations

might improve the scalability of symbolic execution in a position paper [117]. For

example, a program transformation can rewrite a program to allow symbolic exe-

cution to cover portions of the program’s state space that current symex engines

cannot efficiently reach. The core idea is to transform expressions in a program that

produce out-of-theory constraints into expressions that produce in-theory constraints.

The transformed program under-approximates the input program’s behaviour: it is

precise over every component of the program’s state it binds to a value in G and

reifies its ignorance of component’s actual value when it binds ⊥ to that component.

2.2.1 Handling Unknown via Concretisation

Solver unknowns bedevil symex. One way to handle them is to resort to concrete

execution. Dynamic Symbolic Execution (DSE) [118] does this by lazily concretising

the subset of the symbolic state for which the solver return unknown. Concolic

testing [119, 120, 121] or white-box fuzzing [122] is an extension to DSE that initially

follows the path that a concrete input executes. Concolic testing requires concrete

inputs from the user and then searches a neighbourhood around the path executed

under its concrete input by negating the values of the current branch conditions

from the current followed path. First concolic testing flips the closest branch to the

end of execution and then, it continues to do so upwards to the entry point of the

program. To flip the path condition, concolic testing uses an SMT solver. Whenever

reaching a constraint that the solver cannot solve, or for which the solver times out,

the concretisation methods, such as DSE and concolic testing, get a concrete value

that can be either random, or obtained under different heuristics [121].

2.2.2 Constraint Encoding

During its execution, a program under analysis produces constraints in the different

domains of its data types, such as constraints over strings, or floats. Before calling the

solver, a symex engine needs to encode the constraints in a language that the solver

understands. Some of these constraints are difficult for the solver: the literature

provides a couple of constraint encoding mechanism to cope with them.

2.2. Symbolic Execution 41

Strings Quine proved that the first-order theory of string equations is undecid-

able [123]. Since then different techniques have emerged implementing decision

procedures over fragments of string theory. All these approaches have limitations:

either they do not scale; they support a fragment of string theory that is not well-

aligned with string expressions developers write; they require fixed length strings;

or they require a maximum length and loop through all possible lengths up to that

maximum. There are three main categories of string solvers: automata, bit-vector,

and word-based.

Automata-based solvers [124] use regular languages or context-free grammars

to encode the string constraints. The idea is to construct a finite-state automata that

accepts all the strings that satisfy the path conditions in a program. Building this

automata requires handcrafted building algorithms for the set of string operations that

we intend to support and the set of values that the program accepts as inputs [125].

When a new string constraint is added to the path condition, these approaches refine

the automaton to not accept the strings that violate the newly added constraint. The

refinement process is automatic: we remove from the set of values that the automata

accepts the ones that are not valid for the new constraint. Infeasible paths construct

automata that do not accept any strings. For string constraints, the automaton

becomes the solver. Automata-based string solvers tend not do not combine strings

with other data types [126], as combining string automata with other data types

and operations over them, requires handcrafted initial automata for the particular

data types and operations that the program under analysis uses in conjunction with

the string operations. Yu et al. [127] tackles the problem of using an automaton to

handle both string and integer constraints, but no other data types.

Bit-vector based symex engines convert string constraints into the domain of

bit-vectors [128]. The bit-vector solvers require a maximum string length and lack

scalability. Specifying a maximum length per each query that symex sends to the

solver would require comprehensive annotations, so symex engines use a global

maximum. In general, string length is domain-specific and specifying a maximum

length for an entire program is problematic: for example, a database query might

2.2. Symbolic Execution 42

be hundreds of characters long, while a command line flag can occupy only one

character. The string length restriction means that users must specify a single length

for all strings in the program. When too big, this length slows the solver; when too

small, it limits the analysis to small strings. Thus, these engines typically execute

a program over different length strings [128]. The bit-vector encoding of values

causes exponential blow up in model size, 2n where n is the length of a bit-vector,

since each bit becomes a propositional variable for the underlying SAT solver and

hampers scalability.

Word-based string solvers define a subtheory that uses rewriting rules and

axioms tailored to a fragment of string theory. Word-based string solvers escape

Quine’s result by not handling all string expressions. CVC4 [129] and S3 [130]

support constraints over unbounded strings restricted only to length and regular ex-

pression membership operators. Z3-STR [131] supports unbounded strings together

with the concatenation, string equality, substring, replace, and length operators.

Floating Point Bit-blasting is the most widely used technique for solving floating-

point constraints. Bit-blasting converts floats into bit-vectors and encodes floating

point operations into formulae over these bit-vectors. Bit-blasting floating-point

constraints generates formulae that require a huge number of variables. For exam-

ple, Brillout et al. [132] showed than when using a precision of only 5 (mantissa

width) addition or subtraction over floating point variables requires a total of 1035

propositional variables to be encoded in bit-vector theory. In a similar scenario,

multiplication or division requires a total of 1048 propositional variables. Because of

this, bit-blasting for floating point constraints does not scale to large programs [133].

Testing is also used to solve floating point constraints. Microsoft’s Pex

symex engine can use the FloPSy [134] floating point solver. FloPSy transforms

floating point (in)equalities into objective functions. For example, the predicate

if ((Math.Log(a) == b) becomes the objective function |Math.Log(a)−b| for which

we want to find values of a and b that yield 0. FloPSy uses hill climbing [135] to find

values for a and b. Fu et al. proposes Mathematical Execution (ME) [136]. They

capture the testing objective through a function that is minimised via mathematical

2.2. Symbolic Execution 43

optimisation to achieve the testing objective. Given a program under test P, they

derive another program PR called representing function. PR represents how far an

input x ∈ dom(P) is from reaching the set x|P(x) is wrong. PR returns non-negative

results and PR is the distance between the current input and an error triggering input.

Further, they minimise PR. Souza et al. [137] integrate CORAL, a meta-heuristic

solver designed for mathematical constraints, into PathFinder [138].

Klee-FP [139] and Klee-CL [140] replaces floating-point instructions with

uninterpreted functions. Klee-CL and Klee-FP apply a set of canonising rewritings

and further do a syntactic match of floating-point expressions trees. Both Klee-CL

and Klee-FP solve floating point constraints by proving that them are equivalent

(or not) with an integer only version of the program. They do this by matching

the equivalent expression trees. Thus, the main limitation is the requirement of

having the both version of the programs available: the floating point and the integer

implementation.

Other approaches use constraint programming [141] to soundly remove intervals

of float numbers that cannot make the path condition true. Botella et al. [142] solve

floating point constraints using interval propagation. Interval propagation tries to

contract the interval domains of float variables without removing any value that

might make the constraint true. These approaches are either imprecise or do not

scale.

Despite these attempts, constraint solving for string and floating point remains

difficult and does not scale to programs at industry scale. Chapter 4 proposes a

general program transformation that utilises types to change a program’s semantics

in a controlled way, thereby facilitating existing program analysis, such as symbolic

execution, for programs that compute with strings or floats.

2.2.3 The State Of the Art in Symbolic Execution

Significant research has tackled the problem of applying symex to real world pro-

grams [115]. Some approaches aim to improve a symex engine’s interactions with

the constraint solver. Klee [118] and Green [143] cache solved constraints. Lazy

initialisation delays the concretisation of symbolic memory thereby avoiding the

2.3. Other Related Dynamic Analysis Techniques 44

concretisation of states that additional constraints make infeasible [144]. Memoized

symex [145] and directed incremental symbolic execution [146] reuse query results

across different symex runs.

Other approaches improve the scalability of symex by mitigating the path explo-

sion problem. Veritesting [147] proposes a path merging technique that reduces the

number of paths being considered as a result of reasoning about the multiple merged

paths simultaneously. MultiSE [148] perform symbolic execution per method, rather

than per entire program. MultiSE merges different symex paths into a value summary,

or a conditional execution state.

For an unsolvable constraint, symex concretises its variables, causing incom-

pleteness: it cannot reason on the rest of the state space. Pasareanu et al. [149] delay

concretisation to limit the incompleteness. They divide the clauses into simple and

complex ones. When a simple clause is unsatisfiable, the entire PC becomes unsatis-

fiable. This can avoid reasoning about the complex clauses. Khurshid et al. [150]

concretises objects only when they need to access them.

A recent study [151] show that 33 optimisation flags in LLVM decrease symex’s

coverage on coreutils . Overify [152] proposes a set of compiler optimisations to

speed symex. Sharma et al. [153] exploit these results and introduce undefined

behaviour to trigger various compiler optimisations that speed up symex [117].

Under-Constrained symex [154] operates on each function in a program individually.

Abstract subsumption [155] checks for symbolic states that subsume other ones and

remove the subsumed ones. Ariadne transforms numerical programs to explicitly

check exception triggering conditions in the case of floats [156].

2.3 Other Related Dynamic Analysis Techniques

Despite being a fundamental software engineering task, debugging in practice is

slow and prone to producing bad fixes that introduce new errors or only partially fix

the problem [157]. To remedy the situation, researchers have proposed a significant

number of techniques. This section reviews previous dynamic debugging techniques,

which are related to Chapter 5.

2.3. Other Related Dynamic Analysis Techniques 45

Value Tracking Bond et al. [158] pioneered research into tracking erroneous

values to their origin. By modifying a Java virtual machine, they developed a

dynamic analysis that pinpoints the assignment of a null that further leads to a null

dereference. In the tool called Casper, Cornu et al. [159] improve Bond et al.’s work

by also recording how a null propagates from its production to the dereference site.

State-Based Fault Localisation Wong et al. classify fault localisation techniques

into eight categories [160], in which state-based fault localisation, as its name

suggests, uses program states (i.e. variable to value pairs) to localise bugs. Delta

Debugging [161] systematically trims failure-triggering data, like a program input. It

can also be applied to an execution trace, which inherently has two dimensions: along

one dimension lies program states; the other dimension is temporal, representing

a series of state transitions. When Zeller [162] first applied Delta Debugging to

program states, he sought to narrow the state difference between a passing and a

failing execution. Later, Cleve and Zeller applied Delta Debugging to state transitions

to isolate a chain of transitions that cause a failure [163].

Dynamic Slicing Given a slicing criterion, a triple of inputs to a program p, a

location l in p, and a variable x, dynamic slicing [164] returns a subsequence of p

such that executing it preserves the behaviour for x at l. A typical dynamic slicer

first builds a dependence graph from executing p and then computes a slice for the

slicing criterion by traversing the dependence graph. Observation-based slicing [12]

is a variant of dynamic slicing, which realises behaviour preservation by requiring

the execution of p’s sliced variants to halt and the values of x to remain unchanged.

Dynamic Taint Analysis Tracking and auditing the flow of suspicious data is

a critical problem in security. Dynamic taint analysis [165] tackles this problem

by introducing and monitoring a special mark, which it calls taint. Specifically, it

augments data from a potentially untrusted source, such as the network, with a taint

field. When the program is executed, dynamic taint analysis uses some predefined

rules to propagate the taint field and checks whether data consumed at important

locations are tainted. Devised to combat security problems, dynamic taint analysis

has been used in debugging. Multithreaded programs are typically non-deterministic.

2.4. Chapter Summary 46

To debug them, a debugger needs to record events of interest at runtime, which poses

an overhead. Ganai et al. use dynamic taint analysis to identify inputs that can affect

control flow or data flow of a multithreaded program [166]. They demonstrate that

identifying these inputs effectively mitigates the overhead of runtime logging and

increases coverage.

Despite the rich literature, debugging remains “the dirty little secret of computer

science” [167]. Chapter 5 presents a dynamic program analysis technique that tracks

a value of interest through its propagation chain back to its origin, answering two

fundamental debugging questions: “Where did this value come from?” and “How

did it get here?”.

2.4 Chapter Summary
This chapter reviews the literature on program analysis, from which a research

opportunity arises: Can we utilise program transformation to extend the reach of

existing program analysis techniques? For example, both static typing and symbolic

execution are effective for a particular set of programs, but they have limitations:

static typing is inapplicable to programs written in a dynamically typed language,

where type annotations are omitted and type inference is undecidable; symbolic

execution suffers from various problems, one of which is unsupported theories. These

limitations can, in fact, be addressed via program transformation. Optional type

annotations, a degenerate case of program transformation, enable static typing on

the typed regions of a program. For symbolic execution, a well-controlled program

transformation can convert unsupported theories to supported theories. Indeed,

researchers have already taken this route. Ariadne [156] uses symbolic execution to

detect floating point exceptions, after replacing floating point to arbitrary precision

rationals, whose constraints contemporary solver are able to solve.

Chapter 3

To Type or Not to Type: Quantifying

Detectable Bugs in JavaScript

As Section 2.1 discusses, static typing is resurgent. Even within the community of

dynamically typed languages, static typing, particularly optional typing, is gaining

ground. This chapter empirically investigates this phenomenon, using JavaScript as

its subject.

JavaScript is a multi-paradigm programming language that experiences in-

creasing popularity and importance. Indeed, it is often called the assembly of the

web [168]; it is the core language of many long-running projects with public version

control history. JavaScript’s prevalence in the web and wider use in general pro-

gramming have drawn much attention. Richards et al. [169] and Ratanaworabhan

et al. [170] concurrently analysed the run-time behaviour of real-world JavaScript

applications. The former invalidated some common assumptions and called for more

flexible static analysis, while the latter focused on performance and concluded that

the existing benchmarks were not representative. Richards et al. further investigated

the use of eval, a powerful but controversial function [171]. The authors showed that

eval was pervasive and justified its importance. Pradel and Sen carefully examined

another dubious feature of JavaScript, implicit type conversion [50]. Similar to

eval, implicit type conversion is widely used, but much less harmful than commonly

assumed. Nikiforakis et al. extensively studied the real-world uses of JavaScript’s

remote library inclusion and revealed four types of vulnerabilities [172]. Apart

48

from research on the language, while Ocariza et al. and Hanam et al. classified

JavaScript bugs and investigated their root causes [173, 174, 175], Selakovic and

Pradel restricted themselves to performance issues [176].

JavaScript is also a dynamically typed language with permissive typing rules.

For example, it deems the expression "1" - 1 type correct and evaluates it to "10".

Academia and industry have proposed many program analysis techniques to help

developers combat this permissiveness, especially when they are composing large

and complex programs in JavaScript. Three companies, in particular, have viewed

static typing as important enough to invest in static type systems for JavaScript: first

Google released Closure1, then Microsoft published TypeScript2, and most recently

Facebook announced Flow3. What impact do these static type systems have on code

quality? More concretely, how many bugs could they have reported to developers, if

they had been used during development?

The fact that long-running JavaScript projects have extensive version histories,

coupled with the existence of static type systems that support optional typing and can

be applied to JavaScript programs with few modifications, permits an experiment

for us to under-approximately quantify the benefit of static type systems on code

quality. Specifically, this benefit is measured in terms of the proportion of bugs that

were checked into a source code repository that might not have been if the committer

were using a static type system that reported an error on the bug.

In this experiment, we sample public software projects, check out a historical

version of the codebase known to contain a bug, and add type annotations. We

then run a static type checker on the altered, annotated version to determine if

the type checker errors on the bug, possibly triggering a developer to fix the bug.

Unlike a controlled human subject experiment, our experiment studies the effect

of annotations on bugs in real-world code-bases not the human annotator, just as

surgery trials seek to draw conclusions about the surgeries, not the surgeons [177],

despite our reliance on human annotation. More generally, decision makers can use

1https://developers.google.com/closure/compiler/
2http://www.typescriptlang.org/
3http://flowtype.org/

https://developers.google.com/closure/compiler/
http://www.typescriptlang.org/
http://flowtype.org/

3.1. Problem Definition 49

this “what-if” style of experimentation on software histories to help decide whether

to adopt new tools and processes, like static type systems.

We employ two static type checkers, Flow and TypeScript, for three reasons.

First, Flow and TypeScript were created and are actively maintained by two industrial

giants. In particular, TypeScript’s community has developed DefinitelyTyped, a

mature collection of annotated interfaces for popular JavaScript libraries, for which

Feldthaus and Møller built an analysis tool [178]. In contrast, other tools, such as

Roy4, have not been actively updated. Second, to use Flow and TypeScript, one

simply needs to add type annotations to an existing JavaScript program. Many of

the alternatives require a complete rewrite, because their grammar differs from that

of JavaScript. Finally, Flow and TypeScript largely share annotation syntax, which

allowed us to reuse some annotations.

This experiment targets bugs that are public, actually checked in and visible

to other developers, potentially impacting them; public bugs notably include field

bugs, which impact users. We consider public bugs because they are observable in

software repository histories. Public bugs are more likely to be errors understanding

the specification because they are usually tested and reviewed, and, in the case of

field bugs, deployed. Thus, this experiment under-approximates static type systems’

positive impact on software quality, especially when one considers all their other

potential benefits on documentation, program performance, code completion, and

code navigation.

This chapter makes the core contribution of quantifying the public bugs that

static type systems detect and could have prevented: 15% for both Flow 0.30

and TypeScript 2.0, on average. Our experimentation artefacts are available at:

https://2-type-not-2.github.io/.

3.1 Problem Definition
This section defines the research problem that we aim to answer.

Definition 3.1.1 (ts-detectable). Given a static type system ts, a bug b is ts-detectable

4http://roy.brianmckenna.org/

https://2-type-not-2.github.io/
http://roy.brianmckenna.org/

3.1. Problem Definition 50

when adding or changing type annotations causes the program p containing b to

error on a line changed by a fix and the new annotations are consistent with f , a

fixed version of p.

We assume a fix increases the adherence of p to the specification and we

consider only its effect on resolving b. The added or changed type annotations

may affect several terms, or only one. These annotations are consistent if 1) when

they are carried to f , f type checks, and 2) the type of every annotated term in p

is a supertype of that term’s type when an oracle precisely annotates it in f . In

this experiment, we can only strive to achieve consistency, because we do not have

the ideal oracle that precisely annotates f and in general, a fix may only partially

resolve the bug or introduce new bugs. One can download our experimental data

to verify how well we have reached this goal. Consistency implies that we do not

intentionally add ill-formed type annotations. For example, when b and c have type

number, changing var a = b + c to var a:boolean = b + c incorrectly annotates a

as boolean, triggering a type error. If such ill-formed annotations are not ruled out,

one can use them to “detect” any bug, even type-independent failures to meet the

specification.

Let L be a programming language, like JavaScript, and La be a language based

on L with syntactical support for type annotations, like Flow or TypeScript. Let

P= {p1, p2, · · · , pm} denote a set of buggy programs. Let a be an annotation function

that transforms a program p∈ L to pa ∈ La. Finally, let tc be a type checking function

that returns true if an annotated program pa type checks and false otherwise.

We annotate each buggy program pi that is in P and written in L, and observe

whether it type checks. We calculate the percentage of bugs that a static type system

detects over all collected ones. Our measure of a static type system’s effectiveness at

detecting bugs follows:

|{pi ∈ P | ¬tc(a(pi))}|
|P|

(3.1)

Equation 3.1 reports the portion of bugs that could have been prevented had a

type system, like Flow or TypeScript, reported type errors that caused a developer

3.2. Methodology: Time-Travel Experiment 51

to notice and fix them. Depending on the error model of a static type system, a

might be the identity function, i.e. add no annotations. For instance, both Flow and

TypeScript are able to detect errors in reading an undefined variable without any

annotation.

3.2 Methodology: Time-Travel Experiment

An experiment is an empirical procedure conducted to investigate the causal impact

a manipulated independent variable, or treatment, has on an outcome. Usually, the

subjects of an experiment are divided into an experimental group that receives the

treatment and a control group that does not; ideally, this should be the sole difference.

On one end of the experiment spectrum are powerful controlled ones, in which

experimenters tightly control both the experimental environment and the independent

variable, assigning it either randomly (randomised control trial [179]) or using a

non-random criterion (quasi experiment [180]), like illness severity. At the other end

are experiments with loose control. An extreme case is natural experiment [181], in

which nature, not researchers, assigns the treatment.

Leveraging the version history of software projects, we propose a experimenta-

tion methodology: time-travel experiment. We “travel back” in time to a particular

historical version of a project, assign a “treatment” to that version, and compare its

outcome with the reality that lacks the treatment. The concept of a treatment in a

time-travel experiment is broad: it can be any technique or tool that helps with the

software development, e.g., a program analysis technique or an IDE. In this chapter,

we substantiate it with static typing.

Being the gold standard, a randomised control trial randomly allocates treatment

to mitigate selection bias, as Figure 3.1 shows. Our time-travel experiment also

randomly assigns treatment; its key distinction is that the subjects in the experimental

and the control groups are actually the same, freeing it from intrinsic confounding

factors, such as subject individuality, as Figure 3.2 illustrates. Imagine a drug

trial in which you could compare a patient’s outcome, both with and without the

drug treatment, across two universes! When applied to software engineering, this

3.2. Methodology: Time-Travel Experiment 52

Figure 3.1: The random controlled trial.

Figure 3.2: Time travel experiment.

experimental methodology shines in its scalability and reproducibility, and may

allow us to tackle and more confidently answer questions that have traditionally been

out of reach due to the cost of human subject studies on developers.

Historical Treatment Methodology Previous work has mined software repositories

to measure a property of an existing, mined version, like the number of vulnerabilities

a static analysis detects [182] or warnings a lint tool reports [183]. Most of these

studies are observational; a tool is used on history, but neither the history nor the

historical artefacts are modified. Work does exist that applies a treatment to the

history and/or artefacts in the history (e.g. changing the source code) and measures

the impact of such an intervention. Le Goues et al. automatically modified source

code to fix bugs [184]. Brun et al. introduced different orderings of historical branch

merges from repository histories to determine how early conflicting changes could

3.2. Methodology: Time-Travel Experiment 53

have been detected [185]. Bird and Zimmermann replayed development activity on

alternative branch structures to identify branches that acted as bottlenecks to code

movement [186]. We posit that this methodological approach of applying a treatment

to a historical snapshot of a project and measuring its impact can be a powerful

empirical tool.

3.2.1 Leveraging Fixes

Bug localisation often requires running the software and finding a bug-triggering

input. Code bit rots quickly; frequently, it is very difficult to build and run an

old version of a project, let alone find a bug-triggering input. Worse, many of our

subjects are large, some having as many as 1,144,440 LOC (Table 3.1). To side-step

these problems, we leverage fixes to localise bugs. For p ∈ L, we assume we have a

commit history as a sequence of commits C = {c1,c2, · · · ,cn}. When ci ∈C denotes

a commit that attempts to fix a bug, the code base materialised from at least one of

its parents ci−1 is buggy. A fix’s changes help us localise the bug: we minimally add

type annotations only to the lexical scopes changed by a fix. We add annotations

until the type checker errors or we decide neither Flow nor TypeScript would error

on the bug. This partial annotation procedure is grounded on optional typing, which

both Flow and TypeScript employ. These two type systems are permissive. When

they cannot infer the type of a term, they assign the wildcard any, similar to Abadi

et al.’s Dynamic type [72], to it.

This procedure allows us to answer: “How many public bugs could Flow and

TypeScript have prevented if they had been in use when the bug was committed?”,

under the assumption that one knows the buggy lines. By “in use”, we mean that

developers comprehensively annotated their code base and vigilantly fixed type

errors. The assumption that developers knew the buggy lines is not as strong as

it seems because, under the counterfactual that developers were comprehensively

and vigilantly using one of the studied type systems, the bug-introducing commit

is likely to be small (median of 10 lines in our corpus) and to localise some of the

error-triggering annotations, while the rest of the annotations would already exist in

the code base.

3.2. Methodology: Time-Travel Experiment 54

Figure 3.3: The error model of this experiment.

Limitations Four limitations of our approach are 1) a “fix” may fail to resolve and

therefore localise the targeted bug, 2) a minimal, consistent bug-triggering annotation

may exist outside the region touched by the fix, 3) we may not succeed in adding

consistent annotations (3.1.1), and 4) the annotation we add may cause the type

checker to error on a bug unrelated to the bug targeted by the fix. Further, considering

only fixed, public bugs introduces bias. We restrict our attention to these bugs for

the simple reason that they are observable. We have no reason to believe this bias is

correlated with ts-detectability. Section 3.6 discusses other threats to this work.

3.2.2 Error Model

The subjects of this experiment are identified and fixed public bugs. As Figure 3.3

shows, we aim to classify these bugs into those that are ts-detectable (the solid

partition of fixed public bugs) and not (the hashed partition of fixed public bugs).

Type systems cannot detect all kinds of fixed public bugs. What sorts of bugs

do our type systems detect and may prevent? Type systems eliminate a set of bad

behaviours [29]. More specifically, Flow or TypeScript detects and may prevent

type mismatches, including those normally hidden by JavaScript’s coercions, and

undefined property and method accesses. Additionally, both Flow and TypeScript

identify undeclared variables.

3.2. Methodology: Time-Travel Experiment 55

1 function addNumbers(x, y) {

2 return x + y;

3 }

4 console.log(addNumbers (3, "0"));

(a) The buggy program.

1 function addNumbers(x, y) {

2 return x + y;

3 }

4 console.log(addNumbers (3, 0));

(b) The fixed program.

1 function addNumbers(x:number , y:number) {

2 return x + y;

3 }

4 console.log(addNumbers (3, "0"));

(c) The annotated, buggy program.

Figure 3.4: JavaScript coerces 3 to "3" and prints "30". From the fix, we learn that this
behavior was unintended and add annotations that allow Flow and TypeScript to
detect it.

3.2.3 Example

Assume addNumbers in Figure 3.4a is intended to add two numbers, but the

programmer mistakenly passes in a string "0". Because of coercion, a controversial

feature that enriches a language’s expressivity at the cost of undermining type safety

and code understandability [187], + in JavaScript can take a pair of number and string

values. Thus, Figure 3.4a converts the number to a string, concatenates the two

values, and prints "30". By reading the fixed program in Figure 3.4b, we infer that

both parameters are expected to have type number. We partially annotate the program,

shown in Figure 3.4c, enabling Flow and TypeScript to signal an error on line 4

and detect this bug. If, in addition to this bug, we had shown four other bugs to be

undetectable, Equation 3.1 would evaluate to 1
5 .

3.2. Methodology: Time-Travel Experiment 56

Fi
gu

re
3.

5:
T

he
w

or
kfl

ow
of

ou
re

xp
er

im
en

t.

3.3. Experimental Setup 57

3.3 Experimental Setup
Our experimental setup is similar to that of Le Goues et al. [184]. They aimed to

determine, for a sample of real world historical bugs sampled from GitHub projects,

what proportion of bugs would been fixed through automatic program generation

(Defects4J [188] enables similar studies and evaluations on real world bugs for

Java-targeted tools). We perform a sampling of historical real world JavaScript bugs

and attempt to determine what proportion of bugs would have been detected using

static JavaScript type systems if the authors had been using them.

Figure 3.5 depicts the general process of our study, which comprised many

phases, methodological decisions, investigations, and techniques. This section

describes the types of data we gathered and how we selected the data to use, discusses

potential threats and how we mitigated them, reports on preliminary investigations,

and presents our annotation process and various tactics used.

3.3.1 Corpus Collection

We seek to construct a corpus of bugs that is representative and sufficiently large to

support statistical inference. As always, achieving representativeness is the main

difficulty, which we address by uniform sampling. We cannot sample bugs directly,

but rather commits that we must classify into fixes and non-fixes. Why fixes?

Because a fix is often labelled as such, its parent is almost certainly buggy and it

identifies the region in the parent that a developer deemed relevant to the bug. To

identify bug-fixing commits, we consider only projects that use issue trackers, then

we look for bug report references in commit messages and commit ids (SHAs) in

bug reports. This heuristic is not only noisy; it must also contend with bias in project

selection and bias introduced by missing links.

Missing Links A link interconnects a bug report and a commit that attempts to fix

that bug in a version control system. Historically, many of these links are missing,

especially when the developer must remember to add them, due to inattentiveness,

distractions, or fire drills. Naı̈ve solutions to the missing link problem are subject to

bias [189]. GitHub provides issue tracking functionality in addition to source code

management and provides tight integration to ease linking. In addition, when pull

3.3. Experimental Setup 58

requests or commit messages reference bugs in the issue tracker, GitHub automati-

cally links the source code change to the bug. For these reasons, projects that use

pull requests, issue tracking, and source code management suffer far less from the

linking problem [190].

To validate this and assess the missing link problem in the context of GitHub

ourselves, we collected eight JavaScript projects, using a set of criteria including

project size, popularity, number of contributors, and the use of Node.js and jQuery.

We manually inspected them and observed that because project norms dictate that

developers refer to bugs in requests and commits to enable GitHub’s automatic

linking, the overwhelming majority complied with the practice, thus mitigating the

missing link problem.

Identifying Candidate Fixes Figure 3.6 depicts our procedure for identifying can-

didates of bug-resolving commits. For a project, we extract all bug ids from the

issue tracker, then search for them in a project’s commit log messages; concurrently,

we extract all SHA from the version history, and search for them in the project’s

issues. GitHub allows developers to label issues as bug reports, but we choose not

to use this functionality and consider all tracked issues, as we were uncertain what

bias this labelling could introduce. When we find a match, we have a candidate

fix that we store as a triple consisting of the SHA of the candidate, the SHA of its

parent, and the bug report ID. We cross-check matches from commit logs against

matches from the bug reports. If a fix has more than one parent, the algorithm stores

a distinct triple for each parent for later human inspection. For every automatically

identified candidate, we manually assess whether it is actually an attempt to resolve

a bug, rather than some other class of commit, like a feature enhancement or code

refactoring. We also filter bug reports written in a language other than Chinese and

English, and fixes that do not modify JavaScript.

The resulting set of bugs is a biased subset of all fixed public bugs. GitHub may

not be representative of projects, since proprietary projects tend not to use it. While

we have argued the problem is less acute, missing links persist. Finally, we may

not correctly identify bug-fixing commits. We contend, however, there is no reason,

3.3. Experimental Setup 59

Figure 3.6: The automatic identification of fix candidates that are linked to bug reports.

from first principles, to believe that there is a correlation between the ability of Flow

or TypeScript to detect a bug and the existence of a link between that bug and the

fixing commit. Thus, any link bias in the subset is unlikely to taint our results.

Corpus To report results that generalise to the population of public bugs, we used the

standard sample size computation to determine the number of bugs needed to achieve

a specified confidence interval [191]. On 19/08/2015, there were 3,910,969 closed

bug reports in JavaScript projects on GitHub. We use this number to approximate

the population. We set the confidence level and confidence interval to be 95% and

5%, respectively. The result shows that a sample of 384 bugs is sufficient for the

experiment, which we rounded to 400 for convenience.

To collect these 400 bugs, we took a snapshot of all publicly available JavaScript

projects on GitHub, with their closed issue reports. We selected a closed and

linked issue uniformly at random, using the procedure described above and stopped

sampling when we reached 400 bugs. The resulting corpus contains bugs from 398

projects, because two projects happened to have two bugs included in the corpus.

Table 3.1 shows the size statistics of the corpus. The project size varies largely,

ranging from 32 to 1,144,440 LOC, with a median of 1,736. The smallest project

is dreasgrech/JSStringFormat, a personal project with a single committer. It mini-

mally implements .NET’s String.Format that inserts a string into another based on

a specified format. We sampled from GitHub uniformly at random so our corpus

3.3. Experimental Setup 60

Max Min Mean Median

Project 1144440 32 18117.9 1736
Fix 270 1 16.2 6

Table 3.1: The size statistics in LOC of the projects and fixes in our corpus, which includes
398 projects6.

contains such small projects roughly in proportion to their occurrence in GitHub.

For a commit, GitHub’s Commits API5 does not return a diff; it returns summary

data, notably a pair of numbers, the count of additions and deletions. From this pair,

the number of modifications can only be implicitly bounded by min(#adds, #dels).

Because developers think in terms of modified lines, not lines of diff, we counted the

line in which Git’s word diff reported modifications. Most bug-fixing commits were

quite small: approximately 48% of the fixes touched only 5 or fewer LOC, and the

median number of changes was 6. We did not explicitly track the number of scopes;

that said, most of the fixes modified a single scope. The complete corpus can be

downloaded at: https://2-type-not-2.github.io/.

3.3.2 Preliminary Study

To quantify the proportion of public bugs that the two static type systems detect, and

could have prevented, our study must 1. find a time bound on per-bug assessment and

annotation in order to make our experiment feasible, 2. establish a manual annotation

procedure. Additionally, our study also aims to classify ts-undetectable bugs. To

speed the main experiment, we wanted to define a closed taxonomy for undetectable

bugs. To these ends, we conducted a preliminary study on 78 bugs, sampled from

GitHub using the above collection procedure.

A histogram of our assessment times showed that, for 86.67% of the bugs, we

reached a conclusion within 10 minutes, despite the fact that we were simultaneously

defining our annotation procedure. Thus, we set M, the maximum time that we can

spend annotating a bug, to be 10 minutes.

5https://developer.github.com/v3/repos/commits
6Of the 398 projects, only 375 were still available on GitHub at the time of this experiment.

https://2-type-not-2.github.io/
https://developer.github.com/v3/repos/commits

3.3. Experimental Setup 61

Algorithm 1 Manual Type Annotation.
Input: M, the maximum time to spend annotating a bug
Input: B, the list of sampled bugs
Output: O, the assessment of all sampled bugs

1: while B ̸= [] do
2: b := head B;B := tail B;
3: Check out p, the buggy program that contains b
4: for all ts ∈ {Flow,TypeScript} do
5: start := now();Ots[b] := Unknown;
6: while now() ≤ start + M do
7: Read p, b’s fix, and the bug report
8: pa := a(p)
9: if tcts(pa) then

10: Ots[b] := True; break
11: end if
12: if we deem b ts-undetectable then
13: Justify the assessment
14: Categorise b using the taxonomy below
15: Ots[b] := False; break
16: end if
17: end while
18: end for
19: end while

Taxonomy of Undetectable Bugs To build a taxonomy of bugs that Flow and

TypeScript do not currently detect, we used open coding. Open coding is a qualitative

approach for categorising observations that lack a priori organisation [192]. The

researchers assessed each observation and iteratively organised them into groups

they deem similar. Starting from JavaScript’s error model, we refined the taxonomy.

At the end of our preliminary study, our taxonomy contained JavaScript’s EvalError,

RangeError, URIError, and SyntaxError. To these, we added StringError, such as

malformed SQL queries. The logical errors we encountered caused us to add

BranchError, PredError that are caused by incomplete or wrong predicates, UIError,

and SpecError, a catch-all for other failures to implement the specification. Regular

expressions are built into and widely used in JavaScript, so we included RegexError.

Finally, we added ResError to handle resource errors, like out of memory, and

APIError to capture errors such as using a deprecated call.

3.3. Experimental Setup 62

3.3.3 Annotation

Procedure 1 defines our manual type annotation procedure. Because we annotate each

bug twice, once for each type system, our experiment is a within-subject repeated

measure experiment. As such, a phenomenon known as learning effects [193] may

come into play, as knowledge gained from creating the annotations for one type

checker may speed annotating the other. To mitigate learning effects, for a bug b in

B, we first pick a type system ts from Flow and TypeScript uniformly at random, so

that, on average, we consider as many bugs for the first time for each type system.

If b is not type related “beyond a shadow of a doubt”, such as misunderstanding

the specification, we label it as undetectable under ts and categorise it based on

item 3.3.2, skipping the annotation process. If not, we read the bug report and the fix

to identify the patched region, the set of lexical scopes the fix changes.

Combining human comprehension and JavaScript’s read-eval-print loop (REPL),

e.g. Node.js, we attempt to understand the intended behaviour of a program and add

consistent and minimal annotations that cause ts to error on b. We are not experts

in type systems nor any project in our corpus. To combat this, we have striven to

be conservative: we annotate variables whose types are difficult to infer with any.

Then we type check the resulting program. We ignore type errors that we consider

unrelated to this goal. We repeat this process until we confirm that b is ts-detectable

because ts throws an error within the patched region and the added annotations are

consistent (Section 3.1), or we deem b is not ts-detectable, or we exceed the time

budget M.

3.3.4 Annotation Tactics

The key challenge in carrying out Procedure 1 is efficiently annotating the patched

region. As previously stated, we rely on optional typing to allow us to locally type

a patched region. Sometimes, we must eliminate type errors so the type checker

reaches the patched region. In practice, this means we must handle modules. With

modules out of the way, we use a variety of tactics to gradually annotate the patched

region. The first, and most important, tactic is to read the bug-fixing commit. For

example, the fix of naugtur/transitionrunner:1 (using author/project:issue to

3.3. Experimental Setup 63

refer to our dataset) assigns the empty string to the variable initialClass when it

is null. Therefore, we add an annotation to indicate initialClass can be null. We

also use online documentation, when it exists. For example, accessing a non-existing

property triggers bug Gozala/narwhal-xulrunner:5. We read the documentation of

nsIOutputStream at Mozilla Developer Network to learn and and inject the appro-

priate annotation. To handle globals, we use type shims, which we describe below.

As noted, we have striven to add type annotations that are consistent (Section 3.1)

with the the ideal, fully annotated, and fixed version of the buggy program.

Modules For a subject buggy program, we first run the type checker without

any type annotations. Often the type checker reports an error before reaching the

patched region due to failures to import modules. We search for the declaration of

the variables in the fix and try to see whether they use any module methods, like

jQuery’s $. Finding variable declarations can be nontrivial in JavaScript, precisely

because a lack of types hindered our understanding of the program. If we deem a

missing module to be unrelated to the bug, we annotate it as any to eliminate such

type errors. For example,

1 // Flow and TypeScript cannot properly

2 // import express.js

3 var express = require(’express ’);

4 var app = express.createServer ();

becomes

1 var express:any = { };

2 var app = express.createServer ();

For TypeScript, if we deem a missing module related to the bug and it exists

in DefinitelyTyped7, we include it. If the bug stems from a misuse of a library

that has an annotated interface in DefinitelyTyped, we reuse DefinitelyTyped’s an-

notations. For example, deprecated internal data models in ember-cli caused the

bug sivakumar-kailasam/broccoli-leasot:55. To solve it, we borrowed Definitely-

Typed’s annotations for ember-cli. If the missing module is related but lacks an

7A project from the TypeScript community that provides annotated interfaces for popular
JavaScript libraries, at https://goo.gl/xvDaSI

https://goo.gl/xvDaSI

3.4. Results 64

interface in DefinitelyTyped or we are using Flow, we construct a type shim for it,

manually inferring the types from the module’s documentation or its code base.

Type Shims In general, a patched region contains free identifiers that we need to

annotate. Introducing casts would increase the annotation tax. Our workaround is to

introduce a type shim8, a set of type bindings for the free identifiers. From within

the patched region, the rest of the program can be viewed as a module for which we

can define a shim as a set of interfaces. We have aimed to construct consistent type

shims (Section 3.1); when a shim includes a property or method that is unrelated to

the bug, we annotate it with any. For example, by using a shim, the code snippet

1 var t = {x: 0, z: 1};

2 t.x = t.y; // y does not exist on t

3 t.x = t.z; // z exists on t, but is unrelated

becomes

1 interface T {

2 x:number;

3 z:any; // z has the type any

4 }

5 var t: T = {x: 0, z: 1};

6 t.x = t.y;

7 t.x = t.z;

3.4 Results

The main results rest on a manual assessment of 400 buggy JavaScript programs.

To help me calibrate, two collaborators on this experiment, Prof. Earl T. Barr and

Dr. Christian Bird, and I jointly assessed a subset of the bugs. First, we present the

inter-rater agreement of that three-way assessment, before presenting our main result

that static type systems find a significant number of public bugs.

8We overload shim here, which traditionally means code that normalises the functionality of an
existing API across different browsers.

3.4. Results 65

3.4.1 Inter-Rater Agreement

To calculate inter-rater agreement, we uniformly selected 20 bugs for calibration,

then all three of us annotated and classified each bug, using Procedure 1. Once all

20 bugs were processed, we collectively resolved each one on which they were not

unanimous.

After this calibration step, we uniformly selected an additional subset of 80

buggy versions. Once we had independently classified each of the 80 bugs, we

calculated the inter-rater agreement. There was full agreement among us for 86.4%

of the issues, indicating a high level of agreement. Because there were more than

two raters, Cohen’s κ is not an appropriate statistic [194]. Instead, we use Gwet’s

AC1 agreement coefficient, because it accommodates more than two raters and is

more stable than Fleiss κ when the distribution of ratings is highly skewed (as in

our case where over 80% of cases were rated as undetectable) [195, 196]. The AC1

statistic for the 80 ratings by the three collaborators is 0.89 which indicates “almost

perfect” agreement [197, 198]. In an effort to compare our ratings to a baseline rater

that simply classifies each bug as undetectable (i.e. always choosing the majority

class) we calculated the AC1 statistic three times, each time replacing one of the

collaborators with such a baseline rater. The resulting AC1 statistics were statistically

lower, 0.82, 0.85, and 0.83.

In discussing unknowns, we learned that each of us independently had cate-

gorised a bug as unknown when we thought it was detectable, but could not show

it, before we ran out of time. To see the impact of this implicit agreement, we

relabelled “unknown” as “detectable” and recomputed AC1: it increased to 0.90;

perfect agreement rose to 90%.

3.4.2 Detecting Public Bugs

Research Question: On what percentage of public bugs does Flow 0.30 or

TypeScript 2.0 report errors?

3.4. Results 66

Figure 3.7: Venn Diagram of Flow- and TypeScript-detectable bugs.

Of the 400 public bugs we assessed, Flow successfully detects 59 and TypeScript

58. We, however, could not always decide whether a bug is ts-detectable within

10 minutes, leaving 18 unknown. The main obstacles we encountered during the

assessment include complicated module dependencies, the lack of annotated inter-

faces for some modules, tangled fixes that prevented us from isolating the region of

interest, and the general difficulty of program comprehension. For these 18 bugs, we

spent as much time as needed to resolve each one. We patiently imported all relevant

modules by using interface management tools like Typings9, annotated interfaces as

appropriate, and read the code base and official documentation when necessary. We

used simple experiments to validate a ts-undetectable assessment, as necessary.

As a result, we successfully labelled all 400 bugs as either detectable or unde-

tectable under Flow and TypeScript. Flow detected one more for a grand total of 60;

TypeScript catches two more and also reaches 60. Running the binomial test on the

results shows that, at the confidence level of 95%, the true percentage of detectable

bugs for Flow and TypeScript falls into [11.5%,18.5%] with mean 15%. Figure 3.7

shows that Flow and TypeScript largely detect the same bugs. Section 3.5 describes

the bugs on which they differ in detail. Together, Flow and TypeScript detect a

total of 63 bugs, of which 7 (11%) are field bugs. This proportion of field bugs is

9https://github.com/typings/typings

https://github.com/typings/typings

3.4. Results 67

approximate: to compute it, we manually counted ts-detectable bugs open across

releases. Some projects do not tag releases; we conservatively deemed their bugs

non-field. The time spent assessing each of the initially unknown 18 bugs varied,

ranging from 8 minutes to more than 1 hour of dedicated time. Surprisingly, 3 bugs

took us only around 10 minutes to decide their ts-detectability on a fresh restart,

which, we reckon, is due to our increasing expertise.

Our experimental methodology and results extend previous efforts to measure

the effectiveness of static typing, which have relied on programming assignments

written by students [39] or have performed aggregate statistical analyses comparing

two large disjoint sets, one composed of statically typed programs and the other

dynamically typed programs [36, 37]. Our study complements these efforts by quan-

tifying the bug-detection effectiveness of static types on bugs in real world projects

on the same subject program. We have aimed to study the expressivity and power of

type annotations, not the skill of the annotators. This is why we defined Procedure 1,

defined and agreed the annotation tactics that III.D details, and compute the inter-rater

agreement to measure the degree to which we have succeeded in consistently and

uniformly devising and applying annotations. In this way, we have striven to emulate

surgery trials, which seek to draw conclusions about surgeries, not the surgeons [177].

This result probably greatly understates the impact of static typing, since we

designed our experiment from its inception to under-approximate the impact of static

typing:

1. We study only publicly visible bugs. Anecdotally, static type systems eliminate

many bugs during development and also obviate certain classes of testing. We

do not measure either effect. Many public bugs are due to misunderstanding

the specification, which type systems cannot detect.

2. Static type systems have other strengths, such as facilitating program under-

standing, improving performance, and enabling better code completion and

navigation.

3. Our experiment uses only two relatively weak type systems, Flow and Type-

3.5. Case Study 68

Script; stronger type systems could perform better.

4. Our limited expertise in Flow and TypeScript (and JavaScript) means that we

may have incorrectly deemed a bug to be undetectable or unknown.

At first glance, 15% may not appear to be a large number. In practice, however,

even small changes in the number of checked-in bugs can be quite valuable. When

we presented the results to an engineering manager at Microsoft, he responded

“That’s shocking. If you could make a change to the way we do development that

would reduce the number of bugs being checked in by 10% or more overnight, that’s

a no-brainer. Unless it doubles development time or something, we’d do it.”. We

have shown that Flow and TypeScript meet and exceed the 10% bar; we discuss the

cost in our discussion of the annotation tax in Section 3.5.

3.5 Case Study
Based on three criteria, we select bugs for further manual assessment: ones

whose Flow- or TypeScript-detectability is not agreed upon, ones whose Flow-

and TypeScript-detectability differ, and ones that are TypeScript-detectable under

version 2.0 but not under 1.8.

Disagreements Of the 80 uniformly-sampled bugs that we used to calculate

inter-rater agreement, each rater needed to make 160 decisions in total, 80 for

Flow-detectability and 80 for TypeScript-detectability. 138 of these 160 decisions

were unanimously labelled. We define a strong disagreement as a disagreement in

which one rater deems the bug detectable while another deems it undetectable. Of

the 22 disagreements, 12 are strong.

Let U denote unknown, D detectable, and D undetectable. We manually as-

sessed each disagreement without a time bound and found that, in each case, weak

disagreements resolved as follows: UUD→ D,UUD→ D,UDD→ D,UDD→ D.

In other words, the rater who confidently assessed ts-(un)detectability within the

time bound was correct every time in our experiment. Our 12 strong disagreements

had three patterns of labels: 2 were DDU , 2 were DDD, and 8 were DDD. After

manually resolving all of them, we found that whenever two raters agreed, they were

3.5. Case Study 69

correct. Among the 10 strong disagreements where a rater disagreed with the other

two, rater one dissented in 8 cases and rater two in 2 cases. With hindsight, we would

have improved our assessment protocol. We should have specified that each rater

consider whether or not added logic was manual type checking. We would have

agreed on whether or not to consider typos in library names ts-detectable. These

changes alone would have eliminated 7 of the 12 strong disagreements. Please visit

our project page for more details.

Classifying ts-undetectable Bugs Figure 3.8 categorises bugs that are undetecatble

under both Flow and TypeScript, after the 18 unknowns were resolved. Recall

that, while BranchError, PredError, and URIError are logic errors in implementing

the specification, SpecError captures all other specification errors. Unsurprisingly,

SpecError, with 186 bugs, accounts for 55% of the total bugs and significantly

outweighs other categories. Errors implementing specification, as a group, over-

whelmingly constitute 78%. This result, yet again, demonstrates the importance of

specifications.

Despite the dominance of errors implementing specification and the fact that

only public bugs are considered, there still exists a non-specification-related oppor-

tunity for type systems: StringError. Ranked second in the histogram, StringError

is a broad concept that represents errors caused by the incorrect content of a string,

such as a wrong URL. The reason why StringError is so common, we conjecture,

is two-fold: first, the string type itself is extremely popular; second, JavaScript is

rooted in web applications that extensively use hyperlinks. However, the string

type is opaque to most static type systems, and how to effectively refine it remains

challenging, although promising work is emerging in this direction [199].

Measuring TypeScript 2.0 null Handling Improvement TypeScript 2.0 was

released during this study, giving us the opportunity to measure how effectively it

handles null and undefined. Prior to 2.0, all types were nullable in TypeScript [200].

In Flow, all types, except any, void, and null, are non-nullable by default; one

prefixes them with ? to make them nullable. This design choice enables Flow to

elegantly catch incorrect null / undefined usage. TypeScript 2.0 added the compiler

3.5. Case Study 70

Figure 3.8: The histogram of undetectable public bugs under both Flow and TypeScript.

option --strictNullChecks, which, when enabled, makes most types nonnullable,

allowing the user to or null into a type annotation to specify nullability. For instance,

var s: string | null = "foo" defines s to be a nullable string.

We reviewed our corpus and found that 22 bugs, an increase of 58%, are

detectable under TypeScript 2.0 but not under TypeScript 1.8. This result decisively

and quantitatively demonstrates the value of TypeScript 2.0’s strict null checking.

Comparing Flow and TypeScript Though sharing a similar annotation syntax, Flow

and TypeScript differ in terms of expressivity and type variance. These dimensions

are hard to quantify. Thus, we compare Flow and TypeScript in terms of their ability

to detect and potentially prevent public bugs had they been used when those bugs

were introduced and the costs of the requisite annotations.

As discussed in Section 3.4.2, Flow and TypeScript both catch a nontrivial

portion of public bugs. In our dataset, the bugs they can detect largely overlap, with

6 exceptions: 3 bugs are only Flow-detectable and 3 only TypeScript-detectable.

All three Flow-detectable bugs share a common feature that reveals a weakness

in TypeScript’s recently introduced null handling: TypeScript does not error when

concatenating a possibly undefined or null value to another of type string. For

example, TypeScript remains silent on the following statement:

1 var x = " " + null + " ";

whereas Flow reports a type error:

3.5. Case Study 71

1: ’ ’ + null + ’ ’

^^^^ null. This type cannot be added to

1: ’ ’ + null + ’ ’

^^^^^^^^^^ string

Without knowing whether TypeScript intentionally allows this behaviour, we cannot

judge this decision, but its cost is substantial: TypeScript could have detected 3 more

bugs, which amounts to an increase of around 5%.

Though bug arrowrowe/es6-playground:2 is detectable under both Flow and

TypeScript, it is worthy of attention. Originally, we reckoned that it was only

Flow-detectable: Flow natively supports Node.js’ require() function, which imports

modules, and reports that the module named as a argument of require() does

not exist; TypeScript lacks such support. The TypeScript team, however, helped

us realise that, by using a TypeScript-specific module-importing syntax we had

overlooked, import foo = require("foo"), this bug is, in fact, TypeScript-detectable.

Similarly, we also thought that Flow had support for JavaScript’s native functions,

like parseInt() in pupil-monitoring/pupil:14. Here, the TypeScript team brought

our attention to the --noImplicitAny option, with which enabled, TypeScript will

error when it fails to infer a variable’s type.

Two of the three bugs that are only TypeScript-detectable arise due to Flow’s in-

complete support for a popular JavaScript idiom, using a string literal as an index. For

example, TypeScript detects the bug conanbatt/OpenKaya:45 when i0 and i1, two vari-

ables used as indexes, are annotated with undefined | string | number; Flow fails

with the same annotation. The remaining bug, sandeepmistry/node-core-bluetooth:1,

arises because of Flow’s permissive handling of the window object. Below is its error

message:

node -core -bluetooth/lib/central -manager -delegate.js:146

}.bind(mapDelegate(self), mapPeripheral(identifier), error));

^^^^

ReferenceError: self is not defined

In JavaScript, self generally refers to the global object, window. This bug is caused

by a operating system upgrade, after which the system no longer recognises self and

forces the developer to use $self. Therefore, the fix simply replaces self with $self.

3.5. Case Study 72

Both Flow and TypeScript are able to infer that self has type Window. By reading

the issue report and the code, we are able to infer that function mapDelegate accepts

values of only string or number type. In TypeScript, we add the following annotation

to mapDelegate’s definition:

function mapDelegate(self:string | number) {

Upon type checking, TypeScript signals a type error:

central -manager -delegate.ts(146 ,22): error TS2345: Argument of type ’Window ’

is not assignable to parameter of type ’string | number ’.

Flow, on the other hand, even with the same annotation, does not regard self being

passed to mapDelegate as a type error.

The per-Bug Annotation Tax Everything comes at a price. To enjoy the benefits

that a static type system brings, a developer often needs to annotate their program.

Directly measuring the effort programmers must expend to annotate their programs

for a static type system would requires a large-scale, invasive study of two teams of

developers, one using static types and other dynamic types, with all the attendant

cost and confounds such a large user study would entail. Thus, we resort to under-

approximating the annotation tax with two simple, expedient proxies: token tax, the

number of tokens in the added type annotations, and time tax, the time spent adding

annotations.

The token tax rests on the intuition that each token must be selected, so this

proxy measures the number of decisions a programmer must make when adding type

annotations. For a ts-detectable bug, we define the token tax as the number of tokens

in the annotation needed to trigger a type error on a line involved in causing the bug.

Let ∆ be a function that returns the syntactical difference between two code snippets

and || · || be a function that calculates the number of tokens in a code snippet. Then,

the token tax is ||∆(a(bi),bi)||. To report the time to annotate, we recorded how

long we spent annotating each buggy version in the commit message, creating an

electronic laboratory notebook [201].

These measures of the annotation tax are per-bug and underestimate the annota-

tion effort in time and tokens relative to the whole code base, because our experiment

3.5. Case Study 73

leverages the fix to localise our annotation effort, as detailed in Section 3.2.1. With

this knowledge, we locally annotate the region aimed at this specific bug, ignoring

unrelated type errors. The developers who originally committed the buggy code

lacked this knowledge and, in the worst case, may have needed to annotate the

entire program. However, under the assumption that the project has fully embraced

using a static type checker, the codebase would already be annotated prior to the

bug-introducing change. Our annotation tax metric measures just the time and tokens

required for the additional annotations at the time the bug-introducing change was

made. Thus, our measure captures the case of incrementally adding and annotating

patches to an already annotated code base. It is also likely that the project developers

will be more knowledgeable about the codebase than us and take even less time to

add the needed annotations.

Using this measure, we answer the question “What is the per-bug annotation

tax in number of tokens of Flow and TypeScript, without considering the definition

of shims?”, finding that on average Flow requires 1.7 tokens to detect a bug and

TypeScript 2.4. Two factors contribute to this discrepancy: first, Flow implements

stronger type inference, mitigating its reliance on type annotations; second, Flow’s

syntax for nullable types is more compact. As discussed previously, to denote a

variable is nullable in Flow, one simply needs to add a ? before the type annotation,

like ?number, whereas TypeScript requires the use of union type operator, like

number | null | undefined. The benefit of type inference in saving type annotations

is also shown in the median values. Table 3.2 exhibits a sharper difference in time tax

between Flow and TypeScript. Thanks to Flow’s type inference, in many cases, we

do not need to read the bug report and the fix in order to devise and add a consistent

type annotation, which leads to the noticeable difference in annotation time.

Cross Pollination In our experiment and case studies, handling modules was the

most time-consuming aspect of annotating buggy versions. Flow has builtin support

for popular modules, like Node.js, so when a project used only those modules, Flow

worked smoothly. Many projects, however, use unsupported modules. In these

cases, we learned to greatly appreciate TypeScript community’s DefinitelyTyped

3.6. Threats to Validity 74

Token Tax Time Tax (s)
Mean Median Mean Median

Flow 1.7 2 231.4 133
TypeScript 2.4 2 306.8 262

Table 3.2: Under-approximation of the annotation tax in tokens and seconds for bugs de-
tected by either Flow or TypeScript.

project. Flow would benefit from being able to use DefinitelyTyped; TypeScript

would benefit from automatically importing popular DefinitelyTyped definitions.

Flow would also benefit from supporting the use of string literals as array indices.

TypeScript should borrow more null-handling tactics from Flow, as discussed above,

like preventing the + operator from simultaneously taking null and string as operands.

3.6 Threats to Validity
To address the standard threat to external validity, we uniformly sampled issues from

JavaScript projects on GitHub, a vast repository of software project and conserva-

tively identified fixes (Section 3.3). Our experiment rests on public bugs, studies two

static type systems for JavaScript, and relies on non-expert humans to annotate pro-

grams to determine whether Flow or TypeScript could have detected and prevented

them. In each case, we have designed our experiment to under-approximate the effect

of static type systems: since we always run the type checker on our annotated version

of the buggy (Line 9 of Procedure 1), the only way we can generate a false positive

and report a bug detectable when, in fact, it is not is if we fail to write consistent

annotations (3.1.1). Private bugs occur in a buffer in a developer’s editor, or survive

to file saves or to commits to a local branch. Capturing these bugs is intrusive, requir-

ing an instrumented IDE [202], so this work considers only public bugs, not private

bugs. Type systems, however, can and do effectively detect and prevent private

bugs. Because we have studied only Flow and TypeScript, our experiment reflects

their strengths and weaknesses, and under-approximates the benefits of general type

systems. We may have incorrectly determined a bug to be undetectable when Flow

or TypeScript could have, in fact, reported an error given correct annotations and

3.7. Chapter Summary 75

alerted a developer to prevent the bug. If we could not construct type annotations

that caused the type system to report an error, we marked the bug as unknown. For

each such bug, we made notes that we hope will be useful for the designers of

type systems. While we are not experts in Flow or TypeScript, we have, through

working on this project, become informed lay-people and therefore if we labelled a

bug as unknown, it is a safe bet that many industrial practitioners would as well. We

leveraged fixes to localise our annotation efforts; Section 3.2.1 details the attendant

threats and limitations.

3.7 Chapter Summary
In this chapter, we evaluated the code quality benefits that static type systems provide

to JavaScript codebases. The results are encouraging; we found that using Flow

or TypeScript could have prevented 15% of the public bugs for public projects on

GitHub. As far as we are aware, this is the first work to empirically evaluate the

efficacy of static type systems for JavaScript on mature, real-world code bases. As

such, our study will help practitioners decide whether to adopt a static type system for

JavaScript by categorising bugs that Flow and TypeScript can and cannot detect at the

time of this experiment and summarising differences between the two systems. All

experimentation artefacts can be found at: https://2-type-not-2.github.io/.

https://2-type-not-2.github.io/

Chapter 4

Retype: Changing Types to Change

Behaviour

Chapter 3 empirically establishes that program transformation, in the form of op-

tional type annotation, is effective in facilitating program analysis, in the form of

static typing. This chapter takes a step further, exploring the possibility of designing

a general, automated program transformation to extend the reach of existing program

analysis techniques. Specifically, this chapter aims to facilitate symbolic execution.

As Section 2.2.2 details, constraint solving for complex theories, like string and float-

ing point, is still not scalable. The transformation presented in this chapter converts

unsupported theories to supported theories, thereby sidestepping the problem.

Programmers often wish to widen, narrow, or change types within a specified

region of source code. For example, narrowing to a subtype may improve the

performance characteristics of the affected region, while widening to a supertype

may afford greater precision to some specific computation. Type changes may be

required to integrate different regions of code, each of which operates on shared data,

but using different internal representations. In all three cases, the affected type must

be safely converted at the boundary between the affected region in the context within

which it resides.

As a motivating example, consider a financial legacy system that uses Binary

Coded Decimal (BCD) and which is to be incorporated into an updated system that

does not; a common reverse engineering scenario [203, 204, 205]. Financial business

77

logic may be captured by a code region A that used BCD, which is to be integrated

with a newer separate unit, B that uses integers, while both A and B reside in a wider

context C, that uses integers. In order to compose A with B, the programmer retypes

B to use BCD. This is a highly tedious task, because it involves identifying all points

at which integers can flow into and out of BCD-computations, and applying the

correct type-conversion operator at all such “type interfaces”. This is a task which

clearly cannot be left to the type coercion system, since BCD encoding is simple

invisible to the type coercion system. It is also an error-prone task, because any type-

interface conversion overlooked by the programmer will likely compile, yet behave

incorrectly. Furthermore, retyping introduces the need for type overloading, which

when incorrectly applied by the programmer will also compile, yet may introduce

potentially subtle bugs.

Retyping is thus currently a tiresome and error-prone manual process. Indeed,

the burden of manual retyping maybe so great, that the programmer simply chooses to

decline otherwise valuable opportunities for performance improvement and precision

enhancement. In situations where retyping cannot be avoided, such as legacy system

updating, the manual process is likely to be unnecessarily costly. Automated retyping

avoids these unnecessary costs and missed opportunities.

More precisely, to “retype a program” means that the programmer identifies a

specified region of interest with the program within which the following retyping

activities are fully automated:

1. the replacement of occurrences of one type annotation with another,

2. the replacement of method calls that consume the old type, and

3. the conversion of the type and, if necessary, the values of affected variables

that enter or exit the retyped region.

The rewritten program type checks by construction.

Programs cannot be entirely retyped, due to external libraries, operator def-

initions built into the language runtime, or system calls. It is often natural and

convenient for the developer to reuse an operator name, like ’+’, when retyping. In

78

this case, both the old and new definitions of an operator may be needed. Thus,

retyping often overloads operator and function definitions. Further, data flows across

the boundary between the retyped and unretyped regions must be handled. Both tasks

are manual and error-prone, beyond the reach of regular expressions. RETYPE, our

approach to retyping, handles both automatically: adding new operator definitions

and replacing the operator applications that need the new definition and injecting

type-conversions at the boundary between the retyped and unretyped regions.

Our approach to retyping extends both previous scientific research and practical

manifestations of retyping in popular Integrated Development Environments (IDEs).

Our theory and overall approach follows the seminal work of Balaban et al. [206,

207, 208], who introduced an elegant framework for replacing a derived Java class

with another that shares a common ancestor in the Java inheritance hierarchy. This

previous work focused on retyping Java, based on a “migration specification” that

defines the mapping between the method calls and field accesses in the two derived

classes. Balaban et al. also extend the type constraint system of Schwartzbach and

Palsberg [209] to type check the retyped program. Furthermore, since their work

is specific to Java, they are also able to handle Java synchronisation seamlessly

within their approach. We extend this previous work to retype programs written in

non-Objective-Oriented programming languages, handling type overloading and the

instantiation of type-conversion operators at the boundary between the retyped code

region and the context within which it resides.

Our tool, TYPERITE, extends the practical manifestations of retyping found in

the two popular IDEs, Eclipse and IntelliJ, each of which partially automates a spe-

cial case of retyping for Java: Eclipse supports the replacement of a Java type with its

supertype, while IntelliJ can retype a single variable at a time (but fails to change the

operator applications into which the new type flows, neither does it handle constants

relying, instead, on the underlying builtin type coercion mechanism. TYPERITE

removes reliance on type coercion, generalises to reasonably complex, statically

typed programming languages, and automates the remaining manual retyping, oth-

erwise left to the programmer by these existing IDE implementations. When the

79

programmer fails to supply all operators needed to retyped the program, TYPERITE

automatically identifies those that remain to be supplied. When TYPERITE reports

no such error, the resulting program type-checks by construction. Unlike previous

approaches and implementations, TYPERITE can replace a type with a subtype in

languages that do not support subtyping, like C.

We comprehensively evaluate TYPERITE in three different scenarios, each of

which involve application to real-world systems. Specifically, we apply TYPERITE

to 15 different retyping tasks in the instant messaging system Pidgin
1, a 363K LOC

open source system, with several million users worldwide. We also compose two

applications of TYPERITE to two C and three Java programs, migrating them to

a new type and then back again. This demonstrates that this composite retyping

operation, which is idempotent in theory, is also idempotent in practice, for our

implementation. Finally, we illustrate an application of TYPERITE to the task of

integrating two different data type representations, by retyping between fixed and

floating point arithmetic.

The main contributions of this chapter follow:

1. We introduce and formalise retyping a program. This formalism

(a) injects the type-conversions that arise due to interactions with code that

is not retyped;

(b) allows the controlled introduction of new behaviour through the new,

target type; and

(c) applies to both non-Object-Oriented languages and primitive types be-

cause it uses term rewriting, not the subtype relation.

2. We present a realisation of RETYPE in the tool TYPERITE and validate it:

(a) demonstrating how it can be used to catch real world bugs, like an SQL

injection in hibernate, and automates taint analysis on implicit information

flow;

1https://pidgin.im

https://pidgin.im

4.1. Motivating Example 80

(b) showing that TYPERITE scales to Pidgin, an open-source online chatting

client with 363K lines of code.

(c) automating retyping, eliminating the need for a developer to assess

whether 120,096 operators need replacement or conversion when retyping

float to fixed point in the special functions of the GNU scientific library.

4.1 Motivating Example
When a developer replaces a normal pointer with a reference counting one to improve

the effectiveness of garbage collection, they are retyping their programs. When a

developer replaces double with float to trade precision with performance, with new

operators that guard against potential underflows and overflows, they are retyping

their programs. Indeed, bespoke attempts to semi-automate retyping are common.

Ariadne [156], a symbolic execution engine that automatically finds exception-

triggering inputs for floating-point programs, extensively uses a tailored, float to

arbitrary precision rational, retyping. SEEDS [210] is a general framework that aims

to reduce a program’s energy usage. The authors instantiate SEEDS by retyping a

subclass of Java’s Collection Interface to the most energy-efficient implementation.

Many embedded systems lack a Floating-Point Unit (FPU). TYPERITE eases

the porting of a floating-point program to the domain of embedded systems, by

automatically replacing a floating-point type with other real encodings that embedded

systems support. The GNU Scientific Library (GSL) provides a wide range of

mathematical routines that largely rests on floating-point arithmetic. Without loss

of generality, Figure 4.2 shows a code snippet, adapted from airy_der.c (line 742

– 747) in GSL. We demonstrate how TYPERITE makes the program applicable

to embedded systems without a FPU, by retyping double into fixed, a fixed point

encoding2. Figure 4.1 defines the operators over fixed required by the retyping,

abridging the actual implementation.

$ typerite airy_der.c float fixed.c

One might think that retyping is just a glorified find-and-replace, for which

2https://github.com/kmowery/libfixedtimefixedpoint

https://github.com/kmowery/libfixedtimefixedpoint

4.1. Motivating Example 81

1 fixed fix_mul(fixed x, fixed y) {· · · };
2 fixed fix_mul_d(double x, fixed y) {· · · };
3 fixed convertToFixed(double x) {· · · };

Figure 4.1: The definitions of fixed ’s operators in a file fixed .c.

742 const double atr = 8.7506905708484;

743 const double x2 = x*x;

744 const double sqrtx = sqrt(x);

745 ...

746 const double z = 2.0*x...

747 cheb_eval_mode_e (&bif2_cs , z, mode , &result_c0);

Figure 4.2: Input code for TYPERITE in GSL specfunction.

regular expressions are sufficiently useful. However, most popular programming

languages are at least context free, beyond the reach of regular expressions. Specifi-

cally, for two reasons a regular expression based find-and-replace cannot perform the

retype operation illustrated above. First, functions, such as cheb_eval_mode_e() at line

747, and literal constants, such as "8.7506905708484", are defined outside the retypeable

region and are therefore unretypeable. TYPERITE injects a type-conversion operator

that converts between objects of the original and new type to reconcile the conflict.

Regular expressions, however, cannot decide where to apply the type-conversion

operator. Second, regular expressions cannot handle operator overloading that nat-

urally arises when the retypeable region is not the whole program. For example,

after the operands have been retyped, the operator * is called with two different

type signatures. At line 743, * should take two fixed as arguments; at line 746, it

should take a double and a fixed . For these two call sites, regular expressions cannot

identify which new operator to use.

When retyping, a developer may overlook some operators to which the new

type flows. To ease the developer’s burden, TYPERITE implements an useful error

mechanism. For example, if the developer forgets to provide a new operator for sqrt

and the type-conversion operator, TYPERITE reports an error:

1 ERROR: "sqrt", application "1" not handled!

2 APPLICATION: sqrt(x)

3 LOCATION: airy_der.c, line 744

Reacting to this message, the developer can provide a new operator fix_sqrt that

4.2. Formalism 82

742 const fixed atr = convertToFixed(8.7506905708484);
743 const fixed x2 = fix mul(x,x);
744 const fixed sqrtx = fix sqrt(x);
745 ...

746 const fixed z = fix mul d(2.0,x)...
747 cheb_eval_mode_e (&bif2_cs , convertToDouble(z), mode , &result_c0);

Figure 4.3: etyped code for Figure 4.2. Type annotations and operator applications modified
by TYPERITE appear in bold.

takes a fixed as input and returns a fixed. Assuming the developer provides all the

operators for fixed in Figure 4.1 and fix_sqrt, the right-hand-side of the assignment

at line 746 in fact has two possible rewrites, fix_sqrt(x) or sqr(convertToFixed(x)). TYPE-

RITE’s rewriting, however, is two staged (Section 4.2.5); that is, it first applies the

available new operators, and then, as a last resort, injects the type-conversion to

preserve type-correctness. Therefore, TYPERITE transforms the input program into

one shown in Figure 4.3. As GSL is composed in C, this example also demonstrates

that TYPERITE is applicable in non-Object-Oriented languages.

4.2 Formalism
This section opens with definitions, then presents the RETYPE’s core algorithm. This

algorithm is applied to a running example, with its critical steps discussed in detail

in the following subsections.

4.2.1 Definitions

Figure 4.4 defines the core language that RETYPE targets. Each variable has a type,

which is bound to the variable at its declaration. The language allows developers to

construct customised types using keyword struct. From the core syntax, we compose

a toy program, shown in Figure 4.5. Suppose we wish to retype int to TInt defined

in Figure 4.6, whose operators include two new pluses with different type signatures,

and a conversion that takes a TInt and returns an int . In the input program, function

read () and foo () , whose definitions are not in the retyping region, cannot be retyped,

as the grey background indicates. We use the running example to illustrate our

formalism throughout this section.

We now define a type context, and illustrate how RETYPE generates the type

4.2. Formalism 83

Program P ::= dcl∗ e
Expression e ::= skip | n | b | l

| x | x = e | f (e∗)
| ret e | e0;e1

| e0 ⊕a e1 | e0 ⊕b e1

| if e0 then e1 else e2

| while e0 do e1

Declaration dcl ::= fndcl | vardcl | stdcl
Function Declaration fndcl ::= t f (vardcl∗) {vardcl∗ e}

Struct Declaration stdcl ::= struct sn {vardcl∗}
Variable Declaration vardcl ::= t x

Type t ::= sn | int | void | bool
| float

n ∈ Z b ∈ B
l ∈ locations sn ∈ struct names
x ∈ variable names f ∈ function names
⊕a ∈ arithmetic operations ⊕b ∈ boolean operations

Figure 4.4: The core syntax of a language. RETYPE rewrites declarations, operator uses and
function calls.

context for the running example.

Definition 4.2.1. A type context Γ is a finite function from statements in S (i.e. terms)

to types and locations:

Γ = {(x1 : τ1, l1), · · · ,(xn : τn, ln)},

where xi ∈ S, τi ∈ t, and ln ∈ N.

A type context contains definitions and function calls. Definitions include

function and variable definitions. To rewrite type annotations and calls in line 2 in

Algorithm 2, we adapted the standard definition of the type context [211] to include

4.2. Formalism 84

1 void read(int var)

2

3 int foo(){

4 int i;

5 i = 3;

6 ret i * i * i;

7 }

8 void main (){

9 int a b c;

10 a = 11;

11 read(b);

12 b = a + foo();

13 c = a + 1;

14 b = b + c;

15 }

Figure 4.5: Input program of the running example in RETYPE’s core language.

1 Struct TInt {

2 int i_val;

3 bool b_val;

4 }

5 TInt opPlus(TInt x, TInt y) {· · · };
6 TInt opPlus(TInt x, int y) {· · · };
7 int convertToInt(TInt x) {· · · };

Figure 4.6: The definition of τn in our running example, including its type and operators.

the location of the term, using path, file, line number as our coordinates, as li. We

use the location information in error messages and to identify where to rewrite the

input program to produce the retyped program (Section 4.2.6).

4.2.2 The RETYPE Algorithm

Algorithm 2 defines RETYPE’s highlevel algorithm. RETYPE takes, as input, P the

program to retype, τo the ‘old’ type to replace, and τn the ‘new’ type with which to

replace τo.

RETYPE also takes two functions. The function r : S→B specifies which t ∈ P

should be retyped and m : F → 2F maps methods in τo to methods in τn; it returns a

subset because τn may overload the function in P. The function r defaults to all terms

internal to P; m defaults to the identity function. The new type τn must be a subtype

of τo with respect to τo’s retypeable uses in P. 4.2.2 relaxes this constraint. In the

case of non-OOP languages, τo and τn share definitions: they are not encapsulated.

Thus, we do not introduce classes in non-OOP languages. Both τo and τn denote both

a type name and its definition; we specify which when it is not clear from context.

First, Algorithm 2 (line 1) infers Γo, the type context in P. On line 2, it applies

the r on Γo, and obtains Γ′o, the subset of Γo to contain only retypeable terms. Further,

on line 3, RETYPE applies Φ, RETYPE’s term rewriting system to retype Γ′o to Γ′′o .

Finally, on line 4, Algorithm 2 checks the correctness of the retyping. First, we

4.2. Formalism 85

Algorithm 2 P′ = RETYPE(P,τo,τn,r = ∗→ T,m = id)

Input: P, the input program
1: τo, the old type to replace
2: τn, the new type
3: r identifies retypeable terms
4: m maps names in τo to τn
5: Γo := infer(P) ▷ Section 4.2.3
6: Γ′o := r(Γo) ▷ Section 4.2.4
7: Γ′′o := Φ(Γ′o) ▷ Section 4.2.5
8: P′ := tce(P,m(Γ′′o, infer(τn)) ▷ Section 4.2.6

map the old operator names to the new ones by using m, and next we check if the

definitions in τn match the applications in Γ′′o . If this is true, we return the retyped

program.

4.2.3 Type Inference

To retype a program, RETYPE must infer the type context Γo from P and from

τn. Retyping parts of a program overloads an operator when that operator’s old

definition is used outside the retyped region. For example, at line 13 : c = a + 1;

and 14 : b = b + c; in Figure 4.5, the operator ‘+’ has two call sites. The first call

has an unretypeable operand, the constant ‘1’, while both operands are retypeable

in the second one. Under these conditions, RETYPE infers two different types for

+ in P′, as the column Γ′ shows for P′, in Figure 4.8: TInt → TInt → TInt, and

TInt→ int→ TInt.

For Figure 4.5, we identify all the usages of variables and operators involving

int in the input program. Further, we extract the type context Γ for the identified

usages. τn contains the definitions for TInt’s operators shown in Figure 4.6.

Blindly adding the new definition into an existing type context would produce:

{opPlus : (TInt→ TInt→ TInt),

opPlus : (TInt→ int→ TInt), · · ·}.

This multiset is not a type context because it contradicts 4.2.1, since op2 appears in

two different assignments.

4.2. Formalism 86

Figure 4.7: Code that is retypeable (white) and not (gray).

To solve this problem, we can use fresh names or Intersection types (∩-

types) [82]. Fresh names introduce a new variable name, and thus a new operator

definition, for each overload of an operator. ∩-types, on the other hand, allow a single

symbol to simultaneously have multiple types. We choose ∩-types over fresh names,

because ∩-types produce more compact formulae in the original namespace, which,

when there is an error in retyping, generates more understandable error messages.

Inference over ∩-types is undecidable in general, because ∩-types assign the

same type to β–equivalent terms, but the β–equivalence of two terms is undecid-

able [212]. Retype escapes this undecidability result by inferring ∩-types only over

programs that type check in the base language’s type system, which does not use

∩-types and is in β normal form. Essentially, RETYPE puts two type systems in

sequence.

4.2.4 Retypeable Region

A program is a sequence of statements in S, or of terms, in the sense of lambda

calculus [211], that are either internal and mutable, or external and immutable, like

constants, or system calls or third party library calls. External terms cannot be

retyped. By default, all internal terms are retypeable. Figure 4.7 shows this. In the

leftmost figure, the entire input program is retypeable, while the library is not. In

the figure on the right, only portions of the input program are retypeable (the white

ones) while the library remains unretypeable.

4.2. Formalism 87

When retyping a program, developers will often want to specify which internal

terms can and cannot be retyped, i.e. explicitly externalise some internal terms. For

instance, they may wish to retype some performance critical functions or just a block

to which they have tracked down a bug. To control which internal terms are retyped,

RETYPE allows its user to define r : S→ B, which marks some internal terms as

retypeable, implicitly externalizing the rest. Thus, a term can be naturally external,

like a system call, or externalised by a developer overriding the default definition

of r. In Figure 4.5, the read() call on Line 11 is a system call and naturally external;

the developer externalised foo, as its grey background denotes, so its call on Line 12

cannot be replaced.

4.2.5 Rewriting Type Contexts

During execution, data flows across the border between the retyped and unretypeable

portions of the input program. Some of these data flows may involve τn, as when

a system call returns an instance of τo to a variable retyped to τn or an instance of

τn is passed as a parameter to a function call that the developer specified should

not be retyped. In these cases, the flow must be converted: e.g., 12 : b = a + foo();

External functions like library and system calls are one source of these terms; regions

the developer decided not to retype are the other.

Here, we present Φ, the rewriting rules to accomplish this task. RETYPE

leverages the fact that, of the myriad of types, Φ’s rewriting rules need to consider

only two, constant types: τo and τn. Thus, Φ is a ground term rewriting system over

two constants.

τn must define type-conversions, so that Φ can inject them at the appropriate

points. Φ prefers operators in τn to those in τo, with type-conversions. Only when

not a suitable replacement is found, Φ uses operators in τo with casts. Casts relabel a

variable; they are a substitution operator on type annotations. Casting is insufficient

for RETYPE, since the narrowing, widening, or reencoding that it supports may

require arbitrary computation, subject to the restrictions defined in Section 4.2.7.

Consider for example extracting values from an ADT in a downcast in C++: class Dog

is derived from class Animal; a downcast in C++ takes an Animal object, and converts it

4.2. Formalism 88

into Dog. Thus, our type-conversions, which we denote J, are, in general, Turing-

complete; they must also relabel:

J(x) =


τo if x = τn

τn if x = τo

x otherwise

Because J relabels as shown, it subsumes casting. The point of retyping is to

introduce new operators over τn. Type-conversion make a trivial sort of retyping

possible that does not use operators over τn, but instead converts all instances of τn

to τo and only applies operators over τo. Thus, type-conversions are a last resort.

They are necessary for handling constants, as shown in . Figure 4.5. The constant 1

at line 13 is inside a retypeable region, but cannot be retyped since it is a constant, so

we use type-conversion operator: convertToTInt(1) to convert it to TInt.

Φ handles externals interactions by applying type-conversions to terms at the

boundary between retypeable and unretypeable terms. Given the term t ∈ S, the

external?(t) selects constants and external calls, but does not match user-supplied

operators.

R1 = τo −→ J(τo) if external?(t)∧ t : τo

R2 = τn −→ J(τn) if external?(t)∧ t : τn

To illustrate how Φ works, we continue using the + operator in our running

example, which appears both in Figure 4.5 and the upper left corner of Figure 4.8.

In Figure 4.8, when the type-conversion J is needed, c(τ) denotes the new type

constructed byJ. The box Γ′′o in Figure 4.8 shows the result of applying Φ on Γ′o, the

type context of the filtered terms in P. R1 introduced the ⊎ types, while R2 introduced

the conversions c in Figure 4.8. Note that we do not apply Φ on Γ′′n , the type context

of τn.

4.2. Formalism 89

Fi
gu

re
4.

8:
R

et
yp

in
g

th
e

ex
am

pl
e

pr
og

ra
m

in
th

e
co

re
la

ng
ua

ge
:g

et
ty

pe
co

nt
ex

t,
ex

tr
ac

tt
he

ty
pe

as
si

gn
m

en
ts

,c
on

st
ru

ct
Γ

,a
nd

ap
pl

y
Φ

.

4.2. Formalism 90

4.2.6 Type Checking

The type context formed from merging the rewritten type context Φ produces and

τn’s may not type check for two reasons: 1) missing definitions in τn and 2) overload

conflicts. An overload conflict occurs when two or more overloads of an operator

have the same type signature, and can be used in an operator application. Then, tce

cannot decide which definition to use for that operator application.

RETYPE uses constraint solving for type checking. One of the reasons for using

constraint solving is that this allow us to provide precise error messages. Another

the reason is that the fresh names generate constraints that grows multiplicatively in

the number of applications, and operators, while ∩-types is linear in the number of

operators. While type checking ’+” in our running example in Figure 4.5, RETYPE

with fresh name would call an SMT solver four times for the uses of ’+’ on lines 13

and 14. Using ∩-types allows RETYPE to call the solver only twice.

For each retypeable t ∈ Γ′′o , RETYPE calls the constraint solvers to check if the

operators in τn contain a unique solution for the constraints generated from t. If none

of them is the solution, we apply the type-conversion operators.

Constraint solving can be very slow. RETYPE mitigates this problem by gener-

ating very simple constraints. ∩-types distribute over→. This fact permits rewriting

the type assignments over one parameter of a function at a time. For example, opPlus

in Figure 4.6: opPlus : (TInt→ TInt→ TInt)∩(TInt→ int→ TInt), can be rewritten

as (op1, op2), and its return (ret)): (op1 : TInt)→ (op2 : int∩op2 : TInt)→ (ret : TInt)

.

We consider only a variable whose initial type is τo, so the only pertinent

question is whether it has been retyped or not. We map the retyped ones to T, and

the others to F. Under this encoding, R1. introduces a constraint that is always true:

T ∨F . Thus, our constraints are just a sequence of conjunctions over the scope of a

variable declaration and over function applications.

Coming back to the opPlus in Figure 4.6, we consider the constraints gener-

ated for its second parameter here. In the input program, it is called at the lines:

13 : c = a + 1; and 14 : b = b + c. In the call on line 13, the second parameter is

4.2. Formalism 91

not retypeable, but TInt defines the type-conversion, so we map it to T. On 14, it is

retypeable, so we map it to T. This means that the type of the second parameter of

the operator + is TInt in the retyped program. Thus, the constraint generated for these

two usages is: T ∧T . This is simplifies to T , and so the second parameter of the new

operator + should be of type TInt.

RETYPE identifies a missing operator definition when tce cannot find a definition

in τn that consumes the types of an operator application in the input program. This

search always succeeds when τn defines type-conversion operators, since they can

always be applied, to each parameter and return value. For example, we have shown

that the solution to opPlus’s constant in Figure 4.6 for its second parameter is T , so

its type must be T Int. Similarly, the solution for the types of its first parameter

and return value are also T . For the retype to succeed, τn must define opPlus with

the type signature: TInt→ TInt→ TInt. If this is not present, tce reports a missing

operator.

Merging Namespaces P and τn may not use the same names for equivalent

operators. Their namespaces must be normalised and merged. The map m parameter

of Algorithm 2 connects terms in the input program P to their replacement in τn. In

our running example, m maps + from P to opPlus in τn.

Emitting the Retyped Program When rewriting P to P′ in line 3, Algorithm 2,

RETYPE treats variable definitions and function definitions differently. Specifically,

it changes the annotations in variable definitions, but injects the operator definitions

in τn at the end of the file, since the old function definition might still be used by

unretyped parts of the input program. RETYPE adds new function definitions to the

end of the source files, so that l remains identical between the input program and the

retyped one.

4.2.7 Semantics-Preservation under RETYPE

Retyping injects new behaviour into the retyped program by the means of the new

operator definitions in τn. The relationship between the program’s original and

retyped behaviour depends on these definitions, whose semantics RETYPE does

not constrain. When a user retypes an operator to one that crashes the program,

4.2. Formalism 92

for instance, RETYPE inevitably fails to preserve the original behaviour. However,

when the users constrain the new behaviour of the operators in τn, we can prove

semantics-preservation properties. First, we consider the case where τn adds operator

definitions that introduce and operate only on fresh state, then we consider the case

where the new operators change the program’s original behaviour, but maintain a

user-defined predicate over the original program’s traces and those of its retyped

incarnation.

For the first case, we use the Liskov substitution principle (LSP) [213]. Unlike

nominal and structural subtyping, behavioural subtyping is defined on semantics

instead of syntax and guarantees semantic interoperability of types in a hierarchy.

Informally, LSP states that if S is a behavioural subtype of T , then objects of type T

in a program may be replaced with objects of type S without affecting any provable

property over objects of type T . Under LSP, retyping a variable from S to T preserves

behaviour.

Let Σ = X0×X1×·· ·×Xk be the state space of the program P and Σ′ = Σ×

Xk+1× ·· ·X j be the state space of a retyped variant of P. For σ⃗ ∈ Σ and σ⃗ ′ ∈

Σ′, =Σ is program state equality restricted to Σ: σ⃗ =Σ σ⃗ ′ ≡
∧

σi∈σ⃗ σi = σ ′i . Let

trace(f (i)) = σ0,σ1, · · · be the states generated by f ’s execution on i. Let ψ be a

predicate over traces that filters out states internal to retyped operators, producing

the traces t = σ0, · · · ,σk and t ′ = σ ′0, · · · ,σ ′j, then returns i = j∧
∧

σi∈t σi =Σ σ ′i .

Theorem 4.2.1 (Semantics-Preservation under the Liskov Substitution Principle).

If τn is a subtype of τo under the Liskov substitution principle, then ∀i ∈ dom(P),

ψ(trace(P(i)),

trace(RETYPE(P,τo,τn,m)(i))).

Proof Idea LSP implies that any new behaviour τn defines operates on fresh

data, not Σ. Noninterference (NI) partitions a program’s inputs and outputs into

low or high [214]. A program exhibits NI when changes in its high inputs do not

change its low outputs. To apply NI to 4.2.1, we map the program’s old state to low

variables, and the new, “fresh” state, introduced by τn to high variables. We then

prove noninterference by induction over applications of the new operators introduced

4.2. Formalism 93

by τn. In applying induction, we follow Focardi et al. in establishing step-wise NI, a

stronger property that trivially implies NI [215].

In the base case, we show that all transitions from initial states in the retyped

program are noninterferencing with respect to “fresh” state. We do so by showing

that high states cannot flow into low ones across any operator in τn. This must

hold under LSP, because, if not, failure for NI to hold is a provable property that

would distinguish the retyped program’s state space from the original program’s

state space when objects of type S replace objects of type T . Next, we assume

that the noninterference holds over k applications of the new operators, and prove,

again under LSP, that it holds for any k+ 1 application. Thus, no high or “fresh”

state affects any low state: all evaluations outside of the retyped operators are low,

or, in our case, original state equivalent. In particular, the evaluation of control

point expressions produce low state, so control flow outside of retyped operators is

unchanged.

The LSP assumption handles naturally arising retype use cases, like taint anal-

ysis, refactoring, replacing an array with a list, logging, or instability detection in

floating-point programs [216]. It is, however, too strong in many practical cases.

Sometimes, we wish to retype a program to change its behaviour. For example, a

developer may change float to double to increase a computation’s accuracy. Under

this retyping, the retyped program may take different execution paths on the same

input, as when the original program exited upon overflowing a variable.

To handle these cases, we relax 4.2.1 in two ways. First, we allow the user

to specify ψ to capture those semantics of the original program that τn preserves.

Second, we only require ψ to hold over a non-empty subset Î ⊆ dom(P). When

retyping float to double, a developer could define ψ to tolerate a bounded error, thus

implicitly handling rounding errors (INEXACT exceptions) up to its bound. Consider

Ariadne [156], which retypes a numerical program’s floating-point variables to

arbitrary precision rationals, reifies floating-point expressions to program points,

then asks whether these program points are reachable. To use RETYPE, Ariadne

would define ψ to match control expression evaluations and to ignore other program

4.3. Implementation 94

Figure 4.9: The Architecture of TYPERITE.

states except the final states of the two traces, which must be the same floating-point

exception.

Theorem 4.2.2 (Semantics-Preservation modulo ψ). If τn is a subtype of τo modulo

ψ , then ∀t ∈ Î, ψ(trace(P(i)), trace(

retype(P,τo,τn,m)(i))).

Proof Idea We use induction over operator applications, using case analysis to

show that ψ holds over the τn’s new operators at the base case and the inductive step.

4.3 Implementation
We realise our approach to retyping in TYPERITE, composed of a Context Analyser,

a Type Rewriter and Checker, and an Emitter, shown in Figure 4.9. The Context

Analyser infers the type context Γ (Section 4.2.3), augmented with locations in

P later used in the Emitter, and implements r to identify the retypeable region

within P to produce Γ′ (Section 4.2.4). The Type Rewriter and Checker rewrites

Γ′ (Section 4.2.5) and type checks it, via constraint solving using Z33. Last, the

Emitter takes Γ′ and rewrites P’s operator applications and variable definitions to

form P′.

TYPERITE is built on ROSE [217], a compiler infrastructure on which de-

velopers can perform customised source-to-source transformation, analysis, and
3https://z3.codeplex.com

https://z3.codeplex.com

4.3. Implementation 95

optimisation. TYPERITE currently supports C and C++. One should be able to add

support for statically-typed languages that ROSE supports, such as Java and Fortran,

to TYPERITE with ease. Each component in Figure 4.9 is in fact a ROSE-based

compiler.

Two alternatives to ROSE we considered are TXL [218] and LLVM4. We de-

cided against TXL because ROSE scales much better and because ROSE transforms

a program’s AST so its rewritings are language agnostic, while TXL requires trans-

formation rules for each language. Like ROSE, LLVM scales to industrial programs;

unlike ROSE, LLVM transforms a program to its intermediate representation, so it is

language agnostic too. At the time of implementing TYPERITE, however, LLVM

did not provide an easy way to output the rewritten source code from the rewritten

intermediate representation. One of our design goals for TYPERITE is to provide

the retyped source code to the user so they could verify the change and check it into

version control. Thus, we choose ROSE over LLVM. TYPERITE needs rewrite and

output headers. Header handling is not among ROSE’s most heavily used features, so

we encountered some bugs, such as relative path handling in #include and the failure

to emit header files.

Specifying What to Retype TYPERITE permits developers to explicitly specify

which program terms to retype (and which not). The developer can pass TYPERITE

a file containing lists of the names of functions or files. When defining the retypeable

region using functions, TYPERITE allows the user to specify whether or not to follow

calls, and to what depth. For a depth k, TYPERITE retypes all the functions up

depth k depth in the call graph of the program, rooted in the current function; depth *

means an infinite depth. For example, ‘foo 1’ indicates that foo and its direct callees

be retyped. When the user names a file, TYPERITE simply treats it as the set of

functions it defines.

Within a file, the developer can also annotate sequences of lines or even annotate

snippets within a line. These annotations delimit the region to retype. Conceptually,

they are not in the alphabet of programming language. In practice, we realise them

4http://llvm.org/

http://llvm.org/

4.3. Implementation 96

using a unique sequence of characters, whose exact definition is configurable. Here,

we use [* and *]. To annotate a line, one can write

[* w = a + f oo(); *].

To annotate variables inline, one can write

int [* a *],b,w,x,[* y *], z;.

Usage To use TYPERITE from the command line, one issues either

$ typerite <switches > P.c float fixed.c # OR

$ typerite Makefile float fixed.c

In the first mode, TYPERITE takes compiler switches, and then accepts a source file

as a program, the type to replace, here float, and the name of file, here fixed.c. In the

second mode, TYPERITE accepts a Makefile. The filename fixed.c represents τn. This

file must compile, and start with the definition of τn, followed by the definitions of

the new operators and type-conversions. TYPERITE accepts two optional arguments:

the filename to contain the mappings m; and the filename to contain the retypeable

regions r.

Error Handling TYPERITE can fail for two reasons: 1) missing operator definitions;

and 2) colliding overloads. Colliding overloads refers to overloads that share the

same type signature, so TYPERITE cannot decide which one to choose. When

operators are missing, the developer might wish to get the list of missing operators

or learn how often the missing operators are used, to decide whether to provide a

definition for a given operator or just use type-conversion. Assume the operators +

and sqrt are undefined. To list the missing operators, the developer issues

$ typerite P float fixed.c --missing

ERROR: "op+": fixed x fixed -> fixed

ERROR: sqrt: fixed -> fixed

To list all uses of missing operators, the developer issues

$ typerite P float fixed.c --unhandled

ERROR: "op+":

1) APP: a+b not handled !; foo.c:23

2) APP: x+5 not handled !; bar.c:2343

If two user provided definitions for replacing the operator + collide, TYPERITE

reports

4.4. Evaluation 97

ERROR: COLLISION: "plus_1"; "plus_2":

1) APP: a+b collides .; foo.c:23

To enhance TYPERITE’s deployability and ease reproducing its development

environment, we utilise Docker5, which virtualises operating systems, to encapsulate

TYPERITE. We provide source code, binaries, and dockerised releases of TYPERITE

as open source at http://crest.cs.ucl.ac.uk/retype/.

4.4 Evaluation
Our evaluation first establishes that TYPERITE works, that it changes a program’s

type annotations without otherwise disrupting that program. Then we demonstrate

TYPERITE’s utility, by using it to fix field bugs and automate the retyping tasks

inherent to taint analysis and refinement types. We validate that TYPERITE preserves

behaviour when LSP holds, like replacing int with TaintedInt, and changes behaviour

modulo some predicate specified by the user when LSP does not hold, like replacing

double with fixed. Finally, we show TYPERITE scales to Pidgin, a program with

363K lines of code. Note that external, immutable definitions are the fundamental

challenge of TYPERITE, and the number of injected type-conversion operators

measures the flow across the retypeable boundary.

4.4.1 Sanity Check

If TYPERITE is correct, TYPERITE(TYPERITE(P,τo,τn),τn,τo) (i.e. f ◦ f−1, for

f = TYPERITE), a roundtrip application of TYPERITE, should return a program that

is semantically equivalent to the input program, when τn is a subtype of τo under the

Liskov substitution principle.

A problem naturally arises: if some terms already use τn in a retypeable region

of the original program, the second retyping process might incorrectly change them.

Similar to α-renaming [60], TYPERITE solves this problem by always using fresh

names for τn. That is, if τn is ever used in the input program, TYPERITE will generate

another unique name for τn using the renaming construct available in ROSE.

In the sanity check, we use testing to under-approximate the programs’ seman-

5https://www.docker.com

http://crest.cs.ucl.ac.uk/retype/
https://www.docker.com

4.4. Evaluation 98

Project Statement Retyping Sanity
Coverage Successful? Check?

Commons Email 1.4 69% Yes Yes
Commons Validator 1.4.4 83% Yes Yes

fwknop 2.6.6 90% Yes Yes
Joda Time 2.1 90% Yes Yes
OpenSSH 6.6 55% Yes Yes

Table 4.1: The sanity check results. Retyping Successful? shows if TYPERITE successfully
changed the types twice; Sanity Check? reports if the retyped programs passed
the tests.

tics. We select five open source programs that have test suites with relatively high

statement coverage, 77.4% on average, two written in C and three in Java. For each

program, we build two sets of types and randomly select a pair (τo, τn). We apply

TYPERITE without defining r that specifies retypeable terms, first changing τo to

τn and then τn to τo. We observe that all five transformed programs pass all the tests.

Table 4.1 reports the results of this sanity check.

4.4.2 The Utility of TYPERITE

As a general tool, TYPERITE helps semi-automate many analysis techniques, such

as taint analysis and refinement types, and has huge potential in fixing bugs.

Taint analysis Taint analysis [165] marks (taints) values from a source, tracks the

propagation of these marks, and checks whether the values reach a sink. It shines

in software security, but also shows its strength in testing and debugging. A user

wishing to use TYPERITE to inject taint tracking types would have to supply a struct

type that includes an additional taint field and corresponding operators. They need to

identify a retypeable region contains a source and sink of interest. TYPERITE would

automatically instrument the program and handle explicit information flow (data

dependence). TYPERITE could also automate taint analysis on implicit information

flow (control dependence) in a language whose control constructs, like if, were

functions, amenable to redefinition. Note that the tainted type only introduces new

behaviour, and is a structural subtype of the old type under LSP. Therefore, the

original behaviour, after retyping, should remain intact.

4.4. Evaluation 99

1 int main(){

2 int a,b,w,x,y,z;

3 a = readInt (); // readInt reads an integer from stdin

4 b = readInt ();

5 w = a * 2;

6 x = b * 1;

7 y = w + 1;

8 z = x + y;

9 }

(a) P, the code to retype.

1 typedef struct {

2 int value; bool tainted;

3 } t_int;

(b) The new, target type.

1 t int op+(t int op1 , t int op2){

2 return {op1.value + op2.value , op1.tainted || op2.tainted };

3 }

4 t int constructTaintedInt(int val){

5 return {val , false};

6 }

(c) Illustrative example of the user provided operators.

1 int6 main(){

2 t int a, b, w, x, y, z;

3 a = constructTaintedInt(readInt ());

4 b = constructTaintedInt(readInt ());

5 w = a * constructTaintedInt (2);

6 x = b * constructTaintedInt (1);

7 y = w + constructTaintedInt (1);

8 z = x + y;

9 }

(d) The retyped program.

Figure 4.10: An example of taint analysis on explicit information flow.

Figure 4.10a adapts a taint analysis example from a highly-cited paper on

dynamic taint analysis which introduces a general framework for previous ad-hoc

techniques and considers both control and data flow [219, Section 2, Figure 1]. To

semi-automate taint analysis on this program, we replace int with t_int defined in

Figure 4.10b. Figure 4.10c presents a complete definition of the operator + on t_int

and a constructor. TYPERITE successfully transforms the input program, shown

in Figure 4.10d. Variables a and b store values provided by the user who may be

malicious, so these variables are taint sources. We add two lines to the retyped

program to taint them: a.tainted = true;, and b.tainted = true;. Assuming the user

enters 11 and 5, we run the retyped program and output variables w, x, y and z: w = {22,

4.4. Evaluation 100

1 public class SecuredString {

2 String string_;

3 public SecuredString(String s) {

4 if(s.contains(‘\’’)) this.string_ = "";

5 else this.string_ = s;

6 }

7 public String opPlus(String leftOperand) {

8 return leftOperand + this.string_;

9 }

10 public String toString () {

11 return this.string_;

12 }

13 }

Figure 4.11: Definition of SecuredString, to replace String.

true}; x = {22, true}; y = {5, true}; z = {28, true}. As expected, all four variables are

tainted, while their actual values remain the same as those in the original program.

Refinement Types Refinement types enrich a coarse-grained type lattice and

can be used to prevent real world bugs. For example, an ordinary string may flow

into a variable intended to store passwords which have certain patterns; an arbitrary

integer may flow into a variable used as the index of an array, which causes an error

out-of-bound array access. TYPERITE facilitates the implementation of refinement

types.

Hibernate, a Java framework used in many open source projects 7, enables de-

velopers to easily write applications whose data outlives the application process.

Hibernate 2.1.4 contains a vulnerability in SessionImpl.find(), which generates an SQL

query directly from its argument of type String without validation. This vulnerabil-

ity permits an adversary to bypass authentication by concatenating ‘OR 1 = 1’ to an

account selection query:

SELECT * FROM accounts WHERE name = ’legit_user ’ AND password = ’’;

To fix this kind of security vulnerability, one might use TYPERITE to refine a

normal String into a safer version, which does not allow SQL separators. Figure 4.11

shows an example of such a refinement, SecuredString. The SecuredString’s constructor

does not allow the special character for SQL command ’. Whenever this is received,

the SecuredString holds an empty String, and thus, the risky API in hibernate cannot

receive an SQL command.

7https://goo.gl/mBhWg1 and http://snipsnap.org

https://goo.gl/mBhWg1
http://snipsnap.org

4.4. Evaluation 101

Type of Changes Occurrences

Type Annotations 67
Type-Constants 37
Function Call Replacement 39
Initializations 1

Table 4.2: Changes that TYPERITE does for fixing security vulnerabilities.

We apply TYPERITE to personalblog 1.2.6, an application which uses hibernate

and inherits this vulnerability. Retyping the whole program is unnecessary, because

only the strings provided by the user that flow into a SQL query are of interest. We

used context filtering for discretionary deciding which terms to retype, and which

not. The call places of the vulnerable hibernate Session.find() method are only in

the class PersonalBlogService. We provided the name of the file containing this class

to TYPERITE, together with the complete definition of SecuredString, part of which

depicted in Figure 4.11. TYPERITE successfully retyped PersonalBlogService, and made

a total of 144 modifications, shown in Table 4.2, 37 of which are type-conversions

that measures the flow across the retypeable boundary.

Bug fixing Table 4.3 reports three field bugs that can be fixed by using TYPERITE.

Time stamps in Unix, whose type, time_r, is a signed 32-bit integer, are represented

by the number of seconds since 1st January 1970. From the year of 2038, the

number of seconds will exceed the largest value that a signed 32-bit integer can

represent: 231−1, and therefore causes an integer overflow. Manually modifying all

the time_r structures in Unix source code is a tedious and error-prone task. One can

use TYPERITE for doing this.

Limbus
8 is a popular open source library for the Meter-Bus protocol, which

standardise the data from electricity meters, heat meters, gas meter, etc.. The users

of limbus reported the Y2K bug of issue number 759. Limbus encodes a year in only

two digits and calculates the current year by simply adding 2000 to it. Therefore,

if one uses limbus on historical data, before the year of 2000, the bug will manifest.

By using TYPERITE, we replaced the current data type that holds a two-digit year

8https://github.com/rscada/libmbus
9https://github.com/rscada/libmbus/issues/75

https://github.com/rscada/libmbus
https://github.com/rscada/libmbus/issues/75

4.4. Evaluation 102

Program Bug Description Bug Fixed

limbus Year 200010– 2 decimals YES
Unix Year 2038 – integer overflow YES
finger Morris Worm YES

Table 4.3: Field bugs that can be fixed by using TYPERITE.

struct tm into a new one, to allow four digit years.

Morris worm [220] is the first computer worm distributed through the internet,

and thus the first internet attack. It exploited a set of vulnerabilities in different Unix

utilities. Here we concentrate on Finger, a tool that is used for showing the users

logged on the network. The version of Finger contained at line 50 the code: gets(line).

Here finger reads the request with gets(), an insecure standard C library routine. This

method does not check for the overflow of the string variable line. Thus, Morris

worm, sends to finger a request bigger than the allocated space for line. The code

that overflows gets executed, and causes the spreading and execution of the Morris

worm. By using TYPERITE, we retype char * into SecuredString in file fingerd.c:

1 struct SecuredString (){

2 char * string;

3 int length;

4 }

Note that we do not provide the type-conversion operator, for identifying all the

insecure usages of the strings in fingerd.c. TYPERITE reports an error:

ERROR: "gets", application "1" not handled!

APPLICATION: gets(line)

LOCATION: fingerd.c, line 50

Thus, the definition of the operator gets() does not exist for SecuredString. The

developer figures out that this operator is a big security vulnerability, and fix the bug.

4.4.3 Changing Behaviour

TYPERITE can change the program behaviour, when τn is not a behavioural subtype

of τo under LSP. In this case, TYPERITE allows the user to specify a predicate

over semantics of the original program that τn preserves, and guarantees that the

10https://goo.gl/U37IB7

https://goo.gl/U37IB7

4.4. Evaluation 103

difference is modulo the predicate. GNU Scientific Library (GSL) extensively uses

floating-point arithmetic. We apply TYPERITE to programs from the specfunction

component of GSL, changing double to fixed discussed in Section 4.1. We show that,

on GSL’s test suite, the difference between outputs before and after retyping is within

some error threshold.

By retyping specfunction, TYPERITE successfully modified 9,489 type annota-

tions, and 120,096 operator applications, indicating that the flow across the boundary

of the retypeable region was significant. Of the 120,096 modifications on operator

applications, 45,066 used type-conversions, and 75,030 used operator overloadings,

of which 2,272 were applied to retypeable operators and 72,758 were applied to

unretypeable operators. In terms of lines of code, TYPERITE modifies 23,379 lines,

out of a total of 61,378 lines of code as reported by cloc
11; that is, 38% of lines

of code are changed. Manually retyping these many lines requires a considerable

amount of effort.

We then ran 2,426 accompanying test cases on programs from specfunc and the

retyped versions in parallel. Instead of generating random inputs, we rested on test

cases, which specify representative, valid inputs that the users may provide or typical

invalid inputs that the programs should fail. Of the 2,426 test cases executed on

the retyped programs, 274 (11%) failed due to overflows or underflows, another

1,000 (41%) failed because the outputs of the retyped programs fell outside the error

tolerance defined in the test cases, and the remaining 1,152 (47%) passed. For the

1,000 failed test cases, whose behaviour TYPERITE modified, the output difference

between the original and retyped programs has the mean value of 2.502× e−6 and

the maximum value of 1.131× e−3. In summary, the differences are relatively

small, which demonstrates that TYPERITE preserves the original behaviour modulo

a user-defined predicate, here an error threshold.

4.4.4 TYPERITE’s Scalability

To demonstrate the scalability of TYPERITE, we apply it to Pidgin, an open-source

online chatting (instant messaging) client which contains 363K lines of code. We

11http://cloc.sourceforge.net/

http://cloc.sourceforge.net/

4.4. Evaluation 104

Category Whole Program One Variable

Tests Passed # Modifications Test Passed # Modifications

Prim→ Prim 100% 225 100% 7
Prim→ ADT 100% 439 100% 16
ADT→ Prim 100% 439 100% 16
ADT→ ADT 100% 173 100% 4

Table 4.4: Scalability and effectiveness example for TYPERITE, applied to globally retype
all 363K line of code of Pidgin, a real world instant messaging system that has
several million users worldwide. Category shows the categories of τo, and τn.
For example retyping from primitive to Abstract Data Types (ADT) is written as:
‘Prim→ ADT’.

perform four different sets of experiments on this real world system, converting

between primitive types and abstract data types.

Table 4.4 presents the results for these four categories of retypes. The first row’s

category is Prim→ Prim. The experiments in this category use TYPERITE to change

an initial primitive data type, to a new primitive data type, that is guaranteed to respect

LSP. Here we had five pairs of initial (τo), and new (τn) types, for example int→

long. The second category is Prim→ ADT, which consists of five specific retypings,

involving insertion of a taint analysis type, for example, double→ TaintedDouble. The

third category is ADT → Prim, which implements the inverse retyping operations

to those applied in the second category. For the final set of scalability experiments,

ADT → ADT , we randomly selected five ADTs defined in Pidgin, for which we

provided five new semantically equivalent ADTs definitions, into which each is

retyped.

For each of these four categories of retyping operation, we report the percentage

of passed test cases, and the number of modifications applied. Of course, we expect

all test cases the pass, because we have proved that our retyping operation is safe

(4.2.1 guarantees semantics-preservation under LSP). However, this set of large-scale

real-world experiments provide an additional empirical validation that TYPERITE

faithfully implements the retyping approach for which this proof obligation was

discharged; as Knuth famously remarked “Beware of bugs in the above code; I have

only proved it correct, not tried it.” [221].

4.4. Evaluation 105

Retypeable Specification IJ R
1 Granularity of Variable Yes Yes
2 Granularity of Type No Yes
3 Granularity of Project Yes Yes
4 Granularity of File(s) Yes Yes
5 Granularity of Function(s) No Yes
6 Granularity of Line(s) No Yes

Handled Program Constructs IJ R
1 Literal Constants No Yes
2 Constructors No Yes

Error Handling IJ R
1 Error Location No Yes
2 Error Reason No Yes
3 Call Site Sensitive No Yes

Supported PLs IJ R
1 OO: Java Yes Yes
2 Procedural: C No Yes
3 Multi-Paradigm: C++ No Yes

τo→ τnrelation IJ R
1 Explicit Subtype with Inheritance Yes Yes
2 Subtype without Inheritance No Yes
3 name(τo) ̸= name(τn) Yes Yes
4 Different Method Names No Yes
5 Different Field Names No Yes

Unretypeable Calls IJ R
1 Convert Incoming Values No Yes
2 Convert Outcoming Values No Yes

Table 4.5: The results of the comparison between TYPERITE (R) and the type migration
feature in a popular IDE: IntelliJ IDEA (IJ).

4.4.5 Qualitative Comparison

Programmers’ desire to change a type has captured industry’s attention, reflected

by the fact that two popular IDEs have built-in, partial support for this feature.

Eclipse12 implements Change Method Signature, allowing one to change the types

of a method’s parameters or return value. For this retyping to succeed, Eclipse must

check whether the method’s new type signature matches its call sites and whether

the parameters’ new types match their uses in the method body. If the new types

are explicit subtypes of the old ones, these checks pass and Eclipse replaces only

the type annotation in the method’s signature. Otherwise Eclipse reports an error.

Similarly, Eclipse supports Use Supertype Where Possible.

IntelliJ IDEA13 implements type migration, capable of changing the type of

a variable or a method by performing inter-procedural data flow analysis14. To

qualitatively compare TYPERITE against IntelliJ IDEA, both tools were given the

same retyping task (e.g. int to TaintedInt), using the same Java program, shown in

Table 4.5. For each of the features in the second column, we specified the same

type change operation for both TYPERITE and IntelliJ. We used IntelliJ’s GUI for

calling Type Migration, and report as unhandled by IntelliJ each case when the

Type Migration window misses our desired Type Migration operation (as handled

by TYPERITE), or when the resulting post-migration code contains an error. The

12https://goo.gl/77KkCt
13https://www.jetbrains.com/idea/
14https://goo.gl/zvGivR and https://goo.gl/aO4qBk

https://goo.gl/77KkCt
https://www.jetbrains.com/idea/
https://goo.gl/zvGivR
https://goo.gl/aO4qBk

4.4. Evaluation 106

code was simple enough that we were able to manually check its correctness. For

TYPERITE we used the command line interface for specifying the type change

operations, as presented in Section 4.1. The comparison is over six dimensions, each

of which appears in bold below.

IntelliJ allows the user to specify retypeable terms at the granularities of vari-

able, file, and project; TYPERITE provides two more, line and function. Changing a

certain type, for all the variables in the specified regions, is possible only in TYPE-

RITE. IntelliJ reports an error when the region to retype contains some program

constructs, such as constants and constructors; TYPERITE uses type-conversion to

handle constants, and treats constructors as normal operators. IntelliJ is an IDE for

Java and supports only the OO paradigm; TYPERITE transcends the OO paradigm

and the language support of its current implementation matches that of ROSE. In-

telliJ requires τn to be inherited from τo using the keyword extends; TYPERITE, with

an optional mapping m, does not constrain as strictly the relation of τo and τn and

is able to retype cases like subtyping without extends or a pair of types with different

method or filed names15. IntelliJ fails to provide any useful error information when

a retype operation is faulty, and it cannot identify errors raised when one retypes the

arguments or returns of functions at a non-retypeable call site; TYPERITE, whose

type inference uses constraint solving, explains the causes of an error and its exact

location in the original program, and TYPERITE is call site sensitive. IntelliJ does

not permit retyping for terms that flow into or out of retypeable regions; TYPERITE

uses type-conversions to handle these terms.

ReplaceClass In 1998, JDK 1.2 introduced ArrayList, an unsynchronised list, to

complement Vector, a synchronised list. Developers who did not need synchronisation

and preferred the performance of ArrayList were faced with the task of manually

retyping their programs to replace uses of Vector with ArrayList. To automate this

tedious task, Balaban et al. proposed a refactoring technique, Class Migration [206],

later ReplaceClass [208]. ReplaceClass takes, as input, the program to refactor and a

migration specification defined by the user, a set of rewriting rules from field accesses

15For cases handled by IntelliJ or nominal subtyping, TYPERITE does not require m.

4.5. Chapter Summary 107

and method calls on the original class to those of its replacement. ReplaceClass

assumes that the original and its replacement are semantically equivalent, at least

over the operations in the migration specification. To ensure type correctness and

behaviour-preservation, ReplaceClass uses an extension of type constraints [209].

ReplaceClass is conservative, so it does not replace the type of variables that can

be bound to values of the old type, as when the variable flows into or out of a

library call. ReplaceClass preserves synchronisation using escape analysis [222].

Following in Balaban et al.’s footsteps, TYPERITE generalises ReplaceClass along

three dimensions: TYPERITE 1) supports retyping non-Object-Oriented languages

and primitive types; 2) converts values that flow between the old and new type; and 3)

allows introducing bounded changes to the original program’s behaviour, as shown

in Section 4.4.3 where TYPERITE retypes the GSL’s special functions from float to

fixed point.

4.5 Chapter Summary
We have defined retyping, a process for changing program behaviour under the

control of a type system. To retype a program is, in a user-specified region, to replace

occurrences of one type annotation with another, replace operator applications

that involve the new type, and convert the type and if necessary, the values of

affected variables that flow across the retypeable boundary. We have presented a type

inference engine and an accompanying term rewriting system that formalises retyping.

We have implemented TYPERITE, a tool for automatically retyping programs and

validated it on real-world programs. It is our hope that TYPERITE will facilitate

research by eliminating the need to reinvent the wheel by implementing bespoke,

error-prone retypings.

Chapter 5

ValueScope: Tracking Values to Their

Origin

Program transformation can facilitate program analysis in various ways. While

Chapter 4 explores how type-based program transformation extends the reach of

existing program analysis techniques, this chapter uses program transformation to

implement a specific debugging technique.

Debugging reprises the scientific method: developers observe a failure, posit a

hypothesis for the failure, add or modify code to test that hypothesis, then execute the

modified code. Developers explore many hypotheses while looking for the cause of

a failure, which, according to early study [223], accounts for 90% of the debugging

effort. Some of these hypotheses concern the origin of unexpected values, like a

division-by-zero when a variable y is bound to 0 in x/y. Was y bound to 0 here

because of the evaluation of an erroneous expression or did the program read this

binding from a database? Indeed, tracking down a value’s origin is common in

debugging. At the time of writing, a search on Stack Overflow with the keywords

“track down null” returns 377 results that have been viewed more than 1,000 times.

In some cases, the origin of an observed, erroneous value v is buggy and causes

a failure, like null’s causing a null dereference. In other cases, however, the bug

may be executed well before when v is produced, and is actually related to other

unobserved values that contribute to v’s production. Consider an out-of-bound array

access in x = arr[i] in an unguarded language, like C, where arr’s length is 4 but i

109

is bound to 5. Often, a developer can observe only the unexpected resulting value

stored in x, like a freed pointer, manifesting itself later in the execution. In fact, it

is the unobserved, out-of-bound index value 5 that causes the failure. Therefore,

tracking down 5’s origin is essential to localising the dangling pointer.

To capture both cases, we generalise the origin of a value from the expression

that produces it to a set of expressions that “contribute” to its production. Section 5.1

defines a value’s origin and Section 5.3 explains how to identify these expressions.

Then, the value origin problem is to find the origin of a value from a program location

where the value manifests (Section 5.1). In generalising the atomic debugging tasking

of tracking the life cycle of a value, this problem concerns the general problem of

program understanding. The most naı̈ve, yet common, approach to tackle the value

origin problem involves repeatedly inserting a print statement, which is tedious.

We present VALUESCOPE, a novel value-sensitive, backward program analysis

to automatically solve the value origin problem. Given a value of interest that is

observed to manifest at an point in a program execution, VALUESCOPE realises a

conceptual reverse execution to track the value from its manifestation through its

propagation to its origin (Section 5.2). While researchers have worked on dynami-

cally finding the origin of a value of interest [158, 159], VALUESCOPE is the first to

track arbitrary, user-specified primitive values, including 0, null, and Inf. Therefore,

it transcends debugging and aids general program understanding.

To maximise VALUESCOPE’s utility, we have designed it to track a value

of interest through computations that produce it from other values. These new

values become values of interest on which VALUESCOPE restarts (Algorithm 3).

Consider the out-of-bound array access x = arr[i] again. VALUESCOPE stopping

its backtracking for the value in x at this assignment may only trigger the developer

to ask ”Where does the erroneous value in i come from?”. Automatically connecting

the propagation chains of the value in x and the value in i helps developer more

quickly determine the true cause of the out-of-bound array access.

Blindly tracking all values used in the computation that produces the value

of interest is infeasible, because of the exponential time and space complexity.

110

Instead, VALUESCOPE ramifies a propagation chain by analysing which value to

variable bindings are “relevant” to the computation of a value of interest at its

birthplace1. For example, assume evaluating the expression x + 0 * y returns 3;

only x is relevant to producing 3. VALUESCOPE introduces relevance analysis

(Section 5.3) to capture only variables that make “sufficient contribution” to the

computation of an expression. Given an expression e in a program execution,

relevance analysis quantifies the impact of the free variables that e involves and

selects those variables whose relevance is above a threshold. Then, the values

bound to these relevant variables become the new values on which VALUESCOPE

recurs. Relevance analysis can dynamically and automatically generate new values

of interest, thereby granting VALUESCOPE the support for multi-value tracking and

an open vocabulary of values.

We implement VALUESCOPE via program transformation (Section 5.4) and

target it for JavaScript, a prevalent language that encodes all numeric values in

floating point and therefore is particularly vulnerable to special values like Inf.

To demonstrate its utility in bug localisation, we compare VALUESCOPE with two

baselines: an effective spectrum-based fault localiser that uses the DStar ranking

measure [11], and ORBS [12], a program slicer which keeps deleting statements

until the observable behaviour for a given slicing criterion is no longer preserved.

We apply these three techniques to 44 real-world JavaScript programs with value-

related bugs and their fixes. To report meaningful results, we introduce the “on

screen” measure, which determines whether lc, any line a technique identifies when

attempting to localise a bug, and l f , any line touched by the bug’s fix, can appear on

the same screen, when lc is at the middle of the screen. We demonstrate that a line

VALUESCOPE reports is, on average, 12 lines away from the fix, 42 lines closer than

that of DStar, while the total number of lines VALUESCOPE reports is on average

12.5% of that of ORBS. (Section 5.5).

In summary, we have made the following contributions:

• We identify the value origin problem, which generalises the heretofore un-
1Though all parameters are created equal, some are more equal than others (according to some

sources, George Orwell said something similar).

5.1. Problem Definition 111

named debugging task of tracking values, like NaN, to their origin.

• We define parameter relevance to quantify the impact of a function’s parameters

(or an expression’s free variable) on that function’s output.

• We present VALUESCOPE, a tool which automatically solves the value origin

problem for arbitrary primitive values in JavaScript.

• We evaluate VALUESCOPE’s effectiveness in localising real-world bugs against

two baselines: DStar, a state-of-the-art spectrum-based fault localiser, and

ORBS, a program slicer, and show that a line VALUESCOPE reports is, on

average, 12 lines away from the fix, 42 lines closer than that of DStar, while

the total number of lines VALUESCOPE reports is on average 12.5% of that of

ORBS.

5.1 Problem Definition
When debugging an erroneous value v in a program execution, a developer often first

tracks v to where it was produced and then ponders what went wrong. Sometimes, the

developer blocks the value’s propagation to fix the bug. Other times, the developer

fixes the bug at v’s expression of birth. Still other times, the bug lies “deeper”: at

the origin of or propagation from the values from which the program computes v.

When this happens, the developer restarts the origin search on those values, as when

tracking a zero to the expression a + b in an execution that binds a to 5 and b to −5.

In a case like this, the question immediately becomes “Where did these two bindings

originate?”.

To handle these cases, we generalise the origin of the value v to the set of

expressions that originate the values from which a program produces v. Let E denote

the set of expressions in the host language that can produce v. For some expressions

in E, like the example in the last paragraph, a developer would restart the value

origin search, on new values if necessary. We call these restart expressions, denoted

by ER. Nonrestart expressions, EN = E \ER, are those that the developer considers

an origin of v and does not search further. Three notable disjoint subsets of EN are

5.1. Problem Definition 112

environmental interactions, like prompting a user, external library calls, and literals

(which are externally defined).

Definition 5.1.1 (A Value’s Originating Expressions). The set of originating expres-

sions of the value v is

O(v) =


{e} if e ∈ EN⋃
v′∈R(e)

O(v′) otherwise (e ∈ ER),

where R(e) extracts values from the bindings of the free variables in the restartable

expression e on which to restart the origin search. Section 5.3 describes how we

realise ER and R.

The value origin problem is to take a trace and a value of interest at a observation

point in the trace and find that value’s originating expressions and value-flows from

those expressions to the observation point. This problem captures the first critical

step of debugging an erroneous value. It is not limited to primitive values: it can

search for the origin of the values of arbitrary types. Any user-defined datatype can

be extended with a primitive field, like an int, and a transformation that ensures that

the new primitive field changes whenever any other field of the datatype changes.

For some values of interest, such as NaN 2, the value origin problem can be

challenging. Even without a restart, NaN is problematic, because any floating point

operations involving NaN produce NaN, making the task of tracking down its actual

origin time-consuming. The top question on StackOverflow about debugging a

NaN has been viewed more than 20,000 times and a user responded, “it’s much

tougher to pinpoint where the nans and infs may occur than to fix the bug” [224].

Popular libraries, like Tensorflow, have even added debugging support for NaN, which,

however, is mostly limited to checking whether an object contains a NaN.

Figure 5.1 presents a real-world JavaScript program that mishandles NaN. A user

reported that the property percentageDifference of an element in the array toParse

2Short for Not-a-Number, NaN is the special value that represents the result of an undefined
operation in floating point arithmetic, like 0/0 or sqrt(-1).

5.2. Discovering Value Origins 113

87 // Calculate the percentage of this one trade

88 toParse[i]. percentageDifference = percentageString(toParse[i

]. currentValueOfAll , toParse[i]. invested);

...

201 function percentageString(newValue , oldValue) {

202 let percentage = "";

203 if (newValue >= oldValue) {

204 percentage = "+" + roundNumber ((newValue - oldValue)

/ oldValue * 100) + "%";

205 } else {

206 percentage = "-" + roundNumber ((oldValue - newValue)

/ oldValue * 100) + "%";

207 }

208 return percentage;

209 }

Figure 5.1: The code snippet from file index.js in a GitHub repository CryptoSummary at
commit ef24e35. A user reports that this program generates a NaN observed at
line 88.

could have the unexpected value "+NaN%". The error was that both parameters of the

function percentageString were bound to 0 at the right-hand-side of the assignment

on line 88. Therefore, the expression (newValue - oldValue) / oldValue on line 204

evaluates to NaN. The production of NaN is 116 lines away from its observed location,

which hinders debugging.

5.2 Discovering Value Origins
We present VALUESCOPE to automatically tackle the value origin problem. At its

core, VALUESCOPE realises a reverse execution that proceeds backwards from a

value’s observation point to the origin of that value. This section formally describes

it by first introducing the models and the notations.

For presentation purposes, we assume we have the complete execution trace

of a program; Section 5.4 lifts this constraint. Formally, VALUESCOPE operates

on an execution trace3; it projects out state transitions that generate, propagate, or

observe a value of interest. To explain this projection, we model a program P as a

Labelled Transition System (LTS) [225]. A LTS is a triple ⟨Σ,A,−→⟩, where Σ is

3Section 5.4 discusses how we implement VALUESCOPE in a tool that operates on source code.

5.2. Discovering Value Origins 114

... ...

σi(x)=0 σi+1(y)=0σ0 σi+2(z)=0

v-inception
transition

σi-1

v-propagation
transition

execution trace

program ... x = 0; y = x; z = y; print(z); ...

v-propagation
transition

v-manifestation
transition

(a) A c-chain presents a straightforward, linear view of the life cycle of a value of interest.

print(err);

err = z / y;

z = x + 0 * i;

x = read(); y = zero(i);

i = 0;

(b) A c-tree connects multiple c-chains.

Figure 5.2: Data structures central to VALUESCOPE.

the set of P’s states that bind memory locations to values, A is the set of P′s actions

(i.e. statements), and −→ ⊆ Σ×A×Σ is the transition relation. For simplicity,

we generalise variables to mean memory locations and denote them by X . We

denote a state transition with ti ∈ −→, where ti = ⟨σi−1,αi,σi⟩. Let S ⊂ Σ be the

set of states from which P can start. An execution of P, then, is a path in the LTS

p = σ0
α1−→ σ1

α2−→ ·· ·σn−1
αn−→ σn, where σ0 ∈ S, or ⟨t1, t2, · · · , tn⟩ for concision.

C-Chain In the simplest case, VALUESCOPE considers transitions that form a

sequence. For the value of interest v bound to the variable xn, its causality chain,

or simply c-chain, is a subsequence of a path in the LTS: one end is the inception

transition t i whose action creates v, the other end is the observation transition

5.2. Discovering Value Origins 115

1 let i = 2020;

2 let x = read(); // reads 0 from a user

3 let y = zero(i); // i is irrelevant

4 let z = x + 0 * i; // i is irrelevant

5 print(z);

6 let err = z / y; // 0/0 generates a NaN

7 print(err);

8 function zero(arg) { return 0; }

Figure 5.3: A code snippet that illustrates the need for c-trees.

to where the user observes that xn is bound to v. All other internal nodes are

propagation transitions t p whose actions copy v from one variable to another. With

these notations, a c-chain is the sequence ⟨t i,(t p)∗, to⟩, where ∗ denotes 0 or more.

A c-chain may have only a single transition when t i = to, such as print(NaN) when

v = NaN. Programmatically, the action of t i writes v into a variable but does not read

v from a variable, such as an external interaction; the action of t p both reads and

writes v. Figure 5.2a depicts the c-chain of 0 in a simple program.

A c-chain presents a straightforward, linear view of the life cycle of a value and

is useful. Casper [159] finds the c-chain of a null in a Java program and demonstrated

its utility for debugging. A c-chain is conceptually related with a def-use chain:

Given a variable v, a def-use chain is a sequence ⟨D,U1, · · · ,Un⟩, where D is a

definition of v and U1, · · · ,Un are all uses of v that only D and no other definitions of

v can reach. A c-chain differs from a def-use chain in two ways. First, like a def-use

chain, a c-chain also starts with a definition, but it is centred around a value, not a

variable, so it may contain definitions of other variables as propagation transitions.

Second, among all the uses of the defined variables, a c-chain contains only those

uses that propagate, or the final use that manifests the value of interest. Therefore, a

c-chain links multiple partial def-use chains.

A c-chain is easy to understand, but too simple: it tracks only a single value and

overlooks that some values passed to an operator naturally cause others. Take the

assignment err = z / y at line 6 in Figure 5.3 as an example. JavaScript encodes all

numeric values in the double precision floating-point format; the fact that both z and

y are 0 causes the RHS expression z / y to generate a NaN. When NaN is the value of

5.2. Discovering Value Origins 116

interest and it is observed at line 7, VALUESCOPE backtracks to line 6 and deems it

the inception transition of the NaN. It is natural for developers to then wonder why, in

this execution, z and y have the value 0. It may well be the case that the bug lies at

the statement that binds y to 0, which a c-chain misses.

C-Tree The limitation of a c-chain necessitates a more powerful data structure,

which we call c-tree. Intuitively, a c-tree comprises c-chains of different values.

For a state transition that reads vi from a variable and writes v j into another, a

c-tree conceptually fuses the inception transition of v j to the observation transition

of vi, thereby creating a more informative structure and hopefully speeding bug

localisation.

How should one construct a c-tree? Given a state transition whose action α reads

a set of variables X , one can trivially follow all the bindings for X . This exhaustive

approach is expensive, as the number of bindings to track grows exponentially. More

importantly, it ignores that some variables in X may be irrelevant to the computation

of α . For example, consider the assignment z = x + 0 * i at line 4 in Figure 5.3

and assume 0 is the value of interest. This assignment reads from both x and i, but i

is, in fact, irrelevant, because the RHS is semantically equivalent with just x. Thus,

the result of an expression may depend on some of its free variables more than others

and a c-tree should include only the more relevant bindings.

Relevance Analysis To build a c-tree efficiently, we introduce the relevant variable

function ▽ that determines the set of relevant free variables in an expression. It

permits an efficient way to explore a useful subset of all bindings in a value’s

inception transition. We define ▽ in Section 5.3 and discuss it at a high-level here. ▽

takes three parameters: a transition ti, a variable x to which ti’s action writes the value

of interest, and w, the maximum number of relevant variables an action permitted

to have. w determines whether VALUESCOPE stops at a transition, labelling it as an

inception transition, or deems a propagation transition and restarts on new values

of interest ▽ computes. When interpreted as causes of a value of interest, too many

inception transitions are unwieldy and are likely to violate Occam’s razor [226]. For

this reason and for scalability, we keep w small. Section 5.5.2 investigates the effects

5.2. Discovering Value Origins 117

of varying w. ▽(ti,x,w) returns the variables that have a greater impact on the action

and therefore on the production of the value of interest. We call these parameters

relevant. It returns the empty set when αi has no relevant parameters or has too

many.

▽ enables VALUESCOPE to dynamically generate and restart on new values

of interest. It grants VALUESCOPE a natural support for multi-value tracking and

obviates the need to predefine a set of values of interest.

Using ▽, we can now formally define a c-tree. For the value of interest v at

the state σ where σ(xn) = v, its c-tree is a tree of state transitions: the root is the

observation transition, the leaves are inception transitions, and all internal nodes are

propagation transitions, where

• the observation transition is a state transition to ∈ Σ, where the user observes

σ(xn) = v;

• a inception transition is a state transition t i ∈ Σ, where ▽(t i,xn) = /0;

• a propagation transition is a state transition t p ∈ Σ, where ▽(t p,xn) ̸= /0.

Figure 5.2b exemplifies a c-tree.

Approach VALUESCOPE constructs a c-tree in a typical worklist algorithm, as

Algorithm 3 outlines. Given a program P, the algorithm takes as input the execution

trace po = ⟨t1, t2, · · · , to⟩ (i.e. a path in P’s LTS that ends in the observation transition

to), the variable x witnessed to hold the value of interest at the observation transition

to, and the width parameter w for ▽. Key to understanding the algorithm is to

understand the identifiers it uses. At line 5, VALUESCOPE uses the helper function

findDef to find the definition of a particular use:

findDef (p,⟨⟨σi−1,αi,σi⟩,x⟩) = ⟨σ j−1,α j,σ j⟩, where

x ∈ writes(α j)∧ j ≤ i∧

(∄⟨σk−1,αk,σk⟩ ∈ p, x ∈ writes(αk)∧ j < k ≤ i)

The central data structure WL is a queue of pairs ⟨tu,x⟩, where tu = ⟨σu−1,αu,σu⟩.

At any point in the execution of Algorithm 3, x holds the current value of interest

5.2. Discovering Value Origins 118

v, xr holds the new one, tu’s αu is a use of x, and td’s αd is the definition that writes

v into x. The variable cur, defined on line 4 and used on line 8 and 11, points to

the current parent node in the c-tree that the algorithm intends to build. On line 8,

denotes the absence of a relevant variable for td .

Algorithm 3 The VALUESCOPE algorithm: If no bindings αi reads are relevant to its
computation, VALUESCOPE deems the transition an inception and aborts. Otherwise,
VALUESCOPE views the transition as a propagation and recurs on every binding in
the relevant set ▽ returns. cur, the current parent node in the c-tree. σu(x) = v, the
current the value of interest.

1: procedure VS (po,x,w) ▷ po = ⟨t1, t2, · · · , to⟩
2: WL← ⟨⟨to,x⟩⟩,root← ⟨to,x⟩ ▷ to = ⟨σo−1,αo,σo⟩
3: while WL ̸= ⟨⟩ do
4: cur = ⟨tu,x⟩ ←WL.dequeue() ▷ tu, a use of x
5: td ← findDef (po,cur) ▷ td , a definition of x
6: Xr← ▽(td,x,w) ▷ Section 5.3 defines ▽
7: if Xr = /0 then ▷ td , an inception trans.
8: cur.addChild(⟨td, ⟩) ▷ add a leaf
9: else ▷ td , a propagation trans.

10: for all xr ∈ Xr do
11: cur.addChild(⟨td,xr⟩) ▷ add a nonleaf
12: WL.enqueue(⟨td,xr⟩)
13: end for
14: end if
15: end while
16: return root
17: end procedure

5.2.1 Relation to Existing Work

Value Tracking VALUESCOPE generalises Casper [159] in two ways. Casper

restricts the value of interest to null; VALUESCOPE accepts any primitive values that

are not necessarily erroneous. Second, Casper aborts after identifying the inception

transition of null and produces a c-chain; VALUESCOPE performs relevance analysis,

restarts on the relevant bindings, and constructs a c-tree.

Dynamic Slicing VALUESCOPE differs from dynamic slicing [164] in its statement

selection criteria and stopping condition. VALUESCOPE implements relevance-

guided variable-to-value binding tracking, which does not select control flow state-

ments, whereas dynamic slicing keeps all statements on which the slicing criterion

5.3. Branching at Relevant Values 119

is control or data dependent. A backward dynamic slicer stops at program entry,

whereas VALUESCOPE stops at inception transitions. As a result, dynamic slicing

returns much larger program subsequences than VALUESCOPE in practice.

Causal Analysis Cast in causal terms [227], an inception transition causes the

manifestation of a value of interest. VALUESCOPE, however, is not a causal inference

tool. Consider the causal relation a→ b. A causal analysis is given the events a

and b and asked to determine whether a causes b, i.e. to discover a → that links

them. For example, LDX [228] uses dual execution to determine whether a program

event b, like executing an instruction, is causally dependent on a preceding event

a. Specifically, from a given execution, LDX spawns a slave execution where it

mutates the states at a and observes whether the mutation triggers any changes to

b. VALUESCOPE takes the effect b, an observation transition, as input and exploits

known causal relations, (i.e., it knows→, specifically program semantics) to discover

a, a set of inception transitions. In short, causal analysis tools, like LDX, are not

directly comparable to VALUESCOPE.

Dynamic Taint Analysis When values are viewed as a degenerate case of tags,

VALUESCOPE resembles dynamic taint analysis [229], because it audits a value/tag’s

inception and propagation, but it also has important differences. Dynamic taint

analysis tracks data flow from a known source to a known sink, following a forward

execution; when an observation transition is deemed a source, VALUESCOPE employs

a backward analysis to discover its unknown sinks, i.e. inception transitions.

5.3 Branching at Relevant Values
Section 5.2 generally describes VALUESCOPE, but uses the relevant variable function

▽ as a magic operator. This section defines it, by first bridging the gap between state

transitions and functions.

Given a state transition, we assume its action α is deterministic. Under this

assumption, we model α as a function f over the free variables it reads. We relax

this constraint and discuss how VALUESCOPE combats non-determinism at the end

of this section. For notational convenience, we assume all function applications use

5.3. Branching at Relevant Values 120

named parameters, as in JavaScript or Python. This assumption allows us to ignore

the order of the arguments in an application and apply a function to a set of formal

to actual bindings instead of a sequence of the arguments. It is not a fundamental

restriction to the approach and is not required by the current implementation of

VALUESCOPE, as Section 5.4 shows.

5.3.1 Sensitivity

Every function application binds its formal parameters to its actual ones. The result

of a function application, however, does not necessarily “equally” depend on all the

bindings of its parameters. Sensitivity analysis [230] is the general study of how

much a function’s output changes in response to changes to its input. For example,

the function f (a,b) = 3a+ 2b is more sensitive to a change in a, because of the

greater coefficient 3. As a result, one may argue that a is more relevant than b.

It is, however, challenging to directly apply sensitivity analysis to programs.

Program behaviour is discrete over different domains, making it difficult to measure

the changes between two outputs. One need only consider numeric types to illustrate

the point. What is the numeric difference between 0 and NaN? How sensitive is

a program to an input change that changes the output from 0 to NaN? And is that

program more sensitive to another input change that changes the output to 1 to NaN?

In this work, we simplify the established notion of sensitivity to obviate the

need to define “distance” for every type and across types. Instead of measuring the

magnitude of the change in function’s output to changes in its inputs, we simply

observe whether the output has changed. Thus, we change the question from ”How

different are two outputs?” to ”Are two outputs different?” and reduce the range of

sensitivity from R to {0,1}= B.

Let B= {x1 = a1,x2 = a2, · · · ,xn = an} denote the parameter bindings for an

application to the n-ary function f . For the function application generating a value

of interest, f (B) = v, let B⊂B be a subset of f ’s parameter bindings to which we

want to establish f ’s sensitivity. Then B =B\B contains the remaining bindings,

which we keep fixed while viewing as variables the parameters that have bindings

in B. Let fB be the function resulting from partially applying f to B and ΠX(B)

5.3. Branching at Relevant Values 121

be the set of parameters that B binds. Then, fB is over ΠX(B), viz. the parameters

B does not bind and its arity is |B| = |B \B|. Consider, for example, applying

the function f (a,b,c) = a+ b+ c to {a = 1,b = 2,c = 3}. If B = {a = 1}, then

B = {b = 2,c = 3} and fB is the unary function g(a) = a+5.

Definition 5.3.1 (Sensitivity). The application f (B) is sensitive to B ⊂B ⇐⇒

∀B′,ΠX(B) = ΠX(B′)∧B ̸= B′∧ fB(B
′) ̸= fB(B) = v.

Intuitively, this definition states that, given a function application, if any changes

to the bindings of some parameters cause the result to also change, the application is

sensitive to these bindings. Given B that binds a subset of the function’s parameters,

the definition uses B′ to denote some different bindings (B ̸= B′) for the same

variables (ΠX(B) = ΠX(B′)), which cause the result to change (fB(B
′) ̸= fB(B)).

5.3.2 Sensitivity under Testing

The goal of ▽ is to compute B, the new values of interest to which f (B) is sensi-

tive, for VALUESCOPE to restart. ▽ can perform this computation symbolically or

treat f as a black box and use fuzz testing. A symbolic approach could leverage

some operators’ special values, like 0 for multiplication, which, when used as an

operand, determines the result regardless of the values of other operands, to speed

the sensitivity computation. It would also need to contend with intractability, as

f models a program expression that can be arbitrarily complex. In this work, we

focus on black box testing, so our technique does not require source code. Black box

testing f ’s sensitivity to X requires us to sample the inputs. Applying the principle

of indifference [231], we uniformly sample the function’s input domain.

Quantifying Relevance When a function is injective, it is sensitive to all of its

parameters, because an injective function, given uniformly sampled inputs, generates

uniformly distributed outputs. When we take a probabilistic view of the behaviour

of f and model its output as a random variable O equipped with a probability

distribution [232], the Shannon entropy [233] of O maximises, when it exhibits a

uniform distribution. We use this insight to measure a function’s sensitivity in the

following definition.

5.3. Branching at Relevant Values 122

Let H be the Shannon entropy of a discrete random variable. For the function

application f (B) and B⊂B, let I be the random variable modelling the parameters

that B binds and fB(I) the dependent, output random variable.

Definition 5.3.2 (Relevance). For the function application f (B), the relevance of

the set of parameters B binds to f is H(fB(I)).

By modelling B as a random variable I and fixing the bindings B of the others,

we make the resulting function, even a deterministic one, stochastic, denoted fB(I).

The relevance of B is then the Shannon entropy of this induced random variable.

Informally, Shannon entropy quantifies the uncertainty of a random variable. In

particular, when its entropy is 0, a random variable has one certain outcome. When

we view the parameters and the result of a function as random variables, if changes

in the bindings of some parameters cause the result’s entropy to be non-zero, then

the result is uncertain and these parameters contribute to the uncertainty; in other

words, the result depends on these parameters. More generally, high uncertainty

induces large entropy. Thus, the more relevant some parameters are to the result,

the more uncertain the random variable resulting from modifying these parameters’

bindings will be, and consequently the larger the entropy will be.

Given a discrete random variable, computing its Shannon entropy takes as input

its probability distribution. In Definition 5.3.2, the probability distribution of fB(I)

directly depends on that of I, when f is assumed to be deterministic. However, for

functions converted from program expressions, inferring the probability distributions

of the parameters’ bindings is undecidable, even if the probability distribution of

the inputs is already known. When one knows little about a random variable’s

probability distribution, uniform distribution that implies maximum uncertainty, is

often used. Section 5.4.2 details how VALUESCOPE employs uniform distribution to

approximate the entropy of fB(I).

Thresholding Relevance In addition to quantifying the relevance of some param-

eters, we also would like to decide when they are relevant. To this end, we need a

threshold: if the relevance of some parameters is above this threshold, they are rele-

vant; otherwise, they are not. However, relevance is measured using entropy which

5.3. Branching at Relevant Values 123

varies with the underlying probability distribution. Therefore, setting a universal

threshold of relevance, an absolute value of entropy appropriate for all probability

distributions over a sample space, is impossible. Instead, we leverage the fact that

given the sample space Ω, the entropy of a discrete random variable I is maximised

when I has a discrete random distribution over its sample space Ω, or formally,

I ∼ UΩ. We introduce a parameter η that represents a fraction of the maximal

entropy. By construction, this threshold is universal for all probability distributions

over a sample space. Given B, let X be the set of parameters B ⊂ B binds, i.e.

X = ΠX(B).

Definition 5.3.3 (Parameter Relevance). For the function application f (B), X is

relevant if H(fB(I))> η ·H(UΩ), where η ∈ [0,1) and Ω is the sample space for I.

Functions cannot increase the Shannon entropy of their parameters. The in-

equality in the above definition puts a lower bound on how much entropy fB loses

on B and still are sensitive to X . Under this definition, an empty set of parameters

is irrelevant. Formally, X = /0 =⇒ B = /0∧B =B; the partial application fB now

becomes a complete application that returns a constant and its entropy is always

0 regardless of the bindings in B. Additionally, unless a function uses none of its

parameters, all of its parameters, taken together, must be relevant. Fundamentally,

surjection causes partial relevance. In other words, if a function is injective, every

parameter must be relevant.

Minimal Relevance The existence of some relevant parameters modulo a threshold,

however, may hide the irrelevance of others. For example, when η = 0, {x,y} is

relevant to the function x+0∗ y, only because {x} is relevant. We seek to capture

these subsets of truly relevant parameters via minimal relevance. Given f , let X be

the set of f ’s parameters and let X and X ′ be two subsets of X.

Definition 5.3.4 (Minimally Relevant). For the function application f (B), a relevant

subset X ⊆ X is minimal, if ∄X ′ ⊂ X, X ′ is relevant ∧ |X ′|< |X |.

A set of relevant parameters of a function is minimal if no smaller relevant

set exists. The constraint of minimality refines the set of all parameters, which is

5.3. Branching at Relevant Values 124

x	*	y	+	z

y	+	z 2x	+	z x	*	y	+	3

2 +	z 2x	+	3 y +	3

5

Figure 5.4: The partial function hierarchy for function f (x,y,z) = x∗ y+ z and B= {x =
1,y = 2,z = 3}. Arrows indicate partial applications.

relevant in general, to its very core of actually relevant parameters.

▽ aims to find the minimal relevant set of parameters of a transition, preventing

VALUESCOPE from chasing irrelevant parameters. Given a function f and a set

of parameter bindings B, different partial applications produce different functions,

which we call partial functions. These partial functions, along with f , form a

hierarchy. At the top sits f and at the bottom a constant that is the result of applying

f to B. The functions in the middle levels are the results of partially applying

the functions one level above to a binding of one of their parameters, thereby

reducing the arity by one; functions at the same level have the same arity. As an

example, Figure 5.4 displays the partial function hierarchy for f (x,y,z) = x∗ y+ z

and B= x = 1,y = 2,z = 3. With this hierarchical concept, finding f ’s minimally

relevant set of parameters is essentially a search problem, in which we aim to find a

partial function in the hierarchy whose parameters’ relevance is above the threshold

and whose arity is minimised.

▽ tackles this problem in a bottom-up exhaustive search: it starts with testing

5.3. Branching at Relevant Values 125

the relevance of singleton sets that contain only a single parameter and gradually

increases the arity of the partial function under investigation. The width parameter w

that captures our philosophical view of causes limits the number of partial functions

▽ can test, which is ∑
w
i=1

(w
i

)
. The exhaustive search stops when it finds a relevant

set of parameters or finishes testing all the parameter sets whose sizes are smaller

than w+1.

Example of Relevance Computation To be concrete on Definition 5.3.2 and 5.3.3,

consider the expression x * (y + z), in which variables x, y, and z are 2-bit unsigned

integers. We first convert the expression to its function form f (x,y,z) = x∗ (y+ z).

Assuming a program execution yields the binding {x = 0,y = 1,z = 2}. To test

for relevance, VALUESCOPE explores subsets of this binding. When we model a

non-empty subset of the parameters as a random variable, f has 23−1 = 7 possible

different partial applications. Under the assumption that all the parameters indepen-

dently have a uniform distribution over the value domain of 2-bit unsigned integers,

Table 5.1 presents the result’s entropy in all 7 cases of partial applications. For ex-

ample, when we model {x} as a random variable and fix the binding {y = 1,z = 2},

the result of this partial application is 3x and its entropy is 1.4, the maximal value

for random variables that have 22 = 4 different outcomes. However, when we model

either {y} or {z} as a random variable, the result’s entropy is 0.0. If η = 0 in

Definition 5.3.3, {x}, {x,y}, {x,z}, and {x,y,z} are all relevant, but {x}, the truly

relevant parameter set, is what ▽ aims to compute.

5.3. Branching at Relevant Values 126

B
B

X
f B
(X

)
H
(

f B
(X

))
H
(U

Ω
)

{
x

=
0
}

{
y

=
1,

z
=

2
}

x
3x

1.
4

1.
4

{
y

=
1
}

{
x

=
0,

z
=

2
}

y
0

0.
0

1.
4

{
z

=
2
}

{
x

=
0,

y
=

1
}

z
0

0.
0

1.
4

{
x

=
0,

y
=

1
}

{
z

=
2
}

(x
,y

)
x(

y+
2)

2.
3

2.
8

{
y

=
1,

z
=

2
}

{
x

=
0
}

(y
,z

)
0

0.
0

2.
8

{
x

=
0,

z
=

2
}

{
y

=
1
}

(x
,z

)
x(

z+
1)

2.
3

2.
8

{
x

=
0,

y
=

1,
z

=
2
}

/0
(x

,y
,z

)
x(

y+
z)

2.
3

4.
2

Ta
bl

e
5.

1:
Th

e
re

su
lt’

se
nt

ro
py

fo
rt

he
fu

nc
tio

n
f(

x,
y,

z)
=

x∗
(y
+

z)
w

ith
th

e
bi

nd
in

g
B

=
{x

=
0,

y
=

1,
z=

2
}

in
7

di
ff

er
en

tc
as

es
of

pa
rti

al
ap

pl
ic

at
io

n.

5.3. Branching at Relevant Values 127

Probabilistic Functions Functions in programs may be probabilistic; that is, a

function may produce different outputs for the same input. Probabilistic functions

adversely impact VALUESCOPE in two ways. First, they may introduce false positives

to VALUESCOPE’s relevance analysis. For example, consider a function that takes

two parameters. Instead of using these parameters, the function simply returns the

current time. This function is probabilistic and its parameters do not contribute to

its computation. VALUESCOPE, however, will falsely deem the parameters relevant,

because it will observe changes in the output with changes in the inputs. Second,

probabilistic functions may cause the value of interest to not manifest, as in flaky tests.

To contend with probabilistic functions, we set a resource budget to VALUESCOPE.

We require the value of interest (or the relevant parameters) to manifest themselves

sufficiently often, relative to this budget. Given a path to an observation transition

that manifests the value of interest often enough to be detected, the budget cannot be

exceeded at any intermediate transition during VALUESCOPE’s computation. Thus,

though falsely relevant parameters may cause VALUESCOPE to track to irrelevant

parts of the program, eventually VALUESCOPE will be forced to stop because of the

resource budget. Essentially, this budget bounds the probabilistic functions we can

handle.

Special Values Given a function, there may exist a special value, like 0 for multipli-

cation, such that the function applied to this special value will always produce the

same result, regardless of the bindings of other parameters. When some parameters

of a function are bound to these special values, the relevance of other parameters

will be 0 (Definition 5.3.2). We define them as follows.

Definition 5.3.5 (Special Value). For an n-ary function f , s is a special value

⇐⇒ ∀B = {x1 = a1, · · · ,xn = an },∃i ∈ {1, · · · ,n}, f (B[xi = ai/xi = s]) = c.

When s = c, we have a subset of special values that we call fix values. Under

these definitions, in JavaScript , undefined is a special value for arithmetic opera-

tors when the other operand is numeric, because arithmetic operations involving

undefined will evaluate to NaN. In floating point arithmetic, NaN, short for Not a

Number, represents the result of undefined operations, such as 0÷ 0 and ∞−∞.

5.4. Implementation 128

True ⇒ “x = e”→ “x = ca(e)” (5.1)
f ̸= cu ⇒ “ f (a1, · · · ,an)”→ “ f (cp(a1), · · · ,cp(an))”

(5.2)

l = observation∧ pos(x) ̸= LHS ⇒ “x”→ “cu(x)” (5.3)

Figure 5.5: The rewriting schema for VALUESCOPE’s program transformation.

Floating point expressions involving NaN always evaluate to NaN, so NaN is a fix value

for all floating point operators. In real arithmetic, 0 is a fix value for× and÷ when it

is the nominator. In strictness analysis, a function f is strict, if and only if f (⊥) =⊥.

Hence, ⊥ is a fix value for any strict functions.

Many special values are actually silent or deferred errors. NaN is a notable

example. By default, when a NaN is generated, the invalid flag, one of the five status

bits designed to handle exceptional cases, is set, but without raising an exception

that terminates the execution. Such a “quiet” NaN may be normalised by subsequent

operations or even checked for to recompute the value, without incurring a costly

termination. When unintended, these special values can propagate far from their

origins and create errors that are hard to debug.

5.4 Implementation
Directly implementing VALUESCOPE (Algorithm 3) requires collecting complete

execution traces of a JavaScript program, a monumental space cost that few would

be willing to take. Instead, we realised VALUESCOPE by first transforming the

program and then executing the transformed program to gradually construct the

c-tree of a value of interest. This program transformation operates at the source

code level, so dynamic instrumentation frameworks that target binaries, such as

DynamoRIO [234] and Pin [235], are not suitable. VALUESCOPE applies the “replay”

technique [236, 237, 238] to realise a reverse execution.

5.4.1 Transformation

At a high level, VALUESCOPE’s program transformation turns the value of interest to

a record by adding a field to it, builds a c-tree as the program executes, stores the

5.4. Implementation 129

c-tree in the additional field, and projects the c-tree to program statements when the

execution reaches the observation transition. JavaScript is a large, complex, industrial

language, notorious for its permissive syntax and semantics. Writing a program

transformation that captures all value flows in raw JavaScript is impossible. So, our

program transformation is best effort: we wrote it iteratively for our development

corpus with the aim for, but not guarantee of, general applicability to real-world

JavaScript programs.

Figure 5.5 illustrates the transformation’s rewriting schema. For every assign-

ment, VALUESCOPE wraps the right-hand side expression e with a function ca that

checks its value (Equation 5.1). If e evaluates to the value of interest v, ca returns

a special record that contains e’s original value and an additional field, a c-tree

object noting an inception of the value of interest and recording the location of

this expression. If e is itself a special record, ca regards it as a propagation transi-

tion and augments the existing c-tree object with the description and the location

of the expression. Otherwise, ca is an identity function. For every function call,

VALUESCOPE wraps every argument with a function cp (Equation 5.2) that behaves

exactly the same as ca. For every use of a variable x at the observation transition,

VALUESCOPE wraps it with a function cu that checks the value of x (Equation 5.3).

If x is the special record, cu projects nodes in the c-tree to their corresponding state-

ments in the program and outputs these statements. This projection converts a tree of

transitions into a graph of statements. Otherwise, cu is an identity function. Finally,

VALUESCOPE prepends the definitions of ca, cp, and cu to the transformed file.

Some operators in JavaScript, like += and ++, both read and write their operands.

VALUESCOPE’s transformation, however, treats a read and a write differently. A

preprocessing that rewrites these operations such that the reads and the writes are

separated at the source code level and maintains the program semantics is therefore

required, shown in Figure 5.6. Specifically, this preprocessing converts short-hand

assignments into their corresponding complete forms (Equation 5.6), e.g., a += b to

a = a + b. It also rewrites prefix and postfix increment and decrement operations.

While the prefix ones are simply semantically equivalent to first adding/subtracting

5.4. Implementation 130

⊗ ∈ {++,−−} ⇒ “⊗ x”→ “x = x m(⊗) 1” (5.4)
⊗ ∈ {++,−−} ⇒ “x⊗ ”→ “(x = x m(⊗) 1,x o(⊗) 1)” (5.5)

⊗ ∈ {+=,−=,∗=,/=,%=} ⇒ “x⊗ e”→ “x = x m(⊗) e” (5.6)

Figure 5.6: The rewriting schema of VALUESCOPE’s preprocessing.

one to/from the operands and then assigning the new values to them (Equation 5.4),

rewriting the postfix ones is slightly more complicated. Here VALUESCOPE utilise

the , operator in JavaScript, which evaluates each of its operands (from left to

right) and returns the value of the last operand. Therefore, Equation 5.5 first in-

crements/decrements the operands by one and then returns the original values for

further computation.

We implement VALUESCOPE’s program transformation using esprima4 which

parses JavaScript code into an AST and escodegen5 which generates code from an

AST. Despite our best effort, this transformation does not support full JavaScript.

For example, it does not handle eval and overlooks implicit, conceptual assignments,

like Object.assign(target, source).

5.4.2 Relevance Analysis

As Section 5.2 mentioned, the probabilistic distributions of the arguments are gen-

erally unknown. We apply the principle of indifference [231] and assume all the

arguments have uniform distributions over the value domains of their types. The

users can supply us with more realistic distributions. Further, the value domains of

some types, like double or, worse, string, are too large for computation. We resort

to uniform sampling to shrink the value domains of these types and approximate the

arguments’ uniform probability distributions.

The sampling approach has several limitations. First, it may miss values that

have significant impact on the result but account for only a tiny proportion of the

whole domain. Take the expression a / b as an example, where all variables are

half-precision floating-point numbers. Assume in a particular execution, we have

4http://esprima.org/
5https://github.com/estools/escodegen

http://esprima.org/
https://github.com/estools/escodegen

5.5. Evaluation 131

the following value binding: {a = 0.0, b = 0.0}, this division therefore evaluates

to NaN. When we model b as a random variable, exhibiting a uniform distribution

over its value domain, and bind a to 0.0, this partial application returns the function

0.0/b. Because for half-precision floating-point formats, there are 63,490 distinct

values, including infinities and NaN, the probability of sampling 0.0 for b is 1
63490 .

Therefore, the result of 0.0/b via sampling the value of b is highly likely to be 0.0

and the entropy 0.0. Second, the independent, isolated view of each argument loses

the relations among them before the expression. Some values resulted from sampling

may be impossible to occur in reality because of these relations.

Introduced in Section 5.2, ▽ has a parameter w that limits the number of relevant

bindings VALUESCOPE tracks at a particular transition. This is an attempt to limit

the number of inception transitions, so that VALUESCOPE does not violate Occam’s

razor [226], when viewing inception transitions as causes of the interesting value’s

manifestation. In implementation, we equip ▽ with another parameter d to limit the

number of restart VALUESCOPE performs in a single c-tree branch. If we imagine ▽

as a tree traversal from the root, then w controls the number of children to visit from

a node and d controls the depth of the whole traversal. When d = 0, VALUESCOPE

turns off relevance analysis and degenerates into Casper. The current implementation

defaults w and d to 3 and 1 respectively.

5.5 Evaluation
This section evaluates VALUESCOPE’s effectiveness in localising the causes of

faulty values on real-world programs. We first describe the experimental setup,

including the baseline techniques, the corpus, and the measures. Then, we measure

VALUESCOPE’s performance on the corpus and compare it with the baselines. Next,

we tune VALUESCOPE’s two parameters, width and depth, and investigate their

impacts on VALUESCOPE’s performance.

5.5.1 Experimental Setup

Baselines Spectrum-based fault localisation (SBFL) [239] has attracted much

attention for its efficiency and deployability. Simply put, it correlates the “faultiness”

5.5. Evaluation 132

of a program entity, such as a statement, with its coverage in executing the failed

test cases. Pearson et al. [240] have empirically compared various SBFL techniques,

demonstrating that the DStar ranking measure [11], or DStar for brevity, outperforms

the others. Therefore, we consider DStar as a baseline. Program slicing [241] has

also been extensively studied and one of its applications is debugging. ORBS [12] is

an observation-based program slicer capable of slicing a multi-language system. It

produces a slice by repeatedly deleting statements until the program’s observable

behaviour changes. ORBS is publicly available and able to slice JavaScript programs

due to its language independence. We also include it as a baseline.

Like VALUESCOPE, DStar and ORBS are line granular. They, however, are not

designed for the problem of value localisation. DStar seeks to localise a larger class

of potential bugs, and ORBS is more general than DStar, since its slices have many

other potential uses beyond localisation, and therefore, like SBFL, it can handle a

larger class of bugs than VALUESCOPE. This experiment does not evaluate their

effectiveness in localising non-value bugs.

Corpus To collect a corpus of real-world bugs, we first built a set of keywords,

including ”NaN”, ”null”, and ”undefined”. Then we searched on GitHub for issues

whose titles and discussions contained the keywords and which had been closed so

that we could identify the fixes and therefore the bugs. Some of these issues are not

bug-related. To filter them, we picked an issue uniformly at random and manually

inspected it to determine whether it conformed with three requirements: 1) it must

track a value-related bug; 2) it must specify the bug-triggering input; 3) it must

specify the observation transition. In this manual process, we gathered 25 bugs. We

also considered BugsJS [242], a benchmark of 453 JavaScript bugs from 10 popular

server-side projects on GitHub. Each bug is accompanied by its bug report, the test

cases that detect it, as well as the patch that fixes it, so BugsJS is well-suited for this

experiment. We manually combed through the benchmark and kept 19 value-related

bugs. In summary, our corpus contains 44 bugs from diverse projects, whose number

of stars ranges from 0 to 40,000. However, only 20 bugs come with a test suite,

which DStar requires, so DStar is applicable to only these 20 bugs.

5.5. Evaluation 133

DStar ORBS VS inception VS c-tree

0

25

50

75

100

125

150

175

Figure 5.7: Comparing fault localisation effectiveness.

Measures Over our corpus, we assume that every fix correctly eliminates its bug.

VALUESCOPE and ORBS return sets of lines and DStar returns a ranked list of lines.

Therefore, we measure the effectiveness of fault localisation in the minimal distance

in lines of code (LOC) between any line a technique reports when localising a bug

and any line in the region patched by the fix.

5.5.2 Results

Fault Localisation Figure 5.7 compares DStar, ORBS, and VALUESCOPE with

default configuration (i.e. w = 3 and d = 1) on the smallest distance between any line

a technique reports and any line in the patched region. The median of the smallest

distance for VALUESCOPE is 32 lines and the average is 36 lines, 11 and 18 lines

closer than that for DStar, respectively. ORBS, on the other hand, performs extremely

well on the smallest distance measure, achieving a median of 2 lines and a mean of 8

lines. The reason for ORBS’ impressive performance is that it generally produces

large slices, so the chances of its slices overlap with or near the patched regions are

very high. Figure 5.8 compares the size in lines of c-trees VALUESCOPE produces

5.5. Evaluation 134

Target Frequency

Same line? 2%
On screen? 20%

Same function? 53%

Table 5.2: The chances of the identified inception transitions hitting different targets.

and slices ORBS produces. On average, the size of a c-tree is 12 lines, 12.5% of the

size of a slice ORBS computes.

To make these distances more meaningful, we introduce the On Screen measure,

which determines whether the tool-reported line and the patched line that are closest

can appear on the same screen in an editor when the former is at the middle of the

screen. This measure reflects the ideal case where a developer can focus on the same

screen without scrolling, when debugging from the tool-reported line. We performed

a convenience sampling to estimate the lines of code a typical editor can fit on a

screen. On average, our screen size is 37 lines, which we use for this experiment.

Table 5.2 reports how often an inception transition VALUESCOPE identifies is 1)

actually changed by the fix (i.e. a perfect localisation), 2) on screen, and 3) in the

same innermost function with the bug. VALUESCOPE successfully localises a bug.

For 20% of the buggy programs in our corpus, it is able to identify a line that is half

screen away from the bug, so that if the identified line is at the middle of the screen,

a developer can generally avoid scrolling up and down, hunting for the bug.

So far, we have used only the inception transitions VALUESCOPE identifies.

Next we study how much more effective VALUESCOPE can be when also including

the propagation transitions for the minimal distance measure. As the last two boxes

in Figure 5.7 illustrate, when considering the whole c-tree, a line VALUESCOPE

reports is on average 12 lines away from the fix and the on-screen rate is 84%.

Ablation and Tuning VALUESCOPE has two parameters: w, which limits the

number of relevant bindings to track at a particular transition, and d, which limits the

number of restarts in a single branch of a c-tree. Here we investigate their impacts

on VALUESCOPE’s on-screen rate in fault localisation by allowing w and d to range

over [1,5] and [0,2]. Figure 5.9 visualises the results of this ablation study. While

5.5. Evaluation 135

ValueScope ORBS

0

50

100

150

200

250

300

Figure 5.8: A size comparison of the c-trees VALUESCOPE constructs and the slices ORBS
computes.

increasing w is beneficial for the minimal distance measure, blindly increasing d

may adverse impact VALUESCOPE. When VALUESCOPE degenerates into Casper

(d = 0), the on-screen rate is the same as when VALUESCOPE runs with the default

configuration (w = 3 and d = 1). In fact, the bugs for which VALUESCOPE is able to

identify an on-screen inception transition are not exactly identical, which we explain

as follows.

A developer can decide where to fix a bug: “shallow” vs. “deep”. A shallow fix

is one closer to the bug’s symptom, e.g. the observation transition of an erroneous

value. In a shallow fix, the developer blocks the flow of the erroneous value at one

of its propagation transitions. In a case like this, a c-chain produced by degenerate

VALUESCOPE is sufficient to localise the bug.

In a deep fix, the developer directly patches the erroneous value’s originating

expressions (Definition 5.1.1). In this case, VALUESCOPE with relevance analysis

outperforms Casper. When both a shallow and a deep fix are viable, we contend that

deep is better, because, to borrow terms from taint analysis, it eliminates the chance

of erroneous data flowing from its source to other sinks.

5.6. Chapter Summary 136

1 2 3 4 5
w

0

1

2

d

0.20 0.20 0.20 0.20 0.20

0.16 0.20 0.20 0.23 0.23

0.02 0.02 0.05 0.05 0.05

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Figure 5.9: VALUESCOPE’s effectiveness in fault localisation for different combinations of
w and d.

5.6 Chapter Summary
Debugging involves backward reasoning. Given a bug that is triggered by an unex-

pected value, developers often wonder where this value is from and how it propagates

from the origin to here. This chapter presents VALUESCOPE, a tool that aids program

understanding by automatically solving the value origin problem. When used in

bug localisation, a line VALUESCOPE reports is, on average, 12 lines away from the

fix, 42 lines closer than that of DStar, while the total number of lines VALUESCOPE

reports is on average 12.5% of that of ORBS.

Chapter 6

Conclusion and Future Work

Program analysis becomes increasingly critical to ensuring software quality. Re-

searchers, however, often seek to devise new analysis techniques, neglecting that

making programs more amenable to the existing techniques is also of great value.

This thesis aims to fill this gap through program transformation and eliminates the

need to reinvent the wheel of bespoke program transformations.

Chapter 2 of this thesis reviews literature on specific program analysis tech-

niques, during which three research questions arise. Chapter 3 to 5 present three

interconnected projects, each of which attempts to advance the state of the art of facil-

itating program analysis through transformation. Specifically, Chapter 3 empirically

quantifies the benefit of Flow and TypeScript in terms of early bug detection. The

results show that both of them are able to detect 15% of the collected bugs, while the

transformation costs in terms of time and number of tokens added are low. Chapter 4

presents TYPERITE, a practical, scalable tool which automates retyping an arbitrary

part of a program, such as a function or a single variable. TYPERITE scales to large

codebases, retyping Pidgin (363K lines of code) and GSL’s specfunction (61,378

lines of code) with 129,585 modifications. TYPERITE is useful: had it been available,

developers could have used it to detect 4 real-world bugs, including a SQL injection.

Chapter 5 discusses VALUESCOPE, a tool that transforms JavaScript programs to

enable a value-granular backward program analysis. Experimental results show

that the c-chains VALUESCOPE generate are compact, compared against ORBS, a

slicing technique. When used in bug localisation, a line VALUESCOPE reports is, on

138

average, 12 lines away from the fix, 42 lines closer than that of DStar,a state of the

art spectrum based fault localiser.

Future work includes 1) extending the empirical study on static typing to

investigate how project quality and bug severity affect the results; 2) supplementing

TYPERITE with a library of types and operators, like tainted versions of common

types, that would be useful retyping targets; 3) exploring the traditional sensitivity

view of relevance discussed in Section 5.3, which considers the impact of unit inputs

on outputs.

Bibliography

[1] Strategic Planning. The economic impacts of inadequate infrastructure for

software testing. National Institute of Standards and Technology, page 1,

2002.

[2] Tobias Buck and Peggy Hollinger. BA faces £80m cost for it failure that

stranded 75,000 passengers. Financial Times, June 2017.

[3] The U.S. General Accounting Office. Patriot missile defense: Software

problem led to system failure at dhahran, saudi arabia. 1992.

[4] Wikipedia contributors. Program analysis, 2021. [Online; accessed 22-July-

2021].

[5] Mukesh Soni. Defect prevention: Reducing costs and enhancing quality. IBM:

iSixSigma.com, 19, 2006.

[6] Bertrand Russell. Principles of mathematics. Routledge, 2009.

[7] Eric Goubault. Static analyses of the precision of floating-point operations.

In Static Analysis, pages 234–259. Springer Berlin Heidelberg, 2001.

[8] Matthieu Martel. Propagation of roundoff errors in finite precision computa-

tions: A semantics approach. In Programming Languages and Systems, pages

194–208. Springer, 2002.

[9] Eric Goubault, Matthieu Martel, and Sylvie Putot. Asserting the precision of

floating-point computations: A simple abstract interpreter. In Programming

Languages and Systems, pages 209–212. Springer Berlin Heidelberg, 2002.

BIBLIOGRAPHY 140

[10] Tevfik Bultan, Fang Yu, Muath Alkhalaf, and Abdulbaki Aydin. String

manipulating programs and difficulty of their analysis. In String Analysis for

Software Verification and Security, pages 15–22. Springer, 2017.

[11] W Eric Wong, Vidroha Debroy, Yihao Li, and Ruizhi Gao. Software fault

localization using dstar (d*). In 2012 IEEE Sixth International Conference on

Software Security and Reliability, pages 21–30. IEEE, 2012.

[12] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens Krinke, and

Shin Yoo. ORBS: Language-independent program slicing. In Proceedings of

the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 109–120. ACM, 2014.

[13] Jan Willem Klop, Marc Bezem, and RC De Vrijer. Term rewriting systems.

Cambridge University Press, 2001.

[14] Martin Ward. Proving program refinements and transformations. PhD thesis,

University of Oxford PhD Thesis, 1989.

[15] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of pro-

gram analysis. Springer, 2015.

[16] Alan Mathison Turing et al. On computable numbers, with an application to

the entscheidungsproblem. J. of Math, 58(345-363):5, 1936.

[17] Edsger Wybe Dijkstra et al. Notes on structured programming, 1970.

[18] Paul R Halmos. Naive set theory. Courier Dover Publications, 2017.

[19] Bertrand Russell. The principles of mathematics. WW Norton & Company,

1996.

[20] Bertrand Russell. Mathematical logic as based on the theory of types. Ameri-

can journal of mathematics, 30(3):222–262, 1908.

[21] Frank P Ramsey. The foundations of mathematics. Proceedings of the London

Mathematical Society, 2(1):338–384, 1926.

BIBLIOGRAPHY 141

[22] Alonzo Church. A formulation of the simple theory of types. The journal of

symbolic logic, 5(2):56–68, 1940.

[23] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In Studies

in Logic and the Foundations of Mathematics, volume 80, pages 73–118.

Elsevier, 1975.

[24] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9.

Bibliopolis Naples, 1984.

[25] Stefano Berardi. Towards a mathematical analysis of the coquand-huet calcu-

lus of constructions and the other systems in barendregt’s cube. Technica1

report, Carnegie-Me11on University (USA) and Universita di Torino (Ita1y),

1988.

[26] Jan Terlouw. Een nadere bewijstheoretische analyse van gstt’s. Manuscript

(in Dutch), 1989.

[27] Henk P Barendregt. Lambda calculi with types. 1992.

[28] Andrzej Mostowski. From frege to gödel. a source book in mathematical logic

1879-1931, 1968.

[29] Benjamin C Pierce. Types and programming languages. The MIT Press,

2002.

[30] Peter Thiemann. Towards a type system for analyzing JavaScript programs.

In European Symposium On Programming, pages 408–422. Springer, 2005.

[31] Mark T Daly, Vibha Sazawal, and Jeffrey S Foster. Work in progress: An

empirical study of static typing in Ruby. 2009.

[32] Andreas Stuchlik and Stefan Hanenberg. Static vs. dynamic type systems: An

empirical study about the relationship between type casts and development

time. In Proceedings of the 7th symposium on Dynamic languages, pages

97–106, 2011.

BIBLIOGRAPHY 142

[33] Sebastian Kleinschmager, Stefan Hanenberg, Romain Robbes, É Tanter, and

Andreas Stefik. Do static type systems improve the maintainability of software

systems? an empirical study. In Program Comprehension (ICPC), 2012 IEEE

20th International Conference on, pages 153–162. IEEE, 2012.

[34] Clemens Mayer, Stefan Hanenberg, Romain Robbes, Éric Tanter, and Andreas

Stefik. An empirical study of the influence of static type systems on the

usability of undocumented software. In ACM SIGPLAN Notices, volume 47,

pages 683–702. ACM, 2012.

[35] Leo A Meyerovich and Ariel S Rabkin. Empirical analysis of programming

language adoption. In Proceedings of the 2013 ACM SIGPLAN international

conference on Object oriented programming systems languages & applica-

tions, pages 1–18, 2013.

[36] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu.

A large scale study of programming languages and code quality in github.

In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 155–165. ACM, 2014.

[37] Sebastian Nanz and Carlo A Furia. A comparative study of programming

languages in rosetta code. In 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, volume 1, pages 778–788. IEEE, 2015.

[38] Lutz Prechelt and Walter F Tichy. A controlled experiment to assess the

benefits of procedure argument type checking. IEEE Transactions on Software

Engineering, 24(4):302–312, 1998.

[39] Stefan Hanenberg. An experiment about static and dynamic type systems:

Doubts about the positive impact of static type systems on development time.

In ACM Sigplan Notices, volume 45, pages 22–35. ACM, 2010.

[40] Haskell Brooks Curry, Robert Feys, William Craig, J Roger Hindley, and

Jonathan P Seldin. Combinatory logic, volume 1. North-Holland Amsterdam,

1958.

BIBLIOGRAPHY 143

[41] Roger Hindley. The principal type-scheme of an object in combinatory logic.

Transactions of the american mathematical society, 146:29–60, 1969.

[42] Robin Milner. A theory of type polymorphism in programming. Journal of

computer and system sciences, 17(3):348–375, 1978.

[43] Luis Damas and Robin Milner. Principal type-schemes for functional pro-

grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 207–212. ACM, 1982.

[44] Fritz Henglein. Type inference with polymorphic recursion. ACM Transac-

tions on Programming Languages and Systems (TOPLAS), 15(2):253–289,

1993.

[45] Barbara Liskov and Stephen Zilles. Programming with abstract data types.

ACM Sigplan Notices, 9(4):50–59, 1974.

[46] K Jackson. Parallel processing and modular software construction. In Design

and Implementation of Programming Languages, pages 436–443. Springer,

1977.

[47] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for

JavaScript. In Static Analysis, pages 238–255. Springer, 2009.

[48] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent types for JavaScript.

In Proceedings of the ACM international conference on Object oriented

programming systems languages and applications, pages 587–606, 2012.

[49] Michael Furr, Jong-hoon An, and Jeffrey S Foster. Profile-guided static

typing for dynamic scripting languages. In Proceedings of the 24th ACM

SIGPLAN conference on Object oriented programming systems languages

and applications, pages 283–300, 2009.

[50] Michael Pradel and Koushik Sen. The good, the bad, and the ugly: An

empirical study of implicit type conversions in JavaScript. In 29th Euro-

BIBLIOGRAPHY 144

pean Conference on Object-Oriented Programming (ECOOP 2015). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[51] Jan Willem Klop and JW Klop. Term rewriting systems. Centrum voor

Wiskunde en Informatica, 1990.

[52] Hendrik Pieter Barendregt, Marko CJD van Eekelen, John RW Glauert,

J Richard Kennaway, Marinus J Plasmeijer, and M Ronan Sleep. Term

graph rewriting. In PARLE Parallel Architectures and Languages Europe,

pages 141–158. Springer, 1987.

[53] Alonzo Church. A set of postulates for the foundation of logic. Annals of

mathematics, pages 346–366, 1932.

[54] Alonzo Church. An unsolvable problem of elementary number theory. Ameri-

can journal of mathematics, 58(2):345–363, 1936.

[55] Alan M Turing. Computability and λ -definability. The Journal of Symbolic

Logic, 2(4):153–163, 1937.

[56] Stephen C Kleene and J Barkley Rosser. The inconsistency of certain formal

logics. Annals of Mathematics, pages 630–636, 1935.

[57] Simon Thompson. Type theory and functional programming. Addison Wesley,

1991.

[58] Jeremy G Siek and Walid Taha. Gradual typing for functional languages.

In Scheme and Functional Programming Workshop, volume 6, pages 81–92,

2006.

[59] Wikipedia. Lambda calculus — Wikipedia, the free encyclopedia, 2017.

[Online; accessed 24-November-2017].

[60] Franklyn Turbak, David Gifford, and Mark A Sheldon. Design concepts in

programming languages. MIT press, 2008.

BIBLIOGRAPHY 145

[61] Colin Kemp. Theoretical Foundations for Practical ’Totally-Functional Pro-

gramming’. PhD thesis, PhD Thesis, The University of Queensland, St Lucia,

2009.

[62] William W Tait. Intensional interpretations of functionals of finite type i. The

journal of symbolic logic, 32(2):198–212, 1967.

[63] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation

functional for typed lambda-calculus. pages 203–211, 1991.

[64] Luca Cardelli. Type systems. ACM Computing Surveys, 28(1):263–264, 1996.

[65] Luca Cardelli. Basic polymorphic typechecking. Science of Computer Pro-

gramming, 8(2):147–172, 1987.

[66] Harry G Mairson. Deciding ml typability is complete for deterministic expo-

nential time. In Proceedings of the 17th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 382–401, 1989.

[67] George Kuan and David MacQueen. Efficient type inference using ranked

type variables. In Proceedings of the 2007 workshop on Workshop on ML,

pages 3–14, 2007.

[68] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de

l’arithmétique d’ordre supérieur. PhD thesis, PhD thesis, Université Paris

VII, 1972.

[69] John C Reynolds. Towards a theory of type structure. In Programming

Symposium, pages 408–425. Springer, 1974.

[70] John C Reynolds. Using category theory to design implicit conversions and

generic operators. In International Workshop on Semantics-Directed Compiler

Generation, pages 211–258. Springer, 1980.

[71] Luca Cardelli. A semantics of multiple inheritance. Semantics of data types,

pages 51–67, 1984.

BIBLIOGRAPHY 146

[72] Martı́n Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic

typing in a statically typed language. ACM transactions on programming

languages and systems (TOPLAS), 13(2):237–268, 1991.

[73] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow,

and Greg Nelson. Modula-3 language definition. ACM Sigplan Notices,

27(8):15–42, 1992.

[74] Robert Cartwright and Mike Fagan. Soft typing. In Proceedings of the ACM

SIGPLAN 1991 conference on Programming language design and implemen-

tation, pages 278–292, 1991.

[75] Olaf Chitil. Practical typed lazy contracts. In Proceedings of the 17th ACM

SIGPLAN international conference on Functional programming, pages 67–76,

2012.

[76] Jeremy Siek and Walid Taha. Gradual typing for objects. In European

Conference on Object-Oriented Programming, pages 2–27. Springer, 2007.

[77] Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boy-

land. Refined criteria for gradual typing. In LIPIcs-Leibniz International

Proceedings in Informatics, volume 32. Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2015.

[78] Gilad Bracha. Pluggable type systems. In OOPSLA workshop on revival of

dynamic languages, volume 4, 2004.

[79] Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment

for λ -terms. Archiv für mathematische Logik und Grundlagenforschung,

19(1):139–156, 1978.

[80] Steffen Van Bakel. Complete restrictions of the intersection type discipline.

Theoretical Computer Science, 102(1):135–163, 1992.

[81] Steffen Van Bakel. Strict intersection types for the lambda calculus. ACM

Computing Surveys (CSUR), 43(3):20, 2011.

BIBLIOGRAPHY 147

[82] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional

characters of solvable terms. Mathematical Logic Quarterly, 27(2-6):45–58,

1981.

[83] Jean-Yves Girard. Une extension de l’interpretation de gödel a l’analyse, et

son application a l’elimination des coupures dans l’analyse et la theorie des

types. Studies in Logic and the Foundations of Mathematics, 63:63–92, 1971.

[84] Samson Abramsky et al. The lazy lambda calculus. Research topics in

functional programming, 65, 1990.

[85] Antonio Bucciarelli, Silvia De Lorenzis, Adolfo Piperno, and Ivano Salvo.

Some computational properties of intersection types. In Logic in Computer

Science, 1999. Proceedings. 14th Symposium on, pages 109–118. IEEE, 1999.

[86] Daniel Leivant. Discrete polymorphism. In Proceedings of the 1990 ACM

conference on LISP and functional programming, pages 288–297. ACM,

1990.

[87] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A

filter lambda model and the completeness of type assignment. The journal of

symbolic logic, 48(04):931–940, 1983.

[88] S Ronchi Della Rocca and Betti Venneri. Principal type schemes for an

extended type theory. Theoretical Computer Science, 28(1):151–169, 1983.

[89] Steffen Van Bakel. Intersection type assignment systems. Theoretical Com-

puter Science, 151(2):385–435, 1995.

[90] Mario Coppo and Paola Giannini. A complete type inference algorithm for

simple intersection types. In Colloquium on Trees in Algebra and Program-

ming, pages 102–123. Springer, 1992.

[91] Ferruccio Damiani and Paola Giannini. A decidable intersection type system

based on relevance. In Theoretical Aspects of Computer Software, pages

707–725. Springer, 1994.

BIBLIOGRAPHY 148

[92] Stephanus Johannes Van Bakel. Intersection type disciplines in lambda

calculus and applicative term rewriting systems. Citeseer, 1993.

[93] Trevor Jim. Rank 2 type systems and recursive definitions. Massachusetts

Institute of Technology, Cambridge, MA, 1995.

[94] Mario Coppo and Paola Giannini. Principal types and unification for simple

intersection type systems. Information and Computation, 122(1):70–96, 1995.

[95] Trevor Jim. What are principal typings and what are they good for? In

Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 42–53. ACM, 1996.

[96] Assaf J Kfoury and Joe B Wells. Principality and decidable type inference

for finite-rank intersection types. In Proceedings of the 26th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 161–174,

1999.

[97] Daniel Leivant. Polymorphic type inference. In Proceedings of the 10th

ACM SIGACT-SIGPLAN symposium on Principles of programming languages,

pages 88–98, 1983.

[98] Steffen van Bakel. Rank 2 intersection type assignment in term rewriting

systems. Fundamenta Informaticae, 26(2):141–166, 1996.

[99] Tachio Terauchi and Alex Aiken. On typability for rank-2 intersection types

with polymorphic recursion. In 21st Annual IEEE Symposium on Logic in

Computer Science (LICS’06), pages 111–122. IEEE, 2006.

[100] Assaf Kfoury, Geoffrey Washburn, and Joe B Wells. Implementing composi-

tional analysis using intersection types with expansion variables. Electronic

Notes in Theoretical Computer Science, 70(1):124–148, 2003.

[101] Assaf J Kfoury and Joe B Wells. A direct algorithm for type inference in the

rank-2 fragment of the second-order λ -calculus. In Proceedings of the 1994

ACM conference on LISP and functional programming, pages 196–207, 1994.

BIBLIOGRAPHY 149

[102] Sandra Alves and Mario Florido. On the relation between rank 2 intersection

types and simple types. In Joint Conference on Declarative Programming

(AGP’2002), pages 259–274. Citeseer, 2002.

[103] Bas Kloet and Marcel Moreaux. Essay aspects of programming languages:

Union type. http://ledr.luon.net/documents/2M240/essay-unions/

essay.pdf, 2005.

[104] Franco Barbanera and Mariangiola Dezani-Ciancaglini. Intersection and

union types. In Theoretical Aspects of Computer Software, pages 651–674.

Springer, 1991.

[105] Steffen Van Bakel. Completeness and partial soundness results for intersection

and union typing for λ̄ µ µ̃ . Annals of Pure and Applied Logic, 161(11):1400–

1430, 2010.

[106] Steffen Van Bakel. Intersection and union types for x. Electronic Notes in

Theoretical Computer Science, 136:203–227, 2005.

[107] Benjamin C Pierce. Programming with intersection types, union types, and

polymorphism. CMU, 1991.

[108] Francisco Ortin and Miguel Garcı́a. Union and intersection types to support

both dynamic and static typing. Information Processing Letters, 111(6):278–

286, 2011.

[109] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Betti Venneri, et al. The”

relevance” of intersection and union types. Notre Dame Journal of Formal

Logic, 38(2):246–269, 1997.

[110] Flemming M Damm. Subtyping with union types, intersection types and

recursive types. In Theoretical Aspects of Computer Software, pages 687–706.

Springer, 1994.

http://ledr.luon.net/documents/2M240/essay-unions/essay.pdf
http://ledr.luon.net/documents/2M240/essay-unions/essay.pdf

BIBLIOGRAPHY 150

[111] Peter Buneman and Benjamin Pierce. Union types for semistructured data. In

Research Issues in Structured and Semistructured Database Programming,

pages 184–207. Springer, 2000.

[112] Jens Palsberg and Christina Pavlopoulou. From polyvariant flow informa-

tion to intersection and union types. Journal of Functional Programming,

11(03):263–317, 2001.

[113] Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented program-

ming. In Proceedings of the 2006 ACM symposium on Applied computing,

pages 1435–1441. ACM, 2006.

[114] Franco Barbanera, Mariangiola Dezaniciancaglini, and Ugo Deliguoro. Inter-

section and union types: syntax and semantics. Information and Computation,

119(2):202–230, 1995.

[115] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:

Three decades later. Communications of the ACM, 56(2):82–90, 2013.

[116] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer,

André Baresel, and Marc Roper. Testability transformation. IEEE Transac-

tions on Software Engineering, 30(1):3–16, 2004.

[117] Cristian Cadar. Targeted program transformations for symbolic execution.

In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, pages 906–909. ACM, 2015.

[118] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and

automatic generation of high-coverage tests for complex systems programs.

In OSDI, volume 8, pages 209–224, 2008.

[119] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated

random testing. In Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, pages 213–223, 2005.

BIBLIOGRAPHY 151

[120] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing

engine for c. ACM SIGSOFT Software Engineering Notes, 30(5):263–272,

2005.

[121] Paul Dan Marinescu and Cristian Cadar. Make test-zesti: A symbolic exe-

cution solution for improving regression testing. In Proceedings of the 34th

International Conference on Software Engineering, pages 716–726. IEEE

Press, 2012.

[122] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated

whitebox fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[123] Willard V Quine. Concatenation as a basis for arithmetic. The Journal of

Symbolic Logic, 11(4):105–114, 1946.

[124] Margus Veanes, Nikolaj Bjørner, and Leonardo De Moura. Symbolic automata

constraint solving. In International Conference on Logic for Programming

Artificial Intelligence and Reasoning, pages 640–654. Springer, 2010.

[125] Pieter Hooimeijer and Westley Weimer. A decision procedure for subset

constraints over regular languages. In Proceedings of the 30th ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages

188–198, 2009.

[126] Guodong Li and Indradeep Ghosh. PASS: String solving with parameterized

array and interval automaton. In Haifa Verification Conference, pages 15–31.

Springer, 2013.

[127] Fang Yu, Tevfik Bultan, and Oscar H Ibarra. Symbolic string verification:

Combining string analysis and size analysis. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, pages

322–336. Springer, 2009.

[128] Vijay Ganesh and David L Dill. A decision procedure for bit-vectors and

BIBLIOGRAPHY 152

arrays. In International Conference on Computer Aided Verification, pages

519–531. Springer, 2007.

[129] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan

Deters. A dpll (t) theory solver for a theory of strings and regular expressions.

In International Conference on Computer Aided Verification, pages 646–662.

Springer, 2014.

[130] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. S3: A symbolic string

solver for vulnerability detection in web applications. In Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security,

pages 1232–1243. ACM, 2014.

[131] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A Z3-based string

solver for web application analysis. In Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering, pages 114–124, 2013.

[132] Angelo Brillout, Daniel Kroening, and Thomas Wahl. Mixed abstractions

for floating-point arithmetic. In 2009 Formal Methods in Computer-Aided

Design, pages 69–76. IEEE, 2009.

[133] Eva Darulova and Viktor Kuncak. Sound compilation of reals. In Proceedings

of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pages 235–248, 2014.

[134] Kiran Lakhotia, Nikolai Tillmann, Mark Harman, and Jonathan de Halleux.

Flopsy-search-based floating point constraint solving for symbolic execution.

In IFIP International Conference on Testing Software and Systems, pages

142–157. Springer, 2010.

[135] Lori A. Clarke. A system to generate test data and symbolically execute

programs. IEEE Transactions on Software Engineering, (3):215–222, 1976.

[136] Zhoulai Fu and Zhendong Su. Mathematical execution: A unified approach

for testing numerical code. arXiv preprint arXiv:1610.01133, 2016.

BIBLIOGRAPHY 153

[137] Matheus Souza, Mateus Borges, Marcelo d?Amorim, and Corina S Păsăreanu.

Coral: Solving complex constraints for symbolic pathfinder. In NASA Formal

Methods Symposium, pages 359–374. Springer, 2011.

[138] Willem Visser, Corina S Pǎsǎreanu, and Sarfraz Khurshid. Test input gen-

eration with Java PathFinder. In Proceedings of the 2004 ACM SIGSOFT

international symposium on Software testing and analysis, pages 97–107,

2004.

[139] Peter Collingbourne, Cristian Cadar, and Paul HJ Kelly. Symbolic crosscheck-

ing of floating-point and simd code. In Proceedings of the sixth Conference

on Computer Systems, pages 315–328. ACM, 2011.

[140] Peter Collingbourne, Cristian Cadar, and Paul HJ Kelly. Symbolic cross-

checking of data-parallel floating-point code. IEEE Transactions on Software

Engineering, 40(7):710–737, 2014.

[141] Claude Michel, Michel Rueher, and Yahia Lebbah. Solving constraints over

floating-point numbers. In International Conference on Principles and Prac-

tice of Constraint Programming, pages 524–538. Springer, 2001.

[142] Bernard Botella, Arnaud Gotlieb, and Claude Michel. Symbolic execution

of floating-point computations. Software Testing, Verification and Reliability,

16(2):97–121, 2006.

[143] Willem Visser, Jaco Geldenhuys, and Matthew B Dwyer. Green: Reducing,

reusing and recycling constraints in program analysis. In Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, pages 1–11, 2012.

[144] Nicolás Rosner, Jaco Geldenhuys, Nazareno M Aguirre, Willem Visser, and

Marcelo F Frias. Bliss: Improved symbolic execution by bounded lazy

initialization with sat support. IEEE Transactions on Software Engineering,

41(7):639–660, 2015.

BIBLIOGRAPHY 154

[145] Guowei Yang, Corina S Păsăreanu, and Sarfraz Khurshid. Memoized symbolic

execution. In Proceedings of the 2012 International Symposium on Software

Testing and Analysis, pages 144–154. ACM, 2012.

[146] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed

incremental symbolic execution. In ACM SIGPLAN Notices, volume 46, pages

504–515. ACM, 2011.

[147] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley.

Enhancing symbolic execution with veritesting. In Proceedings of the 36th

International Conference on Software Engineering, pages 1083–1094. ACM,

2014.

[148] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. Multise: Multi-

path symbolic execution using value summaries. In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering, pages 842–853.

ACM, 2015.

[149] Corina S Păsăreanu, Neha Rungta, and Willem Visser. Symbolic execution

with mixed concrete-symbolic solving. In Proceedings of the 2011 Inter-

national Symposium on Software Testing and Analysis, pages 34–44. ACM,

2011.

[150] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. Generalized sym-

bolic execution for model checking and testing. In International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, pages

553–568. Springer, 2003.

[151] Shiyu Dong, Oswaldo Olivo, Lingming Zhang, and Sarfraz Khurshid. Study-

ing the influence of standard compiler optimizations on symbolic execution. In

2015 IEEE 26th International Symposium on Software Reliability Engineering

(ISSRE), pages 205–215. IEEE, 2015.

[152] Jonas Wagner, Volodymyr Kuznetsov, and George Candea. {-OVERIFY}:

BIBLIOGRAPHY 155

Optimizing programs for fast verification. In 14th Workshop on Hot Topics in

Operating Systems (HotOS XIV), 2013.

[153] Asankhaya Sharma. Exploiting undefined behaviors for efficient symbolic

execution. In Companion Proceedings of the 36th International Conference

on Software Engineering, pages 727–729. ACM, 2014.

[154] David A Ramos and Dawson Engler. {Under-Constrained} symbolic execu-

tion: Correctness checking for real code. In 24th USENIX Security Symposium

(USENIX Security 15), pages 49–64, 2015.

[155] Saswat Anand, Corina S Păsăreanu, and Willem Visser. Symbolic execution

with abstract subsumption checking. In International SPIN Workshop on

Model Checking of Software, pages 163–181. Springer, 2006.

[156] Earl T Barr, Thanh Vo, Vu Le, and Zhendong Su. Automatic detection of

floating-point exceptions. ACM Sigplan Notices, 48(1):549–560, 2013.

[157] Zhongxian Gu, Earl T Barr, David J Hamilton, and Zhendong Su. Has the

bug really been fixed? In 2010 ACM/IEEE 32nd International Conference on

Software Engineering, volume 1, pages 55–64. IEEE, 2010.

[158] Michael D Bond, Nicholas Nethercote, Stephen W Kent, Samuel Z Guyer,

and Kathryn S McKinley. Tracking bad apples: Reporting the origin of null

and undefined value errors. ACM SIGPLAN Notices, 42(10):405–422, 2007.

[159] Benoit Cornu, Earl T Barr, Lionel Seinturier, and Martin Monperrus. Casper:

Debugging null dereferences with dynamic causality traces. arXiv preprint

arXiv:1502.02004, 2015.

[160] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey

on software fault localization. IEEE Transactions on Software Engineering,

42(8):707–740, 2016.

[161] Andreas Zeller. Yesterday, my program worked. today, it does not. why?

ACM SIGSOFT Software engineering notes, 24(6):253–267, 1999.

BIBLIOGRAPHY 156

[162] Andreas Zeller. Isolating cause-effect chains from computer programs. In Pro-

ceedings of the 10th ACM SIGSOFT symposium on Foundations of Software

Engineering, pages 1–10. ACM, 2002.

[163] Holger Cleve and Andreas Zeller. Locating causes of program failures. In

Proceedings of the 27th International Conference on Software Engineering,

pages 342–351. ACM, 2005.

[164] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information

processing letters, 29(3):155–163, 1988.

[165] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for auto-

matic detection, analysis, and signaturegeneration of exploits on commodity

software. In NDSS, volume 5, pages 3–4. Citeseer, 2005.

[166] Malay Ganai, Dongyoon Lee, and Aarti Gupta. Dtam: Dynamic taint anal-

ysis of multi-threaded programs for relevancy. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, pages 1–11, 2012.

[167] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. On the

dichotomy of debugging behavior among programmers. In Proceedings of

the 40th International Conference on Software Engineering, pages 572–583,

2018.

[168] Scott Hanselman. JavaScript is assembly language for the web: Part 2 -

madness or just insanity? http://goo.gl/xH762i, July 2011. [Online;

accessed 14-August-2015].

[169] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis

of the dynamic behavior of JavaScript programs. In Proceedings of the

31st ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 1–12, 2010.

http://goo.gl/xH762i

BIBLIOGRAPHY 157

[170] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G Zorn. {JSMeter}:

Comparing the behavior of {JavaScript} benchmarks with real web applica-

tions. In USENIX Conference on Web Application Development (WebApps

10), 2010.

[171] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that

men do. In European Conference on Object-Oriented Programming, pages

52–78. Springer, 2011.

[172] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,

Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna.

You are what you include: Large-scale evaluation of remote JavaScript in-

clusions. In Proceedings of the 2012 ACM conference on Computer and

communications security, pages 736–747, 2012.

[173] Frolin S Ocariza Jr, Karthik Pattabiraman, and Benjamin Zorn. JavaScript

errors in the wild: An empirical study. In Software Reliability Engineering

(ISSRE), 2011 IEEE 22nd International Symposium on, pages 100–109. IEEE,

2011.

[174] Frolin Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. An

empirical study of client-side JavaScript bugs. In Empirical Software Engi-

neering and Measurement, 2013 ACM/IEEE International Symposium on,

pages 55–64. IEEE, 2013.

[175] Quinn Hanam, Fernando S de M Brito, and Ali Mesbah. Discovering bug

patterns in JavaScript. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages

144–156, 2016.

[176] Marija Selakovic and Michael Pradel. Performance issues and optimizations

in JavaScript: An empirical study. In Proceedings of the 38th International

Conference on Software Engineering, pages 61–72, 2016.

BIBLIOGRAPHY 158

[177] European Carotid Surgery Trialists’ Collaborative Group et al. Randomised

trial of endarterectomy for recently symptomatic carotid stenosis: final results

of the mrc european carotid surgery trial (ecst). The Lancet, 351(9113):1379–

1387, 1998.

[178] Asger Feldthaus and Anders Møller. Checking correctness of typescript

interfaces for JavaScript libraries. In Proceedings of the 2014 ACM Interna-

tional Conference on Object Oriented Programming Systems Languages &

Applications, pages 1–16, 2014.

[179] Thomas C Chalmers, Harry Smith, Bradley Blackburn, Bernard Silverman,

Biruta Schroeder, Dinah Reitman, and Alexander Ambroz. A method for

assessing the quality of a randomized control trial. Controlled clinical trials,

2(1):31–49, 1981.

[180] Donald T Campbell and Julian C Stanley. Experimental and quasi-

experimental designs for research. Ravenio Books, 2015.

[181] Mark R Rosenzweig and Kenneth I Wolpin. Natural” natural experiments” in

economics. Journal of Economic Literature, 38(4):827–874, 2000.

[182] Dejan Baca, Bengt Carlsson, and Lars Lundberg. Evaluating the cost reduction

of static code analysis for software security. In Proceedings of the third ACM

SIGPLAN workshop on Programming languages and analysis for security,

pages 79–88. ACM, 2008.

[183] Ferdian Thung, David Lo, Lingxiao Jiang, Foyzur Rahman, Premkumar T

Devanbu, et al. To what extent could we detect field defects? an empirical

study of false negatives in static bug finding tools. In Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineering,

pages 50–59. ACM, 2012.

[184] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley

Weimer. A systematic study of automated program repair: Fixing 55 out

BIBLIOGRAPHY 159

of 105 bugs for $8 each. In 2012 34th International Conference on Software

Engineering (ICSE), pages 3–13. IEEE, 2012.

[185] Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. Proactive

detection of collaboration conflicts. In Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of Software

Engineering, pages 168–178. ACM, 2011.

[186] Christian Bird and Thomas Zimmermann. Assessing the value of branches

with what-if analysis. In Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering, page 45. ACM, 2012.

[187] JavaScript equality table. https://dorey.github.io/

{J}ava{S}cript-Equality-Table/, February 2015. [Online; accessed

23-February-2016].

[188] René Just, Darioush Jalali, and Michael D Ernst. Defects4J: A database

of existing faults to enable controlled testing studies for Java programs. In

Proceedings of the 2014 International Symposium on Software Testing and

Analysis, pages 437–440. ACM, 2014.

[189] Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu,

and Abraham Bernstein. The missing links: Bugs and bug-fix commits. In

Proceedings of the eighteenth ACM SIGSOFT international symposium on

Foundations of Software Engineering, pages 97–106. ACM, 2010.

[190] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M

German, and Daniela Damian. The promises and perils of mining github. In

Proceedings of the 11th working conference on mining software repositories,

pages 92–101. ACM, 2014.

[191] Robert V Krejcie and Daryle W Morgan. Determining sample size for research

activities. Educational and psychological measurement, 30(3):607–610, 1970.

https://dorey.github.io/{J}ava{S}cript-Equality-Table/
https://dorey.github.io/{J}ava{S}cript-Equality-Table/

BIBLIOGRAPHY 160

[192] Sharan Merriam. Qualitative research: A guide to design and implementation.

John Wiley & Sons, 2009.

[193] David W Martin. Doing psychology experiments. Cengage Learning, 2007.

[194] Jacob Cohen. A Coefficient of Agreement for Nominal Scales. Educational

and Psychological Measurement, 20(1):37–46, April 1960.

[195] Kilem Li Gwet. Computing inter-rater reliability and its variance in the

presence of high agreement. British Journal of Mathematical and Statistical

Psychology, 61(1):29–48, 2008.

[196] Barbara Di Eugenio and Michael Glass. The kappa statistic: A second look.

Computational linguistics, 30(1):95–101, 2004.

[197] G McCray. Assessing inter-rater agreement for nominal judgement variables.

In Language Testing Forum, 2013.

[198] J Richard Landis and Gary G Koch. The measurement of observer agreement

for categorical data. biometrics, pages 159–174, 1977.

[199] Konstantin Weitz, Gene Kim, Siwakorn Srisakaokul, and Michael D Ernst.

A type system for format strings. In Proceedings of the 2014 International

Symposium on Software Testing and Analysis, pages 127–137. ACM, 2014.

[200] Microsoft. Typescript language specification. https://github.com/

Microsoft/TypeScript/blob/master/doc/spec.md, January 2016.

[201] Hans F Ebel, Claus Bliefert, and William E Russey. The art of scientific

writing: From student reports to professional publications in chemistry and

related fields. John Wiley & Sons, 2004.

[202] Zhongxian Gu, Drew Schleck, Earl Barr, and Zhendong Su. IDE++ (IDE Plus

Plus). http://marketplace.eclipse.org/content/ide/, 2013. [On-

line; accessed 14-August-2015].

https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
http://marketplace.eclipse.org/content/ide/

BIBLIOGRAPHY 161

[203] Mariano Ceccato, Thomas Roy Dean, Paolo Tonella, and Davide Marchignoli.

Data model reverse engineering in migrating a legacy system to Java. In

Proceedings of the 2008 15th Working Conference on Reverse Engineering,

pages 177–186. IEEE Computer Society, 2008.

[204] Mariano Ceccato, Thomas Roy Dean, Paolo Tonella, and Davide Marchignoli.

Migrating legacy data structures based on variable overlay to Java. Journal of

Software Maintenance and Evolution: Research and Practice, 22(3):211–237,

2010.

[205] Andrea De Lucia, Giuseppe A Di Lucca, Anna Rita Fasolino, Patrizia Guerra,

and Silvia Petruzzelli. Migrating legacy systems towards object-oriented

platforms. In 1997 Proceedings International Conference on Software Main-

tenance, pages 122–129. IEEE, 1997.

[206] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring support for class

library migration. ACM SIGPLAN Notices, 40(10):265–279, 2005.

[207] Frank Tip. Refactoring using type constraints. In Static Analysis, pages 1–17.

Springer, 2007.

[208] Frank Tip, Robert M Fuhrer, Adam Kieżun, Michael D Ernst, Ittai Balaban,

and Bjorn De Sutter. Refactoring using type constraints. ACM Transactions

on Programming Languages and Systems (TOPLAS), 33(3):1–47, 2011.

[209] Michael I Schwartzbach and Jens Palsberg. Object-oriented type systems,

1994.

[210] Irene Manotas, Lori Pollock, and James Clause. Seeds: A software engineer’s

energy-optimization decision support framework. In Proceedings of the 36th

International Conference on Software Engineering, pages 503–514, 2014.

[211] J Roger Hindley. Basic simple type theory. Number 42 in Type theory.

Cambridge University Press, 1997.

BIBLIOGRAPHY 162

[212] Ralph Loader. Higher order beta matching is undecidable. Logic Journal of

the IGPL, 11(1):51–68, 2003.

[213] Barbara H Liskov and Jeannette M Wing. A behavioral notion of subtyp-

ing. ACM Transactions on Programming Languages and Systems (TOPLAS),

16(6):1811–1841, 1994.

[214] Joseph A Goguen and José Meseguer. Security policies and security models.

IEEE, 1982.

[215] Riccardo Focardi, Sabina Rossi, and Andrei Sabelfeld. Bridging language-

based and process calculi security. In Foundations of Software Science and

Computational Structures, pages 299–315. Springer, 2005.

[216] Tao Bao and Xiangyu Zhang. On-the-fly detection of instability problems in

floating-point program execution. In Proceedings of the 2013 ACM SIGPLAN

international conference on Object oriented programming systems languages

& applications, pages 817–832, 2013.

[217] Dan Quinlan. Rose: Compiler support for object-oriented frameworks. Paral-

lel Processing Letters, 10(02n03):215–226, 2000.

[218] James R Cordy. The txl source transformation language. Science of Computer

Programming, 61(3):190–210, 2006.

[219] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic dynamic

taint analysis framework. In Proceedings of the 2007 international symposium

on Software testing and analysis, pages 196–206, 2007.

[220] Bob Page. A report on the internet worm. Risks Digest, 7(76), 1988.

[221] Donald E Knuth. Notes on the van emde boas construction of priority deques:

An instructive use of recursion. Letter to Peter van Emde Boas, 1977.

[222] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C Sreedhar,

and Sam Midkiff. Escape analysis for Java. Acm Sigplan Notices, 34(10):1–19,

1999.

BIBLIOGRAPHY 163

[223] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software

testing. John Wiley & Sons, 2011.

[224] Pinocchio. How does one debug nan values in tensorflow?, 2016. [Online;

accessed 04-March-2020].

[225] Robert M Keller. Formal verification of parallel programs. Communications

of the ACM, 19(7):371–384, 1976.

[226] Jonathan Schaffer. What not to multiply without necessity. Australasian

Journal of Philosophy, 93(4):644–664, 2015.

[227] Judea Pearl. Causality. Cambridge University Press, 2009.

[228] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim,

Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. Ldx: Causality

inference by lightweight dual execution. In Proceedings of the Twenty-First In-

ternational Conference on Architectural Support for Programming Languages

and Operating Systems, pages 503–515, 2016.

[229] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you ever

wanted to know about dynamic taint analysis and forward symbolic execution

(but might have been afraid to ask). In 2010 IEEE symposium on Security and

privacy, pages 317–331. IEEE, 2010.

[230] Karen Chan, Andrea Saltelli, and E Marian Scott. Sensitivity analysis. Wiley,

2000.

[231] Edwin T Jaynes. Probability theory: The logic of science. Cambridge

university press, 2003.

[232] Kelly Androutsopoulos, David Clark, Haitao Dan, Robert M Hierons, and

Mark Harman. An analysis of the relationship between conditional entropy

and failed error propagation in software testing. In Proceedings of the 36th

International Conference on Software Engineering, pages 573–583. ACM,

2014.

BIBLIOGRAPHY 164

[233] Claude Elwood Shannon. A mathematical theory of communication. Bell

system technical journal, 27(3):379–423, 1948.

[234] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure

for adaptive dynamic optimization. In International Symposium on Code

Generation and Optimization, 2003. CGO 2003., pages 265–275. IEEE, 2003.

[235] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

Building customized program analysis tools with dynamic instrumentation.

ACM Sigplan Notices, 40(6):190–200, 2005.

[236] Stuart I Feldman and Channing B Brown. Igor: A system for program debug-

ging via reversible execution. In Proceedings of the 1988 ACM SIGPLAN and

SIGOPS workshop on Parallel and distributed debugging, pages 112–123,

1988.

[237] MXVMJ Sheldon and Ganesh Venkitachalam Boris Weissman. Retrace:

Collecting execution trace with virtual machine deterministic replay. In

Proceedings of the Third Annual Workshop on Modeling, Benchmarking and

Simulation (MoBS 2007), 2007.

[238] Earl T Barr and Mark Marron. Tardis: Affordable time-travel debugging in

managed runtimes. ACM SIGPLAN Notices, 49(10):67–82, 2014.

[239] Higor A de Souza, Marcos L Chaim, and Fabio Kon. Spectrum-based software

fault localization: A survey of techniques, advances, and challenges. arXiv

preprint arXiv:1607.04347, 2016.

[240] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,

Michael D Ernst, Deric Pang, and Benjamin Keller. Evaluating and improving

fault localization. In Proceedings of the 39th International Conference on

Software Engineering, pages 609–620. IEEE Press, 2017.

BIBLIOGRAPHY 165

[241] Mark Weiser. Program slicing. In Proceedings of the 5th international

conference on Software engineering, pages 439–449. IEEE Press, 1981.

[242] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Árpád

Beszédes, Rudolf Ferenc, and Ali Mesbah. Bugsjs: A benchmark of JavaScript

bugs. In 2019 12th IEEE Conference on Software Testing, Validation and

Verification (ICST), pages 90–101. IEEE, 2019.

	Introduction
	Problem Statements
	Goal and Objectives
	Contributions
	Thesis Organisation

	Literature Review
	Type System
	Specific Type Systems
	Other Advanced Type Systems

	Symbolic Execution
	Handling Unknown via Concretisation
	Constraint Encoding
	The State Of the Art in Symbolic Execution

	Other Related Dynamic Analysis Techniques
	Chapter Summary

	To Type or Not to Type: Quantifying Detectable Bugs in JavaScript
	Problem Definition
	Methodology: Time-Travel Experiment
	Leveraging Fixes
	Error Model
	Example

	Experimental Setup
	Corpus Collection
	Preliminary Study
	Annotation
	Annotation Tactics

	Results
	Inter-Rater Agreement
	Detecting Public Bugs

	Case Study
	Threats to Validity
	Chapter Summary

	Retype: Changing Types to Change Behaviour
	Motivating Example
	Formalism
	Definitions
	The Retype Algorithm
	Type Inference
	Retypeable Region
	Rewriting Type Contexts
	Type Checking
	Semantics-Preservation under Retype

	Implementation
	Evaluation
	Sanity Check
	The Utility of TypeRite
	Changing Behaviour
	TypeRite's Scalability
	Qualitative Comparison

	Chapter Summary

	ValueScope: Tracking Values to Their Origin
	Problem Definition
	Discovering Value Origins
	Relation to Existing Work

	Branching at Relevant Values
	Sensitivity
	Sensitivity under Testing

	Implementation
	Transformation
	Relevance Analysis

	Evaluation
	Experimental Setup
	Results

	Chapter Summary

	Conclusion and Future Work
	Bibliography

