
Of networked lesions and lesioned networks

This scientific commentary refers to ‘Post-stroke outcomes
predicted from multivariate lesion-behaviour and lesion network
mapping’ by Bowren et al. (https://doi.org/10.1093/brain/awac010).

The excitement that greets reports of ‘convergent evidence’, perhaps
greater in neuroscience than elsewhere, betrays their disturbing rar-
ity. Each investigationalmodality throws the brain into a relief pecu-
liarly its own, the areas of unqualified agreement so limited it is
sometimes hard not to wonder if we are indeed looking at the
same thing. The contrasting perspectives of correlative functional
mapping in health, and disruptive deficit mapping in disease, pre-
sent a striking example. The former, dominated by topological infer-
ence, paints an Elysian field of finely wrought, harmonious,
replicable order; the latter, dominated by behavioural prediction,
all too commonly offers crude, disjointed, shifting sketches of infer-
nal chaos. Is either right, or none? Or is there a vantage point from
which the two views become one? This is the implicit question
Bowren1 and his colleagues address in this issue of Brain in their ele-
gant study of long-term stroke outcome prediction based on multi-
variate models that combine correlative data from normative
populations—structural and functional connectivity maps—with
disruptive data from individual patients—deficits and lesion masks.

Examining three large cohorts of structurally imaged patients
with stroke, evaluated across an array of motor and cognitive out-
comes over a 12-month period, the authors investigate the com-
parative fidelity of incrementally complicated predictive models
incorporating acute behavioural data, multivariate lesion-deficit
maps, and disruption to normative critical structural and function-
al connections. Quantified on the third, held out, cohort, they re-
assuringly find that lesion information adds long term predictive
value to acute behaviour. Lesion-weighted compressed representa-
tions of criticalwhitematter or resting state functional connections
are shown to be superior to bare lesion-deficit maps on some, if not
all outcomes, exhibiting domain-specific differences in themost in-
formative connectivemodality. In short, contextualizing lesions by
effects on connectivity inferred fromnormal anatomy and function
is shown in some circumstances to enhance their predictive power.

Critical connectivity is here established by seeding normative
data from the centroids of multivariate lesion-deficit maps that
should already model spatially distributed dependencies. One can
think of this as a deterministic projection of lesion features into a
higher dimensional space where the outcome discriminative
boundaries are thereby helpfully sharpened, a kind of ‘anatomical
support vector machine’. That multivariate predictive models
need it, even with substantial data, shows how hard the problem
is, and how careful the model formulation must be.

We should distinguish the factors that unavoidably corrupt any
model of the brain from those open to experimental remedy.

A deficit will always be under- or mis-specified behaviourally and
physiologically: the former because human abilities are definition-
ally irreducible to scores, the latter because no instrument could
conceivably capture every relevant neural process, disrupted or
healthy. Equally, as far as a given brain instantiates a unique solu-
tion, it will be closed to understanding derived from observing the
solutions of others. And as anyone who has trained an artificial
deep neural network will know, the patterns of neural activation
versus ablation sensitivity may vary radically in their coherence,
not because the net has excess capacity but because its operation
is constitutionally distributed, inhabiting a parameter space whose
high dimensionality may take it far beyond the threshold of intelli-
gibility. The real brain need be no different.

Our task is not to dwell on the insoluble problems but to stratify
the soluble in order of their impact on model fidelity. Paramount
here is proper recognition of the domain to which brain modelling
belongs: like it or not, this is the study of complex systems. As pro-
ven at the dawn of cybernetics, an effective controller of a system
can be no simpler than the system itself.2 If by understanding is
meant knowledge capable of guiding interventions—the principal
concern of the translational neuroscientist—we must try to absorb
complexity rather than reject it out of hand in theway simplemod-
els of the brain more or less openly do. This implies insisting on
data scales as close to the ceiling of feasibility as we can get, evalu-
ating mathematical models of the highest tractable expressivity,
and deploying computation of commensurate power. It implies pri-
oritizing the derivation of compact, yet rich, descriptions of the
brain through representation learning, assigning primary import-
ance to generalisable, individual-level predictive fidelity, and sub-
mitting to model comparison as the highest arbiter of credibility:
policies still rare in a field dominated by criterial P-values drawn
from simple inferential models whose statistical assumptions the
data clearly violate.

Such recognition further compels us to relax implausible prior
beliefs about the homogeneity of the brain across the population.
Attention to the heterogeneous structure of lesions has already re-
vealed its distorting effects not only on lesion-deficit maps,3 but
also on the historical taxonomy of brain function itself.4 It is time
we attended to the heterogeneity of the neural substrate too: the
presence of systematic variability in its anatomical form. It is a
foundational assumption, not only of mass-univariate inference
but also patch-wise multivariate approaches applied at the group
level, that anatomically identical regions support identical func-
tions across the population. Where either the neural substrate or
its anatomical landmarks vary in amanner image registration can-
not correct, suchmodels are bound to lose sensitivity in proportion
to the departure from homogeneity. Note the substrate may still be
structured, but now in terms of systematic subpopulation-specific
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Figure 1 Demonstrationwith a planar (42×42 variable) syntheticmodel of the relation between lesion-deficit spatial inference and outcomeprediction
in the setting of heterogeneous neural substrates.A pair of areas, A and B,modelled as thresholded Gaussian blobs of randomly chosen size (first row),
vary incrementally in the heterogeneity of their spatial distribution, from a fixed pattern (single pair), to five distinct patterns (quintuple pairs), across
separate simulations. RegionA is locationallyfixed, but B has up to five possible locations B1 to B5 corresponding to increasing degrees of heterogeneity.
A deficit generating process based on 10% overlap of a lesion with any part of A or B is used to create a synthetic ground truth from 1000 single, uni-
formly distributed synthetic lesions in the form of binary ellipses with a major to minor diameter ratio ranging between 0.2 and 0.3,
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interactions between regions with variable localization. Such
structure will be wholly opaque to simple methods, yet—given
enough examples—potentially accessible to more flexible model
architectures.

To illustrate the point, consider a hypothetical two-dimensional
brain composed of 42× 42 elements,where the critical substrate of a
given function is distributed across two different regions: one, A,
variable in size but fixed in location and another, B, variable in
size and heterogeneous in location to an extent we manipulate
across five hypothetical ground truth scenarios (Fig. 1, first row).
If we attempt tomap the substrate with a set of 1000 uniformly dis-
tributed ellipsoid ‘lesions’ of randomly varying orientation, assum-
ing a symptom generating process that yields a deficit with 99%
probability whenever a lesion overlaps with at least 10% of any
part of the substrate, we can easily recover the location-invariant
region A, whether we use mass-univariate or flexible multivariate
inference (rows 2 and 3). Region B, by contrast, rapidly disappears
from the picturewith increasing heterogeneity, though less abrupt-
ly frommultivariate feature importancemaps. Crucially,multivari-
ate predictive performance on the outcome, evaluated out of
sample, remains comparatively high, and is higher for predictive
models that use all available variables compared with those con-
fined to the subset univariate testing identifies as significant
(row 4).

In short, population heterogeneity in the neural substrate may
be accessible to the right kind of model, but not in a way that can
be represented by a simple anatomical map. This has two far-
reaching implications. First, insisting on the use of predictive mod-
els explicable in terms of linearly composited voxel weights both
imposes an unnecessarily low ceiling on maximum achievable fi-
delity and introduces potential bias against anatomically variable
substrates. Seeking to avoid the misdemeanour of model opacity
here risks committing the felony of poor and inequitable predictive
performance. Second, heterogeneous substrates should be con-
ceived as families of regional interactions more consistent in their
topological structure than in the anatomical localization of their
constituents: a form arguably best modelled as a hierarchically
organized graph. Note the challenge is not modelling the

interactions between loci common across the population—a task
on which graphs are already widely deployed—but characterizing
subpopulation-specific structure primarily conveyed in network
topologies. We need to become accustomed to looking less at tech-
nicolour pictures of the brain than at complex network communi-
ties describing multiple interacting regional effects. Our maps will
be less recognizably of the brain, but all the truer for it.
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Figure 1 Continued
yielding a deficit label vector. Fisher’s exact test was then applied in a pixel-wisemanner to generate a field of asymptotic P-values, shown as the nega-
tive log in the second row, thresholded at a Bonferroni-corrected alpha of 0.05. The third row shows the feature importance from a high-dimensional
multivariate model based on a sampling/boosting tree-based ensemble algorithm applied to the same data. At the bottom is a plot of out-of-sample
predictive performance, indexed by the area under the receiver operating curve (AUC), with error bars ±1 standard deviation from 10 independent
runs, from the foregoing models (red) and another set of identically configured models limited to pixels identified as significant in the corresponding
univariate model (blue). Note the differences in the ability of univariate versusmultivariate models to retrieve the underlying substrate as heterogen-
eity increases, and the comparative predictive power of models with inputs constrained or not constrained to linearly associated features.
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