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ABSTRACT

A one-dimensional model framework of unsteady free-surface flow through a blocking-drag region is developed, tested, and applied to
understand the dam-break flow past a rectangular building. This is achieved by studying the steady-state, adjustment to steady-state, and the
unsteady response of a blocking-drag region. Three steady flow regimes are identified based on the Froude number upstream and down-
stream of a blocking-drag region: a subcritical state, a choked state with a subcritical-supercritical transition, and a supercritical state. The
interaction between a dam-break flow and a blocking-drag region can be mostly understood from the quasi-steady analysis using the varia-
tion of the Froude number with time, and comparing the upstream and downstream Froude number scatter plots against the steady curve.
The force time-series depends on the height of the precursor layer and the position of the blocking-drag region relative to the lock-length.
This model provides considerable insight into the types of flow characteristics observed at low/high Froude numbers and goes some way to
clarifying the relationship between the drag force and the dam-break flow properties.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0079188

I. INTRODUCTION

With the recent occurrence of tsunami inundation into major
urban areas (2011 Tohoku earthquake and tsunami and 2004 Great
Indian Ocean Tsunami) and the totality of deaths from tsunamis in
the last 20 years exceeds 200 000,1 the attention has shifted away from
wave propagation across oceans to processes that occur on land. With
the revision of building codes of practice,2,3 there has been a recogni-
tion that some of the design codes are remiss in the areas of force load-
ing, building interactions, and how buildings are modeled within
tsunami codes. Since few facilities around the world have the capability
of generating very long waves, except for UCL-HRWallingford’s novel
tsunami facilities,4,5 researchers have focused on using dam-break
flows as a laboratory model for studying the water surge and encroach
on single model buildings6 and idealized cities.7

The horizontal dam-break problem consists of an instantaneous
release of stationary fluid over a horizontal surface. The usual form of
this problem is the lock release case where a gate that separates initially
stationary bodies of fluid is removed instantaneously, and the ensuing
motion is followed in time. The dam-break problem is a fundamental
part of classical fluid mechanics because it provides one of the clearest

applications of the Riemann technique of scalar invariants and is
included in the majority of mathematics and engineering undergradu-
ate courses.8,9 Notwithstanding the classical nature of the technique, it
is only recently that it has been used to completely map out the case of
dam-break over a precursor layer in a series of remarkable papers by
Hogg and colleagues.10,11 Though the construction technique is analyt-
ical and, in parts, requires numerical evaluation, it provides a starting
point to explore other components of the dam-break flow.

Numerous papers have dealt with dam-break inundation interac-
tion with fixed buildings. In this relatively large body of work, the stud-
ies of Arnason et al.12 and Douglas and Nistor13 are noteworthy
because of the detail of the experiments and the associated 3D numeri-
cal simulations against which they were compared. Arnason’s study
employed a precursor layer to remove the sensitivity of the leading
front of the dam-break to the surface roughness to study bore interact-
ing with a rigid building. Since the flow configurations of these studies
are quite varied, no clear picture or consensus has yet emerged from
this corpus of work. Recognizing that there may be a quasi-steady
component to the interaction between flow inundation and buildings,
Qi et al.14 studied experimentally the interaction of a steady stream
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with a building in a channel and observed two states where the flow
downstream was either subcritical or supercritical. This phenomenon
was explained in terms of a 0D model relating upstream and down-
stream states through an integral formulation of the conservation of
momentum.

The influence of flow restrictions from side walls and submerged
mounds on channel flows have been studied extensively, mostly focus-
ing on gradual variations.15 The presence of mounds leads to wholly
supercritical or subcritical flows, with a transitional flow characterized
by a hydraulic jump;16 this bears some similarity with the types of
multiple states that we analyze in this paper, with subcritical and
supercritical states along with the possibility of internal shocks. Akers
and Bokhove17 extended the analysis to include a linear contraction of
the channel width with the influence of the contraction largely through
the resistance caused by bottom friction. When the blocking of the
flow is significant, sidewall friction becomes dominant, and the influ-
ence of blocking over the entire length of the flow region must be
examined. This analysis was supported by an experimental study
where a two-dimensional hydraulic shock pattern, consistent with a
small blocking ratio, was studied using the model of Mach.18 Hicks
et al.19 studied a one-dimensional model of dam-break flow past a
smoothly varying constriction with a maximum contraction of 50 per-
cent of the channel width. The model was based on a long-wave
approximation to calculate the hydrostatic force experienced by the
contraction. Agreement between the free-surface water height and
measurements was good upstream of the contraction, but performed
poorly downstream, possibly due to the neglect of flow separation
manifested as a net force on the contraction. Kocaman and Ozmen-
Cagatay20 extended this type of analysis to include sharp-edged
triangular side walls contraction and observations over the length of a
narrow tank that showed the accumulation of water upstream of the
obstruction. The observations were compared with a volume-of-fluid
method and showed good agreement. However, the tank was left open
within two obstacle lengths from the contraction, and this has an
undue influence on the development of the flow.

A number of studies have started to focus on the application of
2D non-linear shallow-water models to obstructions, modeling the
obstruction as a hole in the computational domain, or averaging over
the influence of multiple buildings.21,22 While the blocking effect is
explicitly included in these 2D models, these models require the
ground friction to be tuned to match drag with experimental observa-
tion. Part of the challenge remains to understand the parameterization
required for these 2D models to capture the critical flow transitions. A
clear explanation of the physical processes was missing from these
studies.

The purpose of this paper is to provide a new conceptual frame-
work to explain the interactions between an inundating free-surface
flow and a rigid rectangular building, using the dam-break flow as a
prototype problem. Many approaches could be adopted in this regard,
such as three-dimensional simulations,23 smoothed-particle hydrody-
namics models,24,25 two-dimensional shallow-water modeling,26 and
by laboratory experiments.27 There are a few challenges in adopting
more advanced modeling techniques, specifically, the wide parameter
space is too large to enable trends and dependencies to be fully
explored. The approach applied here is based on exploring the proper-
ties of a one-dimensional model that incorporates the action of an
obstacle on the flow. These are blocking and drag, two processes that

have quite different effects on the flow. This permits us to develop a
new framework and approach to understand the interaction between a
free-surface flow and a blocking-drag region.

The choice and type of one-dimensional model used in this paper
are important, and we elaborate this discussion in Sec. II. The model is
based on an empirical force closure with the main difference being the
interpretation of the influence of blocking and the impact of a drag
force on the flow. Since we make use of certain results for the shallow-
water flow in the absence of the blocking-drag region, the results of
Hogg10,11 are covered in Sec. III with the focusing on the transient
response at a fixed point. To build up the conceptual framework, the
steady problem is first studied in great detail in Sec. IV, using a graphi-
cal solution derived from the variation of the “momentum flux” (M),
as defined by Lighthill,28 with the local Froude number. Most of the
physical processes can be explained by the influence of blocking and
resistive force on the flow, which simplifies the analytical treatment.
This is supplemented by numerical construction techniques, which
highlight different regimes in the state of the flow.

In Sec. V, transient analysis is performed to examine the adjust-
ment of a steady stream to the presence of a blocking-drag region.
This shows how the steady-state conditions are reached and how this
is achieved. This relationship between the initial and final state pro-
vides the link between the dam-break flow without the blocking-drag
region and with the blocking-drag region. At this point, we make a
comparison with data from the study by Qi et al.14 that gives confi-
dence about the modeling approach.

Finally, in Sec. VI, the dam-break flow past a uniform blocking-
drag region is analyzed. The flow behavior can be understood based
on the local Froude number and the steady flow regime diagram. This
naturally brings together the two themes of dam-break and quasi-
steady flow past buildings.

II. ONE-DIMENSIONAL NON-LINEAR
SHALLOW-WATER MODEL

The dam-break configuration studied in this paper consists of the
interaction between an unsteady free-surface flow and a rectangular
rigid building (length LB and width b) in a channel (width w) shown
in Fig. 1. Initially, stationary fluid (height h0 and length L0) is held
behind a removable lock at one end of the tank. Before the lock release,
there is a thin precursor layer, hL, of water in the tank. The rectangular
rigid building is positioned along the center of the flume and aligned
to the incident flow. The building is placed at a distance Lb from the
dam-break barrier. The subscripts “u” and “d” refer to regions
upstream and downstream of the building, respectively; “f” and “b”
refer to positions at the front and back of the building, respectively.

A rigid building has two effects on a flow. First, it imposes a kine-
matic constraint on the flow, causing it to deviate around the building.
This phenomenon, known as blocking, causes the flow to speed up
around or between buildings29 and has implications for the formation
of hydraulic jumps and transitional flows. Second, in a steady viscous
flow, rigid bodies experience a force that leads to a net reduction in the
momentum flux of the flow.30 When the flow has a free-surface, the
response is more complicated because the free-surface can deform.

We adopt the term blocking-drag region to represent the rigid
building, and in the model, we incorporate the effects of blocking and
drag that are both dependent on the position x. In our idealized setup,
both the blocking ratios (/) are constant along the building
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(/B ¼ b=w), and the drag is defined by a constant resistance coeffi-
cient CR. However, the model is developed for a general blocking ratio
/ðxÞ and resistance coefficient CTðxÞ that can vary along the tank.

A 1D approach is explored here because its simplicity permits the
consequence of a building on the flow to be explored more easily and
fully. This approach raises a challenge because, unlike a 2D method,
the influence of a change in the blocking ratio must be modeled rather
than imposed through boundary conditions applied explicitly to the
flow. Simple 1D models have a role in parametric analysis in assess-
ments of risk encapsulated in ASCE codes. A specific challenge from
the 1D model comes from the blocking ratio (/) being discontinuous
along the channel, which means that the gradient of the blocking ratio
becomes singular. There are two distinct approaches to coping with
the discontinuous nature of /: (1) change how the model represents
the building (force closure relationship) or (2) change how the build-
ing is represented within a model (e.g., smooth /). Both approaches
are analyzed in this paper, but the latter approach is conceptually
clearer, analytically tractable, and explains most of the physical
processes.

We start the modeling discussion with concepts that will be use-
ful for incorporating the effect of buildings into a model of the free
surface flow. The first useful measure is the quantityM referred to his-
torically as the momentum flux,28 defined as the sum of u2h (specific
momentum flux per unit width) and gh2=2 (specific pressure force per
unit width). The momentum flux is a conserved quantity in the
absence of an applied force. Since we are dealing with a flow in a chan-
nel with a fixed width but varying blocking ratio, these quantities are
defined as

M ¼ ð1� /Þ u2hþ 1
2
gh2

� �
; (1a)

q ¼ ð1� /Þhu; (1b)

where q is the volume flux (per unit width), and the blocking-ratio /,
bore height h, and the horizontal velocity u depend on the position x.
For a steady free-surface flow, the change inM across a region of resis-
tance is related to the total force (FT) on the flow31 through,

Mu �Md ¼
FT
qw

;

where q is the fluid density and subscripts ‘u’ and ‘d’ denote upstream
and downstream parameters, respectively.

Qi et al.14 proposed a semi-empirical expression for the total
force on a square cylinder that consisted of two distinct contribu-
tions—a resistive force and a hydrostatic force—which were parame-
terized in terms of the upstream and downstream flow properties as

FT ¼
1
2
CQbu

2
uhu �

1
2
CKqbgðh2u � h2dÞ; (2)

where CQ and CK are empirical drag coefficients. The drag coefficient
CQ was estimated from the limiting case of the subcritical upstream
Froude number. CK was determined to be the best fit when the flow
was choked. The value of CQ was consistent with published measure-
ments on square cylinders that significantly blocked the channel flow.
The conclusion was that the majority of the force was largely captured
by the form drag scaling.

The usual “rigorous” derivation of the non-linear shallow-water
equations involves the application of a long-wave approximation and
a reduction to a hydrostatic balance for pressure.28 Expressed in a flux
conserving form, the shallow-water equations describing flow over a
horizontal bed are

@

@t
ð1� /Þhþ @q

@x
� 0; (3a)

@q
@t
þ @M
@x
¼ �fT ; (3b)

where fT is the drag force per unit length (normalized by qw) acting
on the body. The critical modeling assumption is that the influence of
an obstruction can be represented by a local variation in the blocking
ratio and a “distributed” resistive force. The influence of bed friction
and slope can be straightforwardly incorporated into (3a) and (3b), as
shown in Synolakis.32

Blocking and drag are quite distinct physical processes though
putting an obstruction into a flow will necessarily generate both effects.
The influence of blocking is implicitly included into M and q through
the incorporation of the blocking ratio into the ð1� /Þ factor in (1a)
and (1b). The drag force on an obstacle can be expressed in terms of a
hydrostatic force fH and a resistive force fD. This distinction is not pre-
cise because the stagnation pressure caused by a flow is converted to a
local water height rise/fall on the front/back face of the obstruction.
This water height difference is equivalent to a hydrostatic force. Semi-
empirically, we can express the drag force (per unit length, normalized
by qw) as

fT ¼ fH þ fD;

the sum of the hydrostatic (fH) and resistive force (fD). The physical
interpretation of the terms in the shallow-water models provides some
guidance about which terms will be altered when the channel width
varies quickly. Rewriting the shallow-water equations in a conservative
form, for flow over a horizontal bed, the term on the right-hand
side of the conservation of momentum (3b) is ð1=2Þgh2@/=@x. The
physical interpretation of this term is as the hydrostatic force (per
unit length) on the channel walls as the width changes. When the
change in the channel width is neither slow nor small, we would
anticipate that the hydrostatic force (per unit length) to scale with
ð1=2Þgh2@/=@x is of the form

FIG. 1. A schematic of the plan and side view of the dam-break problem, at t¼ 0,
with initial lock (length L0 and height h0), which is separated from a precursor layer
of height hL. The center of the building (length LB) is located at a distance Lb from
the front of the dam. The “u” and “d” refer regions upstream and downstream of the
building, respectively. The front and the back of the building are denoted as “f” and
“b,” respectively.
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fH ¼
1
2
CHgh

2 @/
@x

; (4)

where CH is an empirical constant. A non-conservative form of the
momentum equation (3b) can be written as

@u
@t
þ u

@u
@x
¼ �g @h

@x
� hgð1� CHÞ

2ð1� /Þ
@/
@x
� fD
hð1� /Þ : (5)

At this stage, it is worth recapping the assumptions behind (3a) and
(3b). The basis of the shallow-water model is a long-wave approxima-
tion and a vertical hydrostatic balance. Blocking and drag are incorpo-
rated into the model through a change in the cross-sectional width
and a parameterization of a drag force per unit length (fT); the force
per unit length is written as a linear combination of a hydrostatic (fH)
and resistive component (fD). Missing from the above model is the
influence of topography and bed friction, though both can be straight-
forwardly added to the momentum equation. When / varies gradu-
ally, it is common to set CH¼ 1 giving the standard conservative form
of the momentum equation.19 However, for rapidly changing blocking
ratios, CH is quite different.

A closure relationship is required for the distributed resistive
force (fD) in (5). The two major factors in this choice are where and
how the force is applied. Similar discussions are covered in the litera-
ture dealing with the influence of plant and urban canopies on the
atmospheric boundary-layer.33 The force applied by a body to a fluid
is through its surface pressure and viscous stresses, which must be con-
verted to a volume average, so that it can act on the flow. Strictly
speaking, integrating this contribution over a plane normal to the
length of the channel generates a momentum source and sink (at the
front and back of a rectangular building), with a weaker, continuous
distribution caused by viscous forces on the sides of the building.
Including singular distributions within an unsteady numerical model
is challenging, and a more common approach is to use a distributed
drag model where the resistance is smeared over a region overlapping
with the position of the buildings. Distributed drag models are com-
mon across many areas of fluid mechanics such as modeling offshore
turbines34 and in the context of urban terrains, where the purpose is to
understand how buildings affect the urban boundary layer.35

Having chosen a distributed drag approach, there are a number
of possible options for the closure form for fD. The framework of dis-
persed multiphase flows is based on using simple force closures to
describe the influence of discrete elements on the flow, and these
forces tend to be correlated with the local velocity (in the absence of
the element), gradients of velocity, and local fluid acceleration.36,37

The simplest force closure that can be adopted is a resistance force
proportional to the velocity squared and the local water height
expressed in the form

fD ¼ CT ð1� /Þ ujjujjh
w

; (6)

where the resistance coefficient CT depends on the position x. CT is
taken to be a constant when the local Reynolds number is high. This
form of the resistance force has been used for gravity currents through
emergent vegetation and obstacles;38,39 the flows in this paper are uni-
directional, so that jjujj ¼ u.

First, we would like to develop a model that is valid for finite
changes in a streamwise blocking ratio that matches the experiments.

For a rectangular building aligned to the flow, the resistance coefficient
(CT) and blocking ratio (/) are uniform over a finite length LB, cen-
tered at x¼ Lb, see Fig. 1. This relationship can be expressed as

/ðxÞ ¼ /B H x � Lb þ
1
2
LB

� �
� H x � Lb �

1
2
LB

� �� �
; (7a)

CTðxÞ ¼ CR
/
/B
; (7b)

where Hð�Þ is the Heaviside step function and CR is a constant depen-
dent on the contraction under investigation. The configuration, (7a)
and 7(b), is able to mimic flows past a rectangular building (for finite
/B and large CR), emergent vegetation (for small /B and large CR),
and changes in lateral confinement (finite /B and small CR). The
hydrostatic force is singular at the front and back of the blocking-drag
region, representing both a numerical challenge for unsteady flows
and a conceptual challenge because a long-wave approximation is
inappropriate at the singular points.

Experimental observations14 support the view that the subcritical
flow properties and force can be largely explained without a hydro-
static force. The modeling approach explored in this paper is based on
setting CH¼ 0, which has the advantage of analytical tractability. The
second modeling approach is to change the way the building is repre-
sented, by replacing / (7a) with a continuous form where the blocking
ratio adjusts over a short smoothing distance. The former approxima-
tion is reported in this paper, but the smooth approximation was also
tested and yielded substantially the same results—this is briefly dis-
cussed in Sec. VIII.

III. DAM-BREAK FLOW WITHOUT BLOCKING-DRAG
REGION

In this section, we summarize the results of a dam-break flow
over a precursor layer and expand on some of the analytical results of
Hogg10 and Goater and Hogg11 that will be used later. These results
act as a reference case when the blocking-drag region is weak (or
/! 0). The defining equations are given by (3a) and 3(b) with fT¼ 0.
The water behind the gate (h¼ h0) is located in the region 0 < x < L0
and beyond x¼ L0 and h¼ hL. We work in a dimensionless form:

ĥ ¼ h=h0; x̂ ¼ x=L0; t̂ ¼ ðgh0Þ1=2t=L0; û ¼ u=ðgh0Þ1=2:

The Riemann method involves tracking two scalar quantities

a ¼ û þ 2ĥ
1=2
; (8a)

b ¼ û � 2ĥ
1=2
; (8b)

that are invariants along the characteristics

dx̂

d̂t
¼ û þ ĥ

1=2
;

dx̂

dt̂
¼ û � ĥ

1=2
;

respectively. This construction technique can be used to build-up a
solution over the hodograph plane from the solution at t̂ ¼ 0. From
(8a) and (8b), û and ĥ are then determined as

û ¼ 1
2
ðaþ bÞ; (9a)

ĥ ¼ 1
16
ða� bÞ2: (9b)
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The hodograph plane can be separated into different regions: simple
(S1, S2), uniform (U1), and complex (C1) regions depending on whether
one, both, or neither of the scalar invariants is constant. Goater and
Hogg11 showed how the solutions in the various regions are constructed;
for our engineering approach, we must have a clearer understanding of
the physics and the dependence of ĥ and û on time at a fixed location.

A. Region S1

The solution uses two pieces of information in this region: a ¼ 2,
and the expansion fan is centered at x̂ ¼ 1. This gives the well-known
solution10,40

û ¼ 2
3

x̂ � 1

t̂
þ 1

� �
; ĥ ¼ 1

9
2� x̂ � 1

t̂

� �2

;

and a local Froude number

Fr ¼ u

ðghÞ1=2
¼ 2
ðx̂ � 1Þ=̂t þ 1

2� ðx̂ � 1Þ=̂t
:

At a fixed point, the Froude number decreases rapidly but remains
supercritical in the region x̂ > 1. The momentum flux is written as

û2ĥ ¼ 4
81

x̂ � 1

t̂
þ 1

� �2

2� x̂ � 1

t̂

� �2

; (10)

and is bounded by 16/81. The solution in region S1 is matched onto
those in regionsU1 and C1 across the characteristics shown in Fig. 2.

B. Region U1

The precursor layer leads to a bore moving with a constant
(dimensionless) speed (s), so that the leading-edge (x̂ f ) of the bore

moves as x̂ f ¼ ŝt þ 1 and is later caught by a simple wave. In this
region, a¼ 2 and b ¼ bm. The bore characteristics are well-known

10,40

and determined by the mass and momentum conservation applied at
the interface of the bore and precursor layer (ĥL ¼ hL=h0),

1
16

1
2
ð2þ bmÞ � s

� �
2� bmð Þ2 ¼ �sĥL;

1
2

1
16
ð2� bmÞ2 þ ĥL

� �
¼ � 1

2
ð2þ bmÞ � s

� �
s;

which together enable bm and s to be determined. We can determine
from (9) the bore height and the flow speed to be

û ¼ 1
2

2þ bmð Þ; ĥ ¼ 1
16

2� bmð Þ2:

C. Region C1

In this region, the non-linear partial differential equation, (5), is
transformed from ûðx̂; t̂Þ and ĥðx̂; t̂Þ to a linear partial differential
equation with variables t̂ða;bÞ and x̂ða;bÞ. By integrating along the
characteristics,41 the relationship between t̂ ; x̂ and a, b is determined
as

t̂ða; bÞ ¼ 64

ððaþ 2Þð2� bÞÞ3=2
F

3
2
;
3
2

� �
; 1;
ð2� aÞðbþ 2Þ
ðaþ 2Þð2� bÞ

 !
;

x̂ða; bÞ ¼ x̂ð2; bÞ þ
ða

2

1
4
ðaþ 3bÞ @ t̂

@a
da;

where x̂ is obtained by integrating along iso-b curves and F is a hyper-
geometric function commonly used for solving Riemann problems.
Inversion is achieved by identifying iso-contours of x̂ða; bÞ and inter-
polating the solution from t̂ða;bÞ. The interface between region C1

FIG. 2. Evolution of a dam-break flow with
no building for ĥL ¼ 0:01. In (a), the iso-
contours of h are shown along with the
simple S1;2, uniform U1, and complex C1
regions. The superimposed vertical lines
(�o�) represent the fixed positions
x̂ ¼ 1.5, 2, and 4. In (b, c), the water
height and momentum flux are plotted as
functions of time. The three curves in
each plot correspond to the time histories
at fixed positions x̂ ¼ 1:5, 2, and 4. The
timescale is normalized by distance
between the lock gate and the fixed posi-
tion (x̂ � 1), so that the different curves
can be more easily distinguished of later
time. The Froude number variation is
shown in (d).
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and S2 is given by x̂1ða;bmÞ and t̂1ða;bmÞ, where this region may
extend quite far into the t̂ direction where, as t̂ !1; a � b! 0.

Looking in more detail at the singularity of F provides a good
candidate for a series expansion of

F
3
2
;
3
2

� �
; 1; z

� �
¼ ð1� zÞ�2 1þ 1

4
z þ 1

64
z2þ;…;

� �
: (11)

This approximation is surprisingly good over the range 0 � z < 1. An
asymptotic expression can be developed for time

t̂ � 4

ða� bÞ2
ðð2� aÞð2þ bÞÞ

1
2 1þ 1

4
þ 1
64
þ;…;

� �
In the limit of a; b! 0, we have manipulated (9b) using (11) to give

ĥ ¼ 1
16
ða� bÞ2 � k

2̂t
; k ¼ 1þ 1

4
þ 1
64
þ;…: (12)

Hogg42 showed that the leading coefficient k ¼ 4=p. Along the iso-b
curve

x̂ða;bÞ � x̂ð2;bÞ � k
aþ b

2ða� bÞ2

" #a

2

:

For ĥL � 1 and large t̂ , for a fixed point,

x̂ða; bÞ � ût̂ : (13)

A “similarity” solution gives approximately similar results. The
length of the current increases as L̂ � 2̂t , so that the height is approxi-
mately uniform, with ĥ � 1=L̂ ¼ 1=2̂t and a velocity û � x̂ =̂t . A
numerical solution was developed in the limit of ĥL � 1, and similar
coefficients (ĥ � 0:55=̂t and û � 1:06x̂ =̂t) were found. A detailed
analysis by Hogg42 recovers the same scaling with the leading coeffi-
cients as ĥ � 2=pt̂ and û � x̂=̂t .

Using (12) and (13), the solutions for the momentum flux and
Froude numbers are

û2ĥ ¼ k
2
x̂2

t̂
3 ; (14a)

Fr ¼ 2

k3=2
x̂

t̂
3=2
: (14b)

The bore moves with speed s, and intersect region C1 at the point

t̂ b ¼
8

ð2� bÞ3=2
; x̂b ¼ 1þ 2ð2þ 3bÞ

ð2� bÞ3=2
:

D. Region S2

In region S2, b ¼ bm and so along the iso-a curves

dx̂

d̂t
¼ 1

4
ð3aþ bmÞ;

re-arrange as

t̂ � t̂1 ¼
4

3aþ bm
x̂ � x̂1ð Þ;

hence

a ¼ 4
3

x̂ � x̂1
t̂ � t̂1

� �
� 1
3
bm:

The flow properties in region S2 are

û ¼ 2
3

x̂ � x̂1
t̂ � t̂1

þ 1
2
bm

� �
; ĥ ¼ 1

9
x̂ � x̂1
t̂ � t̂1

� bm

� �2

:

Hogg constructed the solution over the whole of the hodograph
plane while we proceed to focus on the part where the momentum
flux is not negligible.

E. Application to three precursor heights

Figure 2 shows the solution obtained through the construction
technique for a single precursor height of ĥL ¼ 0:01. The results are
plotted for fixed values of position but time is normalized as
t̂=ðx̂ � 1Þ, so that the initial time series collapse onto one curve but
the later dynamics can be distinguished. The key critical observations
are (1) the uniform region, U1, gives rise to constant (supercritical
flow) whose period increases as ĥL increases; (2) the momentum flux
(û2ĥ) and water height (ĥ) are constant in this region; (3) the water
height and momentum flux increase in the adjacent region S1, where
the flow is supercritical. While the flow is slowing down, the water
height is increasing quickly; and (4) in the region C1, both water height
and flow velocity are decreasing as the momentum flux decreases.

The first relevant point is that û2ĥ varies over a smaller range
than the other variables during the inundation phase. In general, û2ĥ
shows a weak dependence on the initial precursor height but a signifi-
cant difference is in its shape. When the precursor layer is absent, the
momentum flux rises smoothly before decreasing during the decay
phase. Some features are retained for thin precursor layers, but the
influence of the bore generates a step-change in the momentum flux.

The variation of Fr with time will be critical for our later discus-
sion when the precursor height is small and Fr is large. The Froude
number decreases rapidly because both u and 1=h1=2 decrease, but still,
the flow is supercritical. The last phase is important because the water
height decreases with the inverse of time, and the Froude number now
becomes subcritical.

IV. STEADY FLOW PAST A BLOCKING-DRAG REGION

From Sec. III, we have seen that the water height and velocity at a
fixed position may be steady for a short time (such as a precursor layer
generating a bore or close to a long-dam). This indicates that the flow
in the vicinity of the blocking-drag region may, under certain circum-
stances, also be steady. Since the steady solution ultimately underpins
the transient analysis, this must be studied in detail. We do this by
analyzing how the flow adjusts as it passes from upstream to down-
stream of the blocking-drag region. From (3a), (3b), (4), and (6), the
steady flow through a blocking-drag region is governed by

d
dx
ð1� /Þuh ¼ 0; (15a)

d
dx
ð1� /Þ u2hþ 1

2
gh2

� �
¼ � 1

2
CHgh

2 @/
@x
� CT ð1� /Þ u

2h
w
:

(15b)

We can re-arrange h and u to express local variables in terms of
the local Froude number,
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h ¼ q2=3g�1=3Fr�2=3

ð1� /Þ2=3
; (16a)

u ¼ q1=3g1=3Fr2=3

ð1� /Þ1=3
; (16b)

where the volume flux per unit width (q) is defined in (1 b). This
decomposition separates the influence of mass conservation (through
q) from the momentum conservation (through Fr). Using (16a), (16b),
and (15b) becomes

d
d~x

1þ 1
2 Fr

�2� �
Fr2=3

ð1� /Þ1=3

 !
¼ 1

2
CH

@/
@~x

Fr�4=3

ð1� /Þ4=3
� CT

Fr2=3

ð1� /Þ1=3
;

(17)

here ~x ¼ x=w; this can be solved by considering various parts of the
flow. The dimensionless ‘momentum flux’ is M̂ , where

M̂ ¼ M

q4=3g1=3
¼

Fr2=3 þ 1
2 Fr

�4=3

ð1� /Þ1=3
:

Providing the drag force is not singular, M̂ is a continuous in ~x .
Upstream and downstream of the blocking-drag region and both M̂
and Fr are constant, where

M̂	 ¼ Fr2=3	 þ
1
2
Fr�4=3	 ;

where Fr	 ¼ u	=ðgh	Þ1=2 and 	 denotes either “u” (upstream) or “d”
(downstream) regions. The total drag force caused by the blocking-
drag region

FT ¼ qw
ð1
�1

fT dx;

is evaluated by integrating qwfT along with the domain. From the con-
servation of momentum, the total drag force can also be related to the
change in the momentum flux across the blocking-drag region8,14,31

through

FT ¼ qw Mu �Mdð Þ ¼ qwq4=3g1=3DM̂ ; (18)

where

DM̂ ¼ Fr2=3u � Fr2=3d|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
momentum flux

þ 1
2

Fr�4=3u � Fr�4=3d

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pressure force

: (19)

The total drag force can be interpreted in terms of the (actual)
momentum flux or pressure force. This is important because this tells
us how the flow adjusts, either through a change in water height (pres-
sure force) or a change in velocity (momentum flux). It is useful to
define an equivalent drag force coefficient (CD) based on a representa-
tive upstream flow velocity, that is

CD ¼
2FT

qu2uhub

¼ 2
/B

1� Fr2=3d

Fr2=3u

 !
1� 1

2Fr2=3u Fr4=3d

1þ Fr2=3d

Fr2=3u

 !0
@

1
A: (20)

The peculiarity of a jump from subcritical to supercritical flow in
the presence of a blocking-drag region needs to be examined using the
specific energy, E	 ¼ u2	=2þ gh	, which represents the Bernoulli coef-
ficient for a fluid particle on the free-surface. Ultimately, all energy is
viscously dissipated but this is not explicitly accounted for in the
shallow-water model and is dealt with through an implicit approach
that Lighthill28 discusses in detail through his analysis of the change in
the specific energy using the example of the hydraulic jump. The spe-
cific dissipation DU experienced by a fluid parcel is the reduction of
the specific energy experienced by a fluid parcel advected across the
blocking-drag region,

DU ¼ Eu � Ed;

which can be expressed in a dimensionless form

DÛ ¼ DU
g2=3q2=3

¼ 1
2
Fr4=3u þ Fr�2=3u � 1

2
Fr4=3d � Fr�2=3d ;

and be used to discriminate whether a type of motion is permissible.

A. Uniform blocking-drag region

When the blocking ratio is a stepwise uniform and the hydro-
static force fH¼ 0 (hence CH¼ 0), the flow through the blocking-drag
can be studied analytically. Across the front of the blocking-drag
region, / jumps from 0 to /B, but M̂ is unchanged, providing a link
between the Froude number upstream (Fru) and the Froude number
at the front of the building (Frf), through

Fr2=3u þ
1
2
Fr�4=3u ¼

Fr2=3f þ 1
2
Fr�4=3f

ð1� /BÞ1=3
: (21)

Since CT¼CR and / ¼ /B are constants within the blocking-
drag region, we can integrate (17) across the length of the block to give

CR~x ¼ 1
3
log Fr2 � 1

3
1� 1

Fr2

� �� �Frb
Frf

: (22)

When LB is less than the required distance for the flow to reach a
critical state, Fr will vary continuously from Frf at the front of
the blocking-drag region to Frb at the back of this region where
[from (22)]

CR
LB
w
¼ 1

3
log

Fr2f
Fr2b
þ 1
3

1
Fr2f
� 1
Fr2b

 !
:

There is a class of solutions where Fr does not vary continuously, and
the flow is characterized by an internal hydraulic jump. When a sta-
tionary hydraulic jump occurs, the Froude number jumps from
Frþð>1Þ to Fr�ð< 1Þ at some position within the blocking-drag
region, whose location can be calculated from

Fr2=3þ þ
1
2
Fr�4=3þ ¼ Fr2=3� þ

1
2
Fr�4=3� ;

CR
LB
w
¼ 1

3
log

Fr2f
Fr2þ
þ 1
3
log Fr2� þ

1
3

1
Fr2f
� 1
Fr2þ
þ 1
Fr2�
� 1

 !
:
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Finally, across the end of the blocking-drag region, M̂ , is con-
served, and the Froude number at the back of the region is related to
the Froude number downstream through

Fr2=3b þ 1
2
Fr�4=3b

ð1� /BÞ1=3
¼ Fr2=3d þ

1
2
Fr�4=3d :

The solution can be constructed graphically from the M̂ vs Fr
plots [Figs. 3(a)–3(d)] using techniques common for Fanno flows43

but less common for free-surface channel flows. The three possible
outcomes of a steady free-surface channel flow interacting with an iso-
lated blocking-drag region are given as cases A, B, and C. We discuss
them in relation to an example of /B ¼ 0:2 and CR ¼ 0:23 (a value
typical of a square cylinder). The variation of the water height and

Froude number with distance, in the vicinity of the blocking-drag
region, are shown for the cases A and B in Figs. 3(e) and 3(f).

Case A: subcritical/supercritical exchange [see Figs. 3(a) and
3(b)]. M̂ is plotted for / ¼ 0, corresponding to the region outside the
blocking-drag region, and /B ¼ 0:2, corresponding to the region
within the blocking-drag region. In the blocking-drag region, the resis-
tance decreases the sum of the momentum-flux and pressure force.
Upstream of the blocking-drag region, the Fru is constant. Across the
front of the building, corresponding to a jump between “u” and “f”
[shown in Fig. 3(a) and 3(b)], the cross-sectional area of the flow
changes, but over a short distance, the force, M̂ , on the flow does not
change. For a subcritical flow, resistance tends to increase the Froude
number. When the length of the blocking-drag region is shorter than
the critical distance for choking, Frb remains subcritical. This causes

FIG. 3. Graphical interpretation of the
three types of solution to the steady-state
analysis obtained by looking at the varia-
tion of M̂ with Fr for cases A1, A2, B1,
and B2. In this example, /B ¼ 0:2 and
CRLB=w ¼ 0:24. The full (/B ¼ 0) and
dashed /B ¼ 0:2 curves in (a)–(d) corre-
spond to (4.4); they form part of the same
curve but zoomed into different parts. In
(a) and (b), cases A1 and A2 are shown,
where a unique solution is identified and
maps onto the passage from upstream
through to the downstream region (for
Fru ¼ 0:3; 3:0). The variation of ĥ and Fr
with x̂ is shown in (e) and (f), respectively.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 052104 (2022); doi: 10.1063/5.0079188 34, 052104-8

VC Author(s) 2022

https://scitation.org/journal/phf


the points to move along the momentum flux curve from “f” to “b.”
Finally, during the transition from position “b” to region “d,” the
momentum is conserved, and the solution jumps back to the initial
curve. This behavior is shown for case A1, Fig. 3(a). The same explana-
tion can be used to describe the transitional supercritical stage [case
A2 Fig. 3(b)]. The corresponding height profile and local Froude num-
ber are shown in Figs. 3(e) and 3(f), respectively. For cases A1 and A2,
there is a small decrease or fixed increase (of about 20%) in water
height, respectively.

Case B: choked flow [see Figs. 3(c) and 3(d)]. This state corre-
sponds to M̂ ¼ 3=2ð1� /BÞ1=3 or Frb¼ 1 at the back of the
blocking-drag region and Frd > 1. From Fig. 3(d), we see that pure
blocking does lead to a jump in the Froude number across the
blocking-drag region, which is caused by the drag force. For case B1,
the water height is reduced by about 40%, while for case B2, the water
height is increased by 20% [as shown in Fig. 3(e)].

Case C: this region is characterized by a range of Fru where no
solution exists to (16a) and 16(b). This is influenced by both blocking
and drag. The case C is shown in Fig. 4(a) where the regime diagram
for cases A, B, and C is plotted as a function of /B and Fru. The experi-
mental values for the transition interface (case B) derived from the
experimental observations14,44 are shown. In addition, the horizontal
lines show the intersections for /B ¼ 0:1; 0:2, and 0.3 and are re-
plotted in Figs. 4(c) and 4(d). It is shown that largest influence, for
finite /, is due to blocking ratio.

Figure 4(b) shows the variation of the dimensionless total drag
force, expressed in terms of the variation of DM̂ with Fru, where the

contributions from momentum flux and pressure terms are indicated.
For subcritical flows, the flow adjusts through changes in water height,
rather than flow speed, while for supercritical flows, the force is pri-
marily due to changes in the momentum flux.

When Fru � 1, the variation of the Froude number within the
blocking-drag region is small but the change from region “u” to “f”
must be taken into account, giving

CD0 ¼ lim
Fru�1

CD ¼ 2CR
LB
b
ð1� /BÞ�1=2;

derived in limit Fru ! 0 from (21), which can be used to set CR as

CR ¼
1
2
CD0

b
LB
ð1� /BÞ1=2: (23)

Similarly, when Fru 
 1, the drag coefficient is

CD1 ¼ lim
Fru
1

CD ¼
2
/B

1� exp � 1
2
CD0/Bð1� /BÞ1=2

� �� �
�CD0ð1� /BÞ1=2;

where the approximation is valid for short blocking-drag regions
where CRLB=w < 0:2. For the high Froude number flow, drag coeffi-
cient is, thus, reduced compared to the low Froude number limit and
is close to the drag coefficient anticipated in unbounded flows. To
close this problem, we need to specify the dependence of CD0 on /B.
Qi et al.14 used the following semi-empirical closure for the drag acting
on a square cylinder in a channel:

FIG. 4. In (a), a regime diagram plotted as
a function of the upstream Froude number
Fru and uniform blocking fraction /B
showing the location of solutions from
cases A1, A2, B1, B2, and C. The experi-
mental results of Refs. 14 (�) and 44 (�)
are shown. In (b), the change in the
“momentum flux” (for /B ¼ 0:2) with Fru
is shown, along with the contributions
from the pressure and momentum flux
terms shown in (19). In (c), the variation of
Frd with Fru for /B ¼ 0:1, 0.2, and 0.3 is
shown. The colored parts of the curves
map onto the colored regions in (a). In (d),
the drag coefficient CD is shown for
/B ¼ 0:1, 0.2, and 0.3.
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CD0 ¼ C0 1þ 1
2
C0/B

� �2

; (24)

where C0 ¼ 1:9.
Figure 4(d) shows the variation of CD with Fru, which is com-

pared against the drag coefficient in an unbounded flow (/B ¼ 0) and
represented by a dashed line. It shows a strong tendency of CD to
increase with Fru as the choked state is approached. The drag coeffi-
cient decreases dramatically for high Fr and shows a weak dependence
on /B.

The separate and combined effect of blocking and drag on the
regime diagram is shown in Fig. 5. Both blocking and drag tend to
force a subcritical and supercritical upstream flow toward a critical
state in the blocking-drag region. Case C arises because the limiting
state occurs when the flow is critical at the back of the blocking-drag
region leading to a gap in the Fru solution. The values of blocking and
drag chosen in this example are typical of flow past a square obstruc-
tion where the influence of the blocking ratio is larger than the influ-
ence of the drag force.

B. Link to an integral approach or 0D model

Qi et al.14 developed a 0D model based on an integral form of the
conservation of momentum that relates to the reduction in the
momentum flux to an empirical form of the drag force through (18)
and (19). This provides a relationship between two states similar to the
Rankine flow analysis of compressible flows but does not describe how
the flow developed along the channel. The coefficients CQ and CK

were chosen, so that as Fru ! 0, CD tends to CD0 which, after some
manipulation, yields

CQ ¼ CD0ð1� CK/BÞ: (25)

Using (25), the expression (2) generates a relationship between
Fru and Frd, which can be solved numerically. At the critical state, it
was argued (and observed) that a transition occurred from a subcritical
to a supercritical state through a hydraulic jump that was incorporated
into the model.

We compare the output from the 1D and 0D models to under-
stand how their predictive capability is related to their modeling
assumptions. Figure 6 shows a comparison between the predictions
from these two models for the variation of (a) the downstream Froude
number, (b) drag coefficient, and (c) energy dissipation, with the
upstream Froude number. Agreement for the drag force is wholly due
to the fact that both models are calibrated to have the same drag coeffi-
cient as Fru ! 0.

On the subcritical branch, both modeling approaches agree closely,
which is mainly due to the fact that hydrostatic forces are weak at low
Fru [Fig. 6(a)]. The variation of the drag coefficient with Fru on the sub-
critical branches [Fig. 6(b)] is quite similar due to the calibration. Both
supercritical branches indicate a general reduction in CD at high Fru.
We need additional information to discriminate between the different
branches of the zero-dimensional model. The supercritical branch (with
no solution) was argued to be nonphysical by Qi et al.,14 and here, we
can see that, indeed, this branch leads to a negative dissipation and can
be neglected [Fig. 6(c)]. Although both supercritical and subcritical val-
ues of Frd are possible (when Fru > 1), the analysis shows that the sub-
critical branch leads to larger dissipation. Similar to the compressible
flow argument for distinguishing between strong and weak oblique
shocks, we could argue that the supercritical branch is favored, with the
zero and one-dimensional models having similar trends.

FIG. 5. The combined and separate influence of blocking and drag on the Fru �
Frd variation is shown for /B ¼ 0:2 and CRLB=w ¼ 0:24.

FIG. 6. Comparison between the predictions from the 0D model (black line) and 1D model (red line) for the variation of the upstream Froude number Fru for /B ¼ 0:2 with (a)
the downstream Froude number Frd, (b) drag coefficient CD, and (c) energy dissipation DÛ. A uniform blocking ratio is taken for the one-dimensional model. The symbols on
the black line are used to distinguish between the upper and lower branches in (a)–(c). The value of CD0 is chosen to be the same for both 0D and 1D models.
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It is worth recognizing that 1D models cannot account for
upstream and downstream hydraulic jumps that are anticipated to
occur for three-dimensional high Froude numbers channel flow.45

While the model closure is based on a single value (the subcritical drag
force), we would still expect the 1D model to capture the supercritical
flow states and water heights because in reality, they are more strongly
influenced by blocking. The presence of oblique shocks is expected to
cause the downstream Froude number to be higher than the 1D pre-
dictions, and given the sensitivity of the drag to Frd, it is expected that
the drag force to be smaller than predicted.

V. TRANSIENT RESPONSE TO A UNIFORM STREAM

We now look to see how our basic results for a steady-state flow
can be used to interpret a transient flow. In this section, we consider
how an initially uniform stream of water height h0 and speed u0, cate-
gorized with by an initial Froude number (Fr0), adjusts in the vicinity
of a blocking-drag region. To track the convergence to a steady-state,
we evaluate the Froude number immediately upstream (Fru) and
downstream (Frd) of the blocking-drag region. As before, we look care-
fully at the uniform blocking case before looking at a smoothly varying
blocking ratio.

A. Final state and link to initial state

The adjustment process can be understood by writing u and h in
terms of q and Fr. Substituting (16a) and 16(b) into (3a) and 3(b) gives

2
3
Fr
@q

@~t
� 2
3
q
@Fr

@~t
þ g1=3q�1=3Fr5=3ð1� /Þ�1=3 @q

@~x
¼ 0; (26a)

@q
@t
þ 4
3
q1=3
ð1þ ð1=2ÞFr�2ÞFr2=3g1=3

ð1� /Þ1=3
@q
@~x

¼ � @

@~x
ð1þ ð1=2ÞFr�2ÞFr2=3

ð1� /Þ1=3
� CT

ð1� /Þ1=3
Fr2=3

� 1
2

CH

ð1� /Þ4=3
Fr�4=3

@/
@~x

q4=3g1=3; (26b)

where ~t ¼ ðgh0Þ1=2t=Lb. When the flow is steady (@=@t ¼ 0) and q is
a constant term, the left-hand side of (26b) disappears, and hence, the
forcing terms on the right-hand side are given as

0 ¼ � 2
3
ðFr2 � 1ÞFr�7=3

ð1� /Þ1=3
@Fr
@~x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gradient of energy line

� CTFr2=3

ð1� /Þ1=3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
drag force

� 1
2

CH

ð1� /Þ4=3
Fr�4=3

@/
@~x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hydrostatic force

: (27)

The above equation retrieves (17) describing the variation of the
local Froude number with distance along the channel. The sign of the
forcing terms in (27) tells us how adjustment occurs when CH¼ 0. To
reach an equilibrium, the first term on the right-hand side of (27)
must be positive to balance the negative drag force. Therefore, for sub-
critical flows, Fr must be increasing with ~x , while for supercritical
flows, Fr must be decreasing. This does not preclude the fact that the
hydraulic jump might occur within the domain, and the flow switch
from supercritical to subcritical, but the flow cannot be critical. When

CH 6¼ 0, since @/=@~x > 0 at the front of the blocking-drag region,
the same restrictions described above apply. However, at the back of
the building, where @/=@~x < 0, it is possible for there to be a jump
from a supercritical state to a subcritical state over a small region.

To illustrate the adjustment process, we have chosen an example
of CRLB=w ¼ 0:24, LB=h0 ¼ 1:0, and /B ¼ 0:2 to match the experi-
mental setup of Qi et al.14 While (26a) and 26(b) are written in a way
to see analytically same aspects of the steady solution, the flow devel-
opment was analyzed by solving (3a) and 3(b) using a constant flux
and fixed water height at the inlet and zero gradients of h and uh on the
outlet of the computational domain. The flow was initialized with h
¼ h0 and u ¼ u0. The simulations were applied to understand the ulti-
mate steady-state solution using a short domain (3LB) to reduce run
time. The equations were solved using a standard Lax–Wendroff tech-
nique, with typically N¼ 1500 points, dtu0=h0 ¼ 10�6 s, and 4� 107

time steps; the local Courant number dtjuj=dx was less than 0.01.
Ultimately, the flow tends to a steady-state, and the relationship

between the upstream and downstream flow analyzed in Sec. IV is
recovered, as we now confirm. Figure 7(a) shows the variation of the
Fru, Frd, and Fr0; the corresponding link between Fru and Frd is shown
in Fig. 7(b). Two possible outcomes map onto the observations for the
steady-state. These are

Case A: for low Fr0 (case A1), both the upstream and down-
stream flows are subcritical, and the change in the Froude number
across the blocking-drag regions is small. As Fr0 increases (but remains
subcritical), Fru increases because of a slight increase in the water
height, while reversely the Frd increases. The main adjustment is
through a weak bore propagating upstream where Fru � Fr0 and
Frd � Fr0, until a critical Fr0 value is reached. For case A2 (supercriti-
cal Fr0), the adjustment comes through the propagation of a bore
downstream of the blocking-drag region. The upstream Froude num-
ber remains unchanged Fru ¼ Fr0, and the Frd is smaller but
supercritical.

Case B: for intermediate values of Fr0, which crosses both subcrit-
ical and supercritical flows, the adjustment process is dramatic. This
corresponds to the case where there is no steady-state solution. The
upstream Froude number reaches a critical limit where the flow has
no solution [case C, as shown in Fig. 7(b)]. In this region, the Froude
number solution is forced to the critical points where Fru � 0:5 for
case B1 and Fru � 2:1 for case B2. As Fr0 increases, the water height
increases in this intermediate regime.

B. Comparison with experimental observations

Qi et al.14 studied experimentally the flow upstream and down-
stream of a square cylinder fixed in a uniform stream and the drag
force that acted the cylinder. Here, a comparison is made between
unpublished data collected for /B ¼ 0:2 and the model results calcu-
lated using the semi-empirical closure (24) with a uniform blocking
ratio.

The first test is the limiting value of Fru obtained as a function of
/B, which is shown in Fig. 4(a). Qi, Eames, and Johnson14 only identi-
fied the left-hand edge of the choked region because a supercritical
upstream flow could not be achieved using their experimental setup.
The edge of the regime diagram for /B ¼ 0:1 was picked up by
Ducrocq et al.44 who used an inclined flow to generate an upstream
supercritical flow (Fru > 1). The gap in the dataset of Ducrocq et al.44

corresponds to the absence of a steady solution (case C), which is
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plotted as a dashed curve bounded by two crosses in Fig. 4(a). The
edge of case C is consistent with experimental observations, although
there are very few studies available.

The relationship between the initial and final state can be
explored in the laboratory by either dropping an obstruction into a
steady stream or by characterizing the state of the flow in the absence
of obstruction (to determine Fr0). Figure 7(a) shows the variation of
the upstream and downstream Froude numbers with Fr0. During the
Qi et al.14 experimental study, the initial state of the Froude number
and water height (Fr0 and h0) were noted prior to a building being
introduced. A range of water heights was used but it was found that
the results for water levels less than 0.04m were susceptible to friction
from the tank floor (since the tank was about 3m long), and water
heights greater than 0.15m tended to interact with the tank ceiling
when a square cylinder was introduced. The comparison was limited
to having a maximum Fr0 < 2 during which means that only the sub-
critical branch of the flow (cases A1 and B1) could be assessed.
Agreement between the state of the flow characterized by the Froude
number variation is good. While the 1D analysis is based on a single
value of Fr0, there is a 3D structure to the channel flow.

Figure 7(b) shows a comparison between the experimental results
and the predictions for the variation of Fru with Frd for the subcritical
branch, and the agreement is good. When the same experiments as Qi
et al.14 are repeated in a longer flume, there is sufficient distance for
the hydraulic jump to be created, and the jump from the subcritical
branch to choked is much more distinct. A comparison between the
water heights ratios upstream and downstream of the building is
shown in Fig. 7(c). Less good is the comparison between the variation

in the normalized force measurement vs the initial Froude number
Fig. 7(d). While agreement for Fr0 ! 0 is expected because the
drag coefficient used in the 1D model is semi-empirically set and
the decaying trend for Fr0 is captured, the force near the supercriti-
cal state is under-predicted. Since the 1D model does not account
for the hydraulic jump that occurs downstream of the building, the
increased hydrostatic force due to the water height difference on
either side of the building is not accounted for. This would be the
strongest candidate for explaining the under-prediction of the
force. Water heights and Froude numbers are much better
accounted for because they are based on height measurements and
are more accurate.

VI. DAM-BREAK FLOW PAST A BLOCKING-DRAG
REGION

In this section, we use the quasi-steady analysis to understand the
interaction between a dam-break flow and a blocking-drag region. To
simplify the message, a comparison is made with the uniform blocking
case.

A. Influence of precursor layer

The dynamics of the interaction of a dam-break with a blocking-
drag region can be understood through a discussion of the height pro-
file along the flume length as a function of time. Figure 8 shows a series
of snapshots corresponding to a dam-break interacting with a uniform
blocking-drag region characterized by /B ¼ 0:2; Lb=L0 ¼ 2 and con-
trasting values of precursor water height (ĥL). The corresponding

FIG. 7. The characteristics of a steady-
state solution obtained from the transient
analysis are compared with the experi-
mental observations and the solution
obtained from the steady-state analysis
(for /B ¼ 0:2; b=LB ¼ 1, and h0=L0
¼ 1). In (a), the variation of the upstream
and downstream Froude numbers is
shown as a function of the initial Froude
number. The vertical lines separate cases
A1, B1, B2, and A2. The results from the
transient analysis are plotted as � (Fru)
and � (Frd), while the unpublished experi-
mental results from Qi et al.14 are plotted
as full symbols (�; �). The full lines are
determined from the steady-state solution.
In (b), Frd is plotted against Fru. The long-
time solution (�) is compared with the
steady-state solution (plotted as a full line
and circle) and Qi et al.14 (�). The ratio
of downstream and upstream water
heights to the original height, determined
numerically (hu=h0�; hd=h0 �) is shown
in (c) and compared with Qi et al.14 (full
symbols). In (d), a comparison is shown
between the numerically determined drag
coefficient (�) and the unpublished experi-
mental results (•).
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changes in the Froude numbers upstream and downstream of the
blocking-drag regions are shown in Fig. 9. The limits, defined from
Fig. 7, of the cases A1, A2, B1, B2, and C are indicated with horizontal
dashed lines in Figs. 9(a) and 9(b). For comparison, the variation of
the Froude number with time in the absence of the blocking-drag
region, derived using the construction technique of Sec. III, is plotted
using black lines in Fig. 9(a).

When the precursor layer is thin [Fig. 8(a)], the leading-edge
Froude number is much higher than the critical upstream value,
and there is no initial reflection from the blocking-drag region.
The upstream Froude number is initially unchanged by the pres-
ence of the blocking-drag region [Fig. 9(a)], as seen by comparing
the Froude number variation plotted for the case when the body is
removed—no blocking-drag region [Fig. 2(d)]. Figure 9(c)
shows the Frd vs Fru trajectory whose similarity to the steady solu-
tion is demonstrated by comparing against the constructed form in
Sec. IV. The arrows indicate the direction in which the trajectory
moves. The upstream Froude number is compared against the
case with the no blocking-drag region [Fig. 2(d)], while the down-
stream Froude number, Fig. 9(b), is compared against the predic-
tion for Frd obtained by interpolating the curve in Fig. 7(a)
using Fr0 ¼ Fru determined theoretically from the upstream value.

The horizontal lines in Figs. 9(a) and 9(b) correspond to the cases
as seen in Fig. 7(a).

After the high Froude number interaction, Frd decreases, so that
the Frd � Fru variation collapses onto the steady analysis relationship
[which is plotted in Fig. 9(c)]. The decrease in the upstream Froude
number tends to bring the Froude number trajectory to the cusp of the
supercritical Froude number relation and further decrease causes the
trajectory to jump horizontally onto the choked state. The conse-
quence of this jump is that the local upstream Froude number
decreases and the water height increases. This creates a bore moving
upstream, which can be seen in Fig. 8—the presence of the bore mov-
ing upstream was also described by Ozmen-Cagatay and Kocaman.46

The flow is still traveling to the right but slower than the flow that is
arriving at the back of the bore.

The interesting observation is that while the dynamics are signifi-
cantly different for short time due to the different precursor layer
thickness, the later dynamics are quite similar. Figures 10(a) and 10(b)
show the influence of the precursor height on the force response, and
the dash line shows the force estimate, 12CD0 û

2ĥ, where ĥ and û are
estimated from (14a), obtained from the Riemann method.

Figure 10(a) shows that the initial precursor height controls the
speed of the bores, and hence, the time it takes for the flow to meet the

FIG. 8. Series of snap shots for the cases of dam-break where the location of the blocking-drag region is fixed at Lb=L0 ¼ 2; /B ¼ 0:2; LB=b ¼ 1; h0 ¼ 0:4m, and w¼ 1.0 m.
The three examples correspond to (a) ĥL ¼ 0:001, (b) 0.01, and (c) 0.1. The dimensionless time for each snapshot, t̂ , is indicated on each snapshot.

FIG. 9. The variation of the upstream and downstream Froude numbers, as a function of time, as shown for the three depths of the precursor layer. In each, h0 ¼ 0:4 m,
LB=b ¼ 1; and/B ¼ 0:2. The center of the building is located at Lb=L0 ¼ 2:0 (where L0 ¼ 2:0m). In (a), the thin black curve corresponds to the upstream Froude number
in the absence of the blocking-drag region, while in (b), the downstream Froude number is estimated by mapping the upstream Froude number using the quasi-static estimate
of Fr0 ¼ Fru. The lines with crosses ð� � �Þ are the numerical results. The blue dotted lines are the fixed points of the quasi-static analysis. In (c), a scatterplot is used to
map the trajectory of the Fru � Frd relation for the three initial water depths. The arrows give an indication of the direction in which the trajectory moves, and the solid red line
represents the quasi-static analysis.
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blocking-drag region. The initial force response depends on the
Froude number of the leading flow. For sufficiently high Fr0, the force
jumps in response to a thin bore and then rises smoothly in time
[anticipated from (10) and Fig. 2(a)] in the simple wave regime before
decreasing as the flow slows and the upstream water height decreases.
When the initial Froude number is low, the flow rapidly switches to
the choked state, leading to a sharp reduction in the drag force before
tending to a constant value over the limited range of the incident bore.
The timescale adjustment is long compared to the advective timescale
past the blocking-drag region because the bore speed is small. As the
upstream Froude number decreases, the local flow tends to become
locked in the choked state.

Figure 10(b) shows the variation of the force with time estimated
by taking the Froude number, in the absence of the building and calcu-
lated using the construction technique, setting Fr0 ¼ FrðtÞ to calculate
FD from Fig. 7(d). For ĥL¼ 0.001 and 0.01, the simple model largely
explains the force curve, but it fails to account for the more complex
adjustment that occurs for ĥL ¼ 0:1. The remarkable point that the
force response is so similar for later time [Figs. 10(a) and 10(b)].

Figures 10(c)–10(e) show a more detailed look at the water height
in the vicinity of the blocking-drag region for the snapshots in the
period prior to and after the interaction with the building. The interac-
tion in Figs. 10(c) and 10(d) corresponds to case B2, while in Fig.
10(e), the height profile corresponds to case B1.

B. Influence of /B

The purpose of Fig. 11 is to contrast the influence of /B varying
from 0.02 to 0.2 on how the state of flow, characterized by Frd vs Fru,
changes. For small blocking ratios, the flow conforms closely to the
steady-state analysis, with the flow ultimately jumping to the subcriti-
cal branch. As the blocking ratio increases, deeper water tends to accu-
mulate on one side of the blocking-drag region, leading to the flow
fixed at a choked state for a longer period and ultimately a lower drag
ratio. For low blocking ratios, the simple model represented by the
dashed curve provides a good indication of the force dynamics but
misses the choked state for larger blocking ratios (Fig. 12).

C. Comparison with experimental observations

There are a few prominent experimental studies of dam-break
past rigid rectangular buildings, confined in a channel. Many of these
have employed large and long releases in an attempt to generate long
and slow transient flows past model buildings. In principle, this pro-
vides a physical model of a bore striking a building.

The first comparison is made with Arnason,47 who considered a
variety of building shapes, including a square-based prism (oriented nor-
mal and at an angle to the incident flow) and a cylinder. Here, we com-
pare against the square cylinder where w¼ 0.6m, Lb ¼ b ¼ 0:12m,
and located 5.9m from the gate. A variety of lock height releases were

FIG. 10. The influence of the precursor thickness on force as a function of time is shown in (a) and (b) where ĥL ¼ 0.001 (þ), 0.01 (�), and 0.1 (�). The dashed curve corre-
sponds to the prediction, FD=qbgh20 ¼ 1

2CD0 û
2ĥ, where û2ĥ is given by (14a). In (a), the force is determined from shallow-water equation while in (b), it is constructed from

Fig. 7(d) using Fr0 ¼ Fru. In (c)–(e), the height profiles are shown at various time instances in the vicinity of the blocking-drag region.
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considered from h0 ¼ 0:1 to 0.3m with a lock region of length
L0 ¼ 5:9m. The simple 1D model captures the spike in the force whose
origin is not related to impulsive splashing but a rapid adjustment to the
choked state before tending to an approximate plateau and then a rapid
decrease [Fig. 13(a)].

Nouri et al.48 examined the interaction between a square column
and a dam-break flow produced by the rapid opening of a gate, releas-
ing water at a range of lock depths. The water was held in a reservoir
that traveled around a 180� bend over a dry bed, leading to a high
Froude number at the precursor front. We discuss their experimental
results for different water heights, from the square cylinder study
where /B ¼ 0:23. Similarly, when force tends to rise and decrease
continuously before a short plateau [Fig. 13(b)]. During the steady and
decaying flow regime, the square cylinder is shedding vortices, gener-
ating an unsteady drag force, which is reflected in the experimental

measurements. The 1D model shows a similar peak force to the
experiments, but a faster relaxation was computed, which is likely due
to the significant bend on the channel. Overall agreement is good,
given the simplicity of the model and is comparable to reported CFD
calculations.

VII. CONCLUSION

In this paper, we set down a framework to analyze the interaction
between a free-surface flow and a region of blocking-drag. The novelty
comes from the use of a one-dimensional model of shallow-water flow
to examine the distinct effects of blocking and drag on the state of the
flow. We have gone into considerable detail about the steady-state sol-
utions (cases A, B, and C). Similar types of steady-state solutions have
been identified in other free-surface flows, for instance, generated by
submerged mounds, bottom friction in wide channels, though the sig-
nificance of sidewall drag force was not analyzed in this context. The
simplest cases are where the flow is wholly subcritical or supercritical
(cases A1 and A2). The flow has a critical state where there is a switch
between subcritical upstream and supercritical downstream (case B1—
choked state). This state is crucial to understanding the influence of
the large-blocking ratio on unsteady free-surface flows. For the inter-
mediate state, case B2, the flow adjusts from supercritical to the sub-
critical state through the formation of an internal hydraulic jump.
There is a range of upstream Froude numbers, for which there is no
steady solution (case C). The physics of these processes has been
explained using a M̂ � Fr relationship that accounts for the effect of
blocking and drag. The limited available experimental data supports
cases A1, B1, and C.

The steady-state analysis proved fruitful when interpreting the
transient solution where we related the Froude number prior to adjust-
ment, to the steady-state solution. The limiting steady-state results
have been compared with data obtained by Qi et al.14 The comparison
shows that while the critical Froude numbers and water height are
well predicted, the drag force near the choked state is under predicted.
When the blocking ratio varies smoothly, the effect including a hydro-
static force (with CH ¼ 0:2) slightly improves the agreement of the

FIG. 11. Scatter plot of (Frd, Fru) for
ĥL ¼ 0:01; Lb=LB ¼ 1:0; Lb=L0 ¼ 2:0,
and /B ¼ (a) 0.02 (�), (b) 0.04 (�), (c)
0.1 (�), and (d) 0.2 (().

FIG. 12. The variation of the dimensionless force as a function of ~t is shown for
/B ¼ 0.02 (�), 0.04 (�), 0.1 (�), and 0.2 ((). The dotted curve corresponds to
the limit of /B ! 0, while the dashed curve is FD=qbgh20 ¼ 1

2CD0 û
2ĥ, where û2ĥ

is given by (14a).
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critical upstream Froude numbers and the drag coefficient close to the
choked state, but otherwise, the key results are retained.

We applied the new framework to analyze the interaction
between a dam-break flow and an isolated square building, which was
represented as a region of uniform blocking and drag. By tracking the
Froude number trajectory (based on the upstream and downstream
values), we were able to identify how the transient solution closely fol-
lowed the steady-state flow characteristics. The analysis identified that
the flow jumped from case A2 to B2 and then across to case B1. When
the upstream Froude number had dropped sufficiently, the flow
jumped to the subcritical state (case A1). A comparison was made
between the unsteady force calculated with the model and predictions
based on combining the Froude number in the absence of the
blocking-drag region with a steady analysis. Agreement was good,
highlighting the importance of the steady-state analysis in explaining
the underlying physical principles. A comparison was made between

the drag on a square building in a dam-break flow, measured by
Arnason,47 Nouri et al.,48 and the model predictions, and again, the
agreement is good. The form of the drag force time series is sensitive
to the depth of the precursor layer, and the difference between these
two studies can be explained by the initial Froude number values.

The new framework provides a means of analyzing and under-
standing the profound influence of blocking and drag on unsteady
free-surface flows. This has the potential to help interpret the extensive
number of two- and three-dimensional simulations of free-surface
flows interacting with buildings and provide guidance on flow behav-
ior for more complex and realistic scenarios. Although the 1D model
does not include the significant flow changes that occur in the vicinity
of an obstruction, 3D effects such as recirculation, or 2D effects such
as shock diamonds, which all contribute to a persistent downstream
flow signature, the model is based on an integral form of the momen-
tum equation and is expected to capture the gross characteristics
encapsulated by the regime diagrams. Our next step is to test this
framework against 2D and 3D numerical simulations, which will be
reported in a later publication.
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